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Abstract: A leading crisis in the United States is the opioid use disorder (OUD) epidemic. Opi-
oid overdose deaths have been increasing, with over 100,000 deaths due to overdose from April 2020
to April 2021. This paper presents a mathematical model to address illicit OUD (IOUD), initiation,
casual use, treatment, relapse, recovery, and opioid overdose deaths within an epidemiological frame-
work. Within this model, individuals remain in the recovery class unless they relapse back to use and
due to the limited availability of specialty treatment facilities for individuals with OUD, a saturation
treatment function was incorporated. Additionally, a casual user class and its corresponding specialty
treatment class were incorporated. We use both heroin and all-illicit opioids datasets to find parameter
estimates for our models. Bistability of equilibrium solutions was found for realistic parameter values
for the heroin-only dataset. This result implies that it would be beneficial to increase the availability
of treatment. An alarming effect was discovered about the high overdose death rate: by 2046, the
disorder-free equilibrium would be the only stable equilibrium. This consequence is concerning be-
cause it means the epidemic would end due to high overdose death rates. The IOUD model with a
casual user class, its sensitivity results, and the comparison of parameters for both datasets, showed
the importance of not overlooking the influence that casual users have in driving the all-illicit opioid
epidemic. Casual users stay in the casual user class longer and are not going to treatment as quickly as
the users of the heroin epidemic. Another result was that the users of the all-illicit opioids were going
to the recovered class by means other than specialty treatment. However, the change in the relapse
rate has more of an influence for those individuals than in the heroin-only epidemic. The results above
from analyzing this model may inform health and policy officials, leading to more effective treatment
options and prevention efforts.
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Table 1. Table of acronyms.

Acronym Its Expansion
APA American Psychological Association
CDC Centers for Disease Control and Prevention
DFE Disorder-Free Equilibrium
DSM-IV Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
EE Endemic Equilibrium
HUD Heroin Use Disorder
IOUD Illicit Opioid Use Disorder
LHS Latin Hypercube Sampling
NIH National Institutes of Health
NSDUH National Survey on Drug Use and Health
OUD Opioid Use Disorder
PRCC Partial Rank Correlation Coefficient
SAMSHA Substance Abuse and Mental Health Services Administration
SUD Substance Use Disorder

1. Introduction

Opioid use disorder (OUD) is a monumental health concern in the United States and considered to
be an epidemic, claiming over 100,000 lives due to overdose deaths from April 2020 to April 2021,
according to the Centers for Disease Control and Prevention (CDC) [1]. Data collected by the Sub-
stance Abuse and Mental Health Services Administration (SAMSHA) showed that in 2020, opioids
were misused by 9.5 million people (Substance Abuse and Mental Health Services Administration
(2021)). Yet OUD is a constantly changing phenomenon that is in great need of not only improved
treatment approaches, but also more refined tracking and prediction of opioid usage trends across dis-
tinct populations.

As a point of emphasis, several “waves” of the opioid surge in opioid abuse and opioid-related
deaths have been observed over the past 30 years. This was first noted as an overprescription and
overmarketing of opioid pain relievers by medical professionals and pharmaceutical industries. This
led to implementation of a number of restrictions on opioid prescriptions, resulting in opioid-dependent
individuals resorting to the use of less expensive and more easily accessible heroin. In more recent
years, drug markets have been infiltrated by illicitly manufactured fentanyl, an extremely potent and
potentially fatal opioid, into the drug supply. Currently, the opioid epidemic has been confounded
by an increase in the concurrent use of psychostimulants such as cocaine and methamphetamine to
counteract the highly sedating effects of opioids, as well as co-abuse of alcohol and benzodiazepines
such as alprazolam (Xanax) to lessen the symptoms of opioid withdrawal [2].

1.1. Brain science and addiction

The term “opioids” refers to all chemicals that act on opioid receptors, which are proteins in the
brain and body that are selectively activated by these molecules. Various subcategories of opioids
include naturally occurring morphine, codeine and thebaine that is found in the opium poppy plant Pa-
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paver somniferum, semisynthetic opioids such as heroin, and fully synthetic opioids such as fentanyl
and oxycodone. In addition to these exogenous opioids, throughout the body is a complex endogenous
opioid system that utilizes natural peptide messengers such as endorphins to activate opioid receptors.
The primary subtypes of opioid receptors are mu, delta and kappa opioid receptors (MOR, DOR and
KOR, respectively; also referred to as µ, δ, and κ receptors), as well as opioid receptor like-1 (ORL1),
which binds the endogenous opioid peptide nociceptin. Abused opioids act primarily, but not exclu-
sively, at µ opioid receptors as agonists, activating the receptor to produce specific responses in the cells
on which they reside (i.e., neurons, immune cells). Remedies for opioid overdose such as naloxone
(Narcan) act by competitively blocking the binding of opioids to their receptors.

Addiction to opioids and other drugs of abuse are considered chronic relapsing conditions, and more
recently have been described as diseases of the brain [3]. A disease can be defined as a circumstance
that impairs the normal operations of a living organism or one of its components, and evidenced by
specific characteristics and symptoms. The disease theory of addiction challenges prior notions that
addiction is a moral failure or weakness of character, and has helped decrease the stigmatization of
addiction and increase accessibility to treatment. However, the disease theory of addiction is not uni-
versally accepted, as it has been argued that it downplays individual accountability, the importance of
psychosocial and environmental factors, underemphasizes the need for understanding brain recovery
from addiction, and biases treatment approaches towards medical approaches over those that are more
holistic or psychological in nature [4].

Regardless of which side of the disease model debate one is on, there is a wealth of evidence that
chronic use of opioids fundamentally alters brain structure and function. For example, interactions
and synchronization between specific neural circuits, specifically the prefrontal cortex which governs
executive function and the limbic system which mediates emotions, are disrupted by chronic use of
prescription opioids [5]. Chronic heroin use has been shown to reduce the volume of gray matter in
the cerebral cortex and as well as that of the brain’s reward circuitry [5]. On a more microscopic
level, repeated use of morphine and other opioids can modify the fine delicate structures of neurons in
various regions of the brain including those that comprise the brain’s reward system [6]. Medication
assisted therapies for opioid dependence, which utilize substitutes for the previously abused opioid, are
administered in a supervised manner and are efficacious in reducing relapse, particularly when coupled
with psychosocial support. Such medications include the long acting µ receptor agonist methadone and
the partial µ receptor agonist buprenorphine (formulated as Suboxone). Future treatment approaches
that are being considered include non-invasive neuromodulation techniques (i.e., transcranial magnetic
stimulation, low intensity focused ultrasound), psychedelic assisted therapy, and digitally based inter-
ventions.

1.2. Mathematical epidemiological models

Mathematical epidemiological models have been used to study and track health issues and patterns
in a wide variety of contexts [7, 8]. In the context of this manuscript, previous work has examined
the heroin epidemic (e.g., [9, 10]) and opioid epidemic (e.g., [11]), and recent work has looked at an
age-structured model for a drug addiction forecasting method that assimilates observational data of
addiction and overdose mortality [12,13]. Our work does not venture into age structure to forecast but
instead examines additional epidemiological classes in the epidemics where data is available, providing
a more traditional epidemiological approach that can still be tested against data. This present work
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models the spread of heroin as a social contagion and and then extends this framework to examine illicit
opioid drug use and abuse. We do not intend to assert that this model applies to the more general opioid
epidemic where prescriptions are involved and we do not utilize such data. We instead focus only on
illicit opioid use with an emphasis on heroin use. ‘Social Contagion’ is defined by the American
Psychological Association (APA) Dictionary of Psychology as “the spread of behaviors, attitudes, and
affect through crowds and other types of social aggregates from one member to another” [14]. While
behavior of an individual is what classifies individuals in our model, we recognize that there are likely
specific external conditions that trigger these conditions together with internal conditions that may
perpetuate them. We have found studies whose results suggest that drug abuse can be transmitted in
an environmentally mediated manner [15, 16], although exactly how this happens for any drug is not
yet known. To help shed additional light on this important question of how, the National Institutes
of Health (NIH) has recently created a grant mechanism to undertake investigations in understanding
the social contagion of behavior and substance abuse [17]. While having an interaction with someone
using illicit opioids is neither a necessary nor a sufficient condition for someone to transition from
the susceptible class to using illicit opioids (since illicit opioid use can be self-induced, although the
question then arises about how the illicit opioids were obtained), the spread of illicit drug use disorder
across the population, the waves of opioid deaths, and recent studies suggesting drug abuse can be
transmitted in an environmentally mediated manner all combine to support such an approach [15, 16].
In addition, authors have studied mathematical models of drug use before from the perspective of the
spread as a social contagion. A summary of those studies may be found in Cole and Wirkus [10].

This paper presents a mathematical model of nonlinear ordinary differential equations (ODE) to
understand better the complex issues surrounding illicit OUD, its treatment options, and methods for
decreasing relapse. By describing the spread of IOUD as a potential contagion, we assert that the
IOUD treatment-relapse cycle is modeled within the context of disease epidemiology. Moreover, the
dynamics underlying those patterns can best inform control.

