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Abstract: In this study, we developed a dynamical Multi-Local-Worlds (MLW) complex adaptive 
system with co-evolution of agent’s behavior and local topological configuration to predict whether 
agents’ behavior would converge to a certain invariable distribution and derive the conditions that 
should be satisfied by the invariable distribution of the optimal strategies in a dynamical system 
structure. To this end, a Markov process controlled by agent’s behavior and local graphic topology 
configuration was constructed to describe the dynamic case’s interaction property. After analysis, the 
invariable distribution of the system was obtained using the stochastic process method. Then, three 
kinds of agent’s behavior (smart, normal, and irrational) coupled with corresponding behaviors, were 
introduced as an example to prove that their strategies converge to a certain invariable distribution. 
The results showed that an agent selected his/her behavior according to the evolution of random 
complex networks driven by preferential attachment and a volatility mechanism with its payment, 
which made the complex adaptive system evolve. We conclude that the corresponding invariable 
distribution was determined by agent’s behavior, the system’s topology configuration, the agent’s 
behavior noise, and the system population. The invariable distribution with agent’s behavior noise 
tending to zero differed from that with the population tending to infinity. The universal conclusion, 
corresponding to the properties of both dynamical MLW complex adaptive system and 
cooperative/non-cooperative game that are much closer to the common property of actual economic 
and management events that have not been analyzed before, is instrumental in substantiating managers’ 
decision-making in the development of traffic systems, urban models, industrial clusters, technology 
innovation centers, and other applications. 
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1. Introduction 

Over the past two decades, complex adaptive systems have been actively developed, including 
the evolution of economic systems [1,2], theory of emergence [3,4], as well as social [5,6], ecological [7], 
and epidemic [8,9] characteristics of bifurcation [10]. Minor perturbations were found to escalate into 
tectonic shifts in the system, or even abrupt changes of the system properties and functions [11], 
resulting in symmetry-breaking [12] or synchronization [13]. In essence, the spontaneous switches in 
group behavior derive from interactions between individuals [14], during which some behaviors are 
learned [15] or propagate [16], causing the structure and behaviors of the system (or collective) to 
change [17] or reach the critical state [18]. The common property is that their detailed structure cannot 
be explained exactly from a mathematical viewpoint. To this end, the stochastic differential game 
theory has been introduced [19], reflecting the interaction behavior of agents and the optimal strategy 
coupled with temporary deterministic structure [20] and stochastic complex networks [21]. Atar and 
Budhiraja described the evolution law under various agent interaction rules in different fields [22]. 
However, these interactions that happen in the Multi-Local-Worlds (MLW) system are both 
synthesized (the interactions consist of not only cooperative games but also non-cooperative) and 
stochastic in dynamical configuration (arbitrary agent always selects interactive agents according to 
his/her benefit), making the problem much more difficult to resolve in mathematics and yielding most 
results that fail to satisfy the real complex adaptive system.  

The classic analysis method cannot deal with this dual randomness because the agent’s diverse 
behaviors and the system’s configurations change randomly with time. There have been few results to 
discover what the system’s behavior would converge to as time tends to infinity or a relatively large 
number under classic methods. Furthermore, most research results have either considered the mixed 
interaction of non-cooperative/cooperative games in MLW stable graph or considered the random 
MLW complex networks with the Boolean game between individuals, which are far from the property 
of the real complex adaptive system. In this sense, new modeling methods should be introduced. We 
constructed a multi-agent model to analyze the evolution law of complex adaptive systems. We 
preclude that the system behavior must satisfy an invariable distribution if agents usually work 
according to this model. Furthermore, once this invariable distribution law is determined, some 
strategies for economic issues, political events, social questions, and environmental influence will be 
made scientifically. 

Generally, each agent in a complex adaptive system could interact just with local agents; their 
interaction relies on the system’s local topological configuration. Brian concluded that imperfect 
information from other agents, with whom an arbitrary agent acts directly, determines this agent’s 
behavior [23]. Jiang et al. analyzed how the topological configuration of nematic disclination networks 
affects the interaction between agents and agents’ behavior [24]. Furthermore, Maia et al. reported that 
if each agent in the system can change its interacting targets (i.e., its “neighbors”) to obtain more 
benefits, then there will be complex nonlinear interactions between subjects and between subjects and 
environments, which lead to the phenomenon of “emergence in large numbers” of the system [25]. Thus, 
the evolution of microscopic individuals makes the macro system display a new state and a new 
structure [26]. In this sense, the local topological configuration is not stable but dynamic [27]. More 
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importantly, the system’s state and property would be affected adaptively by the environment [28], and 
the environment is also affected by the system’s state and properties [29], which produce an adaptive 
and evolutional process [30]. Scholars have studied complex adaptive systems with these properties. 
If the interactivity between agents is very simple, yes or no, for example, the problem is one of the 
complex networks; if the system structure is deterministic and constant, the problem is one of game 
theory. However, most complex adaptive systems have both properties. Therefore, neither the theory 
of complex networks nor stochastic game theory can help to resolve the problem. Thus, new methods 
must be introduced to study the properties of optimal agent strategy in complex adaptive systems. 

Generally, a system can be subdivided into multiple subsystems, with interactions between 
individuals occurring within the same subsystem and across different subsystems. Miguel et al. 
analyzed individual and flock behavior in heterogeneous social complex systems and found that much 
complexity comes from the relationship between these sub-systems [31]. Similarly, Hassler et al. 
investigated the individual behavior between intergroups under social environmental change [32]. In 
addition, A et al. considered co evolution in proxy behavior and local topology configuration [33]. The 
interactions occur not merely between neighboring individuals, and the long-range interactions in 
spatial dimensions significantly affect the critical phase transition of the system. Neffke focused on 
the phase transition between co-workers who interacted long-rangely [34]. Levin et al. considered the 
political polarization and the corresponding reversal of the political forces and found that indirect 
interaction would obtain political polarization easier by induction [35]. Priol et al. constructed an 
avalanche model to describe phase transition property driven by long-range interactions between 
agents [36]. A et al. studied the impact of network topology on the resistance of vehicle platforms [37]. In 
addition, the rules met by the interactions between individuals within an economic or management 
system are far more complex than the rules regulating interactions between individuals in the natural 
world, such as the conservation of momentum that regulates collisions of particles and the black box 
of biology (such as the behavior adjustment strategies defined by the Ising and Vicsek models) 
Narizuka and Yoshihiro analyzed the lifetime distribution for adjacency relationship by invoking the 
corresponding Ising model [38]. Tiokhin et al. studied the priority evolution in the social complex 
system by constructing a corresponding Vicsek model [39]. Colwell reported how simple behavior 
would be changed if the environment was disrupted [40]. Moreover, Algeier et al. substantiated that 
the system structure determined by interactions between individuals is a key contributing factor to the 
function and nature of the system [41]. Tóth et al. investigated the emergence from structure and 
function of the system with a leader-follower hierarchy among players and concluded that the 
collective behavior would be much unstable if the interaction between agent and the leadership of the 
managers in an arbitrary multi-level complex system is beyond different layers [42]. Tump et al. 
studied the intelligence of emergence collective driven by the interaction between irrational agents and 
found that the collective intelligence would be polarized, which relies on system structure, interactive 
nature, and population size of agents [43]. Berner et al. revealed the phenomenon of desynchronization 
transitions occurring when the multi-layered structure satisfied certain conditions [44]. Zhang et al. 
analyzed the phase diagram of symmetric iterated prisoner’s dilemma of two companies with a partial 
imitation rule in a sparse graph using cases where individuals interacted in varied structures, such as 
sparse graphs and dense graphs, random graphs and complete graphs, scale-free networks, and small-
world networks [45]. Alternatively, Chen studied the diverse motion under small noise in Vicsek model 
in dense scale-free networks [46]. 

However, the available random complex network models failed to accurately describe economic 
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and management systems because their interaction was much more complex than the Boolean 
interaction defined in these models. Similarly, different game models were also ineffective because the 
interaction configuration between agents changed dynamically, and the above two properties must be 
considered in the comprehensive model. Furthermore, there are many unknown and unseen scenarios 
in reality. Due to the lack of real-world data, the conclusions regarding concerted changes in collective 
behavior reached by classical analysis methods do not apply to unknown scenarios. In this paper, a 
MLW economic and management complex adaptive system with agent’s behavior and local 
configuration is considered. This partially complements the gap between reality and the results of 
previous studies. 

The rest of this paper is organized as follows. In Section 2, the characteristics of a complex 
adaptive system are analyzed, and a hypothesis is proposed. In Section 3, agent’s behavior in the 
system is analyzed and abstracted into six processes. In Section 4 and 5, the agent local topology 
evolution model is constructed, and some theorems are formulated and proven. Section 6 discusses 
invariable distributions where both parameters 𝛽  and 𝑁  tend to zero and infinity, respectively. 
Section 7 concludes this study. 

The innovative features and major contributions of this paper can be listed as follows: 
(1) Different from previous studies, We consider the network growth and decline by treating the 

network as a multi-local-event one. Furthermore, the priority connection mechanism of the agent is 
not based on the degree, but the priority connection probability is determined based on the income 
over a short time scale. If, and only if, the phase transfer equation based on the priority link is 
determined, the evolution characteristics of the system can be obtained. On the basis of considering 
the behavior and adaptability of an agent, the interaction between environment and system is also 
considered, and it could reach the corresponding measurement coupled with the invariable distribution. 

(2) In the case where the agent’s behavior noise approaches zero (𝛽 → 0 ), the invariable 

distributions 𝜇 , ,   are proven to satisfy the maximum deviation principle. This implies that the 
invariable distribution would converge to a certain subset space that can converge logarithmically 
precisely to the minimum value of the ratio function and such that the ratio function can be estimated 
perfectly, as shown in Theorem 3. The deterministic state of the evolved complex adaptive system, 𝜔, 
must be estimated according to the invariable distribution coupled with the optimal strategy and the 
local topological structure of the agent, according to Theorem 4. 

(3) We prove that if the population of agents in the system tends to infinity, the invariable 
distribution of a complex adaptive system with co-evolving agent’s behavior and local topological 
configuration can converge into a certain interval with rate function 𝑟 𝜎, 𝑞 , according to Theorem 5. 

2. Characteristic analysis of an economic and management co-evolutional complex adaptive system 

Definition 1. The connected sub-graph 𝐺 , 𝑖 1,2, . . . , 𝑚  of the topological structure of the 
Complex Adaptive System 𝐺, where 𝐺 ⊆ 𝐺, is called Local World (LW). 

To model this system, some variables were introduced, as listed in Table 1. 
As mentioned above, at one time, an arbitrary agent can select one behavior from six sub-

processes with a probability (𝑝 , . . . , 𝑝 ), respectively. At the next one, he/she can select another behavior. 
Thus, if we regard the agent’s behavior as his/her state, the state would satisfy a certain state transition 
equation. Combining this system’s property with the theory of stochastic process, this complex adaptive 
system can be simulated by a stochastic process model. An optimal strategy path must exist for a certain 
system configuration, but since the latter always changes randomly, the optimal strategies vary, respectively. 
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Table 1. Variables. 

Notation Description 

𝑗  The 𝑗th agent in LW𝑖 
𝑥 Resource 

𝑎  Strategy space 

𝐴 Strategy space collection 

𝐼 Set of all agents 

𝑟 Game radius 

𝑎  The most effective strategy within the game radius 𝑟 

𝑔 Topological configuration of system 

𝛽 Environment noise 

𝑁 Population of the agents in the system 

𝜙∗ 𝑡, 𝑥  The best strategy vector of agent 𝑗  for a specific pure strategy at time 𝑡 and state 𝑥  

𝜋  The income of agent 𝑗  

q1,q2, q3 
Probabilities of agent choosing the behavior of adjusting strategy, creating a new interaction in 

the same LW, and creating a new interaction with agents in other LWs, respectively 

q4, q5, q6 
Probabilities of agent choosing the behavior of deleting the present interaction, creating a 

game relationship with a new agent in the system, and retreating from the system, respectively 

𝑏 , ⋅ |𝜔  Probability of agent changing his/her behavior 

𝑤 sub-process ,
 Probability of agent 𝑗  creating new interaction with agent 𝑙  in sub-process m, 𝑚 2,3,5 

𝑣
′

ub-process 
 Probability of agent 𝑗  deleting old interaction with agent 𝑘 ′ in sub-process m, 𝑚 4,6 

𝑁  The set of neighbors of agent 𝑗  

𝑁  The set of agent 𝑗  and his/her neighbors 

𝜍 Noise of agent’s behavior 

𝜔 𝛼, 𝑔  System state controlled by behaviors 𝛼 and system configuration 𝑔 

𝜆 sub-process  The ratio function in sub-process 𝑚, 𝑚 2,3,4,5,6 

𝜏 Agent’s profile structure 

𝑌 𝑡  Stochastic process of the economic and management complex adaptive system 

𝛤  
The model of complex adaptive system with behavior and system topological configuration 
co-evolution, where 𝛤 𝐺, 𝐴, 𝜋 ≡ 𝛺, 𝐹,ℙ, 𝑋 ∈ ∈ℝ  

ℙ: 𝐹 → 0,1  Measurement 

𝐽 ∈ℕ  Time point of certain state occurrence 

𝑆  Holding time of a certain state, i.e., 𝑆 : 𝐽 𝐽  

𝜂 , ′
, ,

, ′∈
 Probability of transition from state 𝜔 to state 𝜔′ 

𝐶 , ,  Mechanism of preferential attachment 

𝛯
′

, 𝜏  Volatile mechanism of economic and management complex adaptive system 
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The agent’s irrational behavior will be discussed in the following sections, and then the co-
evolutional stochastic process model driven by irrational behavior and the system’s configuration will 
be constructed. The universal approximate analytic solution will be calculated, and two precise 
solutions will be derived for (i) agent’s behavior noise tending to zero and (ii) agents’ population 
tending to infinity. 

