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Abstract: In high-speed cigarette manufacturing industries, occasional minor cosmetic cigarette
defects and a scarcity of samples significantly hinder the rapid and accurate detection of defects. To
tackle this challenge, we propose an enhanced single-shot multibox detector (SSD) model that uses
variational Bayesian inference for improved detection of tiny defects given sporadic occurrences and
limited samples. The enhanced SSD model incorporates a bounded intersection over union (BIoU)
loss function to reduce sensitivity to minor deviations and uses exponential linear unit (ELU) and
leaky rectified linear unit (ReLU) activation functions to mitigate vanishing gradients and neuron death
in deep neural networks. Empirical results show that the enhanced SSD300 and SSD512 models
increase the model’s detection accuracy mean average precision (mAP) by up to 1.2% for small
defects. Ablation studies further reveal that the model’s mAP increases by 1.5%, which reduces the
computational requirements by 5.92 GFLOPs. The model also shows improved inference in scenarios
with limited samples, thus highlighting its effectiveness and applicability in high-speed, precision-
oriented cigarette manufacturing industries.

Keywords: SSD; cigarette appearance defects; variational Bayesian inference; tiny target detection

1. Introduction

For cigarettes, appearance defects are critical indicators of manufacturing quality and significantly
influence brand reputation and market sales. The high-speed production rates of cigarette
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manufacturing machines exacerbate the challenge of detecting small-scale defects. These machines
typically operate at speeds ranging from 7000 to 12,000 cigarettes per min [1], with some achieving
speeds of up to 20,000 per min [2, 3]. Adherence to stringent quality standards thus necessitates a
delicate balance between detection accuracy and operational efficiency.

Traditional defect detection methods, such as area-ratio-based segmentation, have difficulty
precisely identifying tiny defects due to low sensitivity and inadequate segmentation quality
assessment [4, 5]. In contrast, modern deep learning approaches employing convolutional neural
networks (CNNs), such as YOLO [6] and SSD [7], are significantly faster and more accurate.
However, these methods require extensive training data and complex supervision, potentially
prohibiting their use in high-speed cigarette manufacturing machines.

Furthermore, while current deep learning algorithms based on CNNs or Transformer [8]
architectures deliver impressive detection results, they often inadequately address uncertainty in
data-sparse regions, potentially leading to overconfident decision-making [9]. The sporadic nature of
certain defects poses significant challenges for collecting sufficient training samples, at times
providing little to no data for developing a robust model. This irregular occurrence of defects
complicates the task of assembling a comprehensive dataset and frequently results in
underrepresentation or complete absence of specific defect types in the training process [10]. In
response to these issues, this study introduces an enhanced SSD model that uses variational Bayesian
inference and incorporates advanced loss and activation functions. This methodology proficiently
manages weight uncertainty in scenarios with sparse data and limited sample size. The refined model
balances accuracy and performance, effectively detecting minor defects at the operational speeds of
cigarette machines. Validated in a high-speed production environment and tested using an industrial
camera with a resolution of 1280 × 280, the proposed model confirms its practical efficacy in
real-world scenarios, demonstrating its capability to overcome the challenges of high-speed detection
and limited sample availability.

2. Related works

Small-target detection is a significant challenge that currently stands at the forefront of computer
vision research [11]. Innovative algorithms primarily based on CNNs and Transformer technologies
have been developed, with notable examples including the YOLO [6] and SSD [7] series,
demonstrating broad applicability across various industries.

Significant progress has been made in the detection of appearance defects in cigarettes. Yang and
Meng [12] refined the YOLOv5 algorithm to obtain more accurate aerial-image target detection by
integrating the convolutional block attention (CBAM) module and modifying the spatial pyramid
pooling (SPP) with atrous spatial pyramid pooling (ASPP), alongside a new detection head in feature
pyramid network (FPN), effectively enhancing the detection of small aerial targets. Likewise, Li et
al. [13] developed a faster, lightweight, region-based CNN algorithm optimized for detecting cigarette
capsule defects by replacing the VGG16 network with MobileNet v1, achieving efficient real-time
detection.

Furthermore, various improvements have been introduced to enhance defect detection in cigarette
production. For instance, Kim et al. [14] introduced an improved YOLO v5 model for detecting small
hazardous targets in industrial settings. Diers and Pigorsch [15] reviewed unsupervised learning-
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based methods for industrial defect detection, highlighting cost-saving techniques that do not require
predefined defect types or manual labeling. Qu et al. [10] and Wang [16] notably improved the SSD
and YOLO v5 models for detecting cigarette defects, achieving high accuracy and addressing problems
in traditional methods. Further contributions by Yuan et al. [17], Liu et al. [18], and Li et al. [19]
have significantly improved the accuracy and efficiency of detecting defects in cigarette appearance
by employing various innovative techniques. Liu et al. [18] introduced the C-CentreNet method to
address issues in traditional cigarette appearance defect detection. They incorporated a convolutional
attention mechanism and deformation convolution to improve the accuracy of defect detection. Yuan
et al. [20] enhanced YOLO v4 to detect defects in cigarette appearance by incorporating a channel
attention mechanism, a k-means++ algorithm, and α-CIoU loss. The experimental results indicate an
improved overall performance. Ma et al. [21] proposed the CJS-YOLO v5n model based on YOLO v5n
for detecting defects in cigarette appearance. The experimental results indicate superior performance
in defect detection. Yuan et al. [17] proposed a classification method based on ResNeSt to address
cigarette appearance defects in tobacco production, resulting in enhanced classification accuracy.

