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Abstract: In this study, we developed a dynamical Multi-Local-Worlds (MLW) complex adaptive
system with co-evolution of agent’s behavior and local topological configuration to predict whether
agents’ behavior would converge to a certain invariable distribution and derive the conditions that
should be satisfied by the invariable distribution of the optimal strategies in a dynamical system
structure. To this end, a Markov process controlled by agent’s behavior and local graphic topology
configuration was constructed to describe the dynamic case’s interaction property. After analysis, the
invariable distribution of the system was obtained using the stochastic process method. Then, three
kinds of agent’s behavior (smart, normal, and irrational) coupled with corresponding behaviors, were
introduced as an example to prove that their strategies converge to a certain invariable distribution.
The results showed that an agent selected his/her behavior according to the evolution of random
complex networks driven by preferential attachment and a volatility mechanism with its payment,
which made the complex adaptive system evolve. We conclude that the corresponding invariable
distribution was determined by agent’s behavior, the system’s topology configuration, the agent’s
behavior noise, and the system population. The invariable distribution with agent’s behavior noise
tending to zero differed from that with the population tending to infinity. The universal conclusion,
corresponding to the properties of both dynamical MLW complex adaptive system and
cooperative/non-cooperative game that are much closer to the common property of actual economic
and management events that have not been analyzed before, is instrumental in substantiating managers’
decision-making in the development of traffic systems, urban models, industrial clusters, technology
innovation centers, and other applications.
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distribution; game theory

1. Introduction

Over the past two decades, complex adaptive systems have been actively developed, including
the evolution of economic systems [1,2], theory of emergence [3,4], as well as social [5,6], ecological [7],
and epidemic [8,9] characteristics of bifurcation [10]. Minor perturbations were found to escalate into
tectonic shifts in the system, or even abrupt changes of the system properties and functions [11],
resulting in symmetry-breaking [12] or synchronization [13]. In essence, the spontaneous switches in
group behavior derive from interactions between individuals [14], during which some behaviors are
learned [15] or propagate [16], causing the structure and behaviors of the system (or collective) to
change [17] or reach the critical state [18]. The common property is that their detailed structure cannot
be explained exactly from a mathematical viewpoint. To this end, the stochastic differential game
theory has been introduced [19], reflecting the interaction behavior of agents and the optimal strategy
coupled with temporary deterministic structure [20] and stochastic complex networks [21]. Atar and
Budhiraja described the evolution law under various agent interaction rules in different fields [22].
However, these interactions that happen in the Multi-Local-Worlds (MLW) system are both
synthesized (the interactions consist of not only cooperative games but also non-cooperative) and
stochastic in dynamical configuration (arbitrary agent always selects interactive agents according to
his/her benefit), making the problem much more difficult to resolve in mathematics and yielding most
results that fail to satisfy the real complex adaptive system.

The classic analysis method cannot deal with this dual randomness because the agent’s diverse
behaviors and the system’s configurations change randomly with time. There have been few results to
discover what the system’s behavior would converge to as time tends to infinity or a relatively large
number under classic methods. Furthermore, most research results have either considered the mixed
interaction of non-cooperative/cooperative games in MLW stable graph or considered the random
MLW complex networks with the Boolean game between individuals, which are far from the property
of the real complex adaptive system. In this sense, new modeling methods should be introduced. We
constructed a multi-agent model to analyze the evolution law of complex adaptive systems. We
preclude that the system behavior must satisfy an invariable distribution if agents usually work
according to this model. Furthermore, once this invariable distribution law is determined, some
strategies for economic issues, political events, social questions, and environmental influence will be
made scientifically.

Generally, each agent in a complex adaptive system could interact just with local agents; their
interaction relies on the system’s local topological configuration. Brian concluded that imperfect
information from other agents, with whom an arbitrary agent acts directly, determines this agent’s
behavior [23]. Jiang et al. analyzed how the topological configuration of nematic disclination networks
affects the interaction between agents and agents’ behavior [24]. Furthermore, Maia et al. reported that
if each agent in the system can change its interacting targets (i.e., its “neighbors”) to obtain more
benefits, then there will be complex nonlinear interactions between subjects and between subjects and
environments, which lead to the phenomenon of “emergence in large numbers” of the system [25]. Thus,
the evolution of microscopic individuals makes the macro system display a new state and a new
structure [26]. In this sense, the local topological configuration is not stable but dynamic [27]. More
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importantly, the system’s state and property would be affected adaptively by the environment [28], and
the environment is also affected by the system’s state and properties [29], which produce an adaptive
and evolutional process [30]. Scholars have studied complex adaptive systems with these properties.
If the interactivity between agents is very simple, yes or no, for example, the problem is one of the
complex networks; if the system structure is deterministic and constant, the problem is one of game
theory. However, most complex adaptive systems have both properties. Therefore, neither the theory
of complex networks nor stochastic game theory can help to resolve the problem. Thus, new methods
must be introduced to study the properties of optimal agent strategy in complex adaptive systems.

Generally, a system can be subdivided into multiple subsystems, with interactions between
individuals occurring within the same subsystem and across different subsystems. Miguel et al.
analyzed individual and flock behavior in heterogeneous social complex systems and found that much
complexity comes from the relationship between these sub-systems [31]. Similarly, Hassler et al.
investigated the individual behavior between intergroups under social environmental change [32]. In
addition, A et al. considered co evolution in proxy behavior and local topology configuration [33]. The
interactions occur not merely between neighboring individuals, and the long-range interactions in
spatial dimensions significantly affect the critical phase transition of the system. Neffke focused on
the phase transition between co-workers who interacted long-rangely [34]. Levin et al. considered the
political polarization and the corresponding reversal of the political forces and found that indirect
interaction would obtain political polarization easier by induction [35]. Priol et al. constructed an
avalanche model to describe phase transition property driven by long-range interactions between
agents [36]. A et al. studied the impact of network topology on the resistance of vehicle platforms [37]. In
addition, the rules met by the interactions between individuals within an economic or management
system are far more complex than the rules regulating interactions between individuals in the natural
world, such as the conservation of momentum that regulates collisions of particles and the black box
of biology (such as the behavior adjustment strategies defined by the Ising and Vicsek models)
Narizuka and Yoshihiro analyzed the lifetime distribution for adjacency relationship by invoking the
corresponding Ising model [38]. Tiokhin et al. studied the priority evolution in the social complex
system by constructing a corresponding Vicsek model [39]. Colwell reported how simple behavior
would be changed if the environment was disrupted [40]. Moreover, Algeier et al. substantiated that
the system structure determined by interactions between individuals is a key contributing factor to the
function and nature of the system [41]. To6th et al. investigated the emergence from structure and
function of the system with a leader-follower hierarchy among players and concluded that the
collective behavior would be much unstable if the interaction between agent and the leadership of the
managers in an arbitrary multi-level complex system is beyond different layers [42]. Tump et al.
studied the intelligence of emergence collective driven by the interaction between irrational agents and
found that the collective intelligence would be polarized, which relies on system structure, interactive
nature, and population size of agents [43]. Berner et al. revealed the phenomenon of desynchronization
transitions occurring when the multi-layered structure satisfied certain conditions [44]. Zhang et al.
analyzed the phase diagram of symmetric iterated prisoner’s dilemma of two companies with a partial
imitation rule in a sparse graph using cases where individuals interacted in varied structures, such as
sparse graphs and dense graphs, random graphs and complete graphs, scale-free networks, and small-
world networks [45]. Alternatively, Chen studied the diverse motion under small noise in Vicsek model
in dense scale-free networks [46].

However, the available random complex network models failed to accurately describe economic
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and management systems because their interaction was much more complex than the Boolean
interaction defined in these models. Similarly, different game models were also ineffective because the
interaction configuration between agents changed dynamically, and the above two properties must be
considered in the comprehensive model. Furthermore, there are many unknown and unseen scenarios
in reality. Due to the lack of real-world data, the conclusions regarding concerted changes in collective
behavior reached by classical analysis methods do not apply to unknown scenarios. In this paper, a
MLW economic and management complex adaptive system with agent’s behavior and local
configuration is considered. This partially complements the gap between reality and the results of
previous studies.

The rest of this paper is organized as follows. In Section 2, the characteristics of a complex
adaptive system are analyzed, and a hypothesis is proposed. In Section 3, agent’s behavior in the
system is analyzed and abstracted into six processes. In Section 4 and 5, the agent local topology
evolution model is constructed, and some theorems are formulated and proven. Section 6 discusses
invariable distributions where both parameters f and N tend to zero and infinity, respectively.
Section 7 concludes this study.

The innovative features and major contributions of this paper can be listed as follows:

(1) Different from previous studies, We consider the network growth and decline by treating the
network as a multi-local-event one. Furthermore, the priority connection mechanism of the agent is
not based on the degree, but the priority connection probability is determined based on the income
over a short time scale. If, and only if, the phase transfer equation based on the priority link is
determined, the evolution characteristics of the system can be obtained. On the basis of considering
the behavior and adaptability of an agent, the interaction between environment and system is also
considered, and it could reach the corresponding measurement coupled with the invariable distribution.

(2) In the case where the agent’s behavior noise approaches zero (f — 0), the invariable
distributions uoﬁ TN are proven to satisfy the maximum deviation principle. This implies that the
invariable distribution would converge to a certain subset space that can converge logarithmically
precisely to the minimum value of the ratio function and such that the ratio function can be estimated
perfectly, as shown in Theorem 3. The deterministic state of the evolved complex adaptive system, w,
must be estimated according to the invariable distribution coupled with the optimal strategy and the
local topological structure of the agent, according to Theorem 4.

(3) We prove that if the population of agents in the system tends to infinity, the invariable
distribution of a complex adaptive system with co-evolving agent’s behavior and local topological
configuration can converge into a certain interval with rate function —r# (g, q), according to Theorem 5.

2. Characteristic analysis of an economic and management co-evolutional complex adaptive system

Definition 1. The connected sub-graph G;i=1.2,...,m of the topological structure of the
Complex Adaptive System G, where G; € G, is called Local World (LW).

To model this system, some variables were introduced, as listed in Table 1.