3. Model of a co-evolutional complex adaptive system 

3.1. Agent’s behavior 

3.1.1. Adjust behavior 

An arbitrary agent, 𝑗 , will change his/her strategy as probability, 𝑞 𝜔 ∈ 0,1 . The probability 
of the agent changing his/her behavior 𝑏 , ⋅ |𝜔  in a certain system configuration should satisfy 
several conditions specified as follows: 

𝑏 𝑎 |𝜔 ≜ ℙ 𝑎 ∈ 𝑎𝑟𝑔 𝑚𝑎𝑥
∈

𝜋 𝛼 , 𝑔 𝜀 |𝜔                      (1) 

where 𝑎  is the most effective strategy within the game radius 𝑟, 𝑎  is the strategy space, 𝐴 is the 
strategy space collection, 𝜋 ⋅   is the income of agent 𝑗  , 𝑎  is the strategy of agent 𝑗    in the 
strategy space, and 𝜀is noise. Furthermore, this decision relies not only on the neighbor’s strategy and 
the topological structure 𝑔, but also on the environment 𝛽. 

𝑙𝑖𝑚
→

𝑙𝑜𝑔 𝑏 , 𝑎|𝜔 𝑐 𝜔, 𝑎 , 𝑔 𝑣 𝑡, 𝑥 ∗, 𝜙∗ 𝑡, 𝑥 ∗                    (2) 

where the strategy 𝜙∗ 𝑡, 𝑥
∗

 for time 𝑡 and state 𝑥  refers to the best strategy vector for a specific 

pure strategy, 𝜙∗ 𝑡, 𝑥
∗

𝜙∗ 𝑡, 𝑥
∗

, 𝜙∗ 𝑡, 𝑥
∗

, ⋯ , 𝜙∗ 𝑡, 𝑥
∗

and 𝜗 is the spatial dimension 

of the agent 𝑗 . 
Obviously, when an agent selects a strategy 𝑎   from strategy space 𝐴 , it must satisfy the 

condition that agent  𝑗   can obtain relatively more payoff as a maximum probability when they select 
the new one. However, this probability would be rewritten as 𝑒𝑥𝑝 𝑣 𝑡, 𝑥 ∗, 𝜙∗ 𝑡, 𝑥 ∗ 𝑜 1 . 

3.1.2.   Create a new game relationship with another agent in the same LW 

Suppose that an arbitrary agent  𝑗   creates a new game with a new agent who is not his/her 
neighbor with the following probability: 

𝑤 sub-process2 , 𝜔 ≜ 𝑤 sub-process2 , 𝜔 ∈ 𝜆 sub-process2 𝜔 /𝜆 sub-process2 𝜔 ,  

which relies on the ratio𝜆 sub-process2 : 𝛺 → ℝ that satisfies 𝜅 𝜔 𝑁 1 ⇒ 𝜆 𝜔 0 and 

∀𝑗 ∈ 𝐼 ∀𝜔 ∈ 𝛺 : 𝜆 sub-process2 𝜔 ∑ 𝑒𝑥𝑝 𝑊 , 𝑡, 𝑥 ∗, 𝑥 ∗, 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙∗ 𝑡, 𝑥 ∗ /𝛽∉    

(3) 

𝜆 sub-process 2 𝜔 ≜ 𝜆 sub-process 2 , 𝜔
∈
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∑ 𝑒𝑥𝑝 𝑊 , 𝑡, 𝑥 ∗, 𝑥 ∗, 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙∗ 𝑡, 𝑥 ∗ /𝛽 1 𝑔,                    

(4) 

∀ 𝑗 , 𝑘 ∈ 𝐼 : 𝑤 sub-process 2 , 𝜔 𝑤 sub-process 2 , 𝛼 1 𝑔  

The probability of agent𝑗  creating a new game with agent 𝑘  is defined as 𝜆 sub-process2 𝜔 /
𝜆 sub-process2 𝜔 , implying that payoff of the coalition of agent 𝑗  and agent 𝑘   is larger or equal to 

the other coalition’s payoff affected by noise 𝜍 𝜍 ∉ . In this respect, we get 

  
   

( ){ , } * * * * * *

( ){ , } * * * * * *

( ) , , , ( , ), ( , )
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Thus, nonequity ∃𝑘 𝑘 , 𝑘 ∉ 𝑁 , ℙ 𝑊 , 𝑡, 𝑥 ∗ 𝑊 , 𝑡, 𝑥 ∗ 1  must be 
satisfied to create a new game relationship with agents from 𝑁 𝑁  who did not interact with agent 

𝑗 . This complies with the so-called preferential attachment mechanism, implying that agents prefer to 
select a game partner who can bring them more payoff than others. This causes each agent to be 
selected prior to their payoff coupled with the optimal strategy in the corresponding short time interval. 
This probability is a multi-dimension logit function, which means there exists a critical point of 

probability 𝑊 ,  coupled with the agent’s payoff in the selected process such that the probability 

a certain agent will be selected is far smaller than 0.5 if the agent’s payoff is smaller than 𝑊 ,  
but the choosing probability is far larger than 0.5 and closer to 1 if the agent’s payoff exceeds 

𝑊 , . 

3.1.3. Create a new game relationship with another agent in a different LW similar to sub-process 2 

In the case where the agent 𝑗   creates a new game, the agent 𝑘 ′  must satisfy the following 
conditions: 

∀𝑗 ∈ 𝐼 ∀𝜔 ∈ 𝛺 : 𝜆 Sub-process 3 , 𝜔

∑ 𝑒𝑥𝑝 𝑊 , ′ 𝑡, 𝑥 ∗, 𝑥
′

∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙
′

∗ 𝑡, 𝑥
′
∗ /𝛽

′∉                        (7) 

𝜆 Sub-process 3 𝜔 ≜ 𝜆 Sub-process 3 , 𝜔
∈

 

𝑤 Sub-process 3 𝜔 ≜ ℙ 𝜋 𝛼 , 𝛼 ′ 𝜍
′

𝜋 𝛼 , 𝛼 ′ 𝜍
′

, ∀𝑙 ′ ∉ 𝑁 𝜔  
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            ℙ 𝑊 , ′ 𝑡, 𝑥 ∗, 𝑥
′

∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙
′

∗ 𝑡, 𝑥
′

∗ 𝜍
′

 

            ℙ 𝑊 , ′ 𝑡, 𝑥 ∗, 𝑥
′
∗, 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙

′
∗ 𝑡, 𝑥

′
∗ 𝜋 𝛼 , 𝛼 ′ 𝜍

′
, ∀𝑙 ′ ∉ 𝑁 𝜔     (8) 

This yields 

∀𝑗 ∈ 𝐼 ∀𝑘 ∉ 𝑁 𝜔 : 𝑤 Sub-process 3 , 𝜔
𝑒𝑥𝑝 𝜋 𝛼 , 𝛼 /𝛽

∑ 𝑒𝑥𝑝 𝜋 𝛼 , 𝛼 /𝛽∉

 

              
, ′ , ∗,

′
∗ , ∗ , ∗ ,

′
∗ ,

′
∗ /

∑ , ′ , ∗,
′

∗, ∗ , ∗ ,
′

∗ ,
′

∗ /
′∉

                         (9) 

𝜆 Sub-process 3 𝜔 → 𝜔 𝜆 Sub-process 3 𝜔 𝑤 Sub-process 3 𝜔

𝜆 Sub-process 3 𝜔 𝑤
Sub-process 3

𝜔    (10) 

𝜆 Sub-process 3 𝜔 → 𝜔 𝑒𝑥𝑝 𝑊 , ′ 𝑡, 𝑥 ∗, 𝑥
′

∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙
′

∗ 𝑡, 𝑥
′

∗ /𝛽        (11) 

3.1.4. Delete an existing game relationship 

Assume that an arbitrary link 𝑗 , 𝑘  will disappear at probability 𝜉 0. That is, if this link 
exists as probability 𝜉ℎ 𝑜 ℎ  during a small enough time interval 𝑡, 𝑡 ℎ , the expected time of 
existence will be 1/𝜉. Therefore, starting from the system state 𝜔 𝛼, 𝑔 , the probability that the 
system transit system state 𝜔 𝛼, 𝑔 𝑗 , 𝑘  must be 𝜂 Sub-process 4 𝜔 → 𝜔 𝜉 

∀𝑗 ∈ 𝐼 ∀𝜔 ∈ 𝛺 : 𝜂 Sub-process 4 , 𝜔  

              ∑ 𝑒𝑥𝑝 𝑊 , ′ 𝑡, 𝑥 ∗, 𝑥
′

∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙
′

∗ 𝑡, 𝑥
′

∗ /𝛽∈               (12) 

𝜂 Sub-process 4 𝜔 ∑ 𝜂 Sub-process 4 , 𝜔∈                                      (13) 

𝑣
′

Sub-process 4 𝜔 ≜ ℙ 𝜋 𝛼 , 𝛼 ′ 𝜍
′

𝜋 𝛼 , 𝛼 ′ 𝜍
′

, ∀𝑙 ′ ∉ 𝑁 𝜔  

             ℙ 𝑊 , ′ 𝑡, 𝑥 ∗, 𝑥
′

∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙
′

∗ 𝑡, 𝑥
′

∗ 𝜍  

             𝑊 , ′ 𝑡, 𝑥 ∗, 𝑥
′
∗, 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙

′
∗ 𝑡, 𝑥

′
∗ 𝜍

′
, ∀𝑙 ′ ∉ 𝑁 𝜔                 

(14) 

∀𝑗 ∈ 𝐼 ∀𝑘 ∈ 𝑁 𝜔 : 𝑣 Sub-process 4 , 𝜔 1
𝑒𝑥𝑝 𝜋 𝛼 , 𝛼 /𝛽

∑ 𝑒𝑥𝑝 𝜋 𝛼 , 𝛼 /𝛽∈
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             1
, ′ , ∗,

′
∗ , ∗ , ∗ ,

′
∗ ,

′
∗ /

∑ , ′ , ∗,
′

∗, ∗ , ∗ ,
′

∗ ,
′

∗ /
′∈

                  (15) 

3.1.5. Create a game relationship with a new agent in the system. 

When agent 𝑁 1  enters the complex adaptive system, it will enter Local World 𝑖  as 
probability 1/𝑚, will be reordered to 𝑁 1, then it will create a game relationship with an arbitrary 

agent 𝑗  with probability 𝑤 sub-process 5 , , , where: 

∀𝑗 ∈ 𝐼 ∀𝜔 ∈ 𝛺 : 𝜆 Sub-process 5 , 𝜔  

             𝑒𝑥𝑝 𝑊 , 𝑡, 𝑥 ∗, 𝑥 ∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙∗ 𝑡, 𝑥 ∗ /𝛽                    (16) 

𝑤 Sub-process 5 𝜔 ≜ ℙ 𝜋 𝛼 , 𝛼 𝜍 𝜋 𝛼 , 𝛼 𝜍 , ∀𝑙 ∈ 𝑖 𝜔  

        ℙ 𝑊 , 𝑡, 𝑥 ∗, 𝑥 ∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙∗ 𝑡, 𝑥 ∗ 𝜍  

        𝑊 , 𝑡, 𝑥 ∗, 𝑥 ∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙∗ 𝑡, 𝑥 ∗ 𝜍 , ∀𝑙 ∈ 𝑖 𝜔           (17) 

∀𝑗 ∈ 𝐼 ∀𝑙 ∈ 𝑖 𝜔 , 𝑙 𝑗 : 𝑤 Sub-process 5 , 𝜔
, /

∑ , /∈ ,
          (18) 

𝜆 Sub-process 5 𝜔 → 𝜔 𝜆 Sub-process 5 𝜔 𝑤 Sub-process 5 𝜔                         (19) 

3.1.6.   An agent is deleted from the system 

Obviously, when an agent is deleted, the links that expressed its game relationships must be deleted. 