Recent studies by Liu et al. [22], Feng et al. [23], Yuan et al. [20], Qu [24], Liu [25], Peng [26], Ma
et al. [21], Peng et al. [27], and Li et al. [28] have further extended the capabilities of deep learning
models in this area. These studies introduced enhancements such as the local characteristic similarity
metric, channel attention mechanisms, and various algorithmic improvements to the YOLO and SSD
models, resulting in significantly improved detection of defects in cigarette appearance. Despite the
wide applicability of these methods, their suitability for the stringent demands of defect detection in
the cigarette industry requires further investigation and exploration.

In the realm of SSD and Bayesian techniques, Liu et al. [7] initially developed an SSD network
with a multiscale architecture, enhancing its performance on various datasets such as the Pascal
VOC [29], COCO [30], and ILSVRC [31]. Zhang et al. [32] introduced additional improvements,
such as a residual structure and convolutional attention module, coupled with additional fusion
upsampling, significantly boosting the model’s performance, particularly for small targets. Leng et
al. [33] proposed an energy-saving and -securing data algorithm that merges feature maps from
different layers for better feature fusion, yielding superior results on datasets such as Pascal VOC. In
Bayesian networks, Graves [34] used stochastic variational inference to simplify weight pruning,
whereas Blundell et al. [35] fine-tuned weights with their Bayesian backprop algorithm, delivering
results on the MNIST dataset on par with Dropout. Shridhar et al. [9] introduced a Bayesian
convolutional neural network with variational inference, effectively addressing the challenge of
uncertainty representation in sparse data scenarios. This study applies variational Bayesian inference
to enhance the convolutional layer of the VGG16 network within the SSD framework. The goal is to
address the challenges of limited uncertainty expression in network weights and reduce
overconfidence in decision-making under sparse data conditions, thereby improving the accuracy of
the SSD model for target detection.

Although these methods excel in accuracy, they often neglect the practical constraints of high-
speed cigarette production, particularly the expression of uncertainty in network weights in data-sparse
environments, which can lead to overly confident decisions. The present work bears certain similarities
to the efforts of Li [13] and Qu [10], whose work we endeavor to extend in the following respects:

• Balanced approach. In parallel with existing research, we emphasize a balanced approach that
strives for both detection accuracy and real-world performance while recognizing the complex
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nature of practical applications.
• Application of variational inference. Based on similar aspirations to enhance the SSD

network’s weight estimates, this study integrates variational inference techniques using
probability distributions to judiciously mitigate overconfident predictions.
• Optimizing for small-scale targets. The present research, in conjunction with previous target

detection studies, specifically concentrates on targets with a relative scale ≤ 1 %, a niche area that
is crucial in the field.
• Addressing small-sample challenges. Echoing the concerns of limited data in model training,

the proposed model functions well under small-sample conditions and bolsters accuracy in these
challenging scenarios.

3. Motivation

3.1. Small-scale targets

Quantifying the concept of “small-scale targets” (namely tiny targets) presents a unique challenge
in the field of computer vision, particularly when focusing on minute defects in cigarettes. To address
this issue, our research leverages computer vision methods to define absolute and relative scales for
detecting these defects. The definition of the absolute scale TA varies between studies and datasets [36].
For instance, Zhu et al. [37] considered objects covering 20% of a traffic sign image as small targets,
whereas Torralba et al. [38] used a pixel count threshold. The present study adopts the TA definition
of Torralba et al., which, based on a specific pixel resolution threshold, is pertinent to the COCO
dataset [30]. Concerning the relative scale TR, we follow the approach of Chen et al. [39], which
defines small targets based on the target-to-image area ratio. Specifically, we consider the median
ratios of the target’s border area to the image area, falling within [0.08%, 0.58%].

Therefore, by integrating prior analyses with real-world challenges in actual cigarette production,
this study establishes the following criteria for classifying defects in cigarette appearance:

• Absolute Scale TA. The pixel resolution for specific defects such as punctures and stains falls
within 15 × 15, making up about 59% of the defect samples. This measurement significantly
undershoots the COCO standard. Being less than half of MS COCO’s definition, we categorize it
as a “tiny target.”
• Relative Scale TR. The entire image has a pixel resolution of 1, 200×280. The ratio of the border

area for target defects (such as punctures and stains) to the total image area varies from 0.054%
to 0.075%, which is less than the 0.08% threshold suggested by Chen et al. [39] and far less than
the 20% criteria set by Zhu et al. [37]. As a result, these defects are clearly identified as “tiny
targets.”

3.2. Cigarette defect types

Before delving into the detection of appearance defects in cigarettes, we must classify cigarette
types. Although previous studies provided a rather simplistic view of this categorization, Peng et
al. [27] laid the groundwork by proposing a more detailed and comprehensive classification. Building
upon this and in alignment with practical requirements, this study selects eight of the most common
defect types for scale identification (Table 1). Despite these advances, a significant challenge persists

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3281–3303.



3285

Table 1. Cigarette defect types.

No. Code Type Tiny target

1 FCP01 Puncture anomaly ✓

2 FJM01 Foam anomaly ✓

3 FZZ01 Fold anomaly ✗

4 FZD01 Masking anomaly ✗

5 FJZ01 Splicing paper abnormality ✗

6 FBK01 Abnormal explosion of mouth ✗

7 FZC01 Normal cigarette paper ✗

8 FZC02 Normal cigarette splicing paper ✗

in detecting specific defects such as stains and punctures because of their rarity or subtlety. In the
following sections, while addressing the performance and accuracy of defect-type detection, we also
consider “tiny defects,” which reflects our commitment to thoroughly identifying these elusive defects.
Among these defects, puncture defects (FCP01) and foaming defects (FJM01) are notable for their
small size and the inherent difficulty in decting them during inspection.