2. Materials and methods

2.1. Mathematical model

The population is divided into 6 classes: susceptible (S (t)), exposed (E(t)), treatment for the ex-
posed (TE(t)), IOUD (I(t)), specialty treatment for IOUD (T (t)) (as defined by SAMHSA), and recov-
ered (R(t)) at time t > 2002. N = S + E + TE + I + T + R denotes the total population. The constant
influx, Λ, into the susceptible population together with the remaining equations result in the overall
population approaching a constant level. We refer to our model as the IOUD model with a casual
user class. While our earlier model, found in Cole and Wirkus (2022) [10], focused on heroin use
disorder (HUD) this present model extends the HUD model to an IOUD model due to availability of
SAMHSA data and the similarities with HUD when only illicit use (and not prescription use) is con-
sidered. Additionally, we introduce two new compartments. First, the exposed class, E(t), holds the
number of individuals who are using illicit opioids but do not have IOUD as defined by the Diagnostic
and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) [18].* The treatment class for
the exposed (i.e., casual users), TE(t), holds the number of individuals who are considered exposed but

*While DSM-V was released in 2013 and provides updated guidance on various classifications and definitions, SAMHSA did not use it until their gathering and release of the 2020
data. This current manuscript concerns data up to 2019. Additionally, the phrase “dependence or abuse” was used up until 2014 in the SAMHSA data whereas the phrase “use disorder”,
defined in DSM-V, was used beginning in 2015 with the note “Substance Use Disorder is defined as meeting criteria for illicit drug or alcohol dependence or abuse.”
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are in specialty treatment as defined in SAMHSA [19]. The IOUD class, I(t), holds the number of
individuals who are using illicit opioids and have IOUD as defined by the DSM-IV [18]. The treat-
ment class for IOUD, T (t), holds the number of individuals who have IOUD. The recovered class, R(t),
contains the number of individuals who had IOUD and either completed treatment, quit “cold turkey”,
or completed non-specialty treatment as defined in SAMHSA [19]. Finally, the susceptible class, S (t),
holds the number of individuals susceptible to opioid use or misuse. These susceptible individuals may
have passed through E or TE but not I, T , or R. We show the compartments and the interactions among
them in Figure 1.

The recruitment rate into the susceptible population is denoted by Λ. The natural death rate for all
classes is µ. The transmission rate from susceptibles to exposed due to an interaction with someone
who has IOUD is denoted by β. The transmission rate from susceptibles to exposed due to an interac-
tion with someone using illicit opioids but not considered having IOUD is denoted by βE. There are
three avenues for someone from the exposed class to enter a specialty treatment facility. First, the rate
of someone from the exposed class entering specialty treatment on their own accord is denoted by ψ1.
Second, the rate of someone from the exposed class entering a specialty treatment facility due to an
interaction with someone from the recovered class is denoted by ψ2. Third, the rate of someone from
the exposed class entering a specialty treatment facility due to an interaction with someone from the
susceptible class is denoted by ψ3. An exposed individual could also stop using illicit opioids on their
own or in some non-specialty treatment facility and return to the susceptible class at a rate denoted by
ζ. A previously exposed individual may complete specialty treatment and cycle back to the suscepti-
bles by rate ρE; however, they may relapse from specialty treatment to using illicit opioids by rate κE.
Lastly, an exposed individual could develop IOUD by rate χ and transfer to the IOUD class.

We now consider the remaining three classes identical to those considered in Cole and Wirkus
(2022) [10]. Once an individual is in I (the IOUD class), there are three avenues that they could enter
into a specialty treatment facility. First, the rate of someone from the IOUD class entering specialty
treatment on their own accord is denoted by η1. Second, the rate of someone from the IOUD class
entering a specialty treatment facility due to an interaction with someone from the recovered class is
denoted by η2. Third, the rate of someone from the IOUD class entering a specialty treatment facility
due to an interaction with someone from the susceptible class is denoted by η3. An IOUD individual
could also stop using illicit opioids on their own or through a non-specialty treatment facility and
transfer to the recovered class at a rate denoted by ω. An IOUD individual may complete specialty
treatment and flow into the recovered class by rate ρ. However, they may relapse from specialty
treatment to using illicit opioids at a rate κ. Finally, individuals in the recovered class may cycle back
to the IOUD class. They either may relapse on their own accord at rate α1 or by the influence of
someone in the IOUD class by rate α2.

There is an added death rate component due to overdose deaths. This added rate is δE for the exposed
class, and for the IOUD class, the added rate is δ. The parameters δ and δE will be piecewise functions
of time and not differentiable at the breakpoint. As will be discussed in the parameter estimation
sections containing (2.3)–(2.4) and (2.6)–(2.7), function δ is continuous but just not-differentiable at
point c, whereas δE has a jump discontinuity at point c.

Due to the limited access to care, a saturation treatment function limits the flow into the specialty
treatment facilities. Because individuals in both the IOUD and E classes can enter treatment, the
saturation term is a function of both: b(T,TE). Therefore, the saturation parameter corresponding to
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the casual users is ϵE, whereas the saturation term correlating to those in the IOUD class is ϵ.
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Figure 1. Flow diagram of the IOUD Model with a casual user class: arrows show the
progression of the change of classes. S represents the susceptible individuals, E represents
the exposed individuals, TE represents those exposed in specialty treatment, I represents
individuals with IOUD, T represents those in specialty treatment for IOUD, and R represents
recovered users. Due to a greater potential for relapse, R is considered distinct from S . Due
to limited access to care, b(T,TE) = 1

1+ϵT+ϵETE
represents the reduced rate of entry into the TE

and T class.

We thus have the following deterministic system of nonlinear ordinary differential equations based
on the previous assumptions, casual use of illicit opioids, illicit opioid use, treatment, and recovery:
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dS (t)
dt
= Λ + ζE + ρETE − βS

I
N
− βES

E
N
− µS ,

dE(t)
dt
= βS

I
N
+ βES

E
N
+ κETE − b(T,TE)

(
ψ1E + ψ2

R
N

E + ψ3
S
N

E
)

− (ζ + χ + µ + δE)E,
dTE(t)

dt
= b(T,TE)

(
ψ1E + ψ2

R
N

E + ψ3
S
N

E
)
− (κE + ρE + µ)TE,

dI(t)
dt
= χE + κT − b(T,TE)

(
η1I + η2

R
N

I + η3
S
N

I
)
− (ω + µ + δ)I,

dT (t)
dt
= b(T,TE)

(
η1I + η2

R
N

I + η3
S
N

I
)
− (κ + ρ + µ)T,

dR(t)
dt
= ωI + ρT − α1R − α2R

I
N
− µR.

(2.1)

where b(T,TE) =
1

1 + ϵT + ϵETE
and all parameters are nonnegative. Table 2 gives a description of the

variables. Table 3 gives a description of the parameters.

Table 2. Description of variables of the IOUD model with a casual user class.

Description
S (t) Susceptible population
E(t) Casual users
TE(t) Casual users now in specialty treatment
I(t) Users that have IOUD
T (t) Users from the I class now in specialty treatment
R(t) The recovered class

2.2. Non-negativity and boundedness

The following will investigate the fundamental dynamical properties of the illicit opioid use disorder
(IOUD) model with a casual user class.

Since N(t) = S (t)+E(t)+TE(t)+I(t)+T (t)+R(t), we have dN(t)
dt =

dS (t)
dt +

dE(t)
dt +

dTE(t)
dt +

dI(t)
dt +

dT (t)
dt +

dR(t)
dt .

We add the five equations of (2.1), and find the total population dynamics are driven by the following
equation:

dN
dt
=

dS
dt
+

dE(t)
dt
+

dTE(t)
dt

+
dI
dt
+

dT
dt
+

dR
dt

= Λ − µS − (µ + δE)E − µTE − (µ + δ)I − µT − µR

= Λ − µN − δEE − δI

(2.2)

Since the IOUD model with a casual user class tracks physical entities, all associated parameters
are nonnegative. We state the following two theorems, noting that the proofs are fairly standard and
thus are not included (see, e.g., [20, 21]).
Theorem 1 Local solutions to the IOUD model with a casual user class with initial data in the region

Ω = {(S , E,TE, I,T,R) ∈ R6
+ : 0 < S , 0 < E, 0 < TE, 0 < I, 0 < T, 0 < R},
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Table 3. Description of parameters of the IOUD model with a casual user class.
Parameter Description Units
Λ Recruitment into the susceptible population people/year
µ Natural death rate 1/year
β Transmission rate from susceptible to exposed through interaction with

someone from the I class
1/year

βE Transmission rate from susceptible to exposed through interaction with
someone from the E class

1/year

ζ The rate of individuals in the E class returning to the S class 1/year
χ The rate of individuals in the E class that transition to the I class 1/year
ψ1 The rate of individuals in E who enter specialty treatment on their own 1/year
ψ2 The rate of individuals in E who enter specialty treatment through inter-

action with a recovered individual
1/year

ψ3 The rate of individuals in E who enter specialty treatment through inter-
action with a susceptible individual

1/year

ρE The rate of casual users leaving treatment and entering the S class 1/year
κE The rate of casual users leaving treatment and returning to the E class 1/year
η1 The rate of individuals in I who enter specialty treatment on their own 1/year
η2 The rate of individuals in I who enter specialty treatment through inter-

action with a recovered individual
1/year

η3 The rate of individuals in I who enter specialty treatment through inter-
action with a susceptible individual

1/year

ω The rate of individuals in I who enter the recovered class by either com-
pleting treatment in non-specialty facilities or “quitting cold turkey”

1/year

ρ The rate of individuals leaving treatment and entering the recovered class 1/year
κ The rate of individuals leaving treatment and returning to the I class 1/year
α1 The rate of individuals in the recovered state relapsing back to the I class

on their own
1/year

α2 The rate of individuals in the recovered state relapsing back to the I class
through interaction with an individual in the I class

1/year

δ Added overdose death rate for the I class 1/year
δE Added overdose death rate for the E class 1/year
ϵ Saturation term for entering a specialty treatment facility from the I class 1/people
ϵE Saturation term for entering a specialty treatment facility from the E class 1/people

S (0) = S 0 > 0, E(0) = E0 > 0,TE(0) = TE0 > 0, I(0) = I0 > 0,T (0) = T0 > 0,R(0) = R0 > 0,
N(0) = N0 > 0, exist and are unique.
Theorem 2 Given N > 0 and nonnegative initial conditions and parameter values, solutions to the
IOUD model with a casual user class are nonnegative on the interval of existence.

