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Abstract: In the realm of the Internet of Things (IoT), ensuring the security of communication links 
and evaluating the safety of nodes within these links remains a significant challenge. The continuous 
threat of anomalous links, harboring malicious switch nodes, poses risks to data transmission between 
edge nodes and between edge nodes and cloud data centers. To address this critical issue, we propose 
a novel trust evaluation based secure multi-path routing (TESM) approach for IoT. Leveraging the 
software-defined networking (SDN) architecture in the data transmission process between edge nodes, 
TESM incorporates a controller comprising a security verification module, a multi-path routing 
module, and an anomaly handling module. The security verification module ensures the ongoing 
security validation of data packets, deriving trust scores for nodes. Subsequently, the multi-path routing 
module employs multi-objective reinforcement learning to dynamically generate secure multiple paths 
based on node trust scores. The anomaly handling module is tasked with handling malicious switch 
nodes and anomalous paths. Our proposed solution is validated through simulation using the Ryu 
controller and P4 switches in an SDN environment constructed with Mininet. The results affirm that 
TESM excels in achieving secure data forwarding, malicious node localization, and the secure 
selection and updating of transmission paths. Notably, TESM introduces a minimal 12.4% additional 
forwarding delay and a 5.46% throughput loss compared to traditional networks, establishing itself as 
a lightweight yet robust IoT security defense solution. 

Keywords: IoT security; software-defined networking; packet security verification; multi-path routing; 
path scoring 
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1. Introduction 

The Internet of Things (IoT) refers to the interconnection of physical devices to a network through 
information-sensing devices, creating a comprehensive network system that enables seamless 
communication among people, devices, and things at any time and any location [1]. IoT technology 
digitizes the physical world, effectively integrates decentralized information resources, and facilitates 
digital information interaction between things. Today, IoT has found widespread applications in 
various fields such as industrial manufacturing, remote healthcare, smart homes, and connected 
vehicles [2]. Predictions indicate that by 2025, approximately 750 billion devices will be connected to 
the IoT, playing a crucial role in people’s lives and work. However, despite the convenience IoT brings, 
it also faces increasingly severe security challenges [3]. 

The application of edge computing in the IoT effectively addresses issues such as data 
transmission latency and bandwidth consumption caused by the distance of cloud data centers from 
IoT terminal devices. Edge computing deploys computing, storage, and network services closer to the 
data source, utilizing edge nodes such as edge computing nodes and fog computing nodes (this paper 
considers fog computing as an extension of edge computing). By executing local computing tasks, 
edge nodes only send essential data to the cloud, effectively reducing data transmission latency and 
improving real-time capabilities [4]. Edge nodes ensure the security of incoming IoT data by 
establishing access control mechanisms or authenticating devices accessing the IoT [5]. Through data 
encryption and security verification, the confidentiality and integrity of data transmission can be 
ensured [6]. However, these solutions often overlook security threats in communication links between 
edge nodes and cloud servers or in scenarios of data transmission between edge nodes in multi-access 
edge computing (MEC) [7]. The presence of malicious nodes in the link can result in actions such as 
data theft, tampering, or deletion, impacting the secure transmission of IoT data [8]. While commonly 
used end-to-end data security verification solutions in the IoT can identify abnormal data, they cannot 
locate abnormal links and malicious nodes in the link, allowing malicious nodes to continuously 
threaten the secure transmission of data. Additionally, if path anomalies occur and are not promptly 
detected and replaced, it can lead to the malfunction of IoT devices and widespread network failures. 
Therefore, the key to ensuring the secure and stable transmission of IoT data lies in the implementation 
of the selection of secure transmission paths between edge nodes and the cloud, the localization of 
malicious nodes, and the detection and replacement of abnormal links. 

Software-defined networking (SDN) [9] is a technology that separates the control plane from the 
data plane in a network, with the core concept of enabling flexible configuration and management 
through software. Javanmardi et al. [10] summarized the application architecture of SDN in the IoT 
fog networks and the SDN-based security defense mechanism for IoT-fog. They designated fog nodes 
and fog gateways as the data plane of SDN, while cloud data centers and cloud gateways constituted 
the SDN control plane. Leveraging the centralized management features of SDN, the control plane 
facilitates the observation and monitoring of all nodes in the network. Fog gateways process all flows 
using flow rules injected by the cloud gateway, enabling flexible management of network 
configurations and enhancing the operational and security aspects of IoT-fog. SDN, with its 
programmability and centralized management of network nodes and data flows, effectively addresses 
the challenges in IoT security defense mechanisms, thereby improving the performance of security 
defense solutions. For instance, it facilitates the management and secure access control of a large 
number of IoT devices, enables easy acquisition of IoT traffic for anomaly detection, and provides an 
integrated management environment for password-based security solutions. However, existing 
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security solutions that integrate SDN with IoT lack research on secure data transmission paths [11]. 
Therefore, investigating how SDN can be utilized to achieve the selection of secure routing in the IoT 
is a worthwhile research direction. 

To address the security threats faced by data during transmission between edge nodes and the 
cloud, as well as between edge nodes, and to ensure the security of data transmission paths, we propose 
a trust evaluation based secure multi-path routing scheme for the IoT. By applying SDN architecture 
to IoT, we incorporate the “distrust and always verify” principle from zero trust [12]. Through the 
continuous security verification of data packets, we assess the trustworthiness of links and nodes within 
the links. Based on these evaluations, we establish a secure and reliable multi-path routing mechanism, 
enabling the selection and dynamic updating of secure paths. This ensures the secure and stable 
transmission of data across the network links. The following are the main contributions of this paper: 

1) Proposing a trust evaluation based secure multi-path routing scheme for IoT, this approach 
achieves the detection of abnormal links through secure validation of data packets. Real-time trust 
scoring of switch nodes enables secure multi-path selection and the localization of malicious nodes. 
Finally, by devising dynamically adjustable multi-path routing policies, the method ensures flexible, 
secure, and stable data transmission within the IoT. 

2) Designing a reinforcement learning-based dynamic multipath routing algorithm, using node 
trust scores as evaluation parameters for multi-objective reinforcement learning. The algorithm adjusts 
the real-time generation strategy of multipath routing based on path scores, achieving the dynamic 
generation and updating of secure multipaths. 

3) Validating the effectiveness and superiority of the proposed solution and algorithm through 
simulation experiments. The results indicate that the proposed methods can effectively enhance the 
security and reliability of the IoT, with minimal impact on performance overhead. 

The structure of this paper is organized as follows: Section 2 reviews the research schemes related 
to this work. Section 3 provides a detailed introduction to the proposed trust evaluation based secure 
multi-path routing scheme for IoT. Section 4 conducts simulations of the proposed scheme and 
analyzes the results. Section 5 summarizes the main content of this paper and outlines future research 
directions. 