3.3. SOTA methods for target defects

To analyze the ability to detect tiny defects in cigarette appearance, we experimentally compared
mainstream one- and two-stage target detection algorithms. The results are presented in Table 2. This
comparative study evaluates the models’ detection accuracy (mAP) and reveals that YOLO v7 has the
highest accuracy, followed closely by following. Notably, the SSD512 model detects small defects
better than the YOLO series of models. Both the one- and two-stage models are highly accurate;
however, the latter tends to be slower in detection. Given its effectiveness in identifying small defects,
the SSD model, particularly the SSD512 variant, is well suited to our research needs (i.e., small dataset
conditions). For a comprehensive analysis, we also include the SSD300 model in our comparisons to
assess the performance of the different SSD models.

Table 2. Comparison of AP and mAP metrics across models in cigarette appearance defect
detection.

Model Mask RCNN Faster RCNN YOLO v5 YOLO v6 YOLO v7 YOLO v8 SSD300 SSD512

FBK01 0.7050 0.6370 0.5490 0.4760 0.7960 0.7750 0.6950 0.7720
FCP01 0.9310 0.9140 0.7610 0.7120 0.9100 0.7300 0.9040 0.9570
FJM01 0.9520 0.9290 0.6380 0.7570 0.8950 0.7960 0.8860 0.8990
FJZ01 0.7870 0.7650 0.7580 0.7430 0.7680 0.7320 0.8020 0.7560
FZD01 0.9970 0.9620 0.9940 0.9940 0.9150 0.9890 0.9970 0.9870
FZC01 0.9690 0.9730 0.9930 0.9930 0.9880 0.9930 0.9870 0.9750
FZC02 0.9510 1.0000 0.8740 0.8660 0.9840 0.8760 1.0000 0.9960
FZZ01 0.2770 0.3590 0.4400 0.4410 0.6740 0.4950 0.2790 0.3790

mAP 0.8260 0.8170 0.7510 0.7480 0.8660 0.7980 0.8190 0.8400
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4. Improved SSD model based on variational Bayesian inference

As depicted in Figure 1, the framework of the enhanced SSD model illustrates the updated
architecture. In this refined configuration, the convolutional layer weights within the SSD’s VGG16
backbone network are determined using a backpropagation Bayesian algorithm. Given the complexity
of computing the true posterior probability of these weights, a variational inference approach is used
as an approximation. This variational posterior is then subjected to a series of calculations before
being reintegrated into the SSD model. Such an iterative approach significantly bolsters the accuracy
with which the model detects the target.

Key advancements integrated into the updated SSD network include the following:

• implementation of the backpropagation Bayesian algorithm;
• application of variational Bayesian inference;
• optimization of the loss function using BIoU;
• incorporation of ELU and leaky ReLU activation functions.
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Figure 1. The structure of the improved SSD model, showcasing the integration of advanced
techniques for enhanced defect detection.

4.1. Implementation of the backpropagation Bayesian algorithm

The Bayesian backpropagation method involves sampling neural network weights (denoted as w)
during backpropagation. This method uses variational inference to approximate the posterior
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distribution of these weights, represented as w ∼ qθ(w|D). Considering the computational complexity
of obtaining the true posterior distribution p(w|D), our approach finds distribution qθ(w|D) that best
approximates the true posterior.

We use Kullback–Leibler divergence to assess the similarity between the approximate and true
posterior distributions. This measure quantifies the difference between the two distributions. The
primary objective of the proposed method is to determine the optimal parameter set θopt that minimizes
the Kullback–Leibler divergence between the approximate distribution qθ(w|D) and the true posterior
distribution p(w|D). This optimization problem is formulated as Eq (4.1).

θopt = arg min
θ

KL
[
qθ (w|D) ∥p (w|D)

]
= arg min

θ
KL

[
qθ (w|D) ∥p (w)

]
− Eq(w|θ)

[
log p (D |w)

]
+ log p (D) (4.1)

where,

KL
[
qθ (w|D) ∥p (w)

]
=

∫
qθ (w|D) log

qθ (w|D)
p (w)

dw (4.2)

The optimization problem of Eq (4.1) is centered around the variational free-energy cost function, as
delineated by Kullback and Leibler [40]. This cost function comprises three terms: the first term is the
complexity cost KL[qθ(w|D)|p(w)], which depends on the prior distribution p(w). The second term is
the likelihood cost Eq(w|θ)[log p(D |w)], which depends on the likelihood of the data given the weights
p(D |w). The third term log p(D) is a constant and is thus omitted from the optimization process.

Because of the complexity involved in computing the exact value of the Kullback–Leibler
divergence, an exact solution is not trivial. To address this problem, we use the stochastic variational
approach proposed by Graves [34], which involves optimizing a more tractable cost function that can
be minimized during the training process by determining the optimal parameters θ. The equation for
determining the optimal parameters θ is further expounded in Eq (4.3).