Therefore the coordinate planes and hence the positive octant Ω = {(S , E,TE, I,T,R) ∈ R6
+ : 0 <

S , 0 < E, 0 < TE, 0 < I, 0 < T, 0 < R}, are invariant under the local flow.

2.3. Heroin only - data explanation and parameter estimation

To compare the model to data, we first consider using a heroin dataset (defined by the CDC as
overdose death due to heroin-only or heroin mixed with synthetic opioids) that does not include non-
heroin use. This section compares our model to data considering only the use of heroin or heroin mixed
with synthetic opioids (e.g., fentanyl). Finally, we present the data used for the IOUD model with the
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casual user class for a heroin-only use dataset in Table 4.

Table 4. Data for U.S., 2002–2020. The number of overdose deaths for 2002–2020 are from
the CDC [22]. U.S. population comes from [23]. Use disorder and specialty treatment data
come from SAMHSA’s National Survey on Drug Use and Health (NSDUH) [19, 24–33].
Data with an asterisk ∗=Specialty treatment data × 0.6874 because specialty treatment from
I only asked in 2014–2017 SAMHSA surveys. The factor 0.6874 is the average of the ratio
of specialty treatment from I to specialty treatment in the 4 years when data is available.

US specialty specialty
heroin population HUD treatment treatment initiation use = E + I
deaths (in millions) in last yr. in last yr. from I in last yr. in last yr.

2002 2089 287.3 214,000 NA NA 117,000 404,000
2003 2080 289.8 189,000 NA NA 92,000 314,000
2004 1878 292.4 270,000 156,000 107,200∗ 118,000 398,000
2005 2009 295.0 227,000 190,000 130,600∗ 108,000 379,000
2006 2088 297.8 324,000 377,000 259,100∗ 90,000 560,000
2007 2399 300.6 214,000 201,000 138,200∗ 106,000 373,000
2008 3041 303.5 283,000 227,000 156,000∗ 116,000 455,000
2009 3278 306.3 369,000 322,000 221,300∗ 187,000 582,000
2010 3036 309.0 361,000 274,000 188,300∗ 142,000 621,000
2011 4397 311.6 426,000 292,000 200,700∗ 178,000 620,000
2012 5925 314.0 467,000 293,000 201,400∗ 156,000 669,000
2013 8257 316.4 517,000 359,000 246,800∗ 169,000 681,000
2014 10,574 318.7 586,000 428,000 270,000 212,000 914,000
2015 12,989 320.9 591,000 398,000 242,000 135,000 828,000
2016 15,469 323.0 626,000 365,000 235,000 170,000 948,000
2017 15,482 325.1 652,000 413,000 358,000 81,000 886,000
2018 14,996 327.1 526,000 424,000 291,500∗ 117,000 808,000
2019 14,019 329.1 438,000 467,000 321,000∗ 50,000 745,000
2020 13,058 331.0 NA NA NA 103,000 NA

Column 2 of Table 4 displays the yearly number of overdose deaths due to heroin as found by the
CDC [22]. Column 4 gives the number of individuals who reported having heroin use disorder (HUD)
within the past year as provided by the NSDUH. (See Table 4 for those references.) This data relates
to the state variable I. Column 5 shows the number of individuals who reported to SAMHSA that they
were in a specialty treatment facility due to heroin, regardless of whether they had HUD, within the
past year. Column 6 gives a count of those individuals who reported to SAMHSA that they were in
a specialty treatment facility due to HUD within the past year; this data was provided for 2014–2017.
Hence, the data modified by the asterisk is the data in the previous column for 2004–2013 and 2018–
2019, scaled by a factor of 0.6874. (This factor was found by averaging the data from the specialty
treatment due to HUD divided by the specialty treatment due to heroin, regardless of HUD for the
given data found.) This column relates to the state variable T . Subtracting column 6 from column 5
gives us data related to the state variable TE. Column 7 gives us the yearly count of those individuals
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who reported to SAMHSA that they had initiated heroin use for the first time within the past year.
Column 8 shows a count of those individuals who said to SAMHSA that they used heroin within the
past year, regardless if they had HUD. Column 4, subtracted from this column, gives us data related
to our state variable E. Lastly, column 9 shows a count of the number of individuals who reported to
SAMHSA that they used heroin within the past month, regardless of whether they had HUD.

The state variables E, TE, I, and T are instantaneous in time, whereas the SAMHSA data is not.
SAMHSA gives a count over the year of those respective classes. Therefore, we correct comparing the
data to the variables. The details on how we do this may be found in the Supplementary Information.
It is a detailed explanation of how we added a correction to the I variable and the T variable to approx-
imate SAMHSA’s yearly count. Similarly, we use this method to find the corrections for the S , E, and
TE variables.

Using the U.S. population (Table 4 column 3), we scale the national data to a city population of
200,000 individuals for the simulations: for the number of individuals in the HUD class, the number
of individuals in specialty treatment from HUD, the number of individuals in specialty treatment from
the casual user class, and the number of individuals in the casual user class. For example, in 2002,
the HUD data would be calculated as (214, 000/287.3 million) × 200, 000 = 148.97. We depict this
value in the top middle graph of Figure 2. This rescaling provides for our analysis a nearly constant
population to keep the focus on the dynamics of the problem. This is the data presented in our graphs
of Figure 2 with the raw data given in Table 4. The error bars in the graphs represent the standard error
given in the SAMHSA data (not presented in the table).

For the data fitting, we have taken some parameter values for our model from the literature and per-
formed a parameter estimation for the remaining parameters using MATLAB and its fmincon function.
While few parameters in reality remain constant over time, our analysis of the data together with previ-
ous published work on similar models indicates that most of the parameters can be considered constant
as reasonable first approximations [9–11]. Additional modeling could be done where some of the pa-
rameters could be considered time-dependent; however, with the exception of δ and δE, this is beyond
the scope of this current work. First, we estimated parameter values and ranges for the IOUD with a
casual user class from the literature noting that the time units are per year in all the rates. We used the
natural yearly death rate for µ = 1/80 [9]. Next, we estimated our yearly recruitment rate, Λ = 2500,
for a population of 200,000, given the natural death rate, ignoring the additional deaths due to overdose
(i.e., with δ = 0). We used the approximated ranges from [11, 34] for the yearly completed treatment
rate, ρ, from a specialty treatment facility to the recovered class as 0.25–0.6. We assumed the yearly
completed treatment rate, ρE, from a specialty treatment facility to the S class would be higher than ρ
because casual users do not have opioid use disorder and may have a quicker recovery time. Hence,
we chose a range of 0.5–2. We approximated from Weiss and Rao (2017), Bailey et al. (2013), and
Smyth et al. (2010) [35–37] our range for the yearly relapse rate, κ, from the specialty treatment class
back to the IOUD class as 0.18–4.0. We assumed that the yearly relapse rate, κE was 1–2 to fit in this
range. We determine those that go to specialty treatment from the IOUD class by estimating η, the
overall yearly rate, to be 0.1–2 [9, 11], where we used the equation η = η1 + η2(R/N) + η3(S/N). We
set η2 = 0.7 and chose the range of 0.8–1.1 for η1 and 0.2–5 for η3. For the yearly relapse rates from
the R class back to the I class we used a study by Gossop et al. (1989), who estimated a range for α of
0.1–1/3 [38, 39]. However, additional research suggests the relapse rate is significantly higher due to
the changes in the brain. Thus, we use the range of 0.1–1 for our αi [40, 41]. We use a field of 0.05 to
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0.3 for the parameter ω [9]. The ranges for β and βE, our yearly transmission rates, and ϵ and ϵE, our
yearly saturation treatment parameters, were determined from Cole and Wirkus (2022) [10] and then
determined via parameters estimation. Utilizing the SAMHSA and CDC data, we obtained the rates
of the rest of the parameters via parameter estimation: χ, the yearly rate of individuals who go from
being a casual user to an individual who now has OUD, ζ, the yearly rate of casual users going back to
susceptibles, and ψ1, ψ2, and ψ3, yearly rates from E to TE.