∀𝑗 ∈ 𝐼 ∀𝜔 ∈ 𝛺 : 𝜂 Sub-process 6 , 𝜔 𝑒𝑥𝑝 𝜋 𝛼 , 𝛼 /𝛽
∈

 

               ∑ 𝑒𝑥𝑝 𝑊 , ′ 𝑡, 𝑥 ∗, 𝑥
′

∗ , 𝜙∗ 𝑡, 𝑥 ∗ , 𝜙
′

∗ 𝑡, 𝑥
′

∗ /𝛽
′∈

                (20) 

      
  

  '

' ' ' '

(Sub-process 6)

( ){ , } * * * * * *

( ){ , } * * * * * *

( ) , ,

, , , ( , ), ( , )

, , , ( , ), ( , )

j j ji i i i
kj ji j ji j

i i i
ji i i i i i i ii

i i i

i i i i i i i

l k lj j k j
k kk l

t j k jt t t t
j k j j k k kk

t j l jt t t t
j l j j l l ll

v

W t x x t x t x

W t x x t x t x

        

  

  

 



  

 

 

 












N N

N

'
k j

i  N

                       (21) 

∀𝑗 ∈ 𝐼 ∀𝑘 ∈ 𝐼, 𝑘 ∈ 𝑁 ∀𝑘 ∈ 𝑁\𝑗 ∀𝑙 ∈ 𝐼, 𝑙 ∈ 𝑁 : 

       𝑣 Sub-process 6 , 𝜔 1
∑ , /

∈

∑ ∑ , /
∈

∈ \
                          (22) 

The system evolves according to a state transition equation matched with the 6 sub-processes, 
which forms a stochastic process, a weak Markov process. By analyzing this process, the invariable 
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distribution can be determined. 

3.2. Agent local topology evolution model 

The complex adaptive system was analyzed and re-described as follows. Suppose that there are 
several kinds of inhomogeneous agents in a system, whose profile structure is denoted by 𝜏 , and 
suppose that the system state 𝜔 𝑎, 𝑔  consists of agents’ behaviors and agents’ local topological 
configuration, where 𝛽  is the behavior noise. That is, the above environment 𝑁 is the sum of the 
agents in the system. For an arbitrary state, 𝜔 𝑎, 𝑔 , mappings 𝛼: 𝛺 → 𝐴  and 𝛾: 𝛺 → 𝐺 𝑁  
are defined to describe the co-evolutionary complex adaptive system with agents’ behavior and local 

topology in detail, i.e., an infinitesimal generator 𝜂 ,
, ,

, ∈
 coupled with the corresponding 

rate function set will be generated. Thus, a corresponding stochastic process model is constructed, and 
the probability from state 𝜔 to 𝜔′ is defined as follows: 

𝜂 , ′
, ,

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝑒𝑥𝑝 1/𝛽 𝑣 𝑡, 𝑥 ∗, 𝜙 ∗ 𝑡, 𝑥 ∗ , 𝑔

∑ 𝑒𝑥𝑝 1/𝛽 𝑣 𝑡, 𝑥 ∗, 𝜙 ∗ 𝑡, 𝑥 ∗ , 𝑔∈

𝑒𝑥𝑝 𝑊 , , 𝜙 ∗ 𝑡, 𝑥 ∗ , 𝑔 ⊕ 𝑗 , 𝑘 /𝛽

∑ 𝑊 , , 𝜙 ∗ 𝑡, 𝑥 ∗ , 𝑔 ⊕ 𝑗 , 𝑙 /𝛽∉

𝑒𝑥𝑝 𝑊 , ′ , 𝑔 ⊕ 𝑗 , 𝑘 ′ /𝛽
∑ 𝑊 , ′ , 𝜙

′
∗ 𝑡, 𝑥

′
∗ , 𝑔 ⊕ 𝑗 , 𝑙 ′ /𝛽

′∉

1
𝑒𝑥𝑝 𝑊 , ′ , 𝑔 𝑗 , 𝑘 ′ /𝛽

∑ 𝑊 , ′ , 𝑔 𝑗 , 𝑙 ′ /𝛽
′∉

𝑒𝑥𝑝 𝑊 , , 𝑔 ⊕ 𝑗 , 𝑘 /𝛽
∑ 𝑊 ′, , 𝑔 ⊕ 𝑙 ′, 𝑁 1 /𝛽∈ , ′

1
∑ 𝑒𝑥𝑝 𝑊 , ′ , 𝑔 𝑁 /𝛽∈

∑ ∑ 𝑒𝑥𝑝 𝑊 , ′ , 𝑔 𝑁 /𝛽
′∈∈ \

 

where 𝑁 𝜔  is the set of neighbors of agent 𝑗 , which payment in the corresponding small time 
scale is 𝑊 , ≜ 𝑊 , 𝑡, 𝑥 ,

∗ , 𝜙 ∗ 𝑡, 𝑥 ∗ , 𝜙 ∗ 𝑡, 𝑥 ∗  . The above transition probability 

equation describes six sub-processes, i.e, 𝜔′  consists of six 
cases: 𝑎, 𝑎 𝜔 , 𝛾 𝜔  , 𝛼 𝜔 , 𝛾 𝜔 ⊕ 𝑗 , 𝑘  , 𝛼 𝜔 , 𝛾 𝜔 ⊕ 𝑗 , 𝑘  , 𝛼 𝜔 , 𝛾 𝜔
𝑗 , 𝑘 , 𝛼 𝜔 , 𝛾 𝜔 ⊕ 𝑗 , 𝑁 1 , and 𝛼 𝜔 , 𝛾 𝜔 𝑁 .  

Thus, the process 𝑌 𝑡  can be described as a time scale 𝜏 , 𝜏  according to the changed 
behavior and topological configuration, respectively. In this respect, the ratio 𝜏 ≜ 𝜏 /𝜏  controls the 
relative speed of topological configuration change relative to the behavior change. 

In essence, all the processes involved should be regarded as different Poisson processes, that is, 
counting processes. As mentioned above, a complex adaptive system with behavior and system 
topological configuration co-evolution model  𝛤 𝐺, 𝐴, 𝜋 ≡ 𝛺, 𝐹, ℙ, 𝑋 ∈ ∈ℝ   consists of the 
following information: agents’ behavior, 𝛼, and the graph topological configuration, 𝑔, that is made 
of the finite-state space  𝛺 𝐴 𝐺 𝐼  , measurement  ℙ: 𝐹 → 0,1   of the state transition probability 
such that the system is measurable for the changing randomly, the Markov renewal process, 𝑌 𝑡 , 
that consists of two parameters of continuous time (𝑡 0) and noise (𝛽 0). Thus, for an arbitrary 
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sequence 0 𝑡 𝑡 . . . 𝑡 𝑡 , the stochastic process 𝑌 𝑡   is controlled by the random 
variable generated by 𝐽 0  and the random variable generated by  𝑛 1, 𝐽 : 𝑖𝑛𝑓 𝑡 𝐽 : 𝑌 𝑡
𝑌 𝐽 , which statistical property can be described via its jump times 𝐽 ∈ℕ  and holding time 
𝑆 ≜ 𝐽 𝐽 . 

4. Major results 

As analyzed above, the distribution of agents’ state is more important to decision-making. In this 
study, the process is defined as the number of jumps 𝐽  . The property of this sample chain 
determines the system property. For an arbitrary graph 𝑔  with behavior configuration 𝑎 ∈ 𝐴  , 

suppose that 𝐽 0  and 𝑋 , , 0 𝑋 , ,  . To specify the phenomenon that the system can be 
transferred from one state to another clearly, several parameters would need to be introduced. For all 

𝑛 1, set 𝐽 ∞. Furthermore, for all 𝜔 ∈ 𝛺 , define 𝜂 , , ≜ ∑ 𝜂 ,
, ,

∈ \ ∈ 0, ∞  as the 

measurement of system leaving the state 𝜔. Thus, for all𝑡 0，the transition probability of the system 
at this state 𝑋 , , 𝑡  can be described as follows: 

ℙ 𝑋 , , 𝜔′, 𝐽 𝐽 𝑡|𝐹 ℙ 𝑋 , , 𝜔′, 𝐽 𝐽 𝑡 𝑋 , , 𝑒𝑥𝑝 𝑡𝜂 , , , ′
, ,

, , . 

Thus, the invariable distribution of agent’s behavior relies on parameters of 𝜂 , ,  and 𝜂 ,
, , . 

Due to the operator 𝜂 ,
, , , a random graph process 𝐺 , , 𝐺 , , 𝑡 , a branch process, can be 

constructed. To specify this process, the event of the link 𝑗 , 𝑘 ′  is generated by a deterministic scalar 

𝔄
′

, 𝑎, 𝜏 : 𝑓 𝑊 sub-process 2 , 𝑎, 𝜏 , 𝑊
′

sub-process 3 , 𝑎, 𝜏 , 𝑊 sub-process 5 , 𝑎, 𝜏  

Moreover, the death case is denoted by another deterministic scalar 

 𝔐
′

, 𝜏 𝑓 ′ 𝑊
′

sub-process 4 , 𝑎, 𝜏 , 𝑊
,
sub-process 6 , 𝑎, 𝜏  

The evolution of these two parameters can be determined via the following two theorems, which 
proofs will be given in the next section. 

Theorem 1. There exist invariable distributions of complex adaptive systems with preferential 

attachment 𝐶 , ,  and volatile mechanism 𝛯
′

, 𝜏  for the inhomogeneous random graphs process 

, ,NG   , if     '
' '

' '

'

1 ( )( ) ( ), , , ,

1

( , ) 1 ( , )
i

j ki ij k j ki i i i

i i i i

i i i

N
N N N N

j k j k
j k j

p p
        



 

  a a a  . 

The interaction probability of the model 𝐺 𝑁, 𝑝
′

, , 𝑎
′

 can be written as 

𝑝
′

, 𝑎, 𝜏
𝔄

′

, 𝑎, 𝜏

𝔄
′

, 𝑎, 𝜏 𝔐
′

, 𝜏
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𝑊 sub-process 2 , 𝑎, 𝜏 𝑊
′

sub-process 3 , 𝑎, 𝜏 𝑊 ,
sub-process 5 , 𝑎, 𝜏

𝑊 sub-process 2 , 𝑎, 𝜏 𝑊
′

sub-process 3 , 𝑎, 𝜏 𝑊
′

sub-process 4 , 𝑎, 𝜏

𝑊 sub-process 5 , 𝑎, 𝜏 𝑊
,
sub-process 6 , 𝑎, 𝜏

 

where𝔄 , 𝑎, 𝜏 : 𝑓 𝑊 sub-process 2 , 𝑎, 𝜏 , 𝑊 sub-process 3 , 𝑎, 𝜏 , 𝑊 sub-process 5 , 𝑎, 𝜏 , and 

𝔐
′

, 𝜏 𝑓′ 𝑊
′

sub-process 4 , 𝑎, 𝜏 , 𝑊
,
sub-process 6 , 𝑎, 𝜏 . 

If an arbitrary cross-section is taken from the strategy space, the link probability on this cross-

section can be determined. So, 𝑝
′

, : 𝑝
′

, 𝑎, 𝑏
, ∈

∈ ℝ , 𝑝 , : 𝑝
′

,

, ′
 

denotes the profile of the interactivity of the agents in the complex adaptive system. Reconsidering the 
behavior coupled with the payoff in the corresponding short time scale, the detailed strategies of the 
system can be determined. Furthermore, whether the invariable distribution can be described as a 
function of the initial state is defined via Theorem 2. 

Theorem 2. The invariable distribution of the Markov process 𝑋 , , 𝑡   is a Gibbs 

measurement 𝜇 , , 𝜔
, ,

∑ , ,∈

, , ,

∑ , , ,∈

 , where, for all 

𝜔 ∈ 𝛺 , 𝐻 , 𝜔, 𝜏 ≜ 𝑉 𝜔, 𝜏 𝛽 𝑙𝑜𝑔 𝜇 , , 𝜔 , and  𝜇 , , 𝜔 ≜ ∏
𝔐, ′

. 

For a better perception of the logical structure and the sequential nature of the proposed 
mathematical derivations, a flowchart providing a visual overview of the progression and 
interrelationships between various analytical steps undertaken in this work is plotted in Figure 1. This 
shows the process development from the initial assumptions and conditions to the conclusion, 
highlighting key decision points and derivation milestones.  
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Figure 1. The proposed derivation process flowchart. 

5. Proofs of Theorems 1 and 2 

The above process can be described via jump times 𝐽  as in [47]. First, suppose that jump 

times comprise a sample chain of set 𝑋 , , 𝐽 𝑋 , ,  , then set 𝐹

𝜎 𝐽 , 𝐽 , . . . , 𝐽 , 𝑋 , , , 𝑋 , , , . . . , 𝑋 , , , 𝑛 0. For an arbitrary graph 𝑔 with behavior configuration 

𝑎 ∈ 𝐴 , suppose that 𝐽 0 and 𝑋 , , 0 𝑋 , , . To specify the phenomenon that the system can be 
transferred from one state to another clearly, several parameters have to be introduced. For all 𝑛 1, 
set 𝐽 ∞; furthermore, for all 𝜔 ∈ 𝛺 , define 

𝜂 , , ≜ ∑ 𝜂 , ′
, ,

′∈ \ ∈ 0,∞                               (23) 

as the measurement of system leaves the state 𝜔. Therefore, for all 𝑡 0， the transition probability 
of the system at this state 𝑋 , , 𝑡  can be described as 
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F 
                 (24) 

where 𝜂 , ,  and 𝜂 , ′
, ,  were defined above. 