As mentioned above, at one time, an arbitrary agent can select one behavior from six sub-
processes with a probability (p4, ..., ps), respectively. At the next one, he/she can select another behavior.
Thus, if we regard the agent’s behavior as his/her state, the state would satisfy a certain state transition
equation. Combining this system’s property with the theory of stochastic process, this complex adaptive
system can be simulated by a stochastic process model. An optimal strategy path must exist for a certain
system configuration, but since the latter always changes randomly, the optimal strategies vary, respectively.
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Table 1. Variables.

Notation Description
Ji The j™ agent in LWi
x Resource
ay Strategy space
A Strategy space collection
| Set of all agents
r Game radius
ar The most effective strategy within the game radius r
g Topological configuration of system
ﬁ Environment noise
N Population of the agents in the system
(ib;i (t, x]tl) The best strategy vector of agent j; for a specific pure strategy at time t and state x*
i The income of agent j;
4 5 Probabilities of agent choosing the behavior of adjusting strategy, creating a new interaction in
the same LW, and creating a new interaction with agents in other LWs, respectively
e 45, d Probabilities of agent choosing the behavior of deleting the present interaction, creating a
game relationship with a new agent in the system, and retreating from the system, respectively
bIeB (- |w) Probability of agent changing his/her behavior

(sub-process m)j;,8
Lk

v(sub—process m)ji
Kk

w=(a,9)
A(sub-process m)ji

T
(Y7 (£))e20
Ig
P:F - [0,1]
Un)neNo

Sn+1
(r’,B,T,N

w,w’ )
w,w'enN

CB,T,N

BN
"‘jiki'(T)

Probability of agent j; creating new interaction with agent [, in sub-process m, m = 2,3,5

Probability of agent j; deleting old interaction with agent k; in sub-process m, m = 4,6

The set of neighbors of agent j;

The set of agent j; and his/her neighbors

Noise of agent’s behavior

System state controlled by behaviors @ and system configuration g

The ratio function in sub-process m, m = 2,3,4,5,6

Agent’s profile structure

Stochastic process of the economic and management complex adaptive system

The model of complex adaptive system with behavior and system topological configuration
co-evolution, where I = (G,A,m) = (1, F,P, (Xtﬁ)teTo)ﬁeRJr

Measurement

Time point of certain state occurrence

Holding time of a certain state, i.e., Spy1: = Jne1 — Jn
Probability of transition from state w to state w’
Mechanism of preferential attachment

Volatile mechanism of economic and management complex adaptive system
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The agent’s irrational behavior will be discussed in the following sections, and then the co-
evolutional stochastic process model driven by irrational behavior and the system’s configuration will
be constructed. The universal approximate analytic solution will be calculated, and two precise
solutions will be derived for (i) agent’s behavior noise tending to zero and (ii) agents’ population
tending to infinity.

3. Model of a co-evolutional complex adaptive system
3.1. Agent’s behavior

3.1.1. Adjust behavior

An arbitrary agent, j;, will change his/her strategy as probability, q;(w) € [0,1]. The probability
of the agent changing his/her behavior b/*# (- |w) in a certain system configuration should satisfy
several conditions specified as follows:

bli(a,|w) £ P (ar € argmax (nji (a]?zv'g) + sé;) |a)) (1)

where a, is the most effective strategy within the game radius r, a, is the strategy space, A is the
strategy space collection, m/i(-) is the income of agent j;, a is the strategy of agent j; in the
strategy space, and €is noise. Furthermore, this decision relies not only on the neighbor’s strategy and
the topological structure g, but also on the environment f.

~lim log b (alw) = c]'(w, (a, )) = v (2, {7, ¢}, (6,x])) 2)
where the strategy ¢, (t, xjti*) for time t andstate x® refers to the best strategy vector for a specific

* * * * T . . . .
pure strategy, ¢;,(t,x/,) = (q.')]”-‘l (t.xf), ¢;,(t.xf)), . 07, (8. xf, ) and 9 is the spatial dimension
of the agent j;.

Obviously, when an agent selects a strategy a, from strategy space A, it must satisfy the
condition that agent j; can obtain relatively more payoff as a maximum probability when they select
the new one. However, this probability would be rewritten as exp [— % (v®i(e,xf, 5 (6, x[)) + 0(1))].

3.1.2.  Create a new game relationship with another agent in the same LW

Suppose that an arbitrary agent j; creates a new game with a new agent who is not his/her

neighbor with the following probability:

W(sub-processZ)ji,B ((U) 4 (W]Sub-proceSSZ)ji,B (w))kiel — A(sub-processZ)ji (w)/l(sub-proceSSZ) ((U) ,

which relies on the ratioA®u>Process2i: g — ¢ that satisfies x/i(w) = N; — 1= Vi(w) =0 and

(¥); € (Ve € 0): ACWPoesDit(w) = Ty s,y exp(WOUHD (e, xE, i, 67, (6,1, b, (6, %5) /)

G)

A(sub-process 2)B (w) A z A(sub-process 2)jiuB (a))

Ji€l
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= Xjiki>ji exp(W(t){ji’ki}(t’xF*:xk , b5, (t, x; ) b, (L x; ))/5) (1-
4)

V(lu k € I) (sub process 2)k;, ﬁ'( ) — ]( sub-process 2)k;, B(a)(l _ gjiki)

The probability of agentj; creating a new game with agent k; is defined as Alsub-process?)Ji(¢)/
Alsub-process?) (@), implying that payoff of the coalition of agent j; and agent k; is larger or equal to

the other coalition’s payoff affected by noise ¢/i = (gk In this respect, we get

Dk, (€N i(w)"
WZ (a))ép((l/f/“m},kﬁ(t,x xA ,¢ (, xt*) ¢k (1 x ))+gk )

()
2 (O (1, 31 o ()5 (3 4611 ) Vi & T o)

and

(Vj, € /) (Ve Q):~lim Blog w2l (@) = ¢ (@, (a, g ® (j,»k,)))

WOV (£, (X)) (630, g D (iuk)) ©)
S o 1}( ’ g)*”,gb (t,x).¢, (6, %)), g@(j,»,l,-))

Le i (w)

Thus, nonequity 3Jk; # ki, ky & NJi, P{wUekid (¢, xt*) > W{ji'kl}(t,xt*)} =1 must be
satisfied to create a new game relationship with agents from N; — 1\7ji who did not interact with agent
J;i- This complies with the so-called preferential attachment mechanism, implying that agents prefer to
select a game partner who can bring them more payoff than others. This causes each agent to be
selected prior to their payoftf coupled with the optimal strategy in the corresponding short time interval.
This probability is a multi-dimension logit function, which means there exists a critical point of
probability I/T/O(t){j vk} coupled with the agent’s payoff in the selected process such that the probability

a certain agent will be selected is far smaller than 0.5 if the agent’s payoff is smaller than VT/O(t){j vki)

but the choosing probability is far larger than 0.5 and closer to 1 if the agent’s payoft exceeds
a7 OUpki}
W, .

3.1.3. Create a new game relationship with another agent in a different LW similar to sub-process 2

In the case where the agent j; creates a new game, the agent k;; must satisfy the following
conditions:

(vji € I)(V(U € .Q): A(Sub-process 3)JiB (w) —
Speniic eXP(W OV (6, 27, x5, (8,110, b (8,27)) /) (7

A(Sub-process 3B (a)) AL z A(Sub-process 3)JiB (a))
Ji€l
J

(Sub process 3)’1((4)) AP ((n(aji, a"i’) + Cljci) > (n(aji, a’i’) + cl];i,),‘v’li/ ¢ Nji(a))>
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= P((W(t){ji'ki’}(t, X5 X, b7, (6, %17, b, (& X "))+ )
P((W(t){h Wt xfr xl, @7, (6 %), o, x0) )m(adt, alt) +§li‘:),Vli'$ Ni(w))  (8)

This yields

(Sub process 3)jj, [)’( ) — exp(T[(O(ji, akj)/ﬁ)

(vj; € D(Vk; & NVi(w)):w %, enii exp(m(ai, ab) /B)

exp(WOULKD (tx8 2k 7 (65,07, (625 ))/B)

)

Zl eNJl gxp(W(t){]l ll}(txt* t* ¢] (txt*) ¢l (tx ))/,8)
A(Sub-process 3)B (w N &)\) — A(Sub-process 3)Jl(w)W(SUb process 3)11( ) n
) (Sub-process 3)k]( ) (SUb process 3)k1( ®) (10)
7 (Sub-process 3)3((» - ®) = exp(W(t){fi,ki'}(t,x;*'xkl ¢h(t: : ) ¢kl (® x ))/ﬂ) (a1

3.1.4. Delete an existing game relationship

Assume that an arbitrary link (j;, k;,) will disappear at probability ¢ > 0. That is, if this link
exists as probability ¢h + o(h) during a small enough time interval [t,t + h], the expected time of
existence will be 1/¢. Therefore, starting from the system state w = (a, g), the probability that the
system transit system state @ = (a, g — (j;, k;;)) must be nGubprocessHB gy — @) = &

(Vji € I)(V(U € .Q): n(Sub-process DHjiB ((U)
= Xy entie XP(W OV (2,17, xi0, 5, (8, %17, b, (8 x,) ) /) (12)

n(Sub-process B (w) — ZjiEF n(Sub-process 4)jiB (w) (13)

v}gf,ub-process 4)ji(w) AP ((T[(aji’ aki’) + c}ii) < (n(aji, ali’) + cl]ll) Vi ¢ Nji(w)>
= (WOURI (1, xf7, 28, 05,6357, D7 (0 260) + 61
< (WOU (6, x5, x5, (6650, 07, (6, XED) + 611 ) Vi & Wi(w) )
(14)

exp(n(a’t,a®)/B)
Lyeni exp(n(at,a")/B)

(%); € D(Vk; € Ni(w)): v P D (@) = 1 -
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exp(W QU (£xl x5 (6xE).0%, (625:))/B)

15
Zli,eﬁji exp( (t){]L ll}(t xt* t* ¢] (t t*) d)l (tx ))/ﬁ) ( )

=1-

3.1.5. Create a game relationship with a new agent in the system.

When agent N + 1 enters the complex adaptive system, it will enter Local World i as
probability 1/m, will be reordered to N; + 1, then it will create a game relationship with an arbitrary

agent ]l with probablhty (sub process 5),ji,8 Where:
(VJL € I)(V(U € _Q) A(SUb-process 5)jiB ((A))

= exp(W(t){ji'NH}(t: x‘ti*' XK+ 10 d)h(t ) dn1 (L xN+1))/:8) (16)

Sub- 5)ji N .
ngi‘ilprocess )ji (w) p((n(ah aNi +1) + CN +1) (n(all aNitl) 4 gN +1) Vi € l(w))

=P ((W“Wf'”*”(t, X5 x5 (6 X5, dner (6 X)) + 6oy

> (WOWND (¢, 0t 8y, dr (6 X5, Bivar (6x511)) + 6nr ), VL € i()) (17)
;. ji Ni+1
(V)i € DVL; € i(w), i # jo): wirrocess b gy - explrlela T )/p) (18)

Suei(w)l2j; exp(m(atiaitt)/B)

A(Sub process S)ﬁ(w N w) — /’l(Sub process 5)]l(w) (Sub process 5)]1( ) (19)

3.1.6.  An agent is deleted from the system

Obviously, when an agent is deleted, the links that expressed its game relationships must be deleted.