F (D , θ) ≈
n∑

i=1

log qθ
(
w(i)|D

)
− log p

(
w(i)

)
− log p

(
D |w(i)

)
(4.3)

In Eq (4.3), the first term in the logarithm is a Gaussian distribution with mean µ and variance σ2;
it represents the variational posterior. This may be expressed as Eq (4.4).

qθ
(
w(i)|D

)
=

∏
i

N
(
wi|µ, σ

2
)

(4.4)

Taking the natural logarithm of Eq (4.4) results in Eq (4.5).

log
(
qθ

(
w(i)|D

))
=

∑
i

log N
(
wi|µ, σ

2
)

(4.5)

which is the natural logarithm of the posterior distribution. The second term in Eq (4.3) is associated
with the prior weight and is a product of individual Gaussian distributions, as detailed in Eq (4.6).

p
(
w(i)

)
=

∏
i

N
(
wi|0, σ2

p

)
(4.6)
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The natural logarithm of Eq (4.6) provides the logarithmic expression of the prior, as shown in
Eq (4.7).

log
(
p
(
w(i)

))
=

∑
i

log N
(
wi|0, σ2

p

)
(4.7)

The final term in Eq (4.3) is the likelihood, which is computed using the Softmax function.

4.2. Application of variational Bayesian inference

This paper tackles the intricate challenge of applying Bayesian methods to SSD networks, which
are characterized by numerous parameters and complex functional behavior. These characteristics
often preclude the possibility of exact integral solutions. Our approach involves integrating variational
Bayesian inference within the VGG16 backbone of the SSD network, which replaces deterministic
weights in the convolutional filters with probabilistic distributions. This implementation of variational
inference leads to precise estimates of the posterior probabilities of these weights. Figure 2 shows
the computational workflow of this process. This technique addresses the network’s shortcomings in
expressing uncertainty and circumvents overconfidence in decision-making, especially in regions of
sparse data. Consequently, this approach functions in situations characterized by small data samples,
where traditional models might struggle because of insufficient training data.
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Figure 2. Traditional convolutional weights vs. probabilistic weights in VGG network
architecture.

To develop Bayesian SSD networks, we use the local reparameterization technique proposed by
Kingma et al. [41]. This technique involves sampling from the activation layer b instead of directly
from the weights w. Implemented in the convolutional layer, this approach uses the variational posterior
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distribution qθ
(
wi jhw, αi jhwµ

2
i jhw

)
, where i, j, h,w are the dimensions of the input and output layers and

the filter size, respectively. Consequently, the activation layer b succeeds the convolutional layer as
Eq (4.8).

b j = Ai ∗ µi + ϵi ⊙

√
A2

i ∗
(
αi ⊙ µ

2
i

)
(4.8)

where ϵi ∼ N (0, 1) is a random variable that follows a standard normal distribution, Ai is the
receptive field of the convolutional layer, ∗ is the convolution operation, and ⊙ indicates
component-wise multiplication.

4.3. Optimizing the loss function using BIoU

The BIoU loss function proposed by Lachlan et al. [42] is a key advancement in bounding box
prediction optimization. It maximizes the overlap between the region of interest and the ground truth
bounding box, thereby enhancing the accuracy of bounding box predictions. This loss function is
specifically designed to improve the convergence of gradient descent optimization techniques, making
it particularly beneficial for two-stage target detection algorithms.

In the context of a given sampling frame bs = (xs, ys,ws, hs) of the region of interest, the associated
true target bt = (xt, yt,wt, ht), and the estimated bounding box β = (x, y,w, h), the cost functions used
in RCNN are defined as Eqs (4.9) and (4.10).

Costx = L1

(
∆x
ws

)
(4.9)

Costw = L1

(
log

(
w
wt

))
(4.10)

where ∆x = x − xt is the displacement, and L1(z) is the Huber loss [43]. The Huber loss is defined
within a restricted range of X and Y , as shown in Eq (4.11).

Lτ (z) =
{ 1

2z2 |z| < τ
τ|z| − 1

2τ
2 otherwise

(4.11)

Although bounding box regression minimizes the IoU [expressed as Cost = L1(1 − IoU(b, bt))],
various challenges impede CNNs from efficiently minimizing this loss during gradient descent. The
following cost function addresses these challenges as Eq (4.12).

Costi = 2L1 (1 − IoUB (i, bt)) (4.12)

In Eq (4.12), IoU(b, bt) ≤ IoUB(i, bt) signifies an upper bound on the IoU function with free
parameters i ∈ x, y,w, h. These unconstrained free parameters can be used to establish a maximum
upper bound for the IoU. The lower bound for the IoU function is defined as Eqs (4.13) and (4.14).

IoUB (x, bt) = max
(
0,

wt − 2|∆x|
wt + 2|∆x|

)
(4.13)

IoUB (w, bt) = min
(

w
wt
,

wt

w

)
(4.14)
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4.4. Incorporation of ELU and leaky ReLU activation functions

One limitation of the ReLU activation function is that its gradient is zero when the input is negative,
which leads to problems such as vanishing gradients and “neuron death” in deep neural networks. To
address these issues, we introduce two alternative activation functions: ELU and leaky ReLU.

The leaky ReLU activation function mitigates the vanishing gradient problem by introducing a
small, nonzero slope for negative inputs. This feature ensures that the gradient does not vanish and
accelerates convergence during training. In contrast, the ELU activation function prevents the gradient
from diminishing excessively for negative inputs, thereby overcoming the vanishing gradient problem.
Moreover, ELU offers a smooth transition across the entire input range, including zero. This continuity
of the gradient, which characterizes the ELU function, simplifies the optimization and enhances the
performance of deep neural networks.