As seen from the above, the agent's historical behavior, other behaviors, and the interaction 
between the environment and the system are crucial for choosing a rational strategy and which should 
be grasped by the complex adaptive system. Similarly, the environment in which an agent operates 
comprises the external environment and agent’s behaviors with the payoffs of his/her neighbors. 
Moreover, the history of agent’s behaviors should be considered when selecting a strategy at an 
arbitrary time. Furthermore, the behavior of one agent is affected by his/her neighbors, which means 
that the noises of each agent's behavior are superimposed, resulting in a huge total noise reaching its 
critical value in the process of the system development. Another inhomogeneous environment can 
occur, with a larger or more complex noise exceeding this critical value. Thus, two cases (namely (i) 
growth controlled by sub-processes 2, 3, and 5, and (ii) decay controlled by sub-processes 4 and 6) are 
introduced to describe system evolution. Insofar as these sub-processes are independent, they can be 
superimposed via the addition theorem. 

Using operator 𝜂 ,
, , , a random graph process 𝐺 , , 𝐺 , , 𝑡 , which is a branching 

process, can be constructed. To specify this process, the event of the link 𝑗 , 𝑘  is generated by a 

deterministic scalar 𝔄 , 𝑎, 𝜏 :

𝑓 𝑊 sub-process 2 , 𝑎, 𝜏 , 𝑊 sub-process 3 , 𝑎, 𝜏 , 𝑊 sub-process 5 , 𝑎, 𝜏  , but the death case is 

denoted by another deterministic scalar 𝔐 , 𝜏

𝑓′ 𝑊 sub-process 4 , 𝑎, 𝜏 , 𝑊
,
sub-process 6 , 𝑎, 𝜏 . Obviously, these two scalars express the growth 

and decay mechanisms introduced above. Suppose that 𝑓 𝑥 , 𝑓′ 𝑥   are linear and equal to the 
occurrence probabilities of these six sub-processes. These six sub-processes should be integrated into 
a pure process. Furthermore, because the co-evolutionary process constructed is a branching process, 
i.e., a special Markov process, there must exist an invariable distribution in the process of a complex 
adaptive system development [47]. 

Reconsidering the complex adaptive system, each agent selects one kind of behavior from the six 
sub-processes as a certain probability, which is affected by the behaviors of his/her neighbors. In other 
words, agents in this system are inhomogeneous, can select one behavior randomly, and thus change 
their behavior and their property. Invoking agent property configuration 𝜏 , controlled by the 
configuration of the agent's property, that is𝜏 𝜏 , . . . , 𝜏 , . . . , 𝜏 , . . . , 𝜏 , it can be seen that the 
agent changes his/her property by changing his/her behavior. A random variable, 𝛩 𝜃 , . . . , 𝜃 , is 
introduced to express the fact that an agent changes his/her property randomly. Similarly, the behaviors 
of agents in the system can be denoted by a scalar 𝑎 𝑎 , . . . , 𝑎 , . . . , 𝑎 , . . . , 𝑎 . We call agents 
𝑗 , 𝑗 , 𝑘 , and 𝑘  homogeneous if 𝜏 𝜃 , 𝜏 𝜃  are satisfied. Furthermore, the distribution 
law of these agents’ behaviors can be obtained by the distribution of 𝜏, 𝑎. The corresponding results, 
i.e., Theorem 1, and the proof should be given as follows. 

Definition 3. Scalar 𝐶 , ,   satisfied with exponential distribution is called the preferential 

attachment mechanism of the complex adaptive system if 𝐶 , 𝑎, 𝜏 𝑒𝑥𝑝 𝑣 𝑎 , 𝑎 . 

Definition 4. The admissible volatile mechanism 𝛯 , 𝜏  is half-anonymous, if𝜉 , 𝜏 𝜉 ,  
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when 𝜏 𝜃 , 𝜏 𝜃 is satisfied, for all 𝑁 2, 𝜏 ∈ 𝛩  and all agents 𝑗 , 𝑘 ∈ 𝑁. 
Proof of Theorem 1. For the equilibrium condition considered, the invariable distribution is set to 

the following form, holding for all 𝜔, 𝜔′ ∈ 𝛺 : 

𝜇 , , 𝜔|𝛺 𝜂 , ′
, , 𝜇 , , 𝜔′|𝛺 𝜂 ′,

, ,                          (25) 

Upon normalization, given a constant 𝑍 , , 𝑎 , the above equation has the following unique solution 

𝜇 , , 𝜔|𝛺 𝑍 , , 𝑎
𝔄

′

, 𝑎, 𝜏

𝔐
′

, 𝜏

′

′

 

    𝑍 , , 𝑎 ∏ ∏
sub-process 2 , ,

′

sub-process 3 , , ,
sub-process 5 , ,

′

sub-process 4 , ,
,

sub-process 6 , ,

′

′
     

(26) 

For all 𝑗 1 , 2 , . . . , 𝑁 , 1 , . . . , 𝑁 , . . . , 𝑁 and 𝑘 ′ 𝑗 , define 

𝜒
′

, 𝑎, 𝜏 ≜ 𝑙𝑜𝑔
𝔄

′

, 𝑎, 𝜏

𝔐
′

, 𝜏
 

   log
sub-process 2 , ,

′

sub-process 3 , , ,
sub-process 5 , ,

′

sub-process 4 , ,
,

sub-process 6 , ,
       (27) 

The function on 𝛺  

𝐻 𝜔|𝛺 ∑ ∑ 𝜒
′

, 𝑎, 𝜏 𝛾 𝜔
′

                           (28) 

Substituting the above parameters into (26), the invariable distribution should be written as: 

𝜇 , , 𝜔|𝛺
∑ ′

′∈
                                       (29) 

Setting 𝑝
′

, 𝑎, 𝜏
𝔄

′

, ,

𝔄
′

, , 𝔐
′

, , the denominator of formula (28) can be derived as 
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Furthermore, for all 𝜔 ∈ 𝛺 , we have 
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∑ 𝑒𝑥𝑝 𝐻 𝜔|𝛺′∈ ∑ ∏ ∏ ′

, ,

′

, ,

′

′′∈         

(31) 

Combining (30) and (31), the measurement 𝜔 ∈ 𝛺 can be obtained directly: 

𝜇 , , 𝜔|𝛺 ∏ ∏ 𝑝
′

, 𝑎, 𝜏 ′ 1 𝑝
′

, 𝑎, 𝜏 ′
′

′
        

(32) 
Thus, Theorem 1 is proven: QED. 
Due to the property of the invariable distribution, the following property should be noted: 

𝜇 , , 𝜔|𝛺 𝜂 , ′
, , 𝜇 , , 𝜔′|𝛺 𝜂 ′,

, ,                            (33) 

Using the recursion method, this invariable distribution can be expressed to a form with a certain 
initial. To do this, consider the function 𝛺 f: 

𝐻 𝜔|𝛺 : ∑ ∑ 𝑥
′

, 𝑎, 𝜏 𝛾 𝜔
′

,                              (34) 

where 

𝑥
′

, 𝑎, 𝜏 : 𝑙𝑜𝑔
𝔄

′

, ,

𝔐
′

,                                (35) 

It is concluded that, when the time scale is relatively large, the behavior of an arbitrary agent that 
interacts with others in the system must satisfy the distribution property of an arbitrary state with agents’ 
behavior and agents’ local topological structure in the evolutionary process of the complex adaptive 
system, that is, it could reach the corresponding measurement coupled with the invariable distribution. 
Because the system state consists of agents’ behavior and agents’ local topological configuration, the 
distribution of corresponding optimal strategy coupled with a constant graph topology can be obtained 
by analyzing the invariable distribution of the system’s state, which consists of what the most probable 
strategies of the agent in a certain small time-scale would be and how long these strategies would hold 
in the evolution of the complex adaptive system. 

Note 1. A preferential attachment mechanism makes the complex adaptive system operate. 
Furthermore, the half-anonymous volatile mechanism is separable, which means the system’s 
character can be obtained more easily. Consider the likelihood ratio function: 

,

,

𝔄 , ,

𝔄 , , 𝔐 ,  For all 1 𝑗 , 𝑘 𝐾 and 𝑎, 𝑏 ∈ 𝐴, define scalar 

𝜑
′

, 𝑎, 𝑏 ≜ , /

𝔄
′

, , 𝔐
′

,                             (36) 

and symmetrical matrix 

𝜑
′

, 𝑎, 𝑏 ≜ 𝜑
′

, 𝑎, 𝑏
, ∈

, 𝜑 , ≜ 𝜑
′

,

, ′

                   (37) 

Therefore, when considering an arbitrary agent 𝑗  with strategy 𝑎 and agent 𝑘  with strategy 
𝑏, the probability of interactivity between them can be written as: 

𝑝
′

, 𝑎, 𝑏 ′

, ,

′

, ,
                               (38) 

Equation (38) describes the case that agent 𝑗   acts with agent 𝑘 ′  according to a certain 
probability under some noise. Since parameters a and b are taken arbitrarily, this probability can be 
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characterized on an arbitrary cross-section in strategy space. That is, if an arbitrary cross-section is 
taken from the strategy space, the link probability on this cross-section can be determined. In this 
sense, the following matrix denotes the profile of the interactivity of the agents in the complex 
adaptive system: 

𝑝
′

, ≜ 𝑝
′

, 𝑎, 𝑏
, ∈

∈ ℝ , 𝑝 , ≜ 𝑝
′

,

, ′

                  (39) 

Reconsidering the behavior coupled with the payoff in the corresponding short time scale, the 
detailed strategies of the system can be determined. Furthermore, whether the invariable distribution 
can be described as a function of the initial state can be determined via Theorem 2. However, to prove 
Theorem 2, the following Lemma should be invoked first. 

Lemma 1. The ratio function of Markov process jump 𝑋 , ,  with infinitesimal generator 

has invariable distribution 

𝜇 , , 𝜔 𝑍 , , 2
𝑁

𝑒𝑥𝑝 𝑣 𝛼 𝜔 , 𝛼
′

𝜔 /𝛽

𝔐
′

, ,

′

′

𝑒𝑥𝑝 𝜏 𝛼 𝜔 /𝛽  

where, for arbitrary equilibrium condition, constant 𝑍 , , 𝑎  holds Eq. (33) has a unique solution 
true for all 𝜔, 𝜔′ ∈ 𝛺 , by employing a normalization approach. 

 
Proof of Lemma 1.  For all 𝜔, 𝜔′ ∈ 𝛺  , let 𝜔 𝑎, 𝑔 , 𝜔′ 𝑎, 𝑔 ⊕ 𝑗 , 𝑘  , where ⊕ 

consists of ⊕ and . Thus, we have 

, ′
, ,

′,
, ,

,
′

/

𝔐 ,
′

,                            (40) 

Consider 𝜂 ,
, , /𝜂 ,

, , . Due to the multiplier structure, it can be seen that the factors that appear 

in these two measurements can be eliminated except for factor (40). Considering the two states 𝜔
𝑎, 𝑔 , 𝜔 𝑎′, 𝑎 𝑔 , 𝑎′ ∈ 𝐴, their likelihood ratio can be calculated as follows: 

𝜂 , , 𝜔
𝜂 , , 𝜔′

2 𝑒𝑥𝑝 𝑣 𝛼
′

𝜔 , 𝛼
′′

𝜔 /𝛽

𝑁𝔐
′
,

′′

,

′ ′′

𝑒𝑥𝑝 𝜏
′

𝛼
′

𝜔 /𝛽

2 𝑒𝑥𝑝 𝑣 𝛼
′

𝜔′ , 𝛼
′′

𝜔′ /𝛽

𝑁𝔐
′
,

′′

,

′ ′′
′

𝑒𝑥𝑝 𝜏
′

𝛼
′

𝜔′ /𝛽
′′ ′′

 

∏ ∏

′
,

′′
/

𝔐
′
,

′′

,

′ ′′

′ ′
/

′
′ ,

′′
′ /

𝔐
′
,

′′

,

′ ′′
′

′ ′
′ /

′′ ′
′′

′
                 (41) 

The second term is independent of agent 𝑗  ; therefore, this likelihood ratio is equal to 1. 
Multiplying the first term and considering the symmetry of the payment function, we have: 

, ,

, , ′

∑
′

,
′′′ ′

′ ,
′′

′ ′ , ′
, ,

′,
, ,              (42) 

Thus, Lemma 1 is proven: QED. 
Proof of Theorem 2. As defined, for all 𝑗 , 𝑘 ∈ 𝑁 and𝜔, 𝜔′ ∈ 𝛺 , function 
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Invoking Lemma 1, it is transformed to: 

 

 

 

' '

'

' '

'

, , , , 1 , 1

1

, , 1 1 ,

1

, , 1 1 , ,
0

, , 1

( ) ( ) exp( ( , ) ( ) ( ( ))

( ) exp ( , ) ( ) ( ( )

( ) exp ( , ) log ( )

( ) ex

i i i i i i

i i i

i i i i i i

i i i

N
N N N

j k j k j j
j k j

N
N N

j k j k j j
j k j

N N

N

Z x

Z x

Z V

Z





 

         

       

     

 

 

 

 

 



 

 
  

 
   







   

 

 

  1 ,p ( , )NH     

                (44) 

Thus, Theorem 2 is proven: QED. 
Insofar as 𝜇 , ,

  is controlled by the decay mechanism, 𝔐, from the definition of 𝜇 , , , it can 
be seen that the probability of emergence of invariable distribution is large if the decay is stronger in 
the complex adaptive system; otherwise, the probability is relatively small. Therefore, it is the noise 
of the behaviors of the agents in the system that decides the stability of the complex adaptive system. 
Furthermore, when the property of an arbitrary agent is changed randomly, the invariable distribution 
will become more complex. If some parameters are determined, the certain invariable distribution must 
be a deterministic one. The invariable distribution of the complex adaptive system relies on several 
external parameters: The noise of agent’s behavior, 𝛽, and the population of the agents in the system, 
𝑁 . The following subsections consider what the invariable distribution would be if these two 
parameters tend to their respective limits, that is, 𝛽 → 0 and 𝑁 → ∞. 