2. Related works 

The related solutions are built upon SDN to achieve secure protection and anomaly detection for 
IoT data traffic. Kamoun-Abid et al. [13] established a firewall structure combining the IoT cloud layer 
and fog layer. Due to the proximity of fog nodes to IoT devices, they efficiently filter traffic based on 
rules, effectively reducing the hops of illegal data packets in the IoT. Sadiq et al. [14] integrated SDN 
to build a firewall for defending against distributed denial of service (DDoS) attacks in the IoT. While 
the firewall incurs lower costs, it is ineffective against internal attacks and 0-day attacks. Dhawan et 
al. [15] introduced the Sphinx scheme, obtaining traffic information from switches to create specific 
flow information flowcharts in the network. They effectively monitor network traffic based on the 
features of these flowcharts. Nguyen et al. [16] used a distributed controller to obtain IoT traffic 
information, alleviating the issue of a single point of failure. They combined deep learning to construct 
three different levels of intrusion detection systems to detect anomalous traffic. Pourvahab et al. [17] 
utilized blockchain for forensic analysis of data in the IoT, ensuring device authentication and data 
integrity. Additionally, each SDN controller incorporates a classifier for recognizing malicious packets 
and devices using a multi-fuzzy neural network algorithm. However, these anomaly detection solutions 
require real-time monitoring and statistics of IoT traffic, leading to increased network overhead. 
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Moreover, anomaly detection may introduce some latency, posing challenges in real-time blocking of 
malicious traffic attacks. 

The related solutions integrate SDN with cryptography, ensuring the security of data transmission 
and the reliability of links through secure verification of data packets in the context of the IoT. The 
LPV, Lightweight Packet Forwarding Verification, [18] scheme adds externally transparent labels to 
data packets in the network. Ingress and egress switches calculate the summary information for packets 
with special labels and send it to the controller. Through the verification of the summary information, 
the security of data transmission is ensured. Xie et al. [19] applied blockchain technology to vehicular 
networks, where each vehicle contains road information. Surrounding vehicles score this information 
for its authenticity, ensuring information accuracy. Li et al. [20] constructed a blockchain-based IoT 
zero-trust architecture. This architecture establishes an identity authentication model between edge 
computing nodes and IoT devices. Through blockchain, data and behaviors are recorded, achieving 
zero-trust verification and dynamic authorization for user behavior. Although blockchain can 
authenticate IoT data, it generates a large amount of information exchange between nodes and is not 
suitable for certain IoT environments with high real-time communication requirements. P4Label [21] 
is a P4-based packet forwarding verification mechanism. It establishes identity-based signatures for 
data packets, detecting malicious tampering or forgery through signature verification. However, 
P4Label adds a longer header length to the data packets and incurs significant key storage overhead. 
The SDNsec [22] scheme encodes packets with information about the transmission path. Switches in 
the network verify the encoding, and if the packet violates path rules, the switch discards it, ensuring 
the consistency of the forwarding path. However, this scheme cannot locate malicious nodes. Latif et 
al. [23] integrated blockchain with SDN and proposed a clustered structure for the IoT network routing 
protocol. By constructing multiple SDN domains and establishing both a public blockchain and private 
blockchains responsible for inter-domain and intra-domain data security, this solution is designed to 
be managed by the SDN controller and maintained by each IoT device within the cluster. However, 
this approach only achieves secure verification between IoT data points and does not address the 
security of data transmission paths between two points. Zeng et al. [24] employed blockchain to protect 
secure routing in SDN-enabled multi-controller IoT networks. The SDN controller abstracts the inter-
domain topology structure and uploads it to smart contracts, which are then verified by other 
controllers based on a voting mechanism to ensure secure routing between multiple domains. 
Nevertheless, this solution only guarantees the security and trustworthiness of controllers and network 
topology and does not effectively detect or locate malicious switch nodes in the data plane. 

In the IoT, the selection of transmission paths is crucial. Strategies such as defining path selection, 
updates, and replacements can effectively enhance network service quality, data transmission security, 
and resilience to risks. Yan et al. [25] proposed an SDN-based quality of service (QoS) assurance 
scheme that utilizes queuing mechanisms and multipath routing technology to ensure the QoS of 
different types of traffic. The scheme can quickly provide replacement paths when faulty paths occur. 
Alqahtani et al. [26] introduced a multipath QoS routing protocol based on route stability. The protocol 
generates two optimal paths between source and destination nodes using different route metrics. It uses 
both the primary and backup paths for data transmission to improve network stability. Multipath quick 
UDP Internet connections (MPQUIC) [27] is a routing protocol that supports multipath transmission. 
In comparison to the multi-path TCP (MPTCP) protocol, MPQUIC employs dynamic path selection 
strategies to choose the best path in real-time based on network conditions and data transmission 
requirements. However, MPQUIC, using the UDP protocol, cannot address security threats such as IP 
spoofing and tampering of packets. Pu et al. [28] proposed an interference-resistant multipath routing 
protocol called JarmRout. The protocol generates multiple paths based on link quality, traffic load, and 
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spatial distance, addressing the impact of local failures on data transmission in unmanned aerial vehicle 
self-organizing networks and improving network resilience. Jin et al. [29] established a resilient and 
secure microgrid, using SDN for visualized supervisory control of the communication network. In the 
face of network attack threats, the system achieves self-healing management by generating secure 
alternative paths. Li et al. [30] presented a secure and reliable data transmission solution in industrial 
IoT. A centralized controller periodically analyzes data packet validation reports sent by terminal hosts 
to identify malicious switch nodes involved in packet modification attacks. Upon discovering a 
malicious switch node, the controller selects a new secure path through route algorithm updates for 
communication restoration. However, this scheme requires obtaining validation information from all 
terminals, imposing a significant burden on the controller. Ren et al. [31] proposed an endogenous 
security SDN network architecture based on multipath elastic routing (MRR). The architecture offers 
three data forwarding modes: multipath comparison, multipath weighting, and multipath random. In 
the multipath comparison mode, security verification of paths is achieved by comparing the 
consistency of data. In the multipath weighting mode, load balancing is achieved by assigning weights 
to paths. In the multipath random mode, low-cost paths are randomly selected for data transmission. 
However, MRR can only detect anomalous nodes in the multipath comparison forwarding mode and 
other modes do not include the security verification process for paths. Guo et al. [32] proposed a QoS-
aware secure routing protocol, DQSP, based on deep reinforcement learning to address the 
vulnerability of routing protocols in SDN-IoT. DQSP achieves self-learning through interactions with 
the environment, ensuring QoS while avoiding routing plans targeting malicious nodes. However, 
DQSP only considers gray hole attacks and DDoS attacks during the implementation of secure routing. 
In cases of abnormal behavior such as data tampering and unusual forwarding paths in the switch nodes, 
DQSP cannot provide security functionality. 

Table 1. Functional comparison of relevant solutions. 

Scheme Data security Anomaly localization Path selection Path security 

Scheme [13–17,19–21,23] √ × × × 

Scheme [18] √ √ × × 

Scheme [22] √ × × √ 

Scheme [24] × × × √ 

Scheme [25-28] × × √ × 

Scheme [29,30] √ √ × √ 

Scheme [31] √ √ √ × 

Scheme [32] √ × √ × 

Proposed scheme √ √ √ √ 

Table 1 compares the functionalities implemented by our proposed solution with those of related 
approaches. In the table, √ indicates the presence of the corresponding functionality, while × 
indicates the absence of that functionality. The shortcomings identified in the above-mentioned 
research include the separation of studies on data security and path security, lack of consideration for 
security factors in the process of selecting data transmission paths, and the absence of effective means 
to handle abnormal links and promptly switch to secure transmission paths. Therefore, there is a 
pressing need for an IoT routing selection and updating strategy that comprehensively addresses both 
data and path security verification, dynamically generates secure paths based on the security status of 
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the links, and facilitates effective handling of abnormal links and timely replacement of secure 
transmission paths. 