(Vj; € D(Vw € 0): nub-process 6)juf (¢y) = Z exp(n(aji,aki)//j)
k,ezvii(w)

= X eiiqw) eXP (W OURS (6, xf*, x5 (8, X7, b, (6 xk1)) /B) (20)

YSubprocess 6)j ) A P( ki)+gkj: ) < z;/e . (ﬂ_(alj,akj)_‘rg/il/ ))
B(X,. (7 “( 38 (X ) 6l 1)

<>, (W(xm,,/,-} (t, XX .9, (46X, 4, (1, xf)) +gj! )

(vj; € D(Vk; € 1 k; € Ni)(Vk; € N\j;) (VL € I]; € N):
> exp(n(ali,aki)/B)

(Sub-process 6) j;,8 1 _ kieNi
v w)=1
(@) Tijen\j X, _ k; exp(n(all,a i)/8)

(22)

leN

The system evolves according to a state transition equation matched with the 6 sub-processes,
which forms a stochastic process, a weak Markov process. By analyzing this process, the invariable
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distribution can be determined.
3.2. Agent local topology evolution model

The complex adaptive system was analyzed and re-described as follows. Suppose that there are
several kinds of inhomogeneous agents in a system, whose profile structure is denoted by 7, and
suppose that the system state w = (a, g) consists of agents’ behaviors and agents’ local topological
configuration, where [ is the behavior noise. That is, the above environment Nis the sum of the
agents in the system. For an arbitrary state, w = (a, g), mappings a:02" — AY and y: QN - G[N]
are defined to describe the co-evolutionary complex adaptive system with agents’ behavior and local
BTN )

topology in detail, i.e., an infinitesimal generator (nw,w,

 coupled with the corresponding
w,w’EN

rate function set will be generated. Thus, a corresponding stochastic process model is constructed, and
the probability from state w to w' is defined as follows:

( exp[-1/Bw®Ii(t,xf", ¢} (£, %)), 9]
Yrien exp[—1/Bw®i(t, x*, ¢t (t, x[)), 9)]
exp[W OUKS, ¢f*(t, x()), g @ (s, k:))/B]

X eiqwy WOV, 17 (6, (7)), 9 © (i 1))/B
exp|WOUkS, g & (i, ki) /B]
gan | Zueniiw) W OUS, ¢ (t, %)), g © G 1)) /B
Toot T exp[WOURD, g - G ki) /)
Zli,eﬁji(w) W(t){ji'li'}'g —Uuli))/B
exp[WOUNY, g @ (i, kyi1))/B]
Yicitwylyej; WOWN, g & (I, N + 1)) /B
- ZkieNji exp[W(t){jivki’}’g — ]\_]11)/’8]
\ ZkieN\jiZli,ENki exP[W(t){ji’li'}'g - Nji)/ﬁ]

where NJi(w) is the set of neighbors of agent j;, which payment in the corresponding small time
scale is WOUkd & WOUkd (¢, x {2 o, d1(t, %), i (t, xi)). The above transition probability
equation describes SiX sub-processes, ie, w' consists of SiX
cases: ((a,a-1(w)),v(w)) , (a(w),y(w) ® (i, ki) , (a(w),y(w)® Guki)), (a(w)y(w)-
Ui ki), (a(w),y(@) @ (i, N + 1)), and (a(w),y(w) — N’5).

Thus, the process (Y5 (t))¢o can be described as a time scale 7, 7, according to the changed
behavior and topological configuration, respectively. In this respect, the ratio 7 £ 7,4/7, controls the
relative speed of topological configuration change relative to the behavior change.

In essence, all the processes involved should be regarded as different Poisson processes, that is,
counting processes. As mentioned above, a complex adaptive system with behavior and system
topological configuration co-evolution model I = (G,A,m) = (1, F, P, (Xf )ter,)per, consists of the
following information: agents’ behavior, a, and the graph topological configuration, g, that is made
of the finite-state space 2 = A! x G[I], measurement P:F — [0,1] of the state transition probability
such that the system is measurable for the changing randomly, the Markov renewal process, (Y#(t))¢so»

that consists of two parameters of continuous time (¢ = 0) and noise (8 = 0). Thus, for an arbitrary
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sequence 0 <ty <t; <...<t, <t, the stochastic process (Y#(t)).so is controlled by the random
variable generated by J, =0 and the random variable generated by n > 1,/ inf{t > J,_1: YP(t) #
Y#(J,-1)}, which statistical property can be described via its jump times (Un)nen, and holding time

Sn+1 £ ]n+1 _]n-

4. Major results

As analyzed above, the distribution of agents’ state is more important to decision-making. In this
study, the process is defined as the number of jumps {/;}n>0. The property of this sample chain
determines the system property. For an arbitrary graph g with behavior configuration a € AN,
suppose that J, =0 and XA=N(0) =Xf =N To specify the phenomenon that the system can be
transferred from one state to another clearly, several parameters would need to be introduced. For all
n > 1, set J, < oo. Furthermore, for all w € 2V, define nw’T'N 2 YwreaM{w) nfifﬂly € (0, ) as the
measurement of system leaving the state w. Thus, forallt > 0, the transition probability of the system
at this state X5V (t) can be described as follows:

P(X]‘::'l"’ =W o1 — Jn > tIFN) =P (X]"i':fv = Jnr1 —Jn > t|X]i’T’N) = eXP(—tUg'T'N) Z%E)Z

Thus, the invariable distribution of agent’s behavior relies on parameters of ng‘T’N and nf)z)ly

Due to the operator nf,jz;l,v, a random graph process GF*N = {GATN (t)}m, a branch process, can be

constructed. To specify this process, the event of the link (j;, k;;) is generated by a deterministic scalar

,N 77 b- 2)B,N oy b- 3)B,N 7 b- 5)B,N
Qlﬁki,(a’ )= f(ml(’illl process 2)8 (a,7), MGL(IS;; process 3) (a,7), MGi(ls\lu+1process )B (a, ‘L'))

Moreover, the death case is denoted by another deterministic scalar

gﬁjﬁl}i\: (1) = f’ (Wé‘i(}ijb-pmcess 4)B,N (a,1), W/jg's;?i-process 6)B,N (a, T))

The evolution of these two parameters can be determined via the following two theorems, which
proofs will be given in the next section.

Theorem 1. There exist invariable distributions of complex adaptive systems with preferential

attachment CPT™N

N; =y

N g \7, R i (@) , (@) 7 j (@)

6r i (|) ) =TT T i ey (1= i @y )
Ji=l k> Ji

. . BN .
and volatile mechanism :,fj ki,(r) for the inhomogeneous random graphs process

The interaction probability of the model G [N , (pﬁ;N (a)) ] can be written as

ki>Ji

N
A (a,7)

B.N B.N
QIjiki,(a, T) + E)thiki,(r)

,N
phe(a,1) =
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MGL(S]’:Ib process Z)ﬁ N(a' T) + Vl‘zli(lscll:llb_process B)B:N (a’ _L_) + WG':(‘%E-{)I‘OCESS S)B,N (a’ T)

[/[/]'l(s?b process 2)P N(a 7) + Wéi(]sclil'b-process 3)BN (a,7) + W/]'.i(lsclil,b-process 42BN (a,7)

(sub-process 5)8:N 77 (sub-process 68N
+V|61N+ -p (a,7) + MC'i,Nfi p (a, 1)

where?lﬁ ey (@ D= f (V[Gl(s?b process 2PN (g ) Mél(s?,b process AN (g ) VTG,L_(I%UEPFOWSS BN (g, T)), and

W2 ) = (g o O, W 98 (a,7))

If an arbitrary cross-section is taken from the strategy space, the link probability on this cross-
. . BN, _ ( B.N ) nxn BN, _ ( ﬁ:N)
section can be determined. So, Djje;r pjiki,(a, b) @yed? S Sl V™ Lejukpsk

denotes the profile of the interactivity of the agents in the complex adaptive system. Reconsidering the
behavior coupled with the payoff in the corresponding short time scale, the detailed strategies of the
system can be determined. Furthermore, whether the invariable distribution can be described as a
function of the initial state is defined via Theorem 2.

Theorem 2. The invariable distribution of the Markov process {XB'T'N (t)}t>0 is a Gibbs
exp(BHPN (7)) ub ”V(w) exp(B~1V (@)
ZoreaN P BTHEN @) 3w i (@n) exp (B (i)

A ,T,N ,T,N 2
w € NN, HAN(w,7) 2 V(w,7) + B log /Jﬁ (w), and ,uﬁ (w) & }1—1k1>h(Ngng_V)'

For a better perception of the logical structure and the sequential nature of the proposed
mathematical derivations, a flowchart providing a visual overview of the progression and
interrelationships between various analytical steps undertaken in this work is plotted in Figure 1. This
shows the process development from the initial assumptions and conditions to the conclusion,
highlighting key decision points and derivation milestones.

measurement uboN (w) = where, for all
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Figure 1. The proposed derivation process flowchart.