6. Discussion 

Since it was concluded that the system’s behavior would satisfy an exponential distribution with 
parameter of 𝜂 , Theorems 1 and 2 specify the parameter 𝜂 . More precisely, 

, where 𝜂 is the measurement of system leaving a 

certain state, which relies on the local topological configuration of interaction relationship between 
agents, strategy configuration. According to Theorem 1, there exists an invariable distribution of 
system behavior𝜇, which relies on variables 𝜔, 𝜏, 𝛽, and 𝑁. Of these, parameters 𝜔 and 𝜏 are the 
most important controllable variables, while 𝛽  and 𝑁 are the scenario variables. If 𝜔  and 𝜏  are 
fixed, the statistical distribution of system’s behavior relies on two parameters: Noise𝛽 and agent’s 
population N of the system. Similarly, if parameters 𝛽 and 𝑁 are fixed, i.e., the scenario is fixed, the 
statistical distribution of a system’s behavior relies on the agent’s behavior strategy and interaction 
configuration. The latter relies on the preferential attachment of a certain agent. 

The ways agents adjust their behaviors and whether the time scale is small or large depends on 
the rules expressed by Equations (1)-(22) and the co-evolution model 𝛤 𝐺, 𝐴, 𝜋 ≡

𝛺, 𝐹, ℙ, 𝑋 ∈ ∈ℝ   defined in sub-section 4.2. Using Theorem 1, the invariable distribution 

depends on the interaction probability 𝑝 ,
,   determined by the payoff obtained in different sub-

processes: 𝜇 , , 𝜔|𝛺 ∏ ∏ 𝑝 , 𝑎, 𝜏 1 𝑝 , 𝑎, 𝜏  . 

   
1

, ,
, ', , , ,

1 , ,
', exp

n

N
N N

J n n N N
X J J t t

 
    

  



 

     F



3247 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 3229–3261. 

Therefore, the property of 𝑝 ,
,  is crucial for the invariable distribution. Insofar as 𝑝 ,

,  is the ratio 

of payoffs coming from creating an interaction relationship, the sub-processes of deleting the old 
interaction should be omitted because deleted agents bring maximum profit losses. Thus, optimal 
strategies of all agents correspond to large values of 𝑝 ,

, ; otherwise, if just partial agents’ strategies 

are optimal, 𝑝 , ′

,  values are relatively small. 

By setting 𝐹 𝑥 1 𝑥 , 0 𝑎 1, it is easy to see that 𝐹 1 𝑥 𝑎 1 𝑥 𝑥
0, so 𝜇 monotonously grows with 𝑝 ,

,  and monotonously decreases with agents’ population 𝑁. 

Thus, this invariable and the noise effect on the system behavior are quite complex. Intuitively, 
the larger the noise β, the more difficult to select the optimal strategy and the best partner to interact 
with. Thus, 𝑝 ,

,  is expected to increase with 𝛽. 

Given the synthesis effect of 𝜔, 𝜏, 𝛽, and 𝑁, the system behavior is hard to predict, yielding 
only approximate solutions. The precise solutions were further derived for the following two limiting 
cases: 𝛽 → 0 and 𝑁 → ∞. First, we formulated and proved the following hypothesis. 

Hypothesis 3. Under two limiting scenarios ( 𝛽 → 0  and 𝑁 → ∞ ), the system behavior 
properties are not equivalent. 

The above two scenarios are discussed in Subsections 6.1 and 6.2, respectively, 

6.1. Analytical Solution of the case of𝛽 → 0 

First, the term stochastic stability should be defined. 
Definition 5. With the limitation of small behavior noise β, the system configuration 𝜔 ∈ 𝛺  is 

stochastically stable, if 𝑙𝑖𝑚
→

𝛽 𝑙𝑜𝑔 𝜇 , , 𝜔 0. 

Lemma 2. Under fixed 𝑁 2  and an arbitrary agent’s property 𝜏 ∈ 𝛩  , we 
get𝑙𝑖𝑚

→
𝑚𝑎𝑥

∈
𝐻 , 𝜔, 𝜏 𝑉 𝜔, 𝜏 0, if and only if 𝑙𝑖𝑚

→
𝑚𝑎𝑥

∈
𝑙𝑜𝑔 𝜇 , , 𝜔 0. 

Proof of Lemma 2. It follows directly from Theorem 2: QED. 
If the co-evolutionary dynamics of agents’ behavior and local topological configuration follows 

an admissible volatile mechanism, then the perturbation of function 𝜇 , ,  of graph must be controlled 
by the potential function when behavior noise is much smaller. The corresponding result is given in 
Theorem 3, which states that the class of these invariable distributions 𝜇 , ,  satisfies the maximum 
deviation principle, so that the invariable distribution will converge to a certain subset space that can 
converge logarithmically to the minimum value of the ratio function, which can be precisely estimated. 

Theorem 3. There exists a ratio function that satisfies 𝑅 𝜔, 𝜏 ≜ 𝑚𝑎𝑥
∈

𝑉 𝜔′, 𝜏 𝑉 𝜔, 𝜏  with 

maximum deviation principle if 𝛯 , ,  is an admissible volatile mechanism, for all 𝜔 ∈ 𝛺 , such that 
the invariable distribution class 𝜇 , ,  satisfies 𝑙𝑖𝑚

→
𝛽 𝑙𝑜𝑔 𝜇 , , 𝜔 𝑅 𝜔, 𝜏 . 

Proof of Theorem 3: According to Theorem 2, for all 𝜔 ∈ 𝛺 , we have 

𝜇 , , 𝜔
, ,

∑ , ′,′∈
                           (45) 

Furthermore, if the volatile mechanism is admissible, it satisfies in particular (SNB). Then, it 
follows from Lemma 2 that this Hamiltonian function at 𝛽 → 0  will converge uniformly to the 
potential function of the game. So, for all 𝜔 ∈ 𝛺 , we get 
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Thus, Theorem 3 is proven: QED 
Notably, two corollaries following from Theorem 3 are given in Appendix 1. 
To get the profile of individual rationality of agents in a complex adaptive system, the following 

definition of equilibrium was introduced. 
Definition 5. The four tuples 𝛺 , 𝜇 , , , 𝑃 ∈ , 𝑠 ∈  are in a relative equilibrium if at 

𝛽 0and𝜌 0, the following inequality holds for all 𝑗 ∈ 𝑁 ⊆ 𝑁, all strategies �̂� , and all𝛽′
𝛽: ∑ 𝜇 ′, , 𝜔 𝑈 𝑠 𝜔 , 𝛾 𝜔 , 𝜏∈ ∑ 𝜇 ′, , 𝜔 𝑈 �̂� 𝜔 , 𝑠 𝜔 , 𝛾 𝜔 , 𝜏∈ 𝜌. 

Theorem 4. For all 𝑗 ∈ 𝑁 ⊆ 𝑁  with strategy 𝑠 𝜔 𝛼 𝜔  , ∀𝜔 ∈ 𝛺  , tuples 

𝛺 , 𝜇 , , , 𝑃 ∈ , 𝑠 ∈  of agent𝑗  comprise a relative equilibrium of 𝛽, 𝜌  
Proof. For all 𝑗 ∈ 𝑁 ⊆ 𝑁 and an arbitrary alternative strategy, �̂� , the deviation payoff of 

agent 𝑗  has a boundary of: 

𝜇 , , 𝑈 �̂� 𝜔 , 𝑠 𝜔 , 𝛾 𝜔 , 𝜏 𝑈 𝑠 𝜔 , 𝛾 𝜔 , 𝜏
∈

 

𝜇 , , 𝜔 𝑉 �̂� 𝜔 , 𝑠 𝜔 , 𝛾 𝜔 , 𝜏 𝑉 𝑠 𝜔 , 𝛾 𝜔 , 𝜏
∈ ∗,

 

𝜇 , , 𝜔 𝑉 �̂� 𝜔 , 𝑠 𝜔 , 𝛾 𝜔 , 𝜏 𝑉 𝑠 𝜔 , 𝛾 𝜔 , 𝜏
∉ ∗,

 

𝜇 , , 𝛺 \𝛺∗, 𝜏 𝐶                 (47) 

where 𝐶 ≜ 𝑚𝑎𝑥
∉ ∗,

𝑉 �̂� 𝜔 , 𝑠 𝜔 , 𝛾 𝜔 , 𝜏 𝑉 𝑠 𝜔 , 𝛾 𝜔 , 𝜏  . The upper boundary can be 

obtained directly from the first term of the second column and the condition of non-positive due to the 
definition of 𝛺∗, 𝜏 . If 𝐶 0, Theorem 4 holds. If 𝐶 0, by invoking the exponential convergence 
of the invariable distribution and Corollary 2, for 𝛽 → 0  and 𝛿 𝛽 → 0  at their respective 

limitations, there exists𝜀 0, such that 𝜇 , , 𝛺 \𝛺∗, 𝜏 𝑒𝑥𝑝 1 𝑜 1 ≜ 𝛿 𝛽  holds. 

Thus, for each 𝜌 0, a small enough 𝛽 can be selected such that the corresponding upper boundary 
is decreased under 𝜌. This proves Theorem 4: QED. 

If the behavior noise is small enough, each agent will use the equilibrium as his/her optimal 
strategy, with a little deviation permitted. In this sense, a deterministic state of the complex adaptive 
system that has evolved (𝜔) should be estimated according to the invariable distribution coupled with 
the optimal strategy and the local topological structure of the agent. 

6.2. Analytical solution of the case of 𝑁 → ∞ 

In this section, a positive noise 𝛽 0 is fixed, and the population of the agents in the complex 
adaptive system should be regarded as a selectable parameter to analyze the specification of the 
invariable distribution of the states. Similar to the analysis process for noise limitation, the preferential 
attachment mechanism is set to a logarithmic formation, that is, to Hypothesis 3, and the volatile 
mechanism is half-anonymous. The invariable distribution 𝜇 , ,  is the most important consideration 
when a complex adaptive system with population 𝜔 ∈ 𝛺  is changed. Thus, when considering the 
interactivity of agents, the focus is on whether the different types of agents would select similar 
strategies and emerge into certain LWs, and the system structure, as the prior distribution 𝜎
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𝜎 , 𝜎 , . . . , 𝜎 , is the key consideration. Selection of strategies in this manner is called the Bayesian 
strategy, where every element of strategy 𝜎  is taken as a certain probability in the behavior set 𝐴, 
and the coordinates of 𝜎  should be denoted by 𝜎 𝑎 , 𝑎 ∈ 𝐴, which should, for all 𝑎 ∈ 𝐴, 1 𝑘
𝐾, occur as the probability: 

𝜎 𝑎 𝜔, 𝜏 ≜ ∑ 1 𝛼 𝜔 1 𝜏                       (48) 

where 1 is a symbolic function. Since 𝜎 can be regarded as a mapping from a certain type space 
𝛩 of agent to a mixing space 𝛥 𝐴  , the corresponding classical Bayesian strategy can be found. 
Denoting 𝛴 ≜ 𝛥 𝐴   as the set of all Bayesian strategies, then for 𝜎, 𝑚 ∈ 𝛴 𝛥𝛩  , the 
measurement set generalized by mapping 𝜎  can be defined as: 

𝜎, 𝑚 ≜ 𝜔, 𝜏 ∈ 𝛺 𝛩 |𝜎 𝜔, 𝜏 𝜎&𝛭 𝜏 𝑚                 (49) 
Invoking the measurement of invariable distribution, 𝜇 , ∈ 𝑀 𝛺 𝛩 , it needs to give the 

most approximate expression for it. When the system population tends to infinity, coupled with set 
𝜎, 𝑚 , then the measurement can be described as: 

𝜇 , 𝜎, 𝑚 ∑ 𝜇 , 𝜔, 𝜏, ∈ , ∑ 𝑃 �̃� 𝜏 ∑ 𝜇 , 𝜔∈ ,∈ ,      (50) 

where 𝜎 , 𝜎 , 𝜏 , and 𝜎 , 𝜎 𝜔 ∈ 𝛺 |𝜎 𝜔, 𝜏 𝜎 . 
Based on the Bayesian strategy definition, all states must stand in the set 𝜎, 𝑚   for all 𝜏 ∈

𝑇 𝑚 , 𝛺 𝜏  . Therefore, one can define an equivalent correlation, ~ ,  , such that 
𝑎, 𝜏 ~ , 𝑎′, 𝜏′  holds if, and only if, 𝜏, 𝜏′ ∈ 𝑇 𝑚  and 𝜎 𝛺 , 𝜏 𝜎 𝛺 , 𝜏′ 𝜎, meaning 

that the pair of agent’s behavior and agent type profile is an equivalent correlation, ~ , , if these 
profiles can generate the same aggregate 𝜎, 𝑚 . Therefore, 𝜎 , 𝜎  defines the 𝑎  behavior 
coalition. Furthermore, the class of 𝜇 , , 𝛺   is the approximate expression to all 𝑎 ∈ 𝐴 . Thus, 
conditional on half-anonymous, it is concluded that this measurement relies only on the ratio of a 
certain type of agent with certain behavior. If considering two or more things out of all possible non-
order permutations, a Bayesian measurement can be obtained with a limited population as follows: 

𝜓 , 𝜎|𝑚 𝐾 , 𝑚 ∏ 𝛱 ∈
!