3. Trust evaluation based secure multi-path routing for IoT 

This section will provide a detailed exploration of the trust evaluation based secure multi-path 
routing for IoT (TESM), covering aspects such as model architecture, problem statement, packet 
security verification, secure multi-path routing, and anomaly handling mechanisms. To enhance clarity 
in describing the solution, definitions for the identifiers presented in Table 2 are provided. 

Table 2. Definition of identifiers. 

Identifier Definition 

P Forwarded data packet 

H Packet header 

PL Packet payload 

FlowID Data flow identifier 

Si Switch node identifier 

count_in Incoming packet count 

count_out Outgoing packet count 

S_
i

score d  Trust score based on data of Si 

S_
i

score p  Trust score based on path of Si 

iK  Session key between controller and Si 

H1(),H2(),H3() Hash functions 
MAC ()K  Message authentication code generation function based on key K 

3.1. TESM architecture 

To address security threats in data transmission between edge nodes and between edge nodes and 
the cloud data center, we propose a secure multi-path routing solution based on trust evaluation, TESM. 
TESM deploys an SDN controller to manage data forwarding between IoT edge nodes or between 
edge nodes and the cloud data center. In the following description, we will focus on the scenario where 
data is transmitted between edge nodes. In this context, network devices with data forwarding 
capabilities in the IoT are defined as switching nodes. TESM transforms the switch nodes along the 
data transmission links between edge nodes into SDN-enabled entities capable of communicating with 
the controller. Comprising security verification, multi-path routing, and anomaly handling modules, 
TESM ensures secure data validation, detection and localization of malicious nodes, and dynamic 
selection of secure multiple paths through collaborative interactions among these modules. This 
enhances the security and stability of data transmission between edge nodes. 

The architecture of TESM is illustrated in Figure 1, where SN and DN denote edge nodes and 
S1~S6 represent the switch nodes within the link. The security verification module, multi-path routing 
module, and anomaly handling module are positioned within the controller. Below, we provide 
individual descriptions of the functions of each module. 
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Figure 1. TESM architecture diagram. 

The security verification module performs real-time monitoring of data traffic within the data layer 
and conducts secure validation, ensuring the safety and integrity of data transmission. Simultaneously, 
it gathers statistics on the packet forwarding activity of relevant ports on switching devices, enabling 
the verification of paths and nodes. This process guarantees the consistency of forwarding paths and 
the trustworthiness of nodes. Based on the verification outcomes, the security verification module 
assigns trust scores to nodes, serving as a basis for path selection in the multi-path routing module. 
Additionally, the security verification module forwards information about paths and nodes that did not 
pass the security validation to the anomaly handling module for further investigation and resolution. 

The multi-path routing module constructs secure multi-path routing based on real-time network 
topology information, incorporating bandwidth, latency, and node trust scores. Using multi-objective 
reinforcement learning, the controller deploys multi-path forwarding rules to switch nodes, thereby 
enhancing the quality of service and security of IoT. This module dynamically adjusts paths in response 
to changes in node status, ensuring the dynamic updating of forwarding paths. It also adapts data 
forwarding rules based on network conditions, thereby improving IoT stability and network resilience. 

The anomaly handling module detects and isolates paths that fail security validation through a 
more granular security verification method for the links associated with abnormal nodes. It updates 
paths in the multi-path routing module, distributing suspicious abnormal nodes across different paths 
to enhance the efficiency of anomaly detection. Using a trust score mechanism, the anomaly handling 
module locates and removes abnormal nodes from the multi-path routing, ensuring secure and 
trustworthy paths. In the event of detecting abnormal links, the module replaces the abnormal path 
with a secure alternative path, promptly deploying updated flow rules to enhance network self-healing 
and achieve self-recovery in the face of security threats in the IoT. 

The implementation of TESM relies on the following security assumptions: the SDN controller is 
secure, the process through which the controller issues rules to switching devices is secure, and the 
boundary switch nodes are secure and trustworthy. 
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3.2. Problem statement 

In the deployed IoT with an SDN architecture, the controller facilitates data forwarding along 
specified paths by deploying flow tables to switch nodes. The secure transmission of data relies on the 
security of the chosen paths. The presence of malicious nodes in the path can lead to abnormalities in 
both data and paths, posing a threat to the secure transmission of data between edge nodes. Figure 2 
illustrates the security threats posed by malicious nodes to data transmission. Here, S1–S6 represent 
switch nodes and data is transmitted from the source edge node SN to the destination edge node DN, 
following the designated path S1-S2-S3. In this scenario, data flow is sequentially forwarded through 
S1, S2, and S3. Assuming S2 is a malicious node, it possesses the capability to alter both the data content 
and the rules for forwarding data packets. 

 

Figure 2. Security threats of malicious nodes to data transmission. 

Malicious packet modification attacks involve altering the content of data packets to achieve 
objectives such as theft, attacks, and destruction. In Figure 2, the malicious node S2, through header 
manipulation (H2→H2’), can render security defense systems ineffective in detecting and tracing the 
illicit data packet. Tampering with matching items can lead to security threats such as masquerade 
attacks, denial of service attacks, and man-in-the-middle attacks. By tampering with the payload of 
data packets (PL3→PL3’), malicious nodes deceive the target nodes, especially when the manipulated 
content includes malicious code, leading to security threats like device control, information theft, and 
expanding the scope of IoT infections. 

Anomalies in the forwarding path involve modifying the data’s forwarding path to intercept data, 
bypass protective measures, or change the destination address. In Figure 2, the malicious node S2, 
contrary to the rules, forwards the data packet to S4 before transmitting it to S2. S4, through operations 
like copying or stealing data packets, compromises the security of IoT data, leading to data leakage. 
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The security of the transmission path is crucial for enhancing data security and network 
trustworthiness. Figure 3 illustrates multiple forwarding paths in the network, with S1-S2-S3 as the 
designated path and S4 as a potential malicious node. When the S1-S2-S3 path encounters a failure, an 
alternative path needs to be selected. Considering factors such as bandwidth and latency, and assuming 
equal performance at each node, the S1-S4-S3 path might be considered the optimal alternative path 
due to fewer switch hops, enabling faster data transmission. However, since S4 has a higher likelihood 
of being a malicious node, data transmission along this path poses a higher security risk. Therefore, 
combining security and trustworthy analysis of nodes, the S1-S5-S6-S3 path emerges as the most 
suitable alternative, effectively enhancing the security and reliability of data transmission. The same 
conclusion can be reached in the case of using multipath routing. If two paths are selected for data 
transmission, ensuring secure forwarding involves choosing the S1-S2-S3 and S1-S5-S6-S3 paths, 
avoiding the selection of shorter but less secure paths like S1-S4-S3. 

 

Figure 3. Selection of secure forwarding paths. 