We now examine δ and δE for the IOUD model with a casual user class using the heroin-only
dataset. Battista et al. [11] first gave the definition of the death rate δ due to drug overdose; we refer
the reader to Cole and Wirkus (2022) [10] for the modification of the definition’s derivation for these
parameters, and what we present here is in their final forms. We highlight the discussion in [10]
whereby we concluded that δ could not be approximated as a constant as the bottom middle subfigure
of Figure 2 illustrates. The data from SAMHSA is not perfectly geared for our model because the HUD
and OUD are presented as “in the past year” yet the mathematical model gives variables continuous in
time. For example, the mathematical model allows for an individual to leave HUD to go into treatment
but then relapse back to HUD in the same year. This individual would not be able to overdose from
heroin while in treatment but would be able to die from an overdose while using heroin. To address
this, we assumed a simple inflow-outflow subdiagram (one for susceptible-casual—casual treatment,
and another for HUD—treatment—recovered) presented in the Supplementary Information, that uses
the SAMHSA data to estimate what percentage of the given class is actually in that class at any given
time. The average ratio of the model output state variable I over the model calculation for each year
(keeping track of individuals’ movement in and out of classes) is 0.88 while for the variable E it is
0.41. In words, the multiplication factor of 0.88 in the denominator of δ for heroin use says that of the
individuals that SAMHSA classifies as having HUD in the past year, 88% are in the HUD class at any
given time with the remaining percentage either in treatment, having stopped using, or having died of
an overdose. Finally, based on the data fit from parameter estimation, we estimate the number of HUD
overdose deaths due to heroin as 0.89 for δ, and we approximate the number of HUD overdose deaths
to heroin as 1 - 0.89 for δE. Thus, we have the following definitions.

δ =

(total overdose deaths due to heroin per year) ·
(
0.89 HUD overdose deaths due to heroin

1 overdose death due to heroin

)
(number in the HUD class in past year) · (0.88)

.

(2.3)
and

δE =

(total overdose deaths due to heroin per year) ·
(
1 - 0.89 HUD overdose deaths due to heroin

1 overdose death due to heroin

)
(number in the casual user class in past year) · (0.41)

.

(2.4)
Incorporating these piecewise functions for δ and δE into our parameter estimation, our baseline

values are
ζ = 3.15, χ = 1.1,

ψ1 = 2.42, ψ2 = 2.16, ψ3 = 2.37

}
via parameter estimation,

β = 0.47, βE = 0.3
ϵ = 0.02, ϵE = 0.01

}
via parameter estimation with ranges based on previous paper,
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κ = 1.1, κE = 0.701, µ = .0125,
ρ = 0.45, ρE = 0.8, ω = 0.1,

α1 = 0.894, α2 = 0.8,
η1 = 1.0, η2 = 0.7, η3 = 0.6

 via estimation from the literature,

Λ = 2500 } for a city of ≈ 200, 000. (2.5)

Our initial conditions, chosen to approximately pair with the scaled data are S 0 = 199, 800, E0 =

26,TE0 = 16, I0 = 132,T0 = 45,R0 = 96. The data match is provided in Figure 2.

Figure 2. Fitting model output to scaled data (with error bars when given) for heroin. The
red squares are the SAMHSA data and the blue curves are the model output as described in
the text. (Top Left): Heroin overdose deaths by year. (Top Middle) Individuals with heroin
use disorder (HUD) in the last year. (Top Right) Those who entered specialty treatment from
HUD in the past year. (Middle Left) Individuals who used heroin in the last year. (Middle
Middle) Those who entered specialty treatment from the casual user class, E. (Middle Right)
Those who reported using heroin for the first time (initiation from S to E). (Bottom Left) The
effective reproductive number, Reff(t) = (R0 · S (t)/N(t)). (Bottom Middle) Overdose death
rate for HUD class: asterisks and X-marks are calculated from data (see text and Eq (2.6)).
Both lines are calculated witqh a least squares fit. (Bottom Right) Overdose death rate for E
Class: asterisks and X-marks are calculated from data (see text and Eq (2.7)).

2.4. All-illicit opioids dataset - data explanation and parameter estimation

This section compares the IOUD model with a casual user class to data using all-illicit opioids.
Data for the all-illicit opioids dataset is given in Tables 5 and 6. Additionally, we fit the IOUD model
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with casual users to the new dataset. We use data found in SAMHSA for the IOUD model with
the casual user class for an all-illicit opioid use dataset (CDC data includes heroin). The following
discussion references the data presented in Table 5. Column 2 of Table 5 displays the yearly number
of overdose deaths due to all opioids, as found by the CDC [42]. Column 3 gives a count of those
individuals who reported having substance use disorder (SUD) within the past year due to the use of
pain medications as given by the NSDUH. (See Table 5 for those references.) Column 4 shows a count
of those individuals who reported having HUD within the past year given by the NSDUH. Column 5
counts those individuals who reported to SAMHSA, given only for 2015–2019, that they had OUD
within the past year (whether due to heroin or pain medication). Given the five years of data in column
5, we found a formula to approximate the data for the missing years of column 5 using columns 3
and 4. This formula (Column 3 × 0.87 + Column 4) fills in the absent years of column 5 (marked
with an asterisk), and that is the data used for our state variable I. We found the factor 0.87 gave the
best fit and, for the known years, gives approximately 2364.1 (vs. known 2375), 2116.1 (vs. known
2144), 2111.9 (vs. known 2110), 1999.8 (vs. known 2028), and 1626.4 (vs. known 1622). Therefore,
an interpretation of 0.87 is that 87% of those diagnosed with SUD for pain medication have SUD for
opioids; SAMHSA defines all heroin use disorders as being in the OUD class.

Column 6 gives the counts by SAMHSA of those individuals who disclosed pain medication use
within the past year. Column 7 shows the counts of those individuals who reported heroin use by
SAMHSA within the past year. Column 8 counts those individuals who reported to SAMHSA, given
for 2015–2019, illicit opioid use within the past year (whether heroin use or opioid pain medication
use). We found a formula to approximate the data for the missing years of column 8 using columns
6 and 7. This formula (Column 6 × 0.95 + Column 7) fills in the absent years of column 8 (and
is marked with an asterisk). Comparing this formula with the known data years gives 12,666.9 (vs.
known 12,693), 11,889.2 (vs. known 11,824), 11,409.2 (vs. known 11,401), 10,258.6 (vs. known
10,250), and 9982.8 (vs. known 10,065). An interpretation of 0.95 is that 95% of those who misused
pain medication in the past year specifically misused opioid pain medication; SAMHSA defines all
heroin users as opioid misusers. With this column filled in, we subtract column 5 (approximated
and existing values) from the values of column 8 (approximated and existing values) to find our state
variable E.

The following discussion references the data presented in Table 6.
Column 2 gives us the yearly count of those individuals who reported to SAMHSA having initiated

illicit pain medication use for the first time within the past year. Column 3 gives us the yearly count
of those individuals who disclosed to SAMHSA having started heroin use for the first time within the
past year. Unfortunately, SAMHSA provided no data for years of initiation of illicit opioid use. We
thus “guess” that the same factor used to determine opioid misuse from known pain medication misuse
and heroin use can give an approximation for initiation to illicit opioid use. Thus, we use the formula
to find initiation as Column 2 × 0.95 + Column 3.

Column 4 gives us the yearly count of those individuals who reported to SAMHSA having entered
a specialty treatment facility due to heroin use within the past year. Column 5 gives us the yearly
count of those individuals who reported to SAMHSA having entered a specialty treatment facility due
to pain medication use within the past year. Column 6 gives us the yearly count of those individuals
with HUD due to heroin use who reported to SAMHSA having entered a specialty treatment facility
within the past year. Column 7 gives us the yearly count of those individuals with OUD due to illicit
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pain medication use who reported to SAMHSA having entered a specialty treatment facility within the
past year. Finally, column 8 gives us the yearly count of those individuals with OUD (due to heroin or
pain medication) who reported to SAMHSA for 2016 and 2017, having entered a specialty treatment
facility within the past year.

Table 5. Data for U.S., 2003–2019: overdose deaths, use disorder, and use in past year.
Numbers in thousands for all data values. The number of overdose deaths for 2003–2020 are
from the CDC [22]. Pain medication use disorder, heroin use disorder, opioid use disorder,
and use in past year data come from SAMHSA’s NSDUH [19, 24–33]. Data with an asterisk
(*) are missing data and are calculated from other columns as described in the text. See the
text for discussions of these categories.

all-illicit use in use in use in
opioids SUD- SUD - past year past year past year

year OD deaths pain med HUD opioid pain med heroin opioid
2003 12.940 943 189 1009.4* 11,671 314 NA
2004 13.756 1388 270 1477.6* 11,256 398 11,401.5*
2005 14.918 1546 227 1572.0* 11,815 379 11,091.2*
2006 17.545 1635 324 1746.5* 12,649 560 11,603.3
2007 18.516 1707 214 1699.1* 12,466 373 12,576.6*
2008 19.582 1716 283 1775.9* 11,885 455 12,215.7*
2009 20.422 1854 369 1982.0* 12,405 582 11,745.8*
2010 21.089 1923 361 2034.0* 12,242 621 12366.8*
2011 22.784 1768 426 1964.2* 11,143 620 12,250.9*
2012 23.166 2056 467 2255.7* 12,489 669 11,205.9*
2013 25.052 1879 517 2151.7* 11,082 681 12,533.6*
2014 28.647 1918 586 2254.7* 10,337 914 10,734.2*
2015 33.091 2038 591 2375 12,462 828 12,693
2016 42.249 1753 626 2144 11,517 948 11,824
2017 47.600 1678 652 2110 11,077 886 11,401
2018 46.802 1694 526 2028 9948 808 10,250
2019 49.860 1366 438 1622 9724 745 10,065

We use the data values in columns 4 through 8 to calculate data related to our state variables TE and
T . The values for specialty treatment from I for heroin are in column 6 of Table 2. We refer the reader
to that section of the text to explain data calculation for the absent years. Using the values from column
6 of Table 4 and columns 7 and 8 of Table 6, we find the data for our state variable T . Given column 8
from Table 6; we found a formula to approximate the data for the missing years. This formula (Column
7 × 0.71 + Column 6) fills in the unaccounted-for values of column 8 (and is marked with an asterisk).
For the only two years given by SAMHSA (2016 and 2017), the formula applied gives 453.0 (vs. 453)
and 603.7 (vs. 603).