5. Proofs of Theorems 1 and 2

The above process can be described via jump times {J,},>0 as in [47]. First, suppose that jump
times comprise a sample chain of set XATN(,)=XxP"N | then set E,=
o ({]0, Joseeos I g, (XETN X BEN L BN }),n > 0. For an arbitrary graph g with behavior configuration
a € AV, suppose that J, =0 and X£™N(0) = Xf "N To specify the phenomenon that the system can be
transferred from one state to another clearly, several parameters have to be introduced. Forall n > 1,

set J, < oo; furthermore, for all w € 2V, define

ny™ 2 5, e € (0,) (23)

'E.QN\{OJ} nw'w’

as the measurement of system leaves the state w. Therefore, forall ¢ = 0, the transition probability

of the system at this state X#%N(t) can be described as
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]P)(XﬁjN =w'\J,  —J, >t|,/;[):]p(XﬁTN 0\ J  —J, >t‘Xf”T’N)

ne (24)
:exp( U'B’N) o
where Uﬁ TN and nf)Z)N were defined above.

As seen from the above, the agent's historical behavior, other behaviors, and the interaction
between the environment and the system are crucial for choosing a rational strategy and which should
be grasped by the complex adaptive system. Similarly, the environment in which an agent operates
comprises the external environment and agent’s behaviors with the payoffs of his/her neighbors.
Moreover, the history of agent’s behaviors should be considered when selecting a strategy at an
arbitrary time. Furthermore, the behavior of one agent is affected by his/her neighbors, which means
that the noises of each agent's behavior are superimposed, resulting in a huge total noise reaching its
critical value in the process of the system development. Another inhomogeneous environment can
occur, with a larger or more complex noise exceeding this critical value. Thus, two cases (namely (i)
growth controlled by sub-processes 2, 3, and 5, and (ii) decay controlled by sub-processes 4 and 6) are
introduced to describe system evolution. Insofar as these sub-processes are independent, they can be
superimposed via the addition theorem.

Using operator nnglv , a random graph process GP™N = {Gﬁ'T'N (t)} +s0» Which is a branching
process, can be constructed. To specify this process, the event of the link (j;, k;,) 1s generated by a

deterministic scalar ‘215 ,fi (a,1):=
f (M/J'z(s?b process 2)F: N(a' ), VlGL(SLll,b process 3)5; N(a, D), Wéi(g;:l_)iprocess 5)BN (a, T)) . but the death case is
denoted by another deterministic scalar . ku( ) =

f (VTg.i(}Sélil,b-proceSS VBN (a,1), VT/]_(:NE"]?{F’FOCGSS PN (a, T)). Obviously, these two scalars express the growth
and decay mechanisms introduced above. Suppose that f(x),f'(x) are linear and equal to the
occurrence probabilities of these six sub-processes. These six sub-processes should be integrated into
a pure process. Furthermore, because the co-evolutionary process constructed is a branching process,
1.e., a special Markov process, there must exist an invariable distribution in the process of a complex
adaptive system development [47].

Reconsidering the complex adaptive system, each agent selects one kind of behavior from the six
sub-processes as a certain probability, which is affected by the behaviors of his/her neighbors. In other
words, agents in this system are inhomogeneous, can select one behavior randomly, and thus change
their behavior and their property. Invoking agent property configuration 7, controlled by the
configuration of the agent's property, that ist = (y,,...,Tn,,-++,T1,,, -+, Tn,, ), it can be seen that the
agent changes his/her property by changing his/her behavior. A random variable, ® = {0,,..., 60y}, is
introduced to express the fact that an agent changes his/her property randomly. Similarly, the behaviors
of agents in the system can be denoted by a scalar a = (ay,...,an,,..-, 44 ,...,ay_). We call agents
Ji» Ji» ki, and k;, homogeneous if 7;; = 6;,, Ty, = Oy, are satisfied. Furthermore, the distribution
law of these agents’ behaviors can be obtained by the distribution of 7, a. The corresponding results,
i.e., Theorem 1, and the proof should be given as follows.

Definition 3. Scalar CP™N satisfied with exponential distribution is called the preferential

attachment mechanism of the complex adaptive system if C (a T) == exp( v(a;, ag,)).

Definition 4. The admissible volatile mechanism E'j kir (T) is halfanonymous lffﬁk (v) = E]lkll
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when Tj, = 8;,Ty,, = O, is satisfied, for all N = 2,t € OV and all agents j;, k, € N.
Proof of Theorem 1. For the equilibrium condition considered, the invariable distribution is set to
the following form, holding for all w,w’€ NY:

N N
PN @l = kPN (12 (25)
Upon normalization, given a constant Z5%N (q), the above equation has the following unique solution
PN Yjik; (@)
a,t)
'BTN((Ul.QN)_ ﬁTN(a)l_ll_[ Jlk (
Ji=lki>j; ]lk (T)
~ (sub-process ~ (sub-process sub-process y'i i'(w)
BN () [V [, [T P O )
Jji=111k;>j; W](S]l(lb process 4-),8 N(a’r)_'_w.(s%bjfrocess 6)p, N(a,‘r)
2 ]i'N 2
(26)
Forall j; =14,24,...,N;,1,,...,N,,...,N and k; >jl-, define
]lkl ( T)
X (1) 2 log | 2o——
MY (1)
_1 ~](ls,2113 process 2)f3, N(a 1:)+W(SUb process 3) 3, N(a T)+W](suNb+plrocess 5B, N(a,‘[) 27
=l10g W](s’lcxb process 4)B N(a ‘L')+W(SuNb] process 6) 3, N(a 7) ( )
i jpNJi
The function on QY
N
Ho(wl) = B3y Beys i X o (@ Dy (@) (28)
Substituting the above parameters into (26), the invariable distribution should be written as:
BTN Ny — exp Ho(w|0f)
H (@l22) Zw,eng exp Ho(w'l2f)) 29)
] k ( ) . .
Setting p ks (a T) = - 7> the denominator of formula (28) can be derived as
ut Jik; @ D+ (T )
z epoo(a) QY )= Z H H (GXP(Z&,]Y(”J)))V,-,/W. (@)
w'eQ,;N a)‘eQ;\' Ji=l k> j;
(a',7")
exp( 7" (a,7))) log| —2%
- S ool e T
, (30)
Jike Y(a',7")
3o Sy el o)
N
= H H (1+ exp(;(f,f(a,r)))
5 ke
tij AN (a,1) tij -1
= 14—t 7= 1-p”Y(a,7)
iy R (R

Furthermore, for all w € 2, we have
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BN (@) Vjiky (@)
ik
S ocan €xp Ho (@0) = 3y eon Ty T, (—)

1 p] Kk, (@T)
€2y
Combining (30) and (31), the measurement w € 02X can be obtained directly'
: . _Vjikir(w)
PN @I0Y) = T, Ty, P (@, 1)V (1= piY (a, 7)1 ))
(32)
Thus, Theorem 1 is proven: QED.
Due to the property of the invariable distribution, the following property should be noted:
WP @l = uhN (w'1ml (33)

Using the recursion method, this invariable distribution can be expressed to a form with a certain
initial. To do this, consider the function QNf:

Ho(@|2):= B _; T e (@, 1)y (@), (34)
where
xjf;i\i],(a, 7):=log (—“.k‘ ((Z T;) (35)
Jiki’

It is concluded that, when the time scale is relatively large, the behavior of an arbitrary agent that
interacts with others in the system must satisfy the distribution property of an arbitrary state with agents’
behavior and agents’ local topological structure in the evolutionary process of the complex adaptive
system, that is, it could reach the corresponding measurement coupled with the invariable distribution.
Because the system state consists of agents’ behavior and agents’ local topological configuration, the
distribution of corresponding optimal strategy coupled with a constant graph topology can be obtained
by analyzing the invariable distribution of the system’s state, which consists of what the most probable
strategies of the agent in a certain small time-scale would be and how long these strategies would hold
in the evolution of the complex adaptive system.

Note 1. A preferential attachment mechanism makes the complex adaptive system operate.
Furthermore, the half-anonymous volatile mechanism is separable, which means the systems
character can be obtained more easily. Consider the likelihood ratio function:

BN
phku( ) QI]lkl’( 7)

hk (@ ‘ZIBN (a‘r)+§m‘8k )

Forall 1 <j;,k;, <K and a,b € A, define scalar

2 exp(v(a,b)/B)
2 36
) miﬁl ,(a,r)+smfi',’;’i @ (36)

N
(pjﬁ;ki'(a' b

and symmetrical matrix
(@b = (o @n) o = (o
Therefore, when considering an arbitrary agent j; with strategy a and agent k;, with strategy
b, the probability of interactivity between them can be written as:
<p nk ( b)
NB +<0 (a b)
Equation (38) describes the case that agent ]i acts with agent k; according to a certain
probability under some noise. Since parameters a and b are taken arbitrarily, this probability can be

)15fi,ki'SK (37)

Pl (a,b) = (38)
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characterized on an arbitrary cross-section in strategy space. That is, if an arbitrary cross-section is
taken from the strategy space, the link probability on this cross-section can be determined. In this
sense, the following matrix denotes the profile of the interactivity of the agents in the complex
adaptive system:

ﬁ N A .B N nxn ﬁ N a ﬁ N
p]lkl (p]lkl( b))(a,b)EAz € R P (ph

l)ls}'i,ki'SK (39)

Reconsidering the behavior coupled with the payoff in the corresponding short time scale, the
detailed strategies of the system can be determined. Furthermore, whether the invariable distribution
can be described as a function of the initial state can be determined via Theorem 2. However, to prove
Theorem 2, the following Lemma should be invoked first.

Lemma 1. The ratio function of Markov process jump {X f N Yeso With infinitesimal generator

has invariable distribution

Vjiky (@)
WP () = (2PN 1_[ [ (72t St x exp (1,(a;,())/6)
Ji=1ki>ji Jiki

where, for arbitrary equilibrium condition, constant ZP®N(a) holds Eq. (33) has a unique solution
true for all w,w' € O, by employing a normalization approach.