To address the aforementioned security threats and achieve secure data transmission between edge 
nodes, we aim for TESM to provide comprehensive security assurance for IoT data, nodes, and paths. 
Specifically, TESM must continuously verify the security of data and forwarding paths to ensure data 
integrity and path security. Additionally, TESM should perform real-time detection and localization 
of malicious nodes within the links. Finally, TESM should facilitate the selection of secure paths, 
enabling timely path updates when abnormal paths are detected to enhance the self-healing capability 
of the IoT. 

3.3. Data packet security verification 

In the TESM architecture, the security verification module performs security checks on data 
packets to detect anomalies and verify the integrity of the links. Based on the verification results, it 
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generates trust scores for the switch nodes in the transmission path. The security verification process 
is illustrated in Figure 4.  

H

H

 

Figure 4. Data packet security verification flowchart. 

1) The source node transmits data to the ingress node S1. 
2) If S1 receives this type of data packet for the first time, it transmits the packet header (H) to the 

controller. The controller, based on the header information, formulates forwarding rules for the data 
packet. Subsequently, S1 calculates the hash value (h) of the data packet using Eq (1) and forwards h 
along with the data packet. The hash function H1() is exclusively shared between the controller and 
the boundary switch nodes to prevent tampering of both P and h by intermediate switch nodes 
simultaneously. 

 1= ( || )h H H PL  (1)  

3) Egress switch node S3 calculates the hash value of the received data packet using Eq (1) and 
compares it with the hash value (h) within the packet. If the values are not equal, indicating that the 
data packet has not passed security validation (i.e., the data content has been anomalously modified), 
S3 refrains from forwarding the packet and sends the packet header (H) to the controller to report the 
anomaly. When the calculated hash value matches the value within the data packet, it signifies the 
successful security validation of the data packet. 

4) For data packets that pass security validation, egress switch node S3 removes h and forwards 
the data packet to the destination node. 

5) Each switch node along the forwarding path counts the packets flowing through, with count_in 
and count_out representing the number of incoming and outgoing packets at each switch node. Under 
the assumption of no natural packet loss in the links, the counts at each switch node along the same 
forwarding path should be equal. Any disparity indicates an anomaly in the forwarding path at that 
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specific switch node. Switch nodes periodically upload these statistical values to the controller, 
enabling trust score calculation for nodes and detection of anomalous nodes. 

Node trust score is divided into two components: data-based trust score and path-based trust score. 
FlowID is employed to describe the type of data flow, and it is included in the data packet header, as 
depicted in Eq (2). Here, srcIP and dstIP refer to the source IP address and destination IP address from 
the original IP header of the data packet, while srcport and dstport represent the source and destination 
ports. The padding section can be customized by adding transmission information such as data business 
type and data priority, facilitating a fine-grained division of data flows. TESM specifically addresses 
data flows between edge nodes transmitted using the TCP/IP protocol. In cases where data between 
edge nodes employs alternative protocols, adjustments to Eq (2) should be made based on the specific 
protocol details. However, this aspect is not discussed further in this paper.  

 2FlowID H (srcIP||dstIP || scrport||dstport||padding(optional))  (2)  

If data packets with the same FlowID have the same forwarding path, then FlowID
S_

i
count in  and 

FlowID
S_

i
count out  respectively represent the statistics of the number of incoming and outgoing data packets 

of Si for the FlowID type. The ratio of the number of data packets entering downstream exchange node 
Si+1 to the number of data packets entering upstream exchange node Si in the specified forwarding path 
is calculated to describe the trust score of the node based on the path, as shown in Eq (3). 

 1

FlowID
SFlowID

S FlowID
S

_
_ 100%

_
i

i

i

count in
score p

count in
   (3)  

The trust score of the node based on data in the forwarding path where FlowID is located is shown 
in Eq (4). 

 out

in

FlowID
SFlowID

S S FlowID
S

_
_ _ 100%

_i i

count out
score d score d

count in

 
    (4)  

Sin and Sout respectively represent the ingress and egress exchange nodes. When the ratio of the 
number of data packets flowing out of Sout to the number of data packets flowing into Sout is smaller, it 
indicates that there are more abnormal data packets and malicious exchange nodes in the path. At this 
point, the exchange nodes in the path receive a lower trust score. To eliminate the impact of abnormal 
forwarding paths or malicious discards on data trust scores, a compensation parameter   is added. 
The calculation method is shown in Eq (5). By supplementing the number of data packets that each 
exchange node in the forwarding path did not forward normally, the independence between the data-
based trust score and the path-based trust score is ensured. 

 FlowID FlowID
S S(1 _ ) _

i i
score p count in     (5)  

Equation (4) only considers the case where Si forwards data on a single path. The appearance of 
malicious exchange nodes will cause the trust score of all nodes in the same forwarding path to 
decrease, and Si in the same path has the same S_

i
score d . To distinguish between malicious exchange 
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nodes and secure exchange nodes, TESM constructs multi-path routing to make Si obtain different 
FlowID
S_

i
score d  for different FlowID. At this point, the trust score of Si is shown in Eq (6). 

 0 FlowID
S S S_ _ (1 ) _

i i id dscore d w score d w score d      (6)  

where wd is the weight parameter and 0
S_

i
score d  is the trust score of Si stored by the controller. 

Equation (6) can keep the trust score of malicious exchange nodes stably low while gradually 
increasing the trust score of normal nodes affected by malicious nodes in Eq (4). Similarly, 

FlowID
S_

i
score p  in multiple forwarding paths is also updated using Eq (6). 

3.4. Multipath secure routing 

The multi-path routing module employs a multi-objective reinforcement learning approach to 
construct multiple secure paths for TESM. Multi-objective reinforcement learning is a type of 
reinforcement learning algorithm where an agent learns and discovers the optimal strategy by 
interacting with the environment to balance multiple objectives. In this context, the multi-path routing 
module is defined as an intelligent agent utilizing multi-objective reinforcement learning. Each switch 
node corresponds to a state in the reinforcement learning framework, and the process of moving from 
the current switch node to an adjacent switch node represents an action in the reinforcement learning 
context. Through continuous learning of the path selection strategy, the multi-path routing module 
ultimately acquires multiple secure paths between the source and destination nodes. 

Algorithm 1 describes the process of generating secure multiple paths. Firstly, the topological 
structure of the network nodes is obtained and stored in a graph structure. Simultaneously, trust scores 
for each switch node are obtained from the security verification module. The notation Q is defined to 
represent the table storing the state-action value function, while Path and Path_score are used to store 
the generated multiple paths and their corresponding path scores. The algorithm initializes the source 
node Ss as the initial state. The choose_action() function employs an epsilon-greedy algorithm to select 
the next action in the current state. This involves randomly selecting the next action with a probability 
of e and choosing the action that yields a higher Q[(state, action)] in other cases. The reward signifies 
the real-time reward obtained after transitioning from the current switch node to an adjacent switch 
node. The reward() function is a linear combination of node trust scores and the number of path 
transitions. The weights w1 to w3 represent the respective weights for data trust scores, path trust scores, 
and the number of path transitions, as illustrated in Eq (7). 