To find values for specialty treatment from opioids, we use the formula (Column 5× 0.83 + Column
4), where the factor of 0.83 is the average of the factor used to find the specialty treatment from I data
and the use in year data. (We have no data to compare; using 0.71 slightly altered the numbers (e.g.,
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316.5 vs. 343.6 in the year 2003), but the parameter estimation was primarily affected in the ψ terms.)
Then, with the values for the specialty treatment from opioids, we subtract the values of the T data per
year, and that result gives us the corresponding values for our state variable TE.

The state variables E, TE, I, and T are instantaneous in time, whereas the SAMHSA data is not.
SAMHSA gives a cumulative count of those respective classes. Therefore, we apply a correction when
comparing the data to the variables (see Supplemental Information). We explain the computations for
these corrections in the analogous heroin-only section. These explanations are precisely the same for
comparing our model to the all-illicit opioids dataset.

Table 6. Data for U.S., 2003–2019: initiation and specialty treatment. Numbers in thousands
for all data values. Pain medication initiation, heroin initiation, and specialty treatment data
come from SAMHSA’s NSDUH [19, 24–33]. Data with an asterisk (*) are missing data and
are calculated from other columns as described in the text. See the text for discussions of
these categories.

specialty specialty specialty
specialty specialty treatment treatment treatment

initiation- initiation- treatment treatment from I from I from I
year pain med heroin heroin pain med heroin pain med opioid
2003 2456 92 NA 199 NA 132 NA
2004 2422 118 156 226 107.2* 152 215.2*
2005 2193 108 190 259 130.6* NA NA
2006 2150 90 377 347 259.1* 238 428.1*
2007 2147 106 201 299 138.2* 195 276.6*
2008 2176 116 227 350 156.0* 201 298.7*
2009 2179 187 322 466 221.3* 320 448.5*
2010 2013 142 274 408 188.3* 271 380.8*
2011 1888 178 292 438 200.7* 335 438.6*
2012 1880 156 293 514 201.4* 427 504.6*
2013 1539 169 359 421 246.8* 345 491.7*
2014 1425 212 428 475 270 348 517.1*
2015 2126 135 398 470 242 371 505.4*
2016 2139 170 365 374 235 307 453
2017 2010 81 413 481 358 346 603
2018 1908 117 424 415 NA NA NA
2019 1607 50 467 425 NA NA NA

As in heroin-only section, we consider a city with a population size of 200,000 individuals and
scale the corresponding data for this set for the simulations. Parameter ranges used are the same as the
values discussed in the analogous heroin-only section, except for ω. We extended the range for this
parameter from 0.05 to 1.3 because the SAMSHA data showed a higher number of individuals in the
general treatment versus the specialty treatment facilities.

Analogous to the section for the heroin-only dataset, we define δ and δE:
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δ =

(total overdose deaths due to opioids per year) ·
(
0.91 IOUD overdose deaths due to heroin

1 overdose death due to opioids

)
(number in the IOUD class in past year) · (0.883)

.

(2.6)
and

δE =

(total overdose deaths due to opioids per year) ·
(
1 - 0.91 IOUD overdose deaths due to opioids

1 overdose death due to opioids

)
(number in the casual user class in past year) · (0.786)

.

(2.7)
As in the heroin datasets, we note that the data used in the definition of the death rate suggest a

piecewise function; see bottom middle subfigure of Figure 9. Incorporating these piecewise functions
for δ and δE into our parameter estimation, our baseline values are

ζ = 1.5, χ = 0.21,
ψ1 = 0.01, ψ2 = 0.2, ψ3 = 0.05

}
via parameter estimation,

β = 0.25, βE = 1.646
ϵ = 0.001, ϵE = 0.0104

}
via parameter estimation with ranges based on previous paper,

κ = 1, κE = 1.3, µ = 0.0125,
ρ = 0.6, ρE = 1.1, ω = 1.2

α1 = 0.3, α2 = 0.01,
η1 = 0.14, η2 = 0.1, η3 = 0.12

 via estimation from the literature,

Λ = 2500 } for a city of ≈ 200, 000. (2.8)

Our initial conditions, chosen to approximately pair with the scaled data are S 0 = 199, 600, E0 =

3240,TE0 = 48, I0 = 769,T0 = 71,R0 = 325. The data match is provided in Figure 9.

2.5. Basic reproduction number

To better understand the dynamics of transmission, the basic reproduction number R0 is computed
and analyzed. R0 is the number of secondary cases produced by one infectious individual introduced
into a population of wholly susceptible individuals during their infectious period.

The R0 for the IOUD model with a casual user class (2.1) calculated using the next generation
method as presented in Van den Driessche & Watmough (2002) [43] is as follows: R0 = R1 + R2,
where

R1 =


βE(ρE + κE + µ)

ρEχ + ρEµ + ρEψ1 + ρEψ3 + ρEζ+

ρEδE + χµ + χκE + µ
2 + µψ1 + µψ3+

µζ + µδE + µκE + ζκE + δEκE
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and

R2 =


(ρE + κE + µ)χ

ρEχ + ρEµ + ρEψ1 + ρEψ3 + ρEζ+

ρEδE + χµ + χκE + µ
2 + µψ1 + µψ3+

µζ + µδE + µκE + ζκE + δEκE


RSITR

0

RSITR
0 represents the basic reproduction number for the IOUD model without a casual user class in

Cole and Wirkus (2022) [10] and duplicated here for convenience to the reader.

RSITR
0 =

β(κ + ρ + µ)(α1 + µ)
α1δκ + α1δµ + α1δρ + α1η1µ + α1η3µ + α1κµ + α1µ

2 + α1µρ

+δκµ + δµ2 + δµρ + η1µ
2 + η1µρ + η3µ

2 + η3µρ + κµ
2

+κµω + µ3 + µ2ω + µ2ρ + µωρ


. (2.9)

Shown in the flow diagram, Figure 1, is how the compartments S , E, and TE are coupled to I, T ,
and R, through E going to I. We see this connection in the reproduction number. The terms R1 and R2

are analyzed analogously to “Reproduction numbers of infectious disease models” by Pauline van den
Driessche (2017) [44]. If we introduce an individual into the I class (i.e., one infected person into the
population), then that individual’s influence has two parts described as follows:
PART 1 (R1): The introduction of the infected person into the population may influence someone from
S into E. Therefore, this first part provides the contributions attributed to the E class.
PART 2 (R2): This part provides the contributions attributed from the I class as before in Cole and
Wirkus (2022) [10], whereas the first factor describes the proportion of individuals from the E class.

2.6. Endemic equilibria

To proceed in determining the existence of non-trivial endemic equilibria of our IOUD model with
a casual user class, the system is set to the steady-state population level, denoted by N∗. Since the
total population is driven by dN

dt = Λ − µN − δI − δEE, the steady-state population level is reached at
N∗ = Λ−Iδ−δE E

µ
. This substitution results in the following system of equations:
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dS (t)
dt
= Λ + ζE + ρETE − βS

Iµ
(Λ − Iδ − δEE)

− βES
Eµ

(Λ − Iδ − δEE)
− µS ,

dE(t)
dt
= βS

Iµ
(Λ − Iδ − δEE)

+ βES
Eµ

(Λ − Iδ − δEE)
+ κETE

− b(T,TE)
(
ψ1E + ψ2

Rµ
(Λ − Iδ − δEE)

E + ψ3
Sµ

(Λ − Iδ − δEE)
E
)

− (ζ + χ + µ + δE)E,
dTE(t)

dt
= b(T,TE)

(
ψ1E + ψ2

Rµ
(Λ − Iδ − δEE)

E + ψ3
Sµ

(Λ − Iδ − δEE)
E
)

− (κE + ρE + µ)TE,

dI(t)
dt
= χE + κT − b(T,TE)

(
η1I + η2

Rµ
(Λ − Iδ − δEE)

I + η3
Sµ

(Λ − Iδ − δEE)
I
)

− (ω + µ + δ)I,
dT (t)

dt
= b(T,TE)

(
η1I + η2

Rµ
(Λ − Iδ − δEE)

I + η3
Sµ

(Λ − Iδ − δEE)
I
)
− (κ + ρ + µ)T,

dR(t)
dt
= ωI + ρT − α1R − α2R

Iµ
(Λ − Iδ − δEE)

− µR.

(2.10)

where b(T,TE) =
1

1 + ϵT + ϵETE
.