Proof of Lemma 1. For all w,0' €2, let w = (a,9),w' = (a,g ® (i ki), where B
consists of @ and —. Thus, we have
nBl 2expiaj an,)/B)

(40)
Uf)TwN NEIRﬁJILV‘L'k
Consider nnglv /My b N . Due to the multiplier structure, it can be seen that the factors that appear

in these two measurements can be eliminated except for factor (40). Considering the two states w =
(a,9),® = ((a',a)g), a’ € A, their likelihood ratio can be calculated as follows:

7 YRirliu(w)
2 exp( ”(“kl (w), azin(w))/ﬁ)
BTN ((1)) N NEIR'B N

T] _ Tk ‘L'l ]
BN (0w 1_[ 1_[ kit (@)
k=1 le>ki ) 2 exp (v(ag, (@), @, (0")/B)

exp( Ty, (ay,(w))/B)

NP exp( Ty (@i, (@09)/B)
‘L'k Tl
l
2exp(v(ag; (w), al.,,(w))/ﬁ) kit (T (k. (w)/B)
exp (T, (ak; (@
. EDTEkN . i i
X Hki'=ji+1 l_[li”>ki’ Vit () (41)

zexp(v(ag (@)ay, (@))/F)

p exp(rki,(aki,(w'))/ﬁ)

ﬁmTk e

The second term is independent of agent j;; therefore, this likelihood ratio is equal to 1.
Multiplying the first term and considering the symmetry of the payment function, we have:

BN (@) _ legi,zlv(aki,(a)),ali,,(a)))—v(a’ki,((v')’ali”(w'))"’Tji(w)_fji(w') Wf,Z,N 42
nBoN(w) B P (42)

Thus, Lemma 1 is proven: QED.
Proof of Theorem 2. As defined, for all j;, k;, € N andw, 0’ € 2¥, function
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x5 (@,7) = log ( 2exp(v(a; (@), (@))/ B) J

N, (@)

Ji kit (43)

— L (W@, (@), (@) +log| ———

ﬂ Ji [Rgd'® g Nm’f/l\; | (T)

Invoking Lemma 1, it is transformed to:
Hr N (@)=(2" ”'N)’IH H (exp(ei (@,2)7 . (@) + B7'7, (@, (@)))
N 44

=25y eXp{ﬂ' > 2 (Wi @0y, @)+, (w))} “9)

=27y exp| B (V(@,7)+ Blog u ™ (@) ]
— (Zﬂ,r,N)—l exp [ﬂ—lHﬁ,N(w’ z_)]
Thus, Theorem 2 is proven: QED.

Insofar as uf TN is controlled by the decay mechanism, 9, from the definition of K BN it can
be seen that the probability of emergence of invariable distribution is large if the decay is stronger in
the complex adaptive system; otherwise, the probability is relatively small. Therefore, it is the noise
of the behaviors of the agents in the system that decides the stability of the complex adaptive system.
Furthermore, when the property of an arbitrary agent is changed randomly, the invariable distribution
will become more complex. If some parameters are determined, the certain invariable distribution must
be a deterministic one. The invariable distribution of the complex adaptive system relies on several
external parameters: The noise of agent’s behavior, g, and the population of the agents in the system,
N. The following subsections consider what the invariable distribution would be if these two
parameters tend to their respective limits, that is, § - 0 and N — ee,

6. Discussion

Since it was concluded that the system’s behavior would satisfy an exponential distribution with
parameter of 7 , Theorems 1 and 2 specify the parameter 7 . More precisely,

,T,N

~J > z|_ /;v) = exp(—ma’f*f’N )% , where 7 is the measurement of system leaving a
certain state, which relies on the local topological configuration of interaction relationship between
agents, strategy configuration. According to Theorem 1, there exists an invariable distribution of
system behaviory, which relies on variables w, 7, ,and N. Of these, parameters w and 7 are the
most important controllable variables, while f§ and Nare the scenario variables. If w and 7 are
fixed, the statistical distribution of system’s behavior relies on two parameters: NoisefS and agent’s
population N of the system. Similarly, if parameters f§ and N are fixed, i.e., the scenario is fixed, the
statistical distribution of a system’s behavior relies on the agent’s behavior strategy and interaction
configuration. The latter relies on the preferential attachment of a certain agent.

The ways agents adjust their behaviors and whether the time scale is small or large depends on
the rules expressed by Equations (1)-(22) and the co-evolution model Iz = (G,A,m) =

(XS =0t

n+l

(2, F,P, (Xtﬁ )ter,)per, defined in sub-section 4.2. Using Theorem 1, the invariable distribution

ﬁ :I,Zi, determined by the payoff obtained in different sub-

Ni , jik; ) ke 1=Yjjky (@)
processes: PN (w104) =TT, Ty, P, (0,075 (1 = pfi (o, 071 ))

depends on the interaction probability p
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B
Ji
of payoffs coming from creating an interaction relationship, the sub-processes of deleting the old
interaction should be omitted because deleted agents bring maximum profit losses. Thus, optimal

Therefore, the property of pﬁ ’I,Zi, is crucial for the invariable distribution. Insofar as p ’I,Zi, is the ratio

strategies of all agents correspond to large values of pﬁ ’I,Zi,; otherwise, if just partial agents’ strategies

are optimal, pﬁ Ilgl values are relatively small.
By setting F = x(1 —x)%,0 < a < 1, it is easy to see that Fy = (1 —x)% + a(l —x)* 1x >
0, so u monotonously grows with pﬁ ‘IIZU and monotonously decreases with agents’ population N.

Thus, this invariable and the noise effect on the system behavior are quite complex. Intuitively,
the larger the noise B3, the more difficult to select the optimal strategy and the best partner to interact

with. Thus, pﬁ
Given the synthesis effect of w, 7, [, and N, the system behavior is hard to predict, yielding
only approximate solutions. The precise solutions were further derived for the following two limiting
cases: B = 0 and N — o, First, we formulated and proved the following hypothesis.
Hypothesis 3. Under two limiting scenarios (B =0 and N — ©), the system behavior
properties are not equivalent.

The above two scenarios are discussed in Subsections 6.1 and 6.2, respectively,

N . .
k;, 18 expected to increase with f.
2L

6.1. Analytical Solution of the case of} — 0

First, the term stochastic stability should be defined.

Definition 5. With the limitation of small behavior noise p, the system configuration w € QN is
stochastically stable, if }girréﬁ log uP™N (w) = 0.

Lemma 2. Under fixed N =2 and an arbitrary agents property t1€6N , we

3 B.N — — ; s BTN _
getégg;rg{zﬂH (w,7) = V(w,7)| =0, if and onlyy‘ézﬁarﬁ%ﬂloguo (w)| 0.

Proof of Lemma 2. 1t follows directly from Theorem 2: QED.

If the co-evolutionary dynamics of agents’ behavior and local topological configuration follows
an admissible volatile mechanism, then the perturbation of function ug N of graph must be controlled
by the potential function when behavior noise is much smaller. The corresponding result is given in
Theorem 3, which states that the class of these invariable distributions puf™" satisfies the maximum
deviation principle, so that the invariable distribution will converge to a certain subset space that can
converge logarithmically to the minimum value of the ratio function, which can be precisely estimated.

Theorem 3. There exists a ratio function that satisfies R(w,7) £ ar)rlze%alcv V(w', 1) = V(w, 1) with

maximum deviation principle if BN s an admissible volatile mechanism, for all w € QV, such that
the invariable distribution class {uf*N }p>o satisfies fgilréﬁ log u?™N (w) = —R(w, 7).

Proof of Theorem 3: According to Theorem 2, for all w € 2V, we have

exp(B~HAN (w,1))
Y, conN exp(B THAN (w'1))

WP (@) = (45)

Furthermore, if the volatile mechanism is admissible, it satisfies in particular (SNB). Then, it
follows from Lemma 2 that this Hamiltonian function at f — 0 will converge uniformly to the
potential function of the game. So, for all w € 2V, we get
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~lim Blog 1”*" (w) = max lim H”" (@', 7) —lim H”" (w,7)
B0 '@ p—0 A0 (46)
= 516?275 V(w',7)-V(w,7)=R(w,7)

Thus, Theorem 3 is proven: QED

Notably, two corollaries following from Theorem 3 are given in Appendix 1.

To get the profile of individual rationality of agents in a complex adaptive system, the following
definition of equilibrium was introduced.

Definition 5. The four tuples(.QN, by, (P;) jierny (Sji)jie[N]> are in a relative equilibrium if at
B > Oandp > 0, the following inequality holds for all j; € [N;] € N, all strategies 3;,, and allf’ <
B: Twean PN (@)U (s(0),7(@), 7)) = Tpean 1P ™M (@)U}, (35, (), 5-j, (@), ¥ (@), ;) = p.

Theorem 4. For all j; € [Nj] SN with strategy sj(w) = a;(w) , Vo € 0N | tuples
(.QN, PN, (Pi) e (Sji)jiE[N]> of agentj; comprise a relative equilibrium of (3, p)

Proof. For all j; € [N;] € N and an arbitrary alternative strategy, $;,, the deviation payoff of
agent j; has a boundary of:

Z uPoNU; I8 (W), s-j, (@), ¥ (@), 77,1 — Uy, s (@), v (w), 75,1}

wenN

= Y ) R @), 5, (@), ¥ (@), 1) ~ V(s(@), v (@), 7))
wen*N (1)

+ Y @)V (@), 5= @), 7 (), 1) = V(s@), y(@),7,))
we2*N (1)

< phEN @M\ (D) C (47)

where C £ ergglac( ){V(§(a)), s_j;(),y(w),T) — V(s(w),y(w),rji)}. The upper boundary can be
w (T

obtained directly from the first term of the second column and the condition of non-positive due to the
definition of 2N (7).If C < 0, Theorem 4 holds. If C > 0, by invoking the exponential convergence
of the invariable distribution and Corollary 2, for £ - 0 and §(B) — 0 at their respective

limitations, there existse > 0, such that u#*N(Q¥\Q*N (7)) < exp (— % (1+ 0(1))) 2 §(B) holds.

Thus, for each p > 0, a small enough S can be selected such that the corresponding upper boundary
is decreased under p. This proves Theorem 4: QED.

If the behavior noise is small enough, each agent will use the equilibrium as his/her optimal
strategy, with a little deviation permitted. In this sense, a deterministic state of the complex adaptive
system that has evolved (w) should be estimated according to the invariable distribution coupled with
the optimal strategy and the local topological structure of the agent.