 1 2 3_ _ 1reward w score d w score p w       (7)  

The value function is a function used to assess the long-term returns for each pair of state-action. 
Continuous updates to the value function allow for the derivation of an optimal action policy for each 
switch node under the given objective. The update_q() function employs the iterative approximation 
of the optimal value function based on the Bellman equation in Q-learning [33]. Here, 
max( [( , )])Q state action  represents the maximum value in all value functions for the next state,   is 
the learning rate that determines the convergence speed of Q, and   is the discount factor 
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determining the importance of future rewards. The update_q() function updates Q[(state, action)] 
according to Eq (8). 

 [( , )] [( , )] [ max( [( , )]) [( , )]]Q state action Q state action reward Q state action Q state action       (8)  

Subsequently, a new state is obtained, and the Q-table is continuously updated based on the 
updated state. The exploration process for the current path concludes when the destination node is 
reached or the path length exceeds the upper limit. The state is then restored to the initial state Ss, 
initiating a new round of the learning process. This cycle continues until the training iteration is 
reached, resulting in the acquisition and storage of the Q-table (Algorithm 1, lines 2–12). 

Algorithm 1. Secure multipath routing generation. 
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Next, the multi-path routing module selects multiple paths based on the Q-table. Starting from the 
state Ss, the Q-table now contains the value functions obtained through reinforcement learning. To 
avoid local optima, the choose_path() function utilizes an epsilon-greedy algorithm to obtain multiple 
paths. The reward_path() function is employed to calculate the value score of the paths, as illustrated 
in Eq (9). Here, reward_nodei represents the reward for the switch nodes in the generated path, and 
the value score of the path is the sum of rewards for all nodes in the path. 

 _ _ ipath score reward node  (9)  
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The highest-scoring path is selected as the secure primary path. To facilitate multi-path data 
transmission and ensure alternative paths in case of primary path failure, the selected paths should 
ideally be as disjoint as possible. The prun() function, based on the chosen paths, updates the Q-table 
by reducing the Q-values for nodes in the selected paths, thereby avoiding or minimizing the 
occurrence of duplicate nodes between multiple paths. This process of selecting multiple paths is 
repeated, ultimately returning multiple secure paths along with their corresponding scores 
(Algorithm 1, lines 13–20). 

The multi-path routing module, through real-time monitoring of network and node states, provides 
dynamically updated secure multi-path routes for data transmission, enhancing the security of data 
transfer. Additionally, the module can flexibly choose data transmission schemes based on network 
conditions. For instance, during low network loads or when low latency is crucial, data can be 
forwarded through a single path. On the other hand, during high network loads or when increased 
reliability and bandwidth utilization are required, the module can opt for multi-path forwarding. 
Moreover, in the event of anomalies in the current forwarding path, the multi-path routing module 
promptly retrieves alternative paths from the set of multiple paths, ensuring the timely recovery of 
secure data transmission and effectively enhancing the network’s resilience to risks. 

3.5. Abnormal handling and location 

When the anomaly handling module in TESM receives abnormal information from the security 
verification module, indicating the presence of an anomaly in the current forwarding path, the anomaly 
handling module selects a secure alternative path for data forwarding while simultaneously locating 
the anomaly in the exceptional link. 

Contro
ller

1K 2K
3K

 

Figure 5. Anomaly handling and location process. 

Figure 5 illustrates the process of anomaly handling and localization. In the figure, S1-S2-S3 
represents the anomalous path, and S1-S5-S6-S3 represents the secure alternative path selected from the 
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secure multi-path routing. The anomaly handling module, through the controller, updates the 
forwarding rules for the switch nodes in both paths. The source node S1 duplicates and forwards the 
data. Nodes in the secure alternative path perform secure verification on the data, as described in 
Section 3.3. Nodes in the anomalous path calculate the message authentication code (MAC) of the data 
packet to facilitate the localization process of the anomaly. The controller establishes session keys with 
nodes on the anomalous path and the secure alternative path. Switch nodes use session keys to generate 
MACs for the received data. The MAC verifies the integrity of the data packet. The calculation of the 

MAC for each node is expressed in Eq (10), where MAC ()K   represents a hash-based message 

authentication code, generating a fixed-length MAC from the message, and H(P) is the hash value of 
data packet P. Embedding the MAC generated by the upstream node into the calculation of MAC by 
downstream nodes effectively prevents malicious switch nodes from causing misjudgments of 
anomaly links by tampering with the MAC generated by upstream switch nodes. 
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1 3
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 (10)  

The generated maci is forwarded with the data packet. After calculating the MAC, the egress 
switch node sends the data packet and all maci to the controller. The controller uses the session key Ki 
between the nodes to verify maci one by one through Eq (10). When all maci pass the verification, it 
indicates that the abnormal path has not tampered with the data packet P at the moment and the 
detection and positioning process of the abnormal link on this path needs to be continued. When the 
controller finds that mact fails the verification, the link St-1-St between the node St corresponding to 
mact and its upstream node St-1 is the abnormal link. Both St-1 and St in St-1-St may be malicious nodes, 
that is, it may be that the malicious node St-1 tampered with P, causing mact to fail the verification, or 
St may be a malicious node. St changes the correct mact to deceive the controller into thinking that St-1 
is a malicious node. This scheme believes that malicious nodes do not have the ability to modify other 
nodes’ maci, but this special situation can be solved by adding digital signatures to maci and other 
methods. This article does not delve into this comparison. 

Algorithm 2 provides a concise description of the anomaly localization process conducted by the 
anomaly handling module. First, a node structure is defined, where each node contains identity 
information and its corresponding trust score. nodes is composed of multiple node. The updateScores() 
function dynamically updates the trust scores of nodes. Thresholds threshold_d and threshold_p are 
established. If a node’s trust score falls below threshold_p, it is considered an anomaly node with 
disruptive behavior to the data forwarding path. If the trust score is below threshold_d and the node is 
on a malicious link, it is identified as an anomaly node engaging in data tampering. The function 
outputs the anomaly nodes and utilizes remove() to eliminate them from the network topology graph 
G, ensuring that the secure multi-path routing module generates paths that exclude these anomaly 
nodes. In Section 3.3, malicious nodes tampering with data will cause a decrease in trust scores for 
other nodes in the same path. Therefore, after locating the malicious node, renew() is used to update 
the trust scores of nodes affected by the malicious node, restoring their initial trust scores. This ensures 
the accuracy and real-time nature of the secure multi-path generation process (Algorithm 2, lines 2–11). 
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When the anomaly handling module detects an abnormal link (St-1,St), it first registers St-1 and St, 
and then uses renew() to restore the initial score of score_d of other nodes in the forwarding path where 
the abnormal link is located. In order to effectively identify malicious nodes from the abnormal link, 
revice() is used to set the Q value of the action from state St-1 to state St in the Q table in Section 3.4 
to negative infinity, and the updated Q table is sent to the multipath routing module, so that St-1 and St 
are distributed in different paths, thereby distinguishing the trust scores of the two nodes to effectively 
locate the malicious nodes. (Lines 12–15 in Algorithm 2). 

Algorithm 2. Locating abnormal nodes. 
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4. Simulation and analysis 

In this section, we establish a simulated network environment to simulate the proposed scheme. 
We discuss the necessity of SZSM and conduct an analysis of its effectiveness and performance.  