The leaky ReLU ( f ) and ELU (h) activation functions are expressed as Eqs (4.15) and (4.16),
respectively.

f (x) = max (αx, x) =
{

x, x > 0
αx, x ≤ 0

(4.15)

h (x) =
{

x, x > 0
α (ex − 1) , x ≤ 0

(4.16)

These functions provide alternatives to address the challenges posed by ReLU, thereby improving
the robustness and efficiency of neural network learning.

5. Experimental results and discussion

5.1. Configuration

The experimental setup for this study consisted of a 64-bit Windows Server 2019 operating system,
256 GB of RAM, an NVIDIA Tesla P100 graphics card with 12 GB of graphics memory, and dual Intel
Xeon E5-2650 v4 processors clocked at 2.20 GHz. The experiments were conducted using Python
3.7.0 and the PyTorch 1.8.2 framework, supported by CUDA 11.1.

5.2. Dataset description and training parameters

This study used a dataset comprising 2128 defect images, each of 1, 280×280 pixels, obtained from
an operational cigarette factory. This dataset is notably smaller in scale than datasets such as Cifar [44]
and ImageNet [31], situating this research within the realm of small data analysis. Each bmp image in
this dataset shows two cigarettes and is time-stamped to ensure accuracy.

For our analysis, the dataset was partitioned into training and validation sets in an 80:20 ratio,
allocating 1722 images for training and 406 for validation. We used an SSD network enhanced with
a VGG16 backbone for defect detection. The network was trained using stochastic gradient descent
as the optimization algorithm. The stochastic gradient descent configuration was carefully calibrated,
starting with an initial momentum of 0.9 and a learning rate of 0.02, in conjunction with a weight decay
rate of 0.0001. To further refine the training process, we gradually increased the learning rate from its
initial value. This approach enhances the training efficiency and consequently the overall performance
of the model.
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(a) Loss function for improved SSD300(a) Loss function for improved SSD300 (b) Loss function for improved SSD512(b) Loss function for improved SSD512

(c) Learning rate for improved SSD300(c) Learning rate for improved SSD300 (d) Learning rate for improved SSD512(d) Learning rate for improved SSD512

(e) Object detection  mAP for improved SSD300(e) Object detection  mAP for improved SSD300 (f) Object detection mAP for improved SSD512(f) Object detection mAP for improved SSD512

Figure 3. Training process of in improved SSD300 and SSD512 models.
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Fine-tuning the α parameter within the activation functions, specifically the leaky ReLU and ELU,
is critical for optimizing model performance. Conventionally, the ELU uses a default α value of 1.0.
In contrast, the leaky ReLU uses α to regulate its slope, thereby affecting the function’s behavior for
negative inputs. To empirically determine the optimal α value, we systematically varied α in a series
of experiments. Figure 4 shows the empirical results, which demonstrate that α = 0.13 significantly
enhances the detection capability of the model. Notably, with this configuration, the performance
metrics of both the SSD300 and SSD512 models surpass those of the established benchmark model.

Figure 4. Performance enhancement of the leaky ReLU activation functions as a function
of α. The graph shows the mean average precision achieved for different values of α. For
comparison, we show the mAP value of the benchmark SSD300 model (black dashed line)
and of the benchmark SSD512 model (red dashed line).

5.2.1. Analysis of the training process

Figure 3 presents a comprehensive analysis of the key training metrics for the enhanced SSD300 and
SSD512 models, including the loss function, learning rate, and mAP. Figure 3(a),(b) reveal a decline in
loss for both models with increasing training epochs, with SSD300 achieving lower loss quicker than
SSD512. Figure 3(c),(d) detail the learning rate trends, where both models converge around epoch 2.5,
followed by stability up to epoch 17, and then a decrease. Finally, Figure 3(e),(f) show the progression
of the mAP, with both models producing similar results, although SSD512 attains a marginally higher
mAP at the end of training.

5.2.2. Accuracy evaluation in improved SSD models

In Table 3, “VB” stands for variational Bayesian inference, “LReLU” for leaky ReLU activation
function, and “BIoU” for bounded IoU loss function. The target sizes are categorized in “Area” as
small (<322 pixels), medium (322 to 962 pixels), and large (≥ 962 pixels), and “maxDets” refers to
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Table 3. Average precision of improved SSD and SSD.

Model IoU area MaxDets Original VB BIoU ELU LReLU

SSD300

0.50:0.95 all 100 0.477 0.542 0.522 0.539 0.546
0.50 all 1000 0.819 0.831 0.817 ↓ 0.803 ↓ 0.807 ↓
0.75 all 1000 0.455 0.506 0.487 0.524 0.538
0.50:0.95 small 1000 0.256 0.463 ↑ 0.430 ↑ 0.476 ↑ 0.466 ↑
0.50:0.95 medium 1000 0.262 0.436 0.383 0.419 0.477
0.50:0.95 large 1000 0.556 0.655 0.655 0.657 0.629

SSD512

0.50:0.95 all 100 0.513 0.571 0.528 0.564 0.574
0.50 all 1000 0.840 0.851 0.838 ↓ 0.841 0.871
0.75 all 1000 0.480 0.569 0.505 0.548 0.565
0.50:0.95 small 1000 0.297 0.458 ↑ 0.418 ↑ 0.481 ↑ 0.462 ↑
0.50:0.95 medium 1000 0.338 0.355 0.294 ↓ 0.318 ↓ 0.382
0.50:0.95 large 1000 0.608 0.631 0.634 0.619 0.605 ↓

the maximum predicted bounding boxes per image. For IoU = 0.50 and maxDets = 1,000, the VB-
enhanced SSD300 model achieves the highest average accuracy of 0.831, outperforming the original
SSD300 model in all size categories. The ELU-activated SSD300 excels for small- and large-target
detection, whereas the LReLU variant is superior for medium targets.