6.2. Analytical solution of the case of N — o

In this section, a positive noise > 0 is fixed, and the population of the agents in the complex
adaptive system should be regarded as a selectable parameter to analyze the specification of the
invariable distribution of the states. Similar to the analysis process for noise limitation, the preferential
attachment mechanism is set to a logarithmic formation, that is, to Hypothesis 3, and the volatile
mechanism is half-anonymous. The invariable distribution u#%" is the most important consideration
when a complex adaptive system with population w € 2V is changed. Thus, when considering the
interactivity of agents, the focus is on whether the different types of agents would select similar
strategies and emerge into certain LWs, and the system structure, as the prior distribution 6V =
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(6N, 6Y,...,6%), is the key consideration. Selection of strategies in this manner is called the Bayesian
strategy, where every element of strategy &) is taken as a certain probability in the behavior set A4,
and the coordinates of 43, should be denoted by 4% (a),a € A, which should, forall a € 4,1 < k <

K, occur as the probability:

6 (@ (@,1) 2 v =B 1a(@),(@)) 16, (1)) (48)
where 1 is a symbolic function. Since 6 can be regarded as a mapping from a certain type space
Oof agent to a mixing space A(A), the corresponding classical Bayesian strategy can be found.
Denoting X 2 A(A)* as the set of all Bayesian strategies, then for (o,m) € ¥ X A0V , the
measurement set generalized by mapping 6" can be defined as:

[o,m] £ {(w,7) € QN x OV |6V (w,T) = a&MN (1) =m} (49)

Invoking the measurement of invariable distribution, ufN € M(QN x ON), it needs to give the

most approximate expression for it. When the system population tends to infinity, coupled with set
[0, m], then the measurement can be described as:

ﬂﬁ'N ([o,m]) = Z(a),‘r)e[a,m] :u'B'N (w,7) = ZTETN(m) B (fN =1) Zwe(aN'T)‘l(a) ﬂﬁ'TN (w), (50)

where 6VT() =6V (, 1), and (V) 1(0) = {w € 2|6V (w,T) = 0}

Based on the Bayesian strategy definition, all states must stand in the set [o,m] for all T €
TN(m), QY x {t} . Therefore, one can define an equivalent correlation, ~s7 , such that
(@, T)~[s,m)(a’, ") holdsif, and only if, 7,7" € TN(m) and 6V (QY,7) = 6V (0, 1") = 0, meaning
that the pair of agent’s behavior and agent type profile is an equivalent correlation, ~[4 ], if these
profiles can generate the same aggregate [o, m]. Therefore, (6V7)"1(0) defines the a — behavior
coalition. Furthermore, the class of uf®N(QN) is the approximate expression to all a € A. Thus,
conditional on half-anonymous, it is concluded that this measurement relies only on the ratio of a
certain type of agent with certain behavior. If considering two or more things out of all possible non-
order permutations, a Bayesian measurement can be obtained with a limited population as follows:

B.N — wBC -1 17K (Nmy)! BN
YN (olm) = KPE(m) ™ Ty Maea qroeroes exp(Nm i (0,m) ) (51)

In this expression, because the factor K#€(m)~! is the normalization variable of the probability
measurement, this probability distribution AN (|m) must come from the subset of

sup(PPN(Im)) = ZV(m) £ {0 € ZINmyor(a) EN,Va € 4,1 < k < K}, (52)
which is the interior point limited approximately to the polyhedron of the Bayesian strategy X.
The function fkﬁ Ny x A(®) » R describes the payoff of an agent of type k obtained from

interacting with an agent of type [ > k, considering all possible sub-networks coupled with its
preferential behavior to the others. Although the result of the case of a limited total population is not
perfect for objectivity, it can be seen that when the population total tends to infinity, the sequence

N .. .
{ kﬁ } converges, a.s. to the limit function,
N=N,

ka'N(@ m) £ (o, Ox) + lekl+6kl<o-k' <P5101> (53)

where n-dimensional vector 6;, = (0(a)) e, identifying probability measurement via Equation (51)
of type 6;:A — R, is the best alternative that satisfies the large deviation principle from class
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{(PB N(M N)} N2Ng * for which the convergence sequence {(aV,mM)}y.yo of ratio function
r: 2 X A(®) should be calculated. After analyzing, we have:
~lim L log(whN (@M im")) = rf(a,m) (54)
Extending this expression when type m is given, and the population of agents is infinity, we can
obtain that the probability of Bayesian strategy o € X is equal to the rank of exp (—%r(a, m))
scaled by logarithm. So, the Bayesian strategy scaled by logarithm with the largest probability must
be the strategy that satisfies (g, m) = 0, implying that the problem of probability of distribution
strategy coupled with local topological structure can be transferred to the problem of identifying the

potential function of the game. It was proven earlier that the logit function is a precise one; that is, the
sought function should satisty the following condition:

(1 <k <K):fPN(o,m):= £ (6,m) + Bh(oy)

fEH(o,m) 2 Ti_ mifi" (0,m) (55)
where h(x) = —3;x;log x; is an entropy with distribution x that relies on a growing population of
agents. The type distribution must change with time. The case of relatively large population will be
discussed in the next section, implying that py _ &%, g at N —oo.

Assuming that N is large enough, the implementation of almost natural assigning of agent’s type
will lead to the distribution of type being closed to priori probability q. We focus on the
implementation set of type M"Y — g, and on the type distribution that converged into measurement

class {‘Pﬁ N(IM N)}szvo when measurement F; — is omitted. This leads to Theorem 5.
Theorem 5. Set (M)ysy, is a type distribution sequence converged to priori probability q.
The class {<PB’N(|MN)}NZNO

satisfy, for all o € X, the ratio function rf(o,q):= ?Iggffﬁ (a,m) — fB(a’,m) with large deviation

generalized with permissive half-anonymous mechanism controlled can

principle. For each sequence, class {¢B’N(|MN)}NZNO satisfies: Allim %log PPN (oN|mP) =

—rB (0, q), where oV € EN(m"),VvN = N, and ¢" —>0o.
Similar to the maximum deviation principle introduced in Theorem 5, the information family is a
BN (|N
measurement {<P (IM )}

and the strategy should be the optimal solution of the following programming:

N2N, focused on the logarithmic measurement of the Bayesian strategy,

maxfF (c',q) (56)

The solution of the programming is the logit equilibrium solution; that is, it can be obtained
directly due to the definition of the fixed point condition of the Bayesian strategy. Furthermore, the
corresponding fixed point condition is:

exp(B~* (m§(0",a)+6k(2))) (57)

%@ =52 exp(B~1(nf(a",q)+6k(b)))
where the following equality holds forall a € A and 1 <k <K:

LHCRED Y SUDYSACHILIOES I ACACIILY) (58)

To specify this conclusion, Equation (56) can be reduced to the optimal problem with standard
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constraints. Therefore, the corresponding solution can be resolved by the Lagrange method as follows:
L=fP(0,q) = Zk-1 4 Baeaor(@) — 1) (39)

The corresponding first-order condition should be necessary and sufficient for the optimal
solution, implying that there exists a single solution if a positive f is large enough. Normally, as far
as all 1<k <K and a,b € A are considered, the corresponding first-order condition takes the
following form:

off ey _3ffom _ (60)
dok(a) day(b)

Due to the symmetry of (pfl, we have:

0 >k
B
4P _ )6, (a) + Spsr (@b o) 1=k (61)
dog(a) B
QI((PklUl)a <k
and:
aff (o, ]
T2 = i 0u(@) + Brnk 00(0f91)a — Blog ok (@) + D] (62)

Extending the first-order condition to the general case, the following condition should be satisfied:

0@ 1[5 (o o (of |
log = ZQJ(¢’k101+9k) _qu(¢klo-l+0k)
o.(b) Bl'S ¢ 0a b ] (63)

Z%Hﬁwﬂwaw»%ﬁwﬂ”@@W

The other parts can be obtained directly from the constraint condition ), ,¢,4 0y (a) = 1. Therefore,
when the population tends to infinity, the invariable distribution of a complex adaptive system with
the agent’s behavior and its local topological configuration co-evolution can converge into a certain
interval with rate function —r# (g, q), according to Theorem 5.

7. Conclusions

In the case of limitation of small noise of behavior, the system's invariable distribution of co-
evolution of agent’s behavior and its local topological configuration must stand in the set of the
potential function. However, in the case of the limitation of the large population, the invariable
distribution would converge into a different ratio function. Therefore, a small noise of agent’s behavior
is not identical to a large population for this co-evolutionary complex adaptive system with agent’s
behavior and its local topological configuration.

As mentioned above, the invariable distribution is much more complex. No universal analytical
solution can be derived if corresponding parameters change gradually and continuously. This problem
concerns decision-making based on non-structural analysis of the system scenario. When facing this
complex system, one can select a certain scenario and then adjust the corresponding parameters such
that the scenario changes dynamically. Finally, if several discrete scenarios are studied, the
corresponding conclusion would be drawn by induction.

Although we defined “irrational behavior”, we did not analyze particular irrational behavior
patterns such as competing (vying) and comparing, the anchoring effect, the loss of real demand caused
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by free offers, the nullity of money incentives under the dual effects of social norms and market
regulations, sense and sensibility, and the high price of ownership. We plan to delve deeply into these
issues in the follow-up study.
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Appendix 1. Two corollaries from Theorem 3
According to Theorem 3, two corollaries were derived as follows.

Corollary 1. ZB%N s an admissible volatile mechanism
(1) Set 0*N(r) = {w € QN

}girréﬁ log uPoN (w) = O} is a stochastic stable state of realizable
configuration of agent’s type T with small noise, which identifies with 02*N (1) = arg max V(w, 1)
wE

(2) An invariable distribution is a function with exponential convergence; that is, for arbitrary
e > 0, there exists a subset X, € OV such that éiﬂ(liﬁ log uP™N (X,) < —¢ hold.