4.1. Simulation environment 

We selected a host with an Intel i7-11370H processor running at 4.266GHz and 32GB of RAM 
for the simulation process. The operating system used is Ubuntu 14.06. The simulation environment 
was constructed using Mininet, and the BMv2 (behavioral-model version 2) switch model was 
employed as the network switch for data transmission. The switches were programmed using the P4 
language, and JSON-formatted description files were generated to define the programmable behavior 
of the data plane [34]. On this foundation, we chose the Ryu controller and implemented the 
functionalities of various modules in TESM using the Python language. The generation of session keys 
was achieved through the ECPy (Elliptic Curve Python) library, and HMAC (hash-based message 
authentication code) was utilized for the generation of message authentication codes [35]. 
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For simulating the IoT environment, we opted for the fat-tree topology as depicted in Figure 6. 
This topology includes 2 pod units, 10 switches (S1 to S10), and 8 IoT nodes (N1 to N8). Each switch 
has 4 ports, and multiple transmission paths exist between IoT nodes. 

 

Figure 6. Topology structure. 

4.2. Necessity analysis 

In the process of data transmission, the emergence of malicious switch nodes can lead to the failure 
of transmission paths, and anomalous paths can result in a decrease in data integrity and transmission 
reliability. Timely replacement of secure paths for data transmission can minimize the risks posed by 
malicious nodes. However, if the replacement path still includes malicious nodes, the system will 
continue to face security threats. Taking the topology structure illustrated in Figure 6 as an example, 
we conducted a simulation analysis using the NetworkX library in Python to assess the impact of 
anomalous nodes on the reliability of data transmission. It is stipulated that data is transmitted from 
N1 to N6, with the default forwarding path in the network being S1-S3-S5-S7-S9. Assuming S5 is a 
malicious node, conducting malicious attacks such as tampering or discarding data with an attack 
probability PA, the system periodically checks the forwarding path and replaces the anomalous 
forwarding path in the next time cycle. We describe the system’s recovery capability after being 
affected by anomalous paths using the dynamic variation in data transmission reliability, as shown in 
Eq (11), where Data_correct and Data_total represent the quantities of correctly transmitted data and 
total data, respectively. The system randomly selects a shortest path as an alternative path, and the 
resulting variation in data transmission reliability is depicted in Figure 7. 

Data transmission reliability
_

Data_correct

Data total
  (11)  

There are 8 different shortest paths between N1 and N6, with 4 of them containing the malicious 
node S5. In Figure 7(a), after discovering the anomalous path, the system switches to a secure 
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forwarding path for data transmission in the next time period. The reliability of data transmission is 
at its lowest when the anomalous path appears and steadily increases after the path replacement. In 
Figure 7(b), in the first 3 time periods, all the replacement paths still include the malicious node, and 
it is only in the fourth time period that a secure forwarding path without the malicious node is selected. 
When the attack probability of the malicious node is 0.5, the data transmission reliabilities for the two 
path replacement schemes (a) and (b) in the 5th and 10th time periods are 0.9, 0.95 and 0.6, 0.8, 
respectively. Choosing an unreasonable path replacement scheme can significantly impact the system’s 
reliability. When the attack probability of the malicious node is 1, the data transmission reliabilities for 
scheme (b) in the 5th and 10th time periods are 0.2 and 0.6, respectively. It is evident that as the attack 
probability of the malicious node increases, the impact on the secure data transmission becomes more 
substantial. 

 

    (a) Optimal path replacement                             (b) Worst path replacement 

Figure 7. Changes in data transmission reliability of different path replacement schemes. 

This section only considers the selection of the shortest path for replacing anomalous paths. When 
there are no restrictions on the replacement paths, it may lead to the selection of more anomalous paths 
during the replacement process, thereby significantly reducing the reliability of data transmission and 
the system’s recovery capability. Therefore, when anomalous paths are detected, the key to improving 
system stability and risk resistance lies in how to quickly select a secure alternative path. 

4.3. Effectiveness analysis 

To verify the effectiveness of TESM, we conduct an effectiveness analysis of TESM from several 
aspects including node trust scoring, multipath scoring, and abnormal node positioning. 

Experiment 1: In the topology structure illustrated in Figure 6, N1 continuously sends data to N6 
along the path S1-S3-S5-S7-S9. Assuming S5 is a malicious node with a 20% probability of malicious 
tampering of data, Figure 8 presents the statistical data on trust scores for various nodes in TESM. 

The content depicted in Figure 8 is detailed below. At the initial stage, the initial trust score for 
each node is set to 1. Data packets that have been tampered with cannot pass through the packet 
security verification process of TESM. In the second time period, based on Eq (6), the trust scores of 
nodes in the path are updated with wd = 0.2, causing the trust scores of S1, S3, S5, S7, and S9 to decrease 



3353 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 3335–3363. 

to 0.84. In the third time period, TESM utilizes the alternative path S1-S4-S6-S8-S9 to transmit data, 
resulting in an increase in the trust scores for S1 and S9 as the alternative path is secure. In the fourth 
time period, TESM detects the anomalous link as S5-S7 and restores the trust scores of the remaining 
nodes in the path to their initial values. TESM, through feedback from the anomaly handling module, 
ensures that S5 and S7 do not appear in the same path. In the fifth and sixth time periods, N2 sends data 
to N8 along the path S2-S4-S6-S7-S10, causing the trust score of S7 to rise to 0.99. In the seventh time 
period, N2 sends data to N5 along the path S2-S4-S6-S7-S10 and TESM, upon detecting data tampering, 
updates the trust scores of nodes in the path. At this point, the trust score of S5 drops to 0.8 and the 
anomaly handling module identifies S5 as a malicious node, subsequently restoring the trust scores of 
nodes affected by S5 in the next time period. 

0 1 2 3 4 5 6 7 8 9

0.8
0.85
0.9

0.95
1

0.8
0.85
0.9

0.95
1

0.8
0.85
0.9

0.95
1

0.8
0.85
0.9

0.95
1

0.80
0.85
0.90
0.95
1.00
0.8

0.85
0.9

0.95
1

0.80
0.85
0.90
0.95
1.00

time period

S1

S3

S5

S7

S9

sc
or

e_
d

S4,S6,S10

S2,S8

 

Figure 8. Node trust scoring based on data. 

Experiment 2: In the topology structure illustrated in Figure 6, N1 sends data to N6 along the path 
S1-S3-S5-S7-S9. Suppose S3 and S6 are malicious nodes, where S3 violates the original forwarding path 
to transmit data, and S3 maliciously discards data. Let there be a 2% natural packet loss probability on 
the forwarding links. Figure 9 presents the statistical data on trust scores for various nodes in TESM. 

At the initial stage, the initial trust score for each node is set to 1. In the second time period, the 
trust scores of nodes S1, S5, S7, and S9 are affected by the natural packet loss rate, resulting in a decrease 
to 0.98. Meanwhile, the trust score of S3 drops to 0.78 because it forwards 20% of the data through the 
path S3-S6-S7-S9, revealing S3 as a malicious node. In the third time period, TESM uses the alternative 
path S1-S4-S6-S8-S9 to transmit data, causing the trust score of S6 to decrease to 0.78 as it maliciously 
discards 20% of the data, identifying S6 as a malicious node. Finally, TESM updates the forwarding 
path to S1-S4-S5-S7-S9, and the trust scores for all nodes become 0.98, indicating that the switch nodes 
are in a secure forwarding state. 