For the SSD512 model with the same IoU and maxDets, the LReLU-enhanced version attains a
maximum average accuracy of 0.871. The BIoU-modified SSD512 model decreases slightly in overall
accuracy compared with the original SSD512 model, yet all enhanced SSD512 variants excel in small-
target detection. The LReLU-modified SSD512 surpasses the original SSD512 model in medium-
target detection, and the BIoU version is more accurate for large targets.

Table 4. Average recall rate of improved SSD and SSD.

Model IoU area MaxDets Original VB BIoU ELU LReLU

SSD300

0.50:0.95 all 1 0.313 0.315 0.313 0.326 0.327
0.50:0.95 all 10 0.614 0.631 0.609 ↓ 0.634 0.632
0.50:0.95 all 100 0.617 0.637 0.614 0.636 0.637
0.50:0.95 small 100 0.572 0.564 ↓ 0.530 ↓ 0.572 0.554 ↓
0.50:0.95 medium 100 0.490 0.510 0.455 0.479 ↓ 0.547
0.50:0.95 large 100 0.683 0.710 0.722 0.727 0.699

SSD512

0.50:0.95 all 1 0.315 0.320 0.304 ↓ 0.331 0.326
0.50:0.95 all 10 0.659 0.649 ↓ 0.616 ↓ 0.661 0.664
0.50:0.95 all 100 0.665 0.637 ↓ 0.626 ↓ 0.667 0.672
0.50:0.95 small 100 0.566 0.657 0.506 ↓ 0.585 0.568
0.50:0.95 medium 100 0.582 0.564 ↓ 0.487 ↓ 0.534 ↓ 0.552 ↓
0.50:0.95 large 100 0.711 0.707 ↓ 0.723 0.715 0.694 ↓
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5.2.3. Recall assessment of the enhanced SSD models

Based on Table 4, the enhanced SSD300 and SSD512 models achieve their highest average recall
rates, particularly for large targets, with maxDets = 100 and with an IoU in the range 0.50–0.95. The
ELU-activated SSD300 model and the BIoU-enhanced SSD512 model achieve peak average recalls of
0.727 and 0.723, respectively, outperforming the other models.

The average recall increases as maxDets increases. For small-target detection, the ELU-enhanced
SSD300 model leads with an average recall of 0.572, closely followed by the ELU-modified SSD512
model at 0.585. For medium targets, the leaky ReLU–activated SSD300 model performs the best.
Overall, the enhanced SSD models consistently demonstrate superior recall across all target sizes,
highlighting their effectiveness in various detection scenarios.

5.2.4. Comparative analysis of defect appearance types

Table 5. AP and mAP value comparison for various defect types: SSD and improved SSD
models.

Model Categories Original VB BIoU ELU LReLU

SSD300

FBK01 0.695 0.815 ↑ 0.783 ↑ 0.745 ↑ 0.697
FCP01 0.904 0.854 0.875 0.874 0.894
FJM01 0.886 0.910 ↑ 0.849 0.870 0.864
FJZ01 0.802 0.797 0.801 0.797 0.794
FZD01 0.997 0.990 0.994 0.987 0.994
FZC01 0.987 0.968 0.985 0.984 0.987
FZC02 1.000 1.000 1.000 1.000 1.000
FZZ01 0.279 0.300 ↑ 0.353 ↑ 0.374 ↑ 0.372 ↑
mAP 0.819 0.831 ↑ 0.830 ↑ 0.829 ↑ 0.825 ↑

SSD512

FBK01 0.772 0.772 0.772 0.759 ↑ 0.724
FCP01 0.957 0.955 0.929 0.960 ↑ 0.898
FJM01 0.899 0.884 0.893 0.914 ↑ 0.907 ↑
FJZ01 0.756 0.800 ↑ 0.783 ↑ 0.805 ↑ 0.780 ↑
FZD01 0.987 0.987 0.992 ↑ 1.000 ↑ 0.997 ↑
FZC01 0.975 0.982 ↑ 0.973 0.981 ↑ 0.981 ↑
FZC02 0.996 0.991 0.978 0.997 ↑ 0.996
FZZ01 0.379 0.437 ↑ 0.383 ↑ 0.353 0.447 ↑
mAP 0.840 0.851 ↑ 0.832 0.846 ↑ 0.841 ↑

Table 5 shows that the enhanced SSD300 models, which incorporate variational Bayesian
inference, the BIoU loss function, and ELU and leaky ReLU activation functions, surpass the original
SSD300 model in overall detection accuracy, registering gains of 1.2, 1.1, 1.0, and 0.6%, respectively.
Although the original SSD300 model is more accurate for detecting small puncture defects, the
variational Bayesian variant excels in identifying pinch foam defects. Moreover, all enhanced
SSD300 models perform optimally in detecting crease and bursting defects and larger defects such as
masking and sections of cigarette and splice paper in normal cigarettes.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3281–3303.