Proof. Just the second section should be proven in Proposition 1. Denote the set of ratio
functions Ly (¢) = {w € NY|R(w,7) < €} for all &> 0. These sets are non-empty because there
always exist 02*N(t) € Lg(¢) such that they are equivalent when & — 0. Then fix a ¢ >0, and
consider set X, = NV\Lg(¢), then Ry (1) = néi)pR(a),r) > 0. So, we have

WEAg
lim Blog 1"~ (X,) =lim flog 1N (o)
S—0 S0 0);5 (A. 1)

_ . p.r.N . _
—rgggg};ggﬁlogﬂ (@) = —min R(w) <—&

Similar to Theorem 3, for some functions BfS‘N 1%, (8), we have

Swex, HP™N (@) = exp(—B Ry, (©) By " 1%, (B)
(A.2)
Taking logarithm from two sides, and multiplying by B, we have
Bl0g(Swex, kP (@) = Ry, (1) + B log BL" + Bry, (B) (A3)
At B — 0, the left side becomes —Ry_(7)(1 + o(1)). Corollary 1 is proven: QED.
Theorem 3 indicates that, under small noise, for each type of configuration, the invariable
distribution centralizes the set of maximum potential functions. Similarly, Corollary 1 expresses the

corresponding stochastic stable state must be the maximum one among the potential functions.
Furthermore, measurement {uf ="} P class gives an arbitrary weight for the deterministic subset of

state space, which makes the agent select the optimal strategy.

In the dynamical game model of the complex adaptive system, suppose that an agent always
implements his/her optimal strategy when it acts with others, and it does so in a rational manner. A
notation is needed to express this kind of equilibrium. Thus, the Aumann correlative equilibrium, a
fitness order parameter, is introduced. The Aumann correlative equilibrium regards state space 2Vas
the set of states that could potentially appear and p#%V is simplified to u. The information of j; is
denoted to P, decided by set P;,(0) = {a) € [)N|aji(a)) = a}, a € A. The strategy of agent j; is
mapping s;,: 2" — A, a measurable function of information P;,. That is, whatever the states w,w’ €
P;,(a), we have s;, = s;,(»") = a, and the profile of the strategies is denoted by S = (s;,)j,e(n,jen- 1f this
co-evolutionary complex adaptive system converges into a certain dynamical equilibrium state, then
these agents’ type configurations must be (zy4,...715,,721,...,7y) and the information configuration
must be (2",u,P;,). Supposing that each agent uses strategy s;,(w) = a;,(w),Vw € 2V, then an
interesting question arises: would agent j; use this strategy when it acts with its neighbors as the
system evolves?
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Because the measurement p is effective if, and only if, noise is positive, all states of the system
would appear as a positive probability. However, not all strategies coupled with the measurement
functions about P;, are good. Invoking Theorem 3, the exact state of the system that would occur as a
maximum non-zero probability in the system can be known. This kind of Nash equilibrium means that
the behavior of agents is very complex.

Corollary 2. Set T € ON is an arbitrary type profile. For all j; € [N;] € N, when considering
strategy s;,(w) = a;,(w),Yw € OV, the profile s is the Nash equilibrium behavior of a state, with all
states w € Q*N (7).

Proof The measurement P;, maps s;,. Thus, s;, that describes the strategy selected by an agent.
Fixing an arbitrary agent j; € [N;] € N and setting $;, as an arbitrary strategy that is not optimal, we
also fix w € 2V (7). The deviation payoff of the agent j; will be

Uy [5(@), (@), 73] = U [(0), 5, (@), ¥ (@), 7]
=V(s(w),y(w), 1) —V(E(w),s_j(w),y(w),7) (A4)

This payoft is non-negative 2*" (). Therefore, Corollary 2 is proven to hold: QED.

Appendix 2. Proof of Theorem 5

Proof. The proof is complex, first requiring some parameters to be defined and some Lemmas to
be invoked.

The first thing is to obtain the martingale distribution on AN for arbitrary type profile T € QV
such that the distribution of Bayesian strategy relying on T¥(m), m € Ly, on this set is given to analyze
the probability that this type of agent stands in this type class. To analyze the phenomenon of aggregate,
we sectionalize agents in the complex adaptive system according to the agent’s behavior and its type,
making the same kind of agents stand in the same subset. Now, for all 1<k <K and a € A, define
set

IF(a)(w) 2 {ji € [N]|ajl.(w) = a&tj, = 9k} (A.5)

Obviously, for an arbitrary type profile 7 € @V, the class of set {{If(a)}.ca} 1S Segmentation on
[N]. Under half-anonymous mechanism controlled, measurement of random complex networks would
regard the edge between agent If(a) and j; € I{(a) as an i.i.d. random variable. Thus, a random
variable satisfying binomial distribution with parameter of P;(a,b) is defined as:

EJI(,V[T(“' b)(w) = Z(ji,jige[I,E(a)uzf(b)](Z) Vjij’ir(b)
(A.6)

Given one type profile 7 and a ) on a —cross-section and denoting E }1{\1[: (a,b) for the
maximum quantities of edges between agents with behavior a and type k and agents with behavior
b andtype [, and ey; for the implementation of a random variable E ,ICVI’T (a,b)(), several lemmas are
necessary. They are introduced as follows.

Lemma 3. Consider a given type profile T € TN (m) and a half-anonymous volatile mechanism
mﬁ,r,N .

(1) The stable expression of a —game, on a —cross-section QX should be
ox(a) = 6, (a)(w,7),Vw € QY where o:(0y(a);1 <k <K,a € A) € YN(m)

(2) We have uP™N(QN) o [T5. 102, @2 (0, B, N)IN™KD sphere, for all types of 1 < k < K,
and behavior of 1<a<n , ®&F( satisfies ®¢(0,B,N) 2 [l;sx ®4(0,8,N) , ®L(o,B,N) 2

Nmyop(@)—-8gp
a T ivenp R 1 BN
exp () Moo (1 + 5500 (@) ™, DRy(0,B,N) 2 5=y (1 +N—B(p,€l (a, b))
Proof:  Set the modulus of a —game of type 6, as zp(a) = Nmyoi(a). Therefore, (1) is

Nmyo(a)
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proven.
To prove (2), the following process should be introduced:
For all w € 2V, defining p(w,T): = po(w) exp(V(w,7)/B), and invoking function xj, . (Dof
Equation (A.6), this mapping should be changed to:
p(,7) = [1=1 [y, exp (5,5, (@, DYy (@) exp (75, (a(@)) /B)
(A.7)
Therefore, for all w € 2V, 1<k <K and a € A, we have If(a,w) = If(a). Furthermore,
for all agents with j; € I} (a), j;» € I} (b), we can observe that:

Xj (@, T) = xp(w,7) £ —v(a b) + log ( e ) (A.8)
Then, Equation (A.7) can be reduced to

P(@,7)=p, ()2 HHex (9 (al)gzk(a)jnexp [x,, (a, b)s" (@

k=1 a=1

xH H exp[xkl(a,b)]'f*’ (@b)@)

k,>k a,be.,

(A.9)

The latter equation just relies on the system’s state and the number of edges in networks, w. Then,
we calculate this expression for all states w € 2V, which needs integration for all possible states. The
process can be described in detail as follows:

Initialization: set k = 1,a = 1;

First cycle: considering the special situation [ = k, integrate all possible edges ey;(a,b) on
b = a—if b =n,set | =1+ 1, then go to next cycle;

Second cycle: integrate all possible edges ey;(a,b) withall he A—if [ S K —1,set | > [+
1, and replace this process; otherwise, go to the third cycle;

Third cycle: if a <n —1 and k < K — 1, then, for the same k and a — a + 1, go to the first
cycle; if a=n and k < K — 1, then go to the first cycle for k > k+ 1 and a - 1;if a =n and
k = K, stop calculation.

All possible links between agents with behaviors of I7(1) are integrated within the first cycle.

Note that the only factor affecting the calculation result must be exp( x11(1,1))5ﬁr(1'1)(“’), w € NV,
Therefore, the convolution term will not be affected by the universal term By, in this sense, p(w, 1) =

B, exp( x11(1,1))EiV1'T(1’1)(‘”) . Furthermore, because the respective behaviors of agents are
Eivl'f(l,l) = e,1(1,1), then for an arbitrary agent in this complex adaptive system, there exist several
agents that he/she can interact with, and the combined identical equations representing multiple
possible games must be considered, which may require adjusting the results of the first cycle as follows:
ENT u
T T ,T
B, Pt (0D o (g, (100)85°0D = B, (1 + exp(aeyy (11)))H1 0D
e11(1,1)
311(1,1)20
21 (D1 (V-1)

=B, (1+—of"@D) ° (A.10)

The algorithm of the next cycle is to calculate all llnks between agents with respective behaviors
of I{(1) and I{(2). The relative factors of the universal term B; must be extracted. Therefore, we

provide the integration of the whole above process as follows:
z1(D(z1 (V-1

B2(1+ Man) (1+— 1,2

Repeating this algorlthm, we obtain the corresponding function of the n'" step:

)21(1)21(2) A1)

z1(1)(z1(b)-6g p)

@1, (0,8, N)2M = exp (%) [1p>1 (1 +— NG 11 (1 b)) +oLp
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(A.12)

Recall z,(a) = Nmyoy(a); therefore, the function @i;(a,B,N) holds, and the result of
Lemma 2 can be obtained by calculating the remaining steps as the recurrence relation. Thus, Lemma
2 is proven: QED.

The invariable distribution on an a —cross-section is given in Lemma 2. It can be seen from its
proof that not only the behavior profile but also the Bayesian strategies control the invariable
distribution.

Lemma 4. If 7,7 € TN(m) and 6"V (Q¥,1) = 6V (QF,1"), thenuP =N (QN)/uP= NNy =1

Proof Denoting ¢ as the co-strategies on the subsets respective to 2 and Y, it follows
from Equation (A.9) that, for arbitrary w € 2) and w'€ 2L, we have:

P(@,7) = Pl (@), P(@T) = Pom (@) (A.13)
Lemma 4 can be proven if we can show that
Zwegg ﬁ[a,m] (w) = Zw'egg,ﬁ[a,m] (@) (A.14)

It can be deduced from the proof of Lemma 3 that this operator was driven by the algorithm. The
random complex networks produced in ) and the ones produced in 27, were isomorphic graphs,
so Equation (A.14) holds and Lemma 4 is proven: QED.

Lemma 5. The conditional probability distribution of Bayesian strategy of the set X on type

class TN(m) , for all 1<k<K, must be YPN(alm)=KPNm) 1[5, v (0lm) ,

I ((II\\,]:nnk: = n_ ®(a, B, N)N™k@ - The support of this probability
a€eA k9k :

distribution supp(YPN(Im)) = ZN(m) = {0 € Z|Nmyo(a) ENVa €A 1<k <K} is an
interior point limited approximately to the polyhedron of Bayesian strategy X.