!
𝑒𝑥𝑝 𝑁𝑚 𝑓 , 𝜎, 𝑚                 (51) 

In this expression, because the factor 𝐾 , 𝑚  is the normalization variable of the probability 
measurement, this probability distribution 𝜓 , |𝑚  must come from the subset of 

𝑠𝑢𝑝 𝜓 , |𝑚 𝛴 𝑚 ≜ 𝜎 ∈ 𝛴|𝑁𝑚 𝜎 𝑎 ∈ ℕ, ∀𝑎 ∈ 𝐴, 1 𝑘 𝐾 ,          (52) 

which is the interior point limited approximately to the polyhedron of the Bayesian strategy 𝛴. 

The function 𝑓 , : 𝛴 𝛥 𝛩 → ℝ describes the payoff of an agent of type 𝑘 obtained from 

interacting with an agent of type 𝑙 𝑘 , considering all possible sub-networks coupled with its 
preferential behavior to the others. Although the result of the case of a limited total population is not 
perfect for objectivity, it can be seen that when the population total tends to infinity, the sequence 

𝑓 ,
 converges, a.s. to the limit function, 

𝑓 , 𝜎, 𝑚 ≜ ⟨𝜎 , 𝜃 ⟩ ∑ 𝜎 , 𝜑 𝜎                         (53) 

where n-dimensional vector 𝜃 𝜃 𝑎 ∈ , identifying probability measurement via Equation (51) 
of type 𝜃 : 𝐴 → ℝ , is the best alternative that satisfies the large deviation principle from class 
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𝜑 , |𝑀  , for which the convergence sequence 𝜎 , 𝑚   of ratio function 

𝑟: 𝛴 𝛥 𝛩  should be calculated. After analyzing, we have: 

𝑙𝑖𝑚
→∞

𝑙𝑜𝑔 𝜓 , 𝜎 |𝑚 𝑟 𝜎, 𝑚                         (54) 

Extending this expression when type 𝑚 is given, and the population of agents is infinity, we can 

obtain that the probability of Bayesian strategy 𝜎 ∈ 𝛴  is equal to the rank of 𝑒𝑥𝑝 𝑟 𝜎, 𝑚  

scaled by logarithm. So, the Bayesian strategy scaled by logarithm with the largest probability must 
be the strategy that satisfies 𝑟 𝜎, 𝑚 0, implying that the problem of probability of distribution 
strategy coupled with local topological structure can be transferred to the problem of identifying the 
potential function of the game. It was proven earlier that the logit function is a precise one; that is, the 
sought function should satisfy the following condition: 

1 𝑘 𝐾 : 𝑓 , 𝜎, 𝑚 : 𝑓 , 𝜎, 𝑚 𝛽ℎ 𝜎  

𝑓 , 𝜎, 𝑚 ≜ ∑ 𝑚 𝑓 , 𝜎, 𝑚                        (55) 

where ℎ 𝑥 ∑ 𝑥 𝑙𝑜𝑔 𝑥  is an entropy with distribution 𝑥 that relies on a growing population of 
agents. The type distribution must change with time. The case of relatively large population will be 
discussed in the next section, implying that 𝑀

 . . 
⎯⎯⎯ 𝑞 at 𝑁 → ∞. 

Assuming that 𝑁 is large enough, the implementation of almost natural assigning of agent’s type 
will lead to the distribution of type being closed to priori probability 𝑞 . We focus on the 
implementation set of type 𝑀 → 𝑞, and on the type distribution that converged into measurement 

class 𝜑 , |𝑀  when measurement 𝑃  is omitted. This leads to Theorem 5. 

Theorem 5. Set 𝑚   is a type distribution sequence converged to priori probability 𝑞. 

The class 𝜑 , |𝑀  generalized with permissive half-anonymous mechanism controlled can 

satisfy, for all 𝜎 ∈ 𝛴, the ratio function 𝑟 𝜎, 𝑞 : 𝑚𝑎𝑥
∈

𝑓 𝜎, 𝑚 𝑓 𝜎′, 𝑚  with large deviation 

principle. For each sequence, class 𝜑 , |𝑀   satisfies: 𝑙𝑖𝑚
→

𝑙𝑜𝑔 𝜓 , 𝜎 |𝑚

𝑟 𝜎, 𝑞 , where 𝜎 ∈ 𝛴 𝑚 , ∀𝑁 𝑁  and . 

Similar to the maximum deviation principle introduced in Theorem 5, the information family is a 
measurement 𝜑 , |𝑀  focused on the logarithmic measurement of the Bayesian strategy, 

and the strategy should be the optimal solution of the following programming: 

𝑚𝑎𝑥
′∈

𝑓 𝜎′, 𝑞                                 (56) 

The solution of the programming is the logit equilibrium solution; that is, it can be obtained 
directly due to the definition of the fixed point condition of the Bayesian strategy. Furthermore, the 
corresponding fixed point condition is: 

𝜎∗ 𝑎
∗,

∑ ∗,∈∈
                       (57) 

where the following equality holds for all 𝑎 ∈ 𝐴 and 1 𝑘 𝐾: 

𝜋 𝜎, 𝑞 ∑ 𝑞 ∑ 𝜑 𝑎, 𝑏 𝜎 𝑏∈ ≡ ∑ 𝑞 𝜑 𝑎, 𝑏 𝜎                  (58) 

To specify this conclusion, Equation (56) can be reduced to the optimal problem with standard 

N  
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constraints. Therefore, the corresponding solution can be resolved by the Lagrange method as follows: 
𝐿 𝑓 𝜎′, 𝑞 ∑ 𝜆 ∑ 𝜎 𝑎∈ 1                               (59) 

The corresponding first-order condition should be necessary and sufficient for the optimal 
solution, implying that there exists a single solution if a positive 𝛽 is large enough. Normally, as far 
as all 1 𝑘 𝐾  and 𝑎, 𝑏 ∈ 𝐴  are considered, the corresponding first-order condition takes the 
following form: 

, , 0                            (60) 

Due to the symmetry of 𝜑 , we have: 

,
0 𝑙 𝑘

𝜃 𝑎 ∑ 𝑞 ′ 𝜑 ′𝜎 ′′ 𝑙 𝑘

𝑞 𝜑 𝜎 𝑙 𝑘
                       (61) 

and: 
, 𝑞 𝜃 𝑎 ∑ 𝑞 ′ 𝜑 ′𝜎 ′′ 𝛽 𝑙𝑜𝑔 𝜎 𝑎 1                      (62) 

Extending the first-order condition to the general case, the following condition should be satisfied: 

   

   
1 1
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log
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q q

 

 
                     (63) 

The other parts can be obtained directly from the constraint condition ∑ 𝜎 𝑎∈ 1. Therefore, 
when the population tends to infinity, the invariable distribution of a complex adaptive system with 
the agent’s behavior and its local topological configuration co-evolution can converge into a certain 
interval with rate function 𝑟 𝜎, 𝑞 , according to Theorem 5. 

7. Conclusions 

In the case of limitation of small noise of behavior, the system's invariable distribution of co-
evolution of agent’s behavior and its local topological configuration must stand in the set of the 
potential function. However, in the case of the limitation of the large population, the invariable 
distribution would converge into a different ratio function. Therefore, a small noise of agent’s behavior 
is not identical to a large population for this co-evolutionary complex adaptive system with agent’s 
behavior and its local topological configuration. 

As mentioned above, the invariable distribution is much more complex. No universal analytical 
solution can be derived if corresponding parameters change gradually and continuously. This problem 
concerns decision-making based on non-structural analysis of the system scenario. When facing this 
complex system, one can select a certain scenario and then adjust the corresponding parameters such 
that the scenario changes dynamically. Finally, if several discrete scenarios are studied, the 
corresponding conclusion would be drawn by induction.  

Although we defined “irrational behavior”, we did not analyze particular irrational behavior 
patterns such as competing (vying) and comparing, the anchoring effect, the loss of real demand caused 
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by free offers, the nullity of money incentives under the dual effects of social norms and market 
regulations, sense and sensibility, and the high price of ownership. We plan to delve deeply into these 
issues in the follow-up study. 
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Appendix 1.  Two corollaries from Theorem 3 

According to Theorem 3, two corollaries were derived as follows. 
Corollary 1. 𝛯 , ,  is an admissible volatile mechanism 

(1) Set 𝛺∗, 𝜏 ≜ 𝜔 ∈ 𝛺 𝑙𝑖𝑚
→

𝛽 𝑙𝑜𝑔 𝜇 , , 𝜔 0   is a stochastic stable state of realizable 

configuration of agent’s type 𝜏 with small noise, which identifies with 𝛺∗, 𝜏 𝑎𝑟𝑔 𝑚𝑎𝑥
∈

𝑉 𝜔, 𝜏  

(2) An invariable distribution is a function with exponential convergence; that is, for arbitrary 
𝜀 0, there exists a subset  𝑋 ⊆ 𝛺  such that 𝑙𝑖𝑚

→
𝛽 𝑙𝑜𝑔 𝜇 , , 𝑋 𝜀 hold. 

Proof.  Just the second section should be proven in Proposition 1. Denote the set of ratio 
functions 𝐿 𝜀 ≜ 𝜔 ∈ 𝛺 |𝑅 𝜔, 𝜏 𝜀   for all 𝜀 0 . These sets are non-empty because there 
always exist 𝛺∗, 𝜏 ⊆ 𝐿 𝜀   such that they are equivalent when 𝜀 → 0 . Then fix a 𝜀 0 , and 
consider set 𝑋 ≜ 𝛺 \𝐿 𝜀 , then 𝑅 𝜏 ≜ 𝑚𝑖𝑛

∈
𝑅 𝜔, 𝜏 0. So, we have 
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                  (A.1) 

Similar to Theorem 3, for some functions 𝐵 , , 𝑟 𝛽 , we have 

∑ 𝜇 , , 𝜔∈ 𝑒𝑥𝑝 𝛽 𝑅 𝜏 𝐵 , 𝑟 𝛽         

(A.2) 
Taking logarithm from two sides, and multiplying by 𝛽, we have 

𝛽 𝑙𝑜𝑔 ∑ 𝜇 , , 𝜔∈ 𝑅 𝜏 𝛽 𝑙𝑜𝑔 𝐵 , 𝛽𝑟 𝛽                       (A.3) 

At 𝛽 → 0, the left side becomes 𝑅 𝜏 1 𝑜 1 . Corollary 1 is proven: QED. 
Theorem 3 indicates that, under small noise, for each type of configuration, the invariable 

distribution centralizes the set of maximum potential functions. Similarly, Corollary 1 expresses the 
corresponding stochastic stable state must be the maximum one among the potential functions. 
Furthermore, measurement  𝜇 , ,  class gives an arbitrary weight for the deterministic subset of 

state space, which makes the agent select the optimal strategy. 
In the dynamical game model of the complex adaptive system, suppose that an agent always 

implements his/her optimal strategy when it acts with others, and it does so in a rational manner. A 
notation is needed to express this kind of equilibrium. Thus, the Aumann correlative equilibrium, a 
fitness order parameter, is introduced. The Aumann correlative equilibrium regards state space 𝛺 as 
the set of states that could potentially appear and 𝜇 , ,  is simplified to 𝜇. The information of 𝑗  is 
denoted to 𝑃  , decided by set 𝑃 𝜃 ≜ 𝜔 ∈ 𝛺 𝛼 𝜔 𝑎  , 𝑎 ∈ 𝐴 . The strategy of agent  𝑗   is 
mapping 𝑠 : 𝛺 → 𝐴, a measurable function of information 𝑃 . That is, whatever the states 𝜔, 𝜔′ ∈
𝑃 𝛼 , we have  𝑠 𝑠 𝜔′ 𝑎, and the profile of the strategies is denoted by  𝑆 𝑠 ∈ ⊆ . If this 
co-evolutionary complex adaptive system converges into a certain dynamical equilibrium state, then 
these agents’ type configurations must be 𝜏 , . . . 𝜏 , 𝜏 , . . . , 𝜏  and the information configuration 
must be 𝛺 , 𝜇, 𝑃  . Supposing that each agent uses strategy 𝑠 𝜔 𝛼 𝜔 , ∀𝜔 ∈ 𝛺  , then an 
interesting question arises: would agent 𝑗   use this strategy when it acts with its neighbors as the 
system evolves? 
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Because the measurement 𝜇 is effective if, and only if, noise is positive, all states of the system 
would appear as a positive probability. However, not all strategies coupled with the measurement 
functions about  𝑃  are good. Invoking Theorem 3, the exact state of the system that would occur as a 
maximum non-zero probability in the system can be known. This kind of Nash equilibrium means that 
the behavior of agents is very complex. 