3295

In contrast, as shown in Table 5, the BIoU-enhanced SSD512 model is less accurate than the original
SSD512 model. The variational Bayesian, ELU, and leaky ReLU-enhanced SSD512 models improve
the accuracy by 1.1, 0.6, and 0.1%, respectively. Notably, the ELU-enhanced SSD512 model excels in
detecting tiny puncture defects, surpassing both the other enhanced versions and the original SSD512
model. The ELU and leaky ReLU-enhanced SSD512 models also outperform the original SSD512
model in pinpointing tiny pinch foam defects. Overall, the improved SSD512 models offer optimal
detection for various types of defects.

5.3. Ablation experiments

5.3.1. Accuracy

Section 5.2.1 details significant enhancements to the SSD model, including the integration of
variational Bayesian inference, the adoption of the BIoU loss function, and the implementation of the
ELU and leaky ReLU activation functions. These modifications notably enhance the model’s
performance compared with the original configuration. This section discusses ablation experiments
that assess the individual and combined effects of these improvements, with a special focus on the
ELU activation function. This emphasis is crucial for understanding issues such as vanishing
gradients or explosions that may occur because of the synergy of ELU with other enhancements in the
SSD model. The parameter settings for these ablation studies are the same as those in section 5.2.1.

Table 6. Comparative AP and mAP values for defect types: SSD vs. improved SSD models.

Model Categories Original VB+BIoU VB+LReLU BIoU+LReLU VB+LReLU+BIoU

SSD300

FBK01 0.695 0.806 ↑ 0.700 ↑ 0.703 ↑ 0.577
FCP01 0.904 0.812 0.887 0.898 0.858
FJM01 0.886 0.839 0.890 ↑ 0.888 ↑ 0.882
FJZ01 0.802 0.811 ↑ 0.808 ↑ 0.800 0.808 ↑
FZD01 0.997 0.981 0.994 1.000 ↑ 0.997
FZC01 0.987 0.985 0.985 0.989 ↑ 0.986
FZC02 1.000 1.000 1.000 1.000 1.000
FZZ01 0.279 0.284 ↑ 0.370 ↑ 0.399 ↑ 0.344 ↑
mAP 0.819 0.815 0.829 ↑ 0.835 ↑ 0.807

SSD512

FBK01 0.772 0.733 0.683 0.727 0.784 ↑
FCP01 0.957 0.958 ↑ 0.957 0.993 ↑ 0.935
FJM01 0.899 0.880 0.897 0.917 ↑ 0.917 ↑
FJZ01 0.756 0.804 ↑ 0.784 ↑ 0.777 ↑ 0.791 ↑
FZD01 0.987 0.975 1.000 ↑ 0.990 ↑ 1.000 ↑
FZC01 0.975 0.983 ↑ 0.980 ↑ 0.982 ↑ 0.981 ↑
FZC02 0.996 0.996 0.993 0.995 0.993
FZZ01 0.379 0.370 0.442 ↑ 0.444 ↑ 0.471 ↑
mAP 0.840 0.837 0.842 ↑ 0.845 ↑ 0.855 ↑

Table 6 reveals that the ablation experiments improved the SSD300 model’s overall detection
accuracy. The incorporation of variational Bayesian inference and the leaky ReLU activation
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function, especially when combined with the BIoU loss function, increases the accuracy by 1 and
1.6%, respectively. These modifications improve the detection of bursting, foaming, splicing, and
crease defects. However, combining variational Bayesian inference with the BIoU loss function
slightly reduces the overall accuracy, despite enhancing the performance in specific defect categories.

Regarding the SSD512 model, all combinations of enhancements, barring the pairing of variational
Bayesian inference with the BIoU loss function, increase the overall detection accuracy. These
combinations included variational Bayesian inference with leaky ReLU, the BIoU loss function with a
leaky ReLU, and the integration of all three enhancements, which improved the accuracy by 0.2, 0.5,
and 1.5%, respectively. These enhancements notably improve the detection of distinct single-class
defects such as punctures, splice paper anomalies, and normal cigarette-paper defects.

Overall, the SSD512 model, with its range of enhancements, offers superior detection accuracy for
multiple defect types, such as bursting, foaming, splicing, masking, and crease defects, in addition to
normal cigarette-paper and folding defects.

Table 7. Comparing mAP, Parameters, FLOPs, and FPS for SSD300 and SSD512 models.

Model Ablation mAP Parameter(M) FLOPs(GFLOPs) FPS

SSD300

Original Model 81.90% 24.68 30.84 86.50
VB 83.10% 30.45 ↑ 28.75 ↓ 88.00
BIoU 83.00% 24.68 30.84 86.90
LReLU 82.50% 24.68 30.84 89.20
ELU 82.90% 24.68 30.84 82.30 ↓
VB+BIoU 81.50% ↓ 30.45 28.75 ↓ 91.70
BIoU+LReLU 83.50% 24.68 30.84 91.70
VB+LReLU 82.90% 30.45 ↑ 28.75 ↓ 95.10
VB+LReLU+BIoU 80.70% ↓ 30.45 ↑ 28.75 ↓ 89.60

SSD512

Original Model 84.00% 24.68 88.71 81.70
VB 85.10% 31.19 ↑ 82.79 ↓ 83.40
BIoU 83.20% ↓ 25.42 ↑ 88.70 84.40
LReLU 84.10% 25.42 ↑ 88.70 83.10
ELU 84.60% 25.42 ↑ 88.70 83.30
VB+BIoU 83.70% ↓ 31.19 ↑ 82.79 ↓ 97.80
BIoU+LReLU 84.50% 25.42 ↑ 88.70 89.10
VB+LReLU 84.20% 31.19 ↑ 82.79 ↓ 79.10 ↓
VB+LReLU+BIoU 85.50% 31.19 ↑ 82.79 ↓ 83.70