We numerically found parameter regimes of bistability, that is, where both Disorder-Free Equilib-
rium (DFE) and Endemic Equilibrium (EE) exist biologically and are stable for both heroin-only and
illicit opioid datasets. We tried to obtain an explicit numerical approximation to the analytical curve
separating the region of bistability from EE-only stability using the method from Cole and Wirkus
(2022) [10] that successfully gave analytical curves for the regions of bistability: Using Maple, an
equation is obtained by setting dS̃

dt = 0 and then solving for S ∗; this result is substituted into dẼ
dt = 0,

dT̃E
dt = 0, dT̃

dt = 0 and dR̃
dt = 0; E∗, T ∗E, T ∗ and R∗ are solved simultaneously. However, this step was not

able to be solved by Maple. We use parameter values obtained from the heroin-only dataset, which one
could refer to the baseline values (2.5), and then the all-illicit opioids dataset, which one could refer to
the baseline values (2.8), for the ensuing investigation. We extrapolate the δ values and δE values for
the two overdose death rates; see left panels of Figure 3 for the heroin-only dataset and Figure 4 for the
all-illicit opioids dataset. Next, we determine the effective reproductive number Reff(t) = (R0 ·S (t)/N0);
see top right panel in Figures 3 and 4. For a range of overdose death rates, we numerically observed
bistability. That is, with realistic parameter values and the δ and δE values extrapolated to future val-
ues; for example their 2026 values (δ ≈ 0.0501, δE ≈ 0.0105), we found both the DFE and an EE
were stable. For the heroin-only dataset, we see that Reff becomes less than 1 during 2024 and for the
all-illicit opioids dataset Reff becomes less than 1 in year 2044. Given the large number of parameters
that have been estimated, which have natural temporal variability, we only extrapolate 10 years (to
2030) to lessen the chances of erroneous conclusions and generalizations. To this end, the bottom right
subfigure of Figures 3 and 4 shows a plot of Reff with an envelope of ±10% of the baseline parameter
values where each significant parameter (determined by LHS-PRCC) was changed + or − 10% in the
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direction that it most influences Reff. Including a stochastic approach would be another way to take
into account the randomness in future extensions of this work; see e.g., [45].

Figure 3. Heroin death rate and effective reproductive number. (Top Left): Extrapolated
δ-values. The black X-marks and asterisks are from the heroin-only overdose data and are
found in Figure 2; the extrapolated δ-values and corresponding piecewise curve are repre-
sented in black. The magenta marks and piecewise curve represented are for the extrapolated
δ-values using the parameter values from the HUD model in Cole and Wirkus (2022) [10].
(Bottom Left): extrapolated δE-values. The black X-marks and asterisks are from the heroin-
only overdose data and are found in Figure 2; the extrapolated δE-values and correspond-
ing piecewise curve are represented in black. The magenta marks and piecewise curve
represented are for the extrapolated δE-values using the parameter values from the HUD
model in Cole and Wirkus (2022) [10]. (Top Right): The effective reproductive number,
Reff(T ) = (R0 · S (T )/N(T )), is plotted as the solid black curve using the baseline values of
the parameters of the heroin dataset, (2.5) and the extrapolated δ-values are from the best fit
line. Just above the Reff curve, R0 is plotted as a dashed blue curve; also plotted in magenta
is the curve from the original HUD model without the casual user class in Cole and Wirkus
(2022) [10]. (Bottom Right): Parameters found for which R0 is most sensitive to are varied
10% in the direction of their greatest influence on R0 to give an envelope surrounding Reff.
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Figure 4. Illicit opioid death rate and effective reproductive number. (Top Left): Extrap-
olated δ-values. The black X-marks and asterisks are from the all-illicit opioids overdose
data and are found in Figure 9. The extrapolated δ-values and curve are represented in ma-
genta. (Bottom Left): Extrapolated δE-values. The black X-marks and asterisks are from
the all-illicit opioids overdose data and are found in Figure 9. (Top Right): The effective
reproductive number, Reff(t) = (R0 · S (t)/N(t)), is plotted as the solid black curve using the
baseline values of the parameters of the all-illicit opioids dataset, (2.8) and the extrapolated
δ-values from the best fit line. Just above the Reff curve, R0 is plotted as a dashed blue curve.
(Bottom Right): Parameters found for which R0 is most sensitive to are varied 10% in the
direction of their greatest influence on R0 to give an envelope surrounding Reff.

3. Sensitivity analysis

We execute a sensitivity analysis using the Partial Rank Correlation Coefficient (PRCC) method-
ology [46] to determine the input parameter’s system’s sensitivity and use Latin hypercube sampling
(LHS) to allow for a ±10% uncertainty in the parameter inputs. For the study, we use the parameter
values captured through the parameter estimation and the literature given in (2.5) for heroin and (2.8)
for illicit opioids as our baseline values for 2020. We vary the parameters and initial conditions by
±10% from their baseline values.
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Table 7. Heroin Only Data: PRCC results for movement into I, relapse from T , relapse from
R, and yearly deaths using the baseline parameters and initial conditions and using either
the constant δ or the variable δ. The PRCC values are given at year end time of 2030 and
year end time of 2040. Table values without an entry are not significant or undefined (in the
case of m and b for the constant death rate and δ and δE for the variable death rate). The
corresponding graphs for this Table are given in Figures 5–8.

Param Yearly new I from E Yearly relapse T Yearly relapse R Yearly Deaths
Constant Variable Constant Variable Constant Variable Constant Variable

2030 2040 2030 2040 2030 2040 2030 2040 2030 2040 2030 2040 2030 2040 2030 2040
µ - - - -0.46 - - - -0.53 -0.45 -0.4 -0.49 -0.61 -0.43 - -0.49 -0.63
β 0.97 0.96 0.97 0.98 0.81 0.93 0.87 0.96 0.94 0.94 0.87 0.97 0.94 0.93 0.94 0.98
δ -0.46 -0.59 - - - -0.66 - -0.64 -0.68 - - 0.93 0.5 - -
m - - - -0.52 - - - -0.58 - - - -0.67 - - 0.74 0.44
b - - -0.47 -0.69 - - - -0.71 - - -0.57 -0.8 - - 0.74 -
Λ - - - - - - - - - - - - - - - -
k - - - - 0.92 0.89 0.95 0.91 -0.43 - - -0.41 0.49 - 0.47 -
ρ - - - - -0.64 -0.63 -0.64 -0.59 0.89 0.52 0.8 0.8 - - - -
η1 - - - - 0.78 0.65 0.79 0.73 0.42 - 0.41 - - - -0.41 -
η2 - - - - - - - - - - - - - - - -
η3 - - - - 0.53 0.53 0.62 0.49 - - - - - - - -
α1 0.43 - 0.45 0.47 - - 0.5 0.49 0.7 0.5 0.59 0.63 0.61 - 0.64 0.57
α2 - - - - - - - - - - - - - - - -
ω - - - - - - - - 0.86 0.58 0.8 0.78 - - -0.42 -
ϵ 0.43 - 0.51 0.55 -0.66 -0.53 -0.72 -0.52 - - - - 0.52 0.42 0.56 0.65
βE - - - - - - - - - - - - - - - -
δE - - - - - - - - - - - - - - -
mE - - - - - - - - - - - - - - - -
bE - - - - - - - - - - - - - - - -
k E - - - - - - - - - - - - - - - -
ρE - - - - - - - - - - - - - - - -
ψ1 - - - - - - - - - - - - - - - -
ψ2 - - - - - - - - - - - - - - - -
ψ3 - - - - - - - - - - - -0.44 - - - -
ζ -0.93 -0.9 -0.93 -0.95 -0.68 -0.86 -0.72 -0.9 -0.85 -0.86 -0.77 -0.94 -0.87 -0.85 -0.88 -0.94
χ 0.95 0.93 0.94 0.97 0.8 0.91 0.83 0.94 0.9 0.9 0.85 0.96 0.9 0.88 0.9 0.96
ϵE - - - - - - - - - - - - - - - -
S (0) - - - - - - - - - - - - - - - -
E(0) - - - - - - - - - - - - - - - -
TE(0) - - - - - - - - - - - - - - - -
I(0) 0.86 0.65 0.85 0.85 0.84 0.79 0.9 0.87 0.94 0.79 0.91 0.92 0.94 0.74 0.94 0.91
T (0) 0.46 - - - 0.42 0.47 0.48 0.43 0.64 - 0.56 0.55 0.65 - 0.6 0.51
R(0) - - - - - - - - 0.61 - - 0.41 0.53 - 0.53 -
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Figure 5. Heroin Data: PRCC results over time for those who are entering I for the first
time, with grayed region denoting a lack of significance. These results are summarized in the
text and in Table 7. The left figures have a final time of 2030 whereas the right figures have
a final time of 2040. The top figures keep δ and δE constant at their 2020 values whereas the
bottom figures use the extrapolation functions for δ and δE.

3.1. Heroin only analysis

Discussion of the PRCC values

There must be a monotonic relationship between the output values and model parameters when
measuring sensitivity for the PRCC method [46]. Therefore, we performed monotonicity checks for
all initial conditions and parameter values.

For the yearly number of casual users who enter the HUD class, a monotonic relationship for all
variables and initial conditions was concluded from 2022 to 2040 for the constant and variable death
rates.