Corollary 2. Set 𝜏 ∈ 𝛩   is an arbitrary type profile. For all 𝑗 ∈ 𝑁 ⊆ 𝑁 , when considering 
strategy 𝑠 𝜔 𝛼 𝜔 , ∀𝜔 ∈ 𝛺 , the profile 𝑠 is the Nash equilibrium behavior of a state, with all 
states 𝜔 ∈ 𝛺∗, 𝜏 . 

Proof  The measurement 𝑃  maps  𝑠 . Thus, 𝑠  that describes the strategy selected by an agent. 
Fixing an arbitrary agent 𝑗 ∈ 𝑁 ⊆ 𝑁  and setting �̂�  as an arbitrary strategy that is not optimal, we 
also fix 𝜔 ∈ 𝛺 𝜏 . The deviation payoff of the agent 𝑗   will be 

 𝑈 𝑠 𝜔 , 𝛾 𝜔 , 𝜏 𝑈 �̂� 𝜔 , 𝑠 𝜔 , 𝛾 𝜔 , 𝜏  

           𝑉 𝑠 𝜔 , 𝛾 𝜔 , τ 𝑉 �̂� 𝜔 , 𝑠 𝜔 , 𝛾 𝜔 , 𝜏                      (A.4) 
This payoff is non-negative 𝛺∗, 𝜏 . Therefore, Corollary 2 is proven to hold: QED. 

Appendix 2. Proof of Theorem 5 

Proof. The proof is complex, first requiring some parameters to be defined and some Lemmas to 
be invoked. 

The first thing is to obtain the martingale distribution on 𝐴  for arbitrary type profile 𝜏 ∈ 𝛺  
such that the distribution of Bayesian strategy relying on  𝑇 𝑚 , 𝑚 ∈ 𝐿 , on this set is given to analyze 
the probability that this type of agent stands in this type class. To analyze the phenomenon of aggregate, 
we sectionalize agents in the complex adaptive system according to the agent’s behavior and its type, 
making the same kind of agents stand in the same subset. Now, for all  1 𝑘 𝐾 and 𝑎 ∈ 𝐴, define 
set 

𝐼 𝑎 𝜔 ≜ 𝑗 ∈ 𝑁 𝛼 𝜔 𝑎&𝜏 𝜃                             (A.5) 

Obviously, for an arbitrary type profile 𝜏 ∈ 𝛩 , the class of set  𝐼 𝑎 ∈  is segmentation on 
𝑁 . Under half-anonymous mechanism controlled, measurement of random complex networks would 

regard the edge between agent 𝐼 𝑎   and  𝑗 ∈ 𝐼 𝑎   as an i.i.d. random variable. Thus, a random 
variable satisfying binomial distribution with parameter of  𝑃 𝑎, 𝑏  is defined as: 

𝐸 , 𝑎, 𝑏 𝜔 ≜ ∑ 𝛾 ′ ′ 𝑏, ′ ∈ ∪         

(A.6) 
Given one type profile 𝜏  and a 𝛺   on 𝑎  cross-section and denoting 𝐸 , 𝑎, 𝑏   for the 

maximum quantities of edges between agents with behavior 𝑎 and type 𝑘 and agents with behavior 
𝑏 and type 𝑙, and 𝑒  for the implementation of a random variable 𝐸 , 𝑎, 𝑏 , several lemmas are 
necessary. They are introduced as follows. 

Lemma 3. Consider a given type profile 𝜏 ∈ 𝑇 𝑚  and a half-anonymous volatile mechanism 
𝔐 , , : 

(1) The stable expression of 𝑎 game, on 𝑎 cross-section 𝛺 , should be 
𝜎 𝑎 𝜎 𝑎 𝜔, 𝜏 , ∀𝜔 ∈ 𝛺  where 𝜎: 𝜎 𝑎 ; 1 𝑘 𝐾, 𝑎 ∈ 𝐴 ∈ ∑ 𝑚  

(2) We have 𝜇 , , 𝛺 ∝ ∏ ∏ 𝛷 𝜎, 𝛽, 𝑁 𝑙  where, for all types of 1 𝑘 𝐾, 
and behavior of 1 𝑎 𝑛 , 𝛷  satisfies 𝛷 𝜎, 𝛽, 𝑁 ≜ ∏ 𝛷 𝜎, 𝛽, 𝑁   ,  𝛷 𝜎, 𝛽, 𝑁 ≜

𝑒𝑥𝑝 ∏ 1 𝜑 , 𝑎, 𝑏
,

, ,  𝛷 𝜎, 𝛽, 𝑁 ≜ ∏ 1 𝜑 , 𝑎, 𝑏  

Proof:  Set the modulus of 𝑎  game of type 𝜃   as 𝑧 𝑎 𝑁𝑚 𝜎 𝑎  . Therefore, (1) is 
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proven. 
To prove (2), the following process should be introduced: 
For all 𝜔 ∈ 𝛺 , defining 𝜌 𝜔, 𝜏 : 𝜇 𝜔 𝑒𝑥𝑝 𝑉 𝜔, 𝜏 /𝛽 , and invoking function 𝑥 ′ ′ | of 

Equation (A.6), this mapping should be changed to: 
𝜌 𝜔, 𝜏 ∏ ∏ 𝑒𝑥𝑝 𝑥 ′ ′ 𝜔, 𝜏 𝛾 ′ ′ 𝜔 𝑒𝑥𝑝 𝜏 𝛼 𝜔 /𝛽′ ′         

(A.7) 
Therefore, for all 𝜔 ∈ 𝛺  , 1 𝑘 𝐾  and 𝑎 ∈ 𝐴 , we have 𝐼 𝑎, 𝜔 𝐼 𝑎  . Furthermore, 

for all agents with 𝑗 ∈ 𝐼 𝑎 , 𝑗 ′ ∈ 𝐼 𝑏 , we can observe that: 

𝑥 ′ ′ 𝜔, 𝜏 ≡ 𝑥 𝜔, 𝜏 ≜ 𝑣 𝑎, 𝑏 𝑙𝑜𝑔                   (A.8) 

Then, Equation (A.7) can be reduced to 
,

,
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                (A.9) 

The latter equation just relies on the system’s state and the number of edges in networks, 𝜔. Then, 
we calculate this expression for all states 𝜔 ∈ 𝛺 , which needs integration for all possible states. The 
process can be described in detail as follows: 

Initialization: set 𝑘 1, 𝑎 1;  
First cycle: considering the special situation 𝑙 𝑘 , integrate all possible edges 𝑒 𝑎, 𝑏   on 

𝑏 𝑎—if 𝑏 𝑛, set 𝑙 𝑙 1, then go to next cycle; 
Second cycle: integrate all possible edges 𝑒 𝑎, 𝑏  with all 𝑏 ∈ 𝐴—if 𝑙 𝐾 1, set 𝑙 → 𝑙

1, and replace this process; otherwise, go to the third cycle; 
Third cycle: if 𝑎 𝑛 1 and 𝑘 𝐾 1, then, for the same 𝑘 and 𝑎 → 𝑎 1, go to the first 

cycle; if 𝑎 𝑛 and 𝑘 𝐾 1, then go to the first cycle for 𝑘 → 𝑘 1 and 𝑎 → 1; if 𝑎 𝑛 and 
𝑘 𝐾, stop calculation. 

All possible links between agents with behaviors of 𝐼 1  are integrated within the first cycle. 

Note that the only factor affecting the calculation result must be 𝑒𝑥𝑝 𝑥 1,1
, , , 𝜔 ∈ 𝛺 . 

Therefore, the convolution term will not be affected by the universal term 𝐵 , in this sense, 𝜌 𝜔, 𝜏

𝐵 𝑒𝑥𝑝 𝑥 1,1
, ,  . Furthermore, because the respective behaviors of agents are 

𝐸 , 1,1 𝑒 1,1 , then for an arbitrary agent in this complex adaptive system, there exist several 
agents that he/she can interact with, and the combined identical equations representing multiple 
possible games must be considered, which may require adjusting the results of the first cycle as follows: 

𝐵 𝐸 , 1,1
𝑒 1,1

,

,

𝑒𝑥𝑝 𝑥 1,1
, , 𝐵 1 𝑒𝑥𝑝 𝑥 1,1

, ,  

                                  B 1 𝜑 , 1,1           (A.10) 

The algorithm of the next cycle is to calculate all links between agents with respective behaviors 
of 𝐼 1  and 𝐼 2 . The relative factors of the universal term 𝐵  must be extracted. Therefore, we 
provide the integration of the whole above process as follows: 

𝐵 1 𝜑 , 1,1 1 𝜑 , 1,2                  (A.11) 

Repeating this algorithm, we obtain the corresponding function of the nth step: 

𝛷 𝜎, 𝛽, 𝑁 𝑒𝑥𝑝 ∏ 1 𝜑 , 1, 𝑏
,

,         
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(A.12) 
Recall 𝑧 𝑎 𝑁𝑚 𝜎 𝑎  ; therefore, the function 𝛷 𝜎, 𝛽, 𝑁   holds, and the result of 

Lemma 2 can be obtained by calculating the remaining steps as the recurrence relation. Thus, Lemma 
2 is proven: QED. 

The invariable distribution on an 𝑎 cross-section is given in Lemma 2. It can be seen from its 
proof that not only the behavior profile but also the Bayesian strategies control the invariable 
distribution. 

Lemma 4. If 𝜏, 𝜏′ ∈ 𝑇 𝑚  and 𝜎 𝛺 , 𝜏 𝜎 𝛺 , 𝜏′ , then𝜇 , , 𝛺 /𝜇 , ′, 𝛺 ′ 1 
Proof  Denoting 𝜎  as the co-strategies on the subsets respective to 𝛺   and 𝛺  , it follows 

from Equation (A.9) that, for arbitrary 𝜔 ∈ 𝛺  and 𝜔′ ∈ 𝛺 ′, we have: 
𝜌 𝜔, 𝜏 𝜌 , 𝜔 , 𝜌 𝜔′, 𝜏′ 𝜌 , 𝜔′                         (A.13) 

Lemma 4 can be proven if we can show that 
∑ 𝜌 , 𝜔∈ ∑ 𝜌 , 𝜔′′∈ ′

                            (A.14) 

It can be deduced from the proof of Lemma 3 that this operator was driven by the algorithm. The 
random complex networks produced in 𝛺  and the ones produced in 𝛺 ′ were isomorphic graphs, 
so Equation (A.14) holds and Lemma 4 is proven: QED. 

Lemma 5. The conditional probability distribution of Bayesian strategy of the set 𝛴 on type 

class 𝑇 𝑚  , for all 1 𝑘 𝐾 , must be 𝜓 , 𝜎|𝑚 𝐾 , 𝑚 ∏ 𝜐 , 𝜎|𝑚  , 

where 𝜐 , 𝜎|𝑚 ≜ !

∏ !∈
∏ 𝛷 𝜎, 𝛽, 𝑁  . The support of this probability 

distribution supp 𝜓 , |𝑚 𝛴 𝑚 𝜎 ∈ 𝛴|𝑁𝑚 𝜎 𝑎 ∈ ℕ, ∀𝑎 ∈ 𝐴, 1 𝑘 𝐾   is an 
interior point limited approximately to the polyhedron of Bayesian strategy 𝛴. 

Proof. If 𝑎′, 𝜏′  transfers into 𝑎, 𝜏  after labeling agents in the complex adaptive system, then 
𝜇 , , 𝛺 𝜇 , , 𝛺  via Lemma 4. Furthermore, if the Bayesian strategies are used universally 
by agents with 𝜏 ∈ 𝑇 𝑚   on 𝛺  , then there must be 𝑁𝑚   agents of type 𝜃   and 𝑁𝑚 𝜎 𝑎  
classes with the behavior of 𝑎 ∈ 𝐴, in sub-generation of 1 𝑘 𝐾, such as !