5.3.2. Performance

Table 7 shows how various enhancements affect the SSD300 and SSD512 models. These results are
summarized below:

1) SSD300 model

• Variational Bayesian inference combined with the BIoU loss function and the leaky ReLU
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activation function: Reduced computational load and increased inference speed but no notable
improvement in overall accuracy.
• Variational Bayesian inference alone: + 1.2% accuracy, −2.09 GFLOPs computational load,

improved inference speed, and more parameters.
• BIoU loss function modification: + 1% accuracy, unchanged parameters and computational

volume, decreased inference speed.
• Combination of variational Bayesian inference and leaky ReLU: Increased inference speed.
• BIoU loss function with leaky ReLU activation: + 1.6% accuracy, reduced computational load,

slightly increased inference speed, and more parameters.

2) SSD512 model

• BIoU loss function and variational Bayesian inference: Slightly decreased overall accuracy,
faster inference, reduced computational FLOPs, and more parameters.
• Variational Bayesian inference alone: + 1.1% accuracy, −5.92 GFLOPs computational FLOPs,

slight improvement in inference speed.
• ELU and leaky ReLU activation functions: + 0.6% and + 0.1% in accuracy, unchanged

computational FLOPs, and marginal increase in inference speed.
• Leaky ReLU activation with BIoU loss function: + 0.5% accuracy, minimal changes in

parameters, the same computational volume, faster inference.
• All three enhancements (variational Bayesian inference, leaky ReLU, and BIoU loss function):
+ 1.5% accuracy, −5.92 GFLOPs computational load, + 6.51 million parameters, and slight
improvement in inference speed.

In summary, the ablation study summarized in Table 7 highlights the varying impacts of different
enhancements of the SSD300 and SSD512 models. Although some modifications to the SSD300
model do not significantly increase the overall accuracy, they reduce computational demands and
improve inference speeds. Conversely, the modifications of the SSD512 model, particularly those
involving the BIoU loss function, variational Bayesian inference, and activation functions, not only
reduce computational load but also improve accuracy and inference speed. These results demonstrate
the potential of these enhancements in balancing performance improvements with computational
efficiency, indicating promising directions for future optimization in defect detection applications.

5.4. Practical detection of defects in cigarette appearance

Figure 5 shows the effectiveness of the proposed method for detecting various defects in cigarette
appearance, revealing high overall accuracy, as indicated by the values in parentheses. However, certain
defect types, such as foaming defects (FJM01) in Figure 5(c), are detected with notably lower accuracy
(as low as 0.45 and 0.40). This decrease in accuracy is tentatively attributed to the visual similarities
between foaming and puncture defects, making differentiation challenging. Furthermore, the limited
presence of foaming defects in the training set may hinder the model’s ability to effectively learn their
distinct characteristics.

Similarly, fold defects (FZZ01), shown in Figure 5(e),(f),(i), consistently register low detection
accuracy, ranging from 0.33 to 0.43. This suggests that the model’s difficulty in detecting fold defects
is not solely a consequence of sample size but might be relate to the inherent challenge of discerning

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3281–3303.



3298

(a) FCP01(0.79, 0.63) (Tiny) (b) FCP01(0.85, 0.93) (Tiny)

(c) FJM01(0.45, 0.40) (Tiny) (d) FJM01(0.85, 0.88) (Tiny)

(e) FBK01(0.99, 0.99) (f) FBK01(0.89, 0.89)

(g) FJZ01(0.86, 0.98, 0.89) (h) FJZ01(0.95, 1.00, 0.99, 0.99)

(i) FZZ01(0.87, 0.96) (j) FZZ01(0.79, 0.36, 0.43)

(k) FZD01(1.00, 0.99) (l) FZD01(1.00, 1.00)

(m) FZC01(0.98, 0.99) FZC02(0.99, 0.99) (n) FZC01(1.00, 1.00) FZC02(1.00, 1.00)

Figure 5. Detection results for various of defects in cigarette appearance defects using our the
proposed enhanced system. It effectively, which identifies the eight defect types discussed in
the paper and shows marked improvement in detecting offers noticeably improved detection
of small targets.
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subtle crease features that vary in spatial distribution and degree of deformation, similar to the issue
noted during detecting tiny targets. Both the experimental results and practical detection examples
underscore the low detection accuracy of fold defects (FZZ01). A detailed statistical analysis revealed
that fold defects constitute merely 10% of the total sample pool, which could contribute to the
reduced accuracy observed in this category. Further analysis of images depicting cigarettes with
crease defects reveals considerable variations in the extent of creasing. Moreover, these defects
exhibit notable differences in terms of physical morphology and spatial distribution, posing additional
challenges to the effective detection of crease defects.

In conclusion, although the proposed model is good at detecting a broad range of defect types, it
faces certain limitations in accurately identifying defects that are either highly similar in appearance or
characterized by subtle, complex features.

6. Conclusions

This study develops an enhanced SSD model that integrates variational Bayesian inference to
accurately detect visual defects in cigarettes during manufacturing. Despite the limitations posed by a
small dataset of 2128 images, the model detects defects with significant accuracy, particularly in its
SSD300 and SSD512 configurations. The incorporation of Bayesian inference is instrumental in
achieving this heightened accuracy. Future work will focus on expanding the dataset and further
refining the model’s capabilities. Such advancements should substantially improve the accuracy of
automated visual inspection systems, thereby contributing to more stringent quality-control measures
in manufacturing.
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