Proof. If (a',1") transfers into(a, 7) after labeling agents in the complex adaptive system, then
pBTN Ny = uBeN(QNY) via Lemma 4. Furthermore, if the Bayesian strategies are used universally
by agents with 7 € TN(m) on 0¥, then there must be Nm, agents of type 8, and Nmo,(a)

classes with the behavior of a € A, in sub-generation of 1 < k < K, such as%, which is
[laea(Nmyoy(a))!

similar to the result of profile T € TV (m) of all types. Therefore, Lemma 5 is proven: QED.

There is the closest form of compact compression for the invariable distribution of Bayesian
strategy, meaning that the measurement coupled with the agents’ population is large enough to study
this complex adaptive system. Therefore, we introduce the following function

1<k <K): P (o,m) 2 Z 0 (@) Z log @% (0, B, N)

where Uf’N (olm) =

BN a€eA BN =k
, (o,m) £ h=1 myf, " (o,m) (A.15)
According to these mappings, the conditional probability in Lemma 5 takes the following form:

BN — BN -1 7K (Nmy)! B.N
YN (alm) = KPN (m) ™ Ty m— o exp(Nmy £ (o,m) (A.16)

The evolution law of the agent’s strategy, when the population is large enough, relies strongly on

the convergence property of function { fkﬁ 'N} . For m" € Ly, we propose that set V¥ (m) X Ly
N>N,

approximates the convergence continuous space XV x A(0) at N — oo. This yields the following
Lemma.

Lemma 6. For each arbitrary Bayesian strategy o € X and type distribution m € int A (0),
there exists a sequence {(c",m")}ysy, with oV € EZN(m"N) and m" € Ly", for all N = N,
such that (aV,m") - (o,m) holds atN — oo.

Proof:  Let us prove this lemma in two steps. First, we try to find a sequence m" € Ly" such
that the total variable distance is converged into m at N — oo. Then, we construct the Bayesian
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strategy sequence using sequence m" € Ly".
In the first step, we define the total variable distance between two distributions x,y € 4(0) in
A(O) as follows:

1
|l — y“TV,G = §Z§=1|xk — Vil (A.17)

It is known that mﬁ € {0,%,...,%} if m" € Ly. Therefore, if m € A(@), then for each 1 <

1

k < K, there exists suchmﬁ € {O’N‘ .. ,%} that |my, — mﬁl < % holds. Thus, for each N, a vector

m" must be found such that [|[m" —m||;y o < % Thus, for a small enough § > 0, set N9(m) 2

{y € 4@)|lly — mll;y o < 8} is an open ball that surrounds m and consists of all m" with N >
N (&), where N(8) is an appropriate integer. Therefore, m¥ — m a.s. in the total change distance.

In the second step, given the identifiable prior distribution sequence (m")ysy,, forall N > Ny,
set oV € ZN(m"), we can measure their distance due to maximum norm on space X. That is, for all
o,0' € X, we have:

llo = ollrv,s 2 max oy — o], (A.18)

As specified in the first step, as for all 1 < k < K, there is a boundary of distance between the
o and o', which is:
n

llog' = okllrv < Nl (A.19)

Then, for all large enough values of N, we have:

— gl <™ 1
lo—o"llrvs < oN fg&ﬁmﬁ (A.20)

Because m" — m € int A (0), for large enough N and all 1 < k < K, there exists such & >
0 that m} > &> 0 holds. For small enough & > 0, the neighbor N%(o") mentioned in the first
step must be found, and it is observed that oV € N°(o) for N = N(§). Thus, Lemma 6 is proven:
QED.

The above reasoning proved the existence of an approximate pair (o,m) € X X A(0) that can
be obtained from a discrete sequence as (o, m") converges, which can be measured directly in this
limited process.

Lemma 7. For all 1 <k <K coupled with sequence {(c",m")}ysy, having limit (o, m) €

X XAO), where oV € ZN(mN),mN € Ly, we have I\IIimfkﬁ'N(aN, mV) = %fk[’)(a, m) where

ka:Z X A(@) - R is a continuous function. That is,fkﬁ(a, m) £ (o, my) + Zzzk%<0k,<ﬂ£ﬂz>
kl

Proof- The asymptotical behavior of function @2( ), which is the large-component behavior

with deterministic quantity go,ﬁ ’IN(a, b) = w, should be quantified. Thus, for all 1 <
kl
k,l <K and a,b € A, we have:
. 1 BN . . B.N _ 2exp(v(a,b)/B)
fim s @i (@b) =0, limeyy(a,b) = —=g—— (A21)

BN B.N
Pri_(@b)\ _ 95 (ab) —2p-1
properly describes the asymptotical behavior with large enough N. Furthermore, for all a € A and
1 <k <1 <K, we find that:

Nm¥ o (b) — 84, 02N (a, b)
log B (", 6, N) = 6,(@) + bz ( Ttoa )log A
=a

= 2[e(@ + 3ol B0k (@.0) + s m ol D)0y (@,b) + 0] (A.22)

This implies that the first-order approximate log (1 +
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and:
1 1
log ®f (0", B, N) = 5 [ml Tpea ol 00" (@,b) + 0] (A.23)
Therefore, forall 1 < k <[ < K, we have:
16", m") =3 6 (@)Y log @ (c”, B, N)

1=k

(A.24)

1 N
= E{(Gﬁﬁk ) +) mla (o), o Na)+o/ N)}

= 1+ 0y
_1
B
Furthermore, a function defined in fkﬁ N (o, m") must have its limitations atN — co. Thus,
Lemma 7 is proven: QED.
Corollary 3. Function {fPVN In=n, converges, a.s., to limit function f B,
Proof: 1t directly follows from Lemmas 6 and 7: QED.
As far as the processes obtained are concerned, all states can be determined via a generalized type
sequence, whose distribution follows the common law g with the property of i1.i.d.. Therefore, we
have:

(f/(a".m")+00/N))

Lemma 8. AN — oo, we getM" =, q.
Proof. Let matrix Vm,q € 4(0)||lm —q||rv = %Z’,ﬁﬂ |my — qx| be the total variable distance

on A(®). Recall the common rule of q € int 4 (0) with type ‘E].(IN) and consider the countable class

of open set {B,.}, where € > 0,B;, = {m € 4(0)||lm — q||, > €}. This rule can be distributed

»Pqe —
among these sets according to the prior process {M"}ys Ny
BN(B,:) = BN({r|M"(z) € B, .}) (A.25)
By invoking Sanov’s theorem, we obtain:
1 SN _
lim log  Fy (Bye) Jggf;h(mlq) (A.26)

where h(m|q) 2 ¥K_, m; log % is a relative entropy. Using the Jensen inequality, h(|q) = 0 and
k

the equation holds if e= q. Because q € B, holds for all &€ = 0, for each &, there always exists a

constant ¢, € (0,00) such that py(B, ) < e V. Thus, set B, can be reduced to a case with a

prior type distributing event. Then, we can construct the event with a set as follows:

Ay(e) 2 {t|[MV(0) € By} = (zllIMY () — qllgy > €} (A.27)
It can be seen that this is a case of F; — probability (13,’1\’ (Bg,e))- Using Equation (A.21), we get:
Ynzn, Py (An(€)) = X, P (Bye) < YN=N, e~ N < o0 (A.28)

By invoking the first Borel-Cantelli Lemma, we have, for all e€Q, ,
P, (limsupy_e Ay (€)) = 0, which will converge to the prior process {M"(7)}ysn,. Therefore,

Lemma 8§ is proven: QED.
The preferential attachment used in this study is a logit function describing the property of
{@PN (MmN )}N>N with the maximum deviation measurement. This yields:
=0

(1 <k <K):fPNo,m) & PN (0,m) + Bh(ay)
PN (o,m) & SEL mifie ™ (0,m) (A.29)
Theorem 5 can be proven as follows. According to Lemma 8, we take a sequence with probability
1 —n~1%%¢onverged to g, and denote the agent’s Bayesian strategy among all types with agent’s

behavior 1 to e; = [e;(1),:*+,ex(1)]. That is, for each 1 <k < K, parameter e;(1) can be
regarded as the unit vector R™ with zero value contributed from the first term and unity values from
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the other n — 1 terms. Thus, for allNwe have e, (1) € XV (m"). Therefore, forall o € X¥N(m") the
following equation holds:

AN @im™) _ x (V! N(fBN( N Ny _ gBN N
YN ey im™) k= TTgeavmY ol @y P [V (57 iy = £ ers )
(A.30)
Taking the logarithm of both sides and multiplying by /N, we get:
B, v @lm®) p& (Nm,)!
—log—————==—>lo
Vo™ V| T o7 @ (a31)

K
Ed (1 ) - 1 o)
k=1
Taking the limitation of the combination term and considering the Stirling formulan! =
V2nn(n/e)", we obtain:
1 (Vi) — o N(p (N
7109 (o) = ™ (™ + (/M) (A32)
Invoking Lemma 8, we deduce that {(c",m")}yy, converges coupled with fAN (g, m") -

(o, 0.

N(glm! . .

lim L = 7£0,) = A (en ) (A33)
where fkﬁ (] ) is the preferential attachment mechanism, i.e., fkﬁ (] ) isalogit function. Next, set
oXN as a function with the following maximum value:

FEN (N, mV) 2 S m | FEN (0N, m") + pr(a) |, 0" € 2V (m) (A.34)

Based on the uniform convergent principle, atN — oo, we get fAN(aN,m") —» fkﬁ (0.,q), and
the limitation point is the maximum value of f#(|q). That is,
I{Iim %log PBN (gNmM) =0 (A.35)
Considering Equation (A.30), we have, forall ¢’ - ¢ € J:

B.N N
mN): lim ﬁlog—w (0'|mN)
Now| N l//ﬁ’N(e] |m )

BN N N
e pN(G* = )+£10gw’]‘”(afv
Ny e |mT) N
= f (0. q)- f"(0..9)

= _rﬁ (0-7 q)
Thus, Theorem 5 is proven: QED.

. ﬁ BN ([ N
}}Eiﬁlogy/ (0'*

m") (A.36)
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