∏ !∈
, which is 

similar to the result of profile 𝜏 ∈ 𝑇 𝑚  of all types. Therefore, Lemma 5 is proven: QED. 
There is the closest form of compact compression for the invariable distribution of Bayesian 

strategy, meaning that the measurement coupled with the agents’ population is large enough to study 
this complex adaptive system. Therefore, we introduce the following function 

1 𝑘 𝐾 : 𝑓 , 𝜎, 𝑚 ≜ 𝜎 𝑎 𝑙𝑜𝑔 𝛷 𝜎, 𝛽, 𝑁
∈

 

                    𝑓 , 𝜎, 𝑚 ≜ ∑ 𝑚 𝑓 , 𝜎, 𝑚                        (A.15) 
According to these mappings, the conditional probability in Lemma 5 takes the following form: 

𝜓 , 𝜎|𝑚 𝐾 , 𝑚 ∏ !

∏ !∈
𝑒𝑥𝑝 𝑁𝑚 𝑓 , 𝜎, 𝑚               (A.16) 

The evolution law of the agent’s strategy, when the population is large enough, relies strongly on 

the convergence property of function 𝑓 , . For 𝑚 ∈ 𝐿 , we propose that set 𝛴 𝑚 𝐿  

approximates the convergence continuous space 𝛴 𝛥 𝛩   at 𝑁 → ∞ . This yields the following 
Lemma. 

Lemma 6. For each arbitrary Bayesian strategy 𝜎 ∈ 𝛴 and type distribution 𝑚 ∈ 𝑖𝑛𝑡 𝛥 𝛩 , 
there exists a sequence 𝜎 , 𝑚    with 𝜎 ∈ 𝛴 𝑚   and 𝑚 ∈ 𝐿  , for all 𝑁 𝑁  , 
such that 𝜎 , 𝑚 → 𝜎, 𝑚  holds at𝑁 → ∞. 

Proof:  Let us prove this lemma in two steps. First, we try to find a sequence 𝑚 ∈ 𝐿  such 
that the total variable distance is converged into 𝑚  at 𝑁 → ∞ . Then, we construct the Bayesian 
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strategy sequence using sequence 𝑚 ∈ 𝐿 . 
In the first step, we define the total variable distance between two distributions 𝑥, 𝑦 ∈ 𝛥 𝛩  in 

𝛥 𝛩  as follows: 
‖𝑥 𝑦‖ , ≜ ∑ |𝑥 𝑦 |                             (A.17) 

It is known that 𝑚 ∈ 0, , . . . ,  if 𝑚 ∈ 𝐿 . Therefore, if 𝑚 ∈ 𝛥 𝛩 , then for each 1

𝑘 𝐾, there exists such𝑚 ∈ 0, , . . . ,  that |𝑚 𝑚 |  holds. Thus, for each 𝑁, a vector 

𝑚  must be found such that ‖𝑚 𝑚‖ , . Thus, for a small enough 𝛿 0, set 𝑁 𝑚 ≜

𝑦 ∈ 𝛥 𝛩 ‖𝑦 𝑚‖ , 𝛿  is an open ball that surrounds 𝑚 and consists of all 𝑚  with 𝑁
𝑁 𝛿 , where 𝑁 𝛿  is an appropriate integer. Therefore, 𝑚 → 𝑚 a.s. in the total change distance. 

In the second step, given the identifiable prior distribution sequence 𝑚 , for all 𝑁 𝑁 , 
set 𝜎 ∈ 𝛴 𝑚 , we can measure their distance due to maximum norm on space 𝛴. That is, for all 
𝜎, 𝜎′ ∈ 𝛴, we have: 

‖𝜎 𝜎′‖ , ≜ 𝑚𝑎𝑥 𝜎 𝜎 ′                        (A.18) 

As specified in the first step, as for all 1 𝑘 𝐾, there is a boundary of distance between the 
𝜎 and 𝜎′, which is: 

‖𝜎 𝜎 ‖                            (A.19) 

Then, for all large enough values of𝑁, we have: 
‖𝜎 𝜎 ‖ , 𝑚𝑎𝑥                         (A.20) 

Because 𝑚 → 𝑚 ∈ 𝑖𝑛𝑡 𝛥 𝛩 , for large enough 𝑁 and all 1 𝑘 𝐾, there exists such 𝜀
0 that 𝑚 𝜀 0 holds. For small enough 𝛿 0, the neighbor 𝑁 𝜎  mentioned in the first 
step must be found, and it is observed that 𝜎 ∈ 𝑁 𝜎  for 𝑁 𝑁 𝛿 . Thus, Lemma 6 is proven:  
QED. 

The above reasoning proved the existence of an approximate pair 𝜎, 𝑚 ∈ 𝛴 𝛥 𝛩  that can 
be obtained from a discrete sequence as 𝜎 , 𝑚  converges, which can be measured directly in this 
limited process. 

Lemma 7. For all 1 𝑘 𝐾 coupled with sequence 𝜎 , 𝑚  having limit 𝜎, 𝑚 ∈

𝛴 𝛥 𝛩  , where 𝜎 ∈ 𝛴 𝑚 , 𝑚 ∈ 𝐿  , we have 𝑙𝑖𝑚
→

𝑓 , 𝜎 , 𝑚 𝑓 𝜎, 𝑚   where 

𝑓 : 𝛴 𝛥 𝛩 → ℝ is a continuous function. That is,𝑓 𝜎, 𝑚 ≜ ⟨𝜎 , 𝑚 ⟩ ∑ 𝜎 , 𝜑 𝜎  

Proof.  The asymptotical behavior of function 𝛷 , which is the large-component behavior 

with deterministic quantity 𝜑 ,
, 𝑎, 𝑏 , /

 , should be quantified. Thus, for all 1

𝑘, 𝑙 𝐾 and 𝑎, 𝑏 ∈ 𝐴, we have: 

𝑙𝑖𝑚
→∞

𝜑 ,
, 𝑎, 𝑏 0, 𝑙𝑖𝑚

→∞
𝜑 ,

, 𝑎, 𝑏 , /
                  (A.21) 

This implies that the first-order approximate 𝑙𝑜𝑔 1
, , , ,

𝑂 𝑁 𝛽  

properly describes the asymptotical behavior with large enough 𝑁. Furthermore, for all 𝑎 ∈ 𝐴 and 
1 𝑘 𝑙 𝐾, we find that: 

𝑙𝑜𝑔 𝛷 𝜎 , 𝛽, 𝑁 𝜃 𝑎
𝑁𝑚 𝜎 𝑏 𝛿 ,

1 𝛿 ,
𝑙𝑜𝑔 1

𝜑 , 𝑎, 𝑏
𝑁𝛽

 

     𝜃 𝑎 𝑚 𝜎 𝑏 𝜑 , 𝑎, 𝑎 ∑ 𝑚 𝜎 𝑏 𝜑 , 𝑎, 𝑏 𝑂         (A.22) 
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and: 

𝑙𝑜𝑔 𝛷 𝜎 , 𝛽, 𝑁 𝑚 ∑ 𝜎 𝑏 𝜑 , 𝑎, 𝑏∈ 𝑂               (A.23) 

Therefore, for all 1 𝑘 𝑙 𝐾, we have: 
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              (A.24) 

Furthermore, a function defined in 𝑓 , 𝜎 , 𝑚   must have its limitations at𝑁 → ∞ . Thus, 
Lemma 7 is proven: QED. 

Corollary 3. Function 𝑓 ,  converges, a.s., to limit function 𝑓 . 

Proof:  It directly follows from Lemmas 6 and 7: QED. 
As far as the processes obtained are concerned, all states can be determined via a generalized type 

sequence, whose distribution follows the common law 𝑞 with the property of i.i.d.. Therefore, we 
have: 

Lemma 8. At𝑁 → ∞, we get𝑀
 . . 

⎯⎯⎯ 𝑞. 

Proof. Let matrix ∀𝑚, 𝑞 ∈ 𝛥 𝛩 ||𝑚 𝑞|| ≜ ∑ |𝑚 𝑞 | be the total variable distance 

on 𝛥 𝛩 . Recall the common rule of 𝑞 ∈ 𝑖𝑛𝑡 𝛥 𝛩  with type �̃�  and consider the countable class 

of open set 𝐵 ,  , where 𝜀 0, 𝐵 , ≜ 𝑚 ∈ 𝛥 𝛩 |‖𝑚 𝑞‖ 𝜀  . This rule can be distributed 
among these sets according to the prior process 𝑀 : 

𝑃 𝐵 , 𝑃 𝜏 𝑀 𝜏 ∈ 𝐵 ,                         (A.25) 
By invoking Sanov’s theorem, we obtain: 

 𝑙𝑖𝑚
→∞

𝑙𝑜𝑔 𝑃 𝐵 , 𝑖𝑛𝑓
∈ ,

ℎ 𝑚|𝑞                        (A.26) 

where ℎ 𝑚|𝑞 ≜ ∑ 𝑚 𝑙𝑜𝑔  is a relative entropy. Using the Jensen inequality, ℎ |𝑞 0 and 

the equation holds if • 𝑞. Because 𝑞 ∈ 𝐵 ,  holds for all 𝜀 0, for each 𝜀, there always exists a 
constant 𝑐 ∈ 0, ∞  such that �̂� 𝐵 , 𝑒 . Thus, set 𝐵 ,  can be reduced to a case with a 
prior type distributing event. Then, we can construct the event with a set as follows: 

𝐴 𝜀 ≜ 𝜏 𝑀 𝜏 ∈ 𝐵 , 𝜏|‖𝑀 𝜏 𝑞‖ 𝜀                   (A.27) 
It can be seen that this is a case of 𝑃  probability (�̂� 𝐵 , ). Using Equation (A.21), we get: 

∑ 𝑃 𝐴 𝜀 ∑ 𝑃 𝐵 , ∑ 𝑒 ∞                  (A.28) 
By invoking the first Borel–Cantelli Lemma, we have, for all 𝜀 ∈ ℚ  , 

𝑃 𝑙𝑖𝑚𝑠𝑢𝑝 → 𝐴 𝜀 0 , which will converge to the prior process 𝑀 𝜏  . Therefore, 

Lemma 8 is proven: QED. 
The preferential attachment used in this study is a logit function describing the property of 

𝜑 , 𝑀  with the maximum deviation measurement. This yields: 

1 𝑘 𝐾 : 𝑓 , 𝜎, 𝑚 ≜ 𝑓 , 𝜎, 𝑚 𝛽ℎ 𝜎  

                    𝑓 , 𝜎, 𝑚 ≜ ∑ 𝑚 𝑓 , 𝜎, 𝑚                    (A.29) 
Theorem 5 can be proven as follows. According to Lemma 8, we take a sequence with probability 

1 𝑛 converged to 𝑞, and denote the agent’s Bayesian strategy among all types with agent’s 
behavior 1 to 𝑒 𝑒 1 , ⋯ , 𝑒 1  . That is, for each 1 𝑘 𝐾 , parameter 𝑒 1   can be 
regarded as the unit vector ℝ  with zero value contributed from the first term and unity values from 
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the other 𝑛 1 terms. Thus, for all𝑁we have 𝑒 1 ∈ 𝛴 𝑚 . Therefore, for all 𝜎 ∈ 𝛴 𝑚  the 
following equation holds: 

, |
, |

∏ !

∏ !∈
𝑒𝑥𝑝 𝑁𝑚 𝑓 , 𝜎 , 𝑚 𝑓 , 𝑒 , 𝑚         

(A.30) 
Taking the logarithm of both sides and multiplying by𝛽/𝑁, we get: 
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                (A.31) 

Taking the limitation of the combination term and considering the Stirling formula 𝑛! ≅
√2𝜋𝑛 𝑛/𝑒 , we obtain: 

𝑙𝑜𝑔 !

∏ !∈
𝑚 ℎ 𝜎 𝑂 1/𝑁                  (A.32) 

Invoking Lemma 8, we deduce that 𝜎 , 𝑚  converges coupled with 𝑓 , 𝜎 , 𝑚 →
𝑓 𝜎, 𝑞 . 

𝑙𝑖𝑚
→∞

, |
, |

𝑓 𝜎, 𝑞 𝑓 𝑒 , 𝑞                      (A.33) 

where 𝑓 |  is the preferential attachment mechanism, i.e., 𝑓 |  is a logit function. Next, set 
𝜎∗  as a function with the following maximum value: 

𝑓 , 𝜎 , 𝑚 ≜ ∑ 𝑚 𝑓 , 𝜎 , 𝑚 𝛽ℎ 𝜎 , 𝜎 ∈ 𝛴 𝑚           (A.34) 

Based on the uniform convergent principle, at𝑁 → ∞, we get 𝑓 , 𝜎∗ , 𝑚 → 𝑓 𝜎∗, 𝑞 , and 
the limitation point is the maximum value of 𝑓 |𝑞 . That is, 

𝑙𝑖𝑚
→∞

𝑙𝑜𝑔 𝜓 , 𝜎∗ |𝑚 0                             (A.35) 

Considering Equation (A.30), we have, for all 𝜎 → 𝜎 ∈ 𝛴: 
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              (A.36) 

Thus, Theorem 5 is proven: QED. 
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