From Experiments 1 and 2, it can be concluded that TESM achieves real-time statistics of trust 
scores for switch nodes through secure data verification, secure detection of forwarding paths, and 
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monitoring and statistics of data packet forwarding quantities. Additionally, TESM enables secure path 
selection and effective localization of malicious nodes based on node trust scores. 
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Figure 9. Node trust scoring based on path. 

Experiment 3: Table 3 sets trust scores score_d and score_p for the switch nodes in Figure 6. 
Without considering malicious nodes, the process of TESM generating multiple secure paths between 
N1 and N6 is analyzed based on the parameters shown in Table 3. TESM sets w1~ w3 in Eq (7) to 0.5, 

0.5, and 1, respectively. Both  and  in Eq (8) are set to 0.5, and the number of iterations for 

reinforcement learning is set to 500. 

Table 3. Node parameter settings. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

score_d 0.9 0.8 0.9 0.7 0.8 0.7 0.9 0.8 0.9 0.8 

score_p 0.8 0.7 0.7 0.6 0.8 0.7 0.9 0.7 0.8 0.7 

The size of the Q-value reflects the gain of selecting the corresponding action. During each Q-
table update, the changes in Q-values for exchange nodes S1, S3, S5, and S7 are recorded. The statistical 
results are shown in Figure 10. Each subplot displays different-colored lines representing distinct 
actions, where the number of actions corresponds to the number of nodes adjacent to the current node. 
For instance, concerning S1, which is adjacent to S3 and S4, Actions 3 and 4 in Figure 10(a) respectively 
denote selecting S3 and S4 as the next-hop node for S1. From the graph, it can be observed that with 
the operation of the TESM multi-path routing module, the Q-values for different actions continuously 
decrease. This is because the negative reward based on path length in Eq (7) is higher than the positive 
incentive based on trust scores. As the number of iterations increases, the Q-value curves for each 
action ultimately reach a stable state, indicating that the Q-table has been trained. For the same state, 
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when an action has a higher Q-value, it suggests that selecting the current action will result in a path 
with higher gains. Therefore, based on Figure 10(a),(c),(d), it can be concluded that the optimal next-
hop nodes for S1, S5, and S7 are S3, S7, and S9, respectively. Since the multi-path routing module prohibits 
creating loops in the path, the action from S3 to S1 is not executed during the loop, resulting in the Q-
value for Action 1 in Figure 10(b) remaining unchanged at 0. Therefore, for S3, the optimal next-hop 
node is selected from Figure 10(b), with S5 having the highest Q-value, excluding S1. 

 
(a) S1                                (b) S3 

 
(c)S5                          (d)S7 

Figure 10. Changes in Q-values of nodes S1, S3, S5, S7. 

According to Eq (9), the calculated path scores for some paths are presented in Table 4. From the 
table, it can be observed that the path S1-S3-S5-S7-S9 has the highest score. Under the assumption of 
the same network state for the switch nodes, this path balances both security and efficiency in data 
transmission, making it a preferred forwarding path between N1 and N6. TESM combines multiple 
path scores with specific requirements to provide a multi-path routing strategy for the system. For 
instance, in the case of path failure, although the path S1-S3-S6-S7-S9 has a higher path score, it has 
more overlapping nodes with the original path, potentially including malicious nodes from the original 
path. Therefore, paths with fewer overlapping nodes, such as S1-S3-S6-S8-S9 and S1-S4-S6-S7-S9, are 
more suitable as replacement paths, enhancing the system’s resilience. When real-time data forwarding 
with high latency requirements is needed using multi-path routing, TESM must consider both the 
security scores and the diversity between paths. This ensures the secure and rapid transmission of data 
through multiple paths. Furthermore, the process of TESM’s multi-path scoring is extensible. The 
assumption made in the paper is that all switch nodes have the same status in the network. However, 
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by incorporating parameters such as bandwidth and load as scoring criteria in Eq (7), the multi-path 
routing can be more finely divided based on the network conditions of individual switch nodes. 

Table 4. Multipath scoring. 

 path scores 

1 S1-S3-S5-S7-S9 −0.749 

2 S1-S3-S6-S7-S9 −0.849 

3 S1-S3-S5-S8-S9 −0.899 

4 S1-S4-S5-S7-S9 −0.899 

5 S1-S3-S6-S8-S9 −0.999 

6 S1-S4-S6-S7-S9 −1 

7 S1-S4-S5-S8-S9 −1.049 

8 S1-S3-S5-S7-S10-S8-S9 −1.199 

9 S1-S3-S5-S7-S10-S7-S9 −1.199 

Experiment 4: To validate TESM’s ability to detect malicious data and locate anomalous nodes, 
we designed Experiment 4. In the network topology shown in Figure 6, assume that S5 and S6 are 
malicious nodes. They will continuously launch content tampering attacks and abnormal forwarding 
path attacks with probabilities of 0.5, 0.75, 1, 2, and 4%. A malicious activity by a malicious switch 

node within a random time interval (100ms 200ms)i iT T   is considered one attack event. If TESM 

can detect abnormal behavior within the detection period T and successfully locate the malicious node, 
we consider it a successful defense. Define the number of attack events and non-attack events executed 
by malicious switch nodes within the specified time as N and M, respectively. The number of times 
TESM did not detect attacks is denoted as FN1, the number of times TESM detected attacks but failed 
to accurately locate the malicious node is denoted as FN2, the number of false positives where TESM 
detected attacks but misclassified normal nodes as malicious nodes is denoted as FP1, and the number 
of false positives where TESM detected and provided anomalous localization when malicious nodes 
were not attacking is denoted as FP2. The false negative rate (FNR) is calculated as FNR = (FN1 + FN2) 
/ N, and the false positive rate (FPR) is calculated as FPR = (FP1 + FP2) / M. Assuming a 0.5% natural 
packet loss rate in the links of Figure 6, TESM sets trust thresholds threshold_d and threshold_p to 0.9 
and 0.95, respectively. Figures 11 and 12 depict the performance of TESM in terms of false negative 
rate and false positive rate for detecting and locating S5 and S6 in Experiment 4. 

From Figure 11, it can be observed that the FPR of TESM for tampered data remains constant with 
varying attack probabilities. This is because TESM, in conjunction with the location of anomalous 
links and threshold_d, effectively locates malicious nodes, preventing safe nodes from being 
misclassified as malicious. The FNR decreases as the attack probability increases, reaching 0 when the 
attack probability exceeds 2%. When S5 tampers with data at relatively low attack probabilities, such 
as 0.5 and 0.75%, the obtained FNR values are 6.6 and 2.5%, respectively. Lower attack probabilities 
pose challenges for TESM’s anomaly handling module to effectively locate malicious nodes within T, 
resulting in some FNR. This issue can be mitigated by increasing the detection period T. When T is set 
to 200 ms, the FNR decreases to 4.2 and 0.8% for attack probabilities of 0.5 and 0.75%, respectively. 
Compared to T = 100 ms, this represents a reduction of 36 and 68%, demonstrating that TESM can 
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achieve improved anomaly detection and localization by dynamically adjusting T. 
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Figure 11. Detection and location effect of tampered data. 
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Figure 12. Detection and location effect of path anomalies. 