For the yearly number of relapses from T counts variable, plots were non-monotonic for several
years for some of the parameters and initial conditions. For the constant and variable death rate, the
yearly number of relapses from T was not monotonic in the initial condition TE(0) from 2022 to 2024,
and it was not monotonic in the parameter ρE from 2028 to 2030; however, neither of these showed up
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Figure 6. Heroin: PRCC results over time for the number of those individuals who relapsed
from T and went back to I, with grayed region denoting a lack of significance. These results
are summarized in the text and in Table 7. The left figures have a final time of 2030 whereas
the right figures have a final time of 2040. The top figures keep δ and δE constant at their
2020 values whereas the bottom figures use the extrapolation functions for δ and δE.

as significant on the PRCC graphs for the relapse T variable.

For the yearly number of relapses from R counts variable, plots were non-monotonic for several
years for some of the parameters and initial conditions. For both the constant and the variable death
rate, the yearly number of relapses from R was not monotonic in Λ from 2026 to 2028; however,
this parameter did not show up as significant on the PRCC graphs for the relapse R variable. For the
constant death rate, the yearly number of relapses from R was not monotonic in ϵ from 2034 to 2036,
but this parameter showed up as insignificant during this time period on the PRCC graph for the relapse
R variable. For the constant death rate, the yearly number of relapses from R was not monotonic in
ρE from 2024 to 2026, but this parameter did not show up as significant on the PRCC graphs for the
relapse R variable. For the constant and variable death rate, the yearly number of relapses from R
was not monotonic in S (0) from 2022 to 2024; on the other hand, this parameter did not show up
as significant on the PRCC graphs for the relapse R variable. For the constant death rate, the yearly
number of relapses from R was not monotonic in ϵE from 2034 to 2036; however, this parameter did
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Figure 7. Heroin: PRCC results over time for the number of those individuals who relapsed
from R and went back to I, with grayed region denoting a lack of significance. These results
are summarized in the text and in Table 7. The left figures have a final time of 2030 whereas
the right figures have a final time of 2040. The top figures keep δ and δE constant at their
2020 values whereas the bottom figures use the extrapolation functions for δ and δE.

not show up as significant on the PRCC graphs for the relapse R variable. For the constant and variable
death rate, the yearly number of relapses from R was not monotonic in TE(0) from 2022 to 2024, but
this parameter did not show up as significant on the PRCC graphs for the relapse R variable. For the
variable death rate, the yearly number of relapses from R was not monotonic in the parameter ϵ from
2036 to 2038; on the other hand, this parameter did not show up as significant during this time period
on the PRCC graph for the relapse R variable. For the variable death rate, the yearly number of relapses
from R was not monotonic in the parameter ρE from 2036 to 2038; however, this parameter did not
show up as significant on the PRCC graph for the relapse R variable. For the variable death rate, the
yearly number of relapses from R was not monotonic in the parameter ϵE from 2024 to 2026 for the
relapse R variable; however, this parameter did not show up as significant on the PRCC graphs for the
relapse R variable.

Finally, we checked the monotonicity results for the yearly number of opioid overdose deaths. For
the constant and variable death rate, the yearly number of opioid overdose deaths was not monotonic
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Figure 8. Heroin: PRCC results over time for the number of yearly deaths due to illicit
opioid use, with grayed region denoting a lack of significance. These results are summarized
in the text and in Table 7. The left figures have a final time of 2030 whereas the right figures
have a final time of 2040. The top figures keep δ and δE constant at their 2020 values whereas
the bottom figures use the extrapolation functions for δ and δE.

in Λ from 2022 to 2024, although this parameter did not show up as significant on the PRCC graphs
for the yearly number of opioid overdose deaths. For the variable death rate, the yearly number of
opioid overdose deaths was not monotonic in the parameter b from 2036 to 2038, but this parameter
showed up as not significant during this time period on the PRCC graph for the yearly number of opioid
overdose deaths.

As the theory requires, we do not use results of significance for the parameters in the years where
monotonicity fails. Similarly, in the ensuing discussion, we don’t consider the variables for the param-
eters in the years when monotonicity fails.

This following discussion presents variables of interest to the healthcare industry and policymakers.
The focus will be on the yearly number of casual users who enter the HUD class for the first time,
the yearly number of individuals who relapse from the T class, the yearly number of individuals who
relapse from the R class, and the number of yearly opioid overdose deaths due to heroin. Although
these variables are not of the original system of equations, we calculate them by keeping track of their
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cumulative yearly totals.
Four graphs for each case correspond to the sensitivities for the constant death rates (at their 2020

values) in 2030 and 2040 (δ = 0.0343 and δE = 0.0078) versus the variable death rate in 2030 and
2040.

As was done in Cole and Wirkus (2022) [10], but duplicated here for the reader’s convenience,
we will refer to the sensitivity results as being “highly significant” if it has a PRCC value of 0.85 or
higher, “significant” if it has a PRCC value of 0.70–0.84, “somewhat significant” if it has a PRCC
value of 0.55–0.69, “slightly significant” if it has a PRCC value of 0.45–0.54, “borderline significant”
if it has a PRCC value of 0.40–0.44, and “not significant” if it has a PRCC value of under 0.40.
The significance of the initial conditions will also not be discussed as reasoned in Cole and Wirkus
(2022) [10]. Additionally, only parameters that may be changed due to external influence will be
discussed.
Yearly new I from E:
The variable Yearly new I from E gives the count of the number of casual users from the E class who
entered the I (HUD) class; see Figure 5 and Table 7. The comparisons of the PRCC values graphs are
similar, and the discussion will be relevant for all four unless otherwise noted. The analysis ranked
three parameters highly significant. β (transmission rate of moving to E from S through interaction
with someone from I) is positively correlated. An increase in this transmission rate would cause an
increase in the number of individuals who transition into the casual user E class, as expected. χ (the
rate of individuals in E that transition to I) is also positively correlated. An increase in this rate would
also cause an increase in the number of individuals entering the I class, as expected. Not only are more
individuals entering I, but there are also more individuals interacting with S to influence them into E.
ζ (The rate of individuals in E returning to S ) is negatively correlated. Hence, as expected, lowering
this rate would decrease the number of individuals entering the I class. Thus, it is recommended in
the short and long term to reduce the rate of transmission of those casual users leading to IOUD and
increase the rate that casual users stop using by entering back into the S class. At the year-end of 20
years, two parameters ranked somewhat significant, δ (HUD overdose death rate) and b (one of the
parameters for the variable death rate). They are negatively correlated, so increasing these rates would
decrease the number of individuals entering the I class. However, we ethically would not want the
individuals entering the I class to drop in this manner; therefore, it would be beneficial to concentrate
on the other ones.
Yearly relapse T :
The variable yearly relapse T gives the count of the individuals who relapsed from the T class back
to the I class; see Figure 6 and Table 7. The graphs for the year end of 2030 for both death rates are
similar. The parameter κ (rate of individuals leaving treatment and returning to I) is ranked highly
significant. Since it is positively correlated, increasing this rate will increase the number of individuals
who relapse from T back to I. The parameters β (transmission rate of moving to E from S through
interaction with someone from I), χ (the rate of individuals in E that transition to I), and η1 (rate of
individuals in I who enter specialty treatment on their own) are ranked significant and are positively
correlated. Hence, a decrease in these rates would cause a reduction in the number of individuals who
relapse from T . Although we want to see a drop, we still wish for individuals to enter into treatment
even if they may retreat to I; hence, we do not consider it beneficial to decrease η1. The parameters ζ
(rate of individuals in E returning to S ), ϵ (saturation term for entering a specialty treatment facility),
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and ρ (rate of individuals leaving treatment and entering the recovered class) came up as somewhat
significant and all are negatively correlated. Thus, an increase in these parameters would decrease the
yearly relapse T counts. Since an increase in ϵ would lower the limit of available treatment facilities,
we would not focus on this parameter since we want individuals to get into treatment. Hence, in
the short term of ten years, decreasing the relapse rate from T , decreasing the rate of casual users
ending up with OUD, reducing the transmission rate of the HUD class, increasing the rate of casual
users returning to the S class, and increasing the rate of individuals who complete treatment are all
beneficial avenues for decreasing the yearly relapse T counts. The graphs for the year end of 2040 are
similar with a few differences. The significance of parameters β and ζ increased, and they were the
most significant parameters. Although κ decreased in relevance, it remained highly influential. As with
the variable yearly new I from E variable, the parameters δ and b were ranked as somewhat significant
in the long term and negatively correlated. Similarly, we do not want death by overdose to decrease
the counts.
Yearly relapse R:
The variable yearly relapse R gives the count of the individuals who relapsed from the R class back to
the I class; see Figure 7 and Table 7. The graphs are similar for both death rates for 2030 and 2040.
The highly significant parameters are β (transmission rate of moving to E from S through interaction
with someone from I) and χ (rate of individuals in E that transition to I); both are positively correlated.
Hence, as expected, increasing these rates would increase the number of individuals who relapse to I
from the recovered class. Increasing those values would result in an overall increase in the number
of individuals who would enter I and then possibly flow into the recovered class either directly or
indirectly through a specialty treatment facility. The parameter ρ (rate of individuals leaving specialty
treatment and entering the recovered class) ranked as significant to highly significant. As expected,
since it is positively correlated, increasing this rate would increase the number of yearly relapse R
counts. The parameter ω (rate of individuals in I who enter R by either completing treatment in non-
specialty facilities or “quitting cold turkey”) ranked significant. Positively correlated, a decrease in
those directly entering the R class from I would decrease the Yearly relapse R counts. However, this
reduction would reduce the overall number of individuals in R. The goal is always to move individuals
out of the I class in beneficial ways, even if the relapse count could be higher. Hence, we do not
consider decreasing ω. The parameter ζ (rate of individuals in E returning to S ) ranked as significant.
Negatively correlated, increasing this parameter would reduce the yearly relapse R counts. For the
year-end of 20 years and the variable death rate, this parameter increased its significance over time
to a ranking of highly significant. The parameter α1 (rate of individuals in R relapsing to I on their
own accord) ranked as somewhat influential. Since this parameter is positively correlated, decreasing
the rate reduces the yearly relapse R counts. Hence, in the short and long term, it would be best to
focus on reducing the HUD class transmission rate, lowering the rate of individuals entering I from E,
increasing the rate of return from E to S , and decreasing the relapse rate of R for those relapsing on
their own accord.