Figure 12 reveals that, with a fixed T, both the FNR and FPR of TESM for path anomaly attacks 
decrease as the attack probability increases, reaching 0 when the attack probability exceeds 2%. 
When S6 tampers with data at lower attack probabilities, such as 0.5 and 0.75%, the obtained FNR 
values are 19.6 and 5.2%, respectively. This is because, in this scenario, TESM’s threshold_p is 
equivalent to the amount of data transmitted over the link, excluding natural packet loss. Therefore, 
TESM struggles to effectively differentiate between S6 and cases of natural packet loss. Similarly, 
the obtained FPR values are 10.4 and 4.8%. Packets subjected to rare path anomaly attacks, such as 
malicious drops or route deviation, do not pose a threat to the destination host. Therefore, when the 
attack probability is low, the harm caused by malicious switch nodes before being effectively located 
is relatively small. Consistent with the results of Figure 11, when T is set to 200 ms, the obtained 
FNR values are 9.6 and 3.2%, while the FPR values are 6.4% and 2.5% for attack probabilities of 
0.5 and 0.75%, respectively. Thus, by increasing T, detection and localization effectiveness for path 
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anomaly attacks can also be enhanced. 

4.4. Performance evaluation 

Experiment 5: To test the forwarding latency of TESM at different stages and compare it with the 
forwarding latency in traditional networks, we conducted Experiment 5. In the network topology 
shown in Figure 6, N1 continuously sent 500 data packets to N6 along the path S1-S3-S5-S7-S9. The 
forwarding latency for three scenarios was then statistically analyzed. In Figure 13 represents the 
forwarding latency in traditional networks, TESM during the data packet security verification stage, 
and TESM during the anomaly link localization stage. 
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Figure 13. Data forwarding delay. 

From Figure 13, it can be observed that the average forwarding latency for data packets in a 
traditional network is 4.67 ms. In the TESM packet security verification stage, the average forwarding 
latency for data packets is 5.25 ms, introducing an additional 12.4% latency compared to traditional 
networks for the calculation and verification of data packet hash values. In the TESM anomaly link 
localization stage, the average forwarding latency for data packets is 6.29 ms, introducing additional 
latency for the calculation of data packet message authentication codes at each switch node in the path. 
Although the anomaly link localization stage introduces higher forwarding latency, TESM uses 
replicated data for this process, and the destination switch node does not forward the data to the 
destination node. Therefore, the anomaly link localization process does not impact the forwarding 
latency of data in the network. Figure 14 presents the content of Figure 13 as a cumulative distribution 
function (CDF) curve. From the graph, it can be inferred that in a traditional network, over 95% of 
data packets have a forwarding latency of 5.8 ms or less. In the TESM packet security verification 
stage, over 95% of data packets have a forwarding latency of 6.55 ms or less, indicating that the 
introduced additional latency is acceptable. 

Table 5 compares the forwarding latency of various schemes with TESM. From the table, it can 
be observed that LPV [18] incurs higher forwarding latency because it requires sampling data packets 
at both the ingress and egress switches. P4Label [21] has a base forwarding latency of 3.2 ms, but it 
requires verification of identity-based digital signatures, a process that takes 16.2 ms. Until the 
signature verification is complete, the security of the data cannot be verified. In SDNsec [22], each 
switch needs to perform at least 2 message authentication code calculations for the verification of the 
forwarding path. This computational load far exceeds the corresponding stages in TESM. SDNsec uses 
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the data plane development kit (DPDK) for simulation experiments, which may contribute to its lower 
forwarding latency. MRR [31] shows forwarding latency proportional to the number of paths, requiring 
source and destination switches to perform multipath computation, forwarding, and multipath 
comparison. As the number of paths increases, this process introduces higher forwarding latency. In 
contrast, TESM only needs to perform a lightweight, low-latency hashing-based verification process 
at the egress switch, making it an efficient and low-latency solution. 
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Figure 14. CDF curve. 

Table 5. Comparison of various schemes. 

Scheme Main technology Forwarding delay Functions 

LPV [18] Sampling verification  
33.17 ms            

(3 to 5 switches) 

Detecting and locating forged and tampered 

packets 

P4Label [21] Identity-based signature 
3.2 ms                

(3 switches) 
Detecting forged and tampered packets 

SDNsec [22] 
Message authentication 

code verification 
0.8 ms/switch           Forwarding path consistency verification 

MRR [31] 
Multipath comparison 

verification 

80.4 ms              

(6 switches) 

Ensuring correctness of flow rules and data, 

achieving load balancing 

TESM Hash verification 
5.25 ms              

(5 switches) 

Ensuring security of data, paths, and nodes, 

providing multiple secure paths 

Experiment 6: In the network topology illustrated in Figure 6, sender N1 transmits data to receiver 
N6 with payload sizes of 300, 600, 900, and 1200B. Throughput tests were conducted for both the 
traditional network and TESM. In TESM, evaluations were conducted for both single-path and multi-
path transmissions. The forwarding paths for the traditional network and single-path transmission were 
set as S1-S3-S5-S7-S9. In the multi-path transmission mode, the system utilized two paths concurrently: 
S1-S3-S5-S7-S9 and S1-S4-S6-S8-S9. The results are depicted in Figure 15. 

From Figure 15, it is evident that network throughput increases with the growth of payload size in 
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all three scenarios. When TESM employs single-path data transmission, the network throughput is 
slightly reduced by an average of 5.46% compared to the traditional network. In the case of TESM 
utilizing two paths for data transmission, the throughput is approximately twice that of the traditional 
network and single-path transmission. Therefore, it can be concluded that TESM incurs relatively 
modest network throughput losses compared to the traditional network. Additionally, when TESM 
adopts multi-path data transmission, there is an improvement in throughput, which is advantageous for 
enhancing network transmission efficiency and reliability. 
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Figure 15. Comparison of throughput. 

5. Conclusions 

To address security threats in data transmission processes between edge nodes and between edge 
nodes and cloud data centers, this paper proposes a trust evaluation based IoT secure multi-path routing 
solution, TESM. TESM incorporates the SDN architecture into the data transmission between edge 
nodes, achieving dynamic selection of secure transmission paths and effective localization of malicious 
nodes through continuous security validation of data flows and real-time trust scoring of switch nodes. 
Implemented with Ryu controller and P4 switches, TESM is tested in a simulated environment using 
Mininet, demonstrating its ability to enhance the security and stability of data transmission. Compared 
to related approaches, TESM incurs lower time overhead. In contrast to traditional networks, TESM 
introduces a 12.46% forwarding delay and a 5.46% throughput overhead. Thus, TESM emerges as a 
lightweight and effective security defense solution for the IoT.  

The next research focus is on addressing the dynamic allocation of secure multi-path routing in 
the IoT. This involves implementing fine-grained control over multiple paths based on factors such as 
network status, user requirements, and business types. The goal is to further enhance network 
reliability and service quality. 
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