As with the previous variables, the parameters δ and m showed somewhat significant in the long run
and were negatively correlated. Additionally, b ranked as sensitive. We again reiterate that we do not
want death by overdose to be the reason for a decrease in the counts.
Yearly deaths:
The variable yearly deaths count the number of HUD overdose deaths from the E class and the I class;
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see Figure 8 and Table 7. The comparisons of the PRCC values graphs are similar, and the discussion
will be relevant for all four plots unless otherwise noted. Three parameters ranked highly significant.
First, β (transmission rate of moving to E from S through interaction with someone from I) is positively
correlated. An increase in this transmission rate would cause an increase in the number of HUD
overdose deaths, as expected. Second, χ (rate of individuals in E that transition to I) is also positively
correlated. An increase in this rate would also cause an increase in the number of HUD overdose
deaths, as hypothesized. Finally, ζ (rate of individuals in E returning to S ) is negatively correlated.
Hence, as one would predict, decreasing this rate would decrease the number of HUD overdose deaths.
Therefore, it is recommended in the short and long term to reduce the HUD transmission rate, decrease
the rate of casual users with OUD, and increase the rate that casual users stop using and enter back into
the S class.

The parameter δ (HUD overdose death rate) ranked highly significant for the constant death rate at
year-end of ten years. Since it was positively correlated, an increase in the death rate would increase the
number of yearly death counts, as expected. However, at the year-end of 20 years, for the constant death
rate, δ showed up as only slightly significant. Counter-intuitively, the significance of this parameter
decreased as time went on. An interpretation would be that the consequence of a high death rate leading
to a higher number of overdose deaths led to fewer users in the I class over time. As a result, there
are fewer individuals in I to interact with susceptibles. Therefore, this parameter is less sensitive in the
long run because the number of influenced individuals decreases, leading to an overall decrease in the I
population and fewer yearly deaths. This case advocates the urgency to expedite users out of the I class
into treatment to protect them from the high overdose death rate. This circumstance is the same for the
variable death rate and the parameters m and b. In the short term, these parameters were significant,
although they were not in the long term. This discovery could also be why ϵ ranked as somewhat
significant for the year-end of 20 years and the variable death rate. This significance increases from
the 10-year mark. Positively correlated, as one would predict, increasing this parameter increases
the yearly deaths. ϵ is inversely proportional to the availability of specialty treatment facilities, and
increasing this parameter will decrease the availability of an individual to get care.

3.2. All-illicit opioids analysis

Discussion of the PRCC values

There must be a monotonic relationship between the output values and model parameters when
measuring sensitivity for the PRCC method. Therefore, we performed monotonicity checks for all
initial conditions and parameter values.

For the yearly number of casual users who enter the IOUD class, a monotonic relationship for all
variables and initial conditions was concluded from 2022 to 2040 for the constant and variable death
rates.

For the yearly number of relapses from T counts variable, plots were non-monotonic for several
years for some of the parameters and initial conditions. For the constant and variable death rates, the
yearly number of relapses from T was not monotonic in parameter βE from 2024 to 2025; however,
this parameter did not show up as significant during this time period on the PRCC graphs for the yearly
number of relapses from T . For the constant and variable death rates, the yearly number of relapses
from T was not monotonic in parameter ζ, from 2024 to 2025; however, this parameter did not show up
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Figure 9. Fitting model output to scaled data (with error bars when given) for all-illicit
opioids. The red squares are the SAMHSA data and the blue curves are the model output
as described in the text. (Top Left): Illicit opioid overdose deaths by year. (Top Middle)
Individuals with illicit opioid use disorder (IOUD) in the last year. (Top Right) Those who
entered specialty treatment from IOUD in the past year. (Middle Left) Individuals who used
illicit opioids in the last year. (Middle Middle) Those who entered specialty treatment from
the illicit opioid casual user class, E. (Middle Right) Those who reported using illicit opioids
for the first time (initiation from S to E). (Bottom Left) The effective reproductive number,
Reff(t) = (R0 · S (t)/N(t)). (Bottom Middle) Overdose death rate for IOUD class: asterisks
and X-marks are calculated from data (see text and Eq (2.6)). Both lines are calculated with
a least squares fit. (Bottom Right) Overdose death rate for E Class: asterisks and X-marks
are calculated from data (see text and Eq (2.7)).
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Table 8. All illicit opioids data: PRCC results for movement into I, relapse from T , relapse
from R, and yearly deaths using the baseline parameters and initial conditions and using either
the constant δ or the variable δ. The PRCC values are given at year end time of 2030 and
year end time of 2040. Table values without an entry either are not significant or undefined
(in the case of m and b for the constant death rate and δ and δE for the variable death rate).
The corresponding graphs for this table are given in Figures 10–13.

Param Yearly new I from E Yearly relapse T Yearly relapse R Yearly Deaths
Constant Variable Constant Variable Constant Variable Constant Variable

2030 2040 2030 2040 2030 2040 2030 2040 2030 2040 2030 2040 2030 2040 2030 2040
µ - - - - - - - - - - - - - - - -
β 0.6 0.66 0.57 0.45 - 0.48 - - - 0.58 0.52 0.45 - 0.61 0.47 0.43
δ - - - - - - - - - - - - 0.7 0.69 - -
m - - - - - - - - - - - - - - 0.41 0.53
b - - - - - - - - - - - - - - 0.51 -
Λ - - - - - - - - - - - - - - - -
k - - - - 0.73 0.62 0.71 0.45 - - - - - - - -
ρ - - - - -0.62 - -0.65 -0.48 - - - - - - - -
η1 - - - - 0.75 0.61 0.7 0.61 - - - - - - - -
η2 - - - - - - - - - - - - - - - -
η3 - - - - 0.68 0.5 0.67 0.45 - - - - - - - -
α1 - 0.4 - - 0.81 0.75 0.8 0.7 0.87 0.75 0.87 0.69 0.67 0.71 0.72 0.65
α2 - - - - - - - - - - - - - - - -
ω - -0.48 - -0.41 -0.81 -0.77 -0.82 -0.72 - - - - -0.7 -0.71 -0.75 -0.66
ϵ - - - - - - - - - - - - - - - -
βE 0.98 0.98 0.97 0.97 0.88 0.96 0.88 0.95 0.96 0.97 0.95 0.96 0.95 0.97 0.95 0.97
δE - - - - - - - - - - - - - -
mE - - - - - - - - - - - - - - - -
bE - - - - - - - - - - - -
kE - - - - - - - - - - - - - - - -
ρE - - - - - - - - - - - - - - - -
ψ1 - - - - - - - - - - - - - - - -
ψ2 - - - - - - - - - - - - - - - -
ψ3 - - - - - - - - - - - - - - - -
ζ -0.98 -0.98 -0.97 -0.97 -0.86 -0.96 -0.88 -0.94 -0.95 -0.97 -0.96 -0.96 -0.95 -0.97 -0.95 -0.96
χ - - - - 0.59 0.5 0.55 0.4 0.44 - - - - - - -
ϵE - - - - - - - - - - - - - - - -
S (0) - - - - - - - - - - - - - - - -
E(0) - - - - - - 0.43 - - - - - - - - -
TE(0) - - - - - - - - - - - - - - - -
I(0) - - - - - - - - - - - - - - - -
T (0) - - - - - - - - - - - - - - - -
R(0) - - - - 0.68 0.46 0.6 0.45 0.75 - 0.7 0.49 0.53 - 0.47 0.45
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Figure 10. Illicit opioids: PRCC results over time for those who are entering I for the first
time, with grayed region denoting a lack of significance. These results are summarized in the
text and in Table 8. The left figures have a final time of 2030 whereas the right figures have
a final time of 2040. The top figures keep δ and δE constant at their 2020 values whereas the
bottom figures use the extrapolation functions for δ and δE.

as significant during this time period on the PRCC graphs for the yearly number of relapses from T . For
the constant death rate, the yearly number of relapses from T was not monotonic in parameter β, from
2024 to 2025; however, this parameter did not show up as significant during this time period on the
PRCC graphs for the yearly number of relapses from T . For the constant death rate, the yearly number
of relapses from T was not monotonic in the initial condition TE(0) from 2024 to 2026; however, this
parameter did not show up as significant on the PRCC graphs for the yearly number of relapses from T .
For the variable death rate, the yearly number of relapses from T was not monotonic in the parameter
ρE from 2024 to 2026; however, this parameter did not show up as significant on the PRCC graphs for
the yearly number of relapses from T .

For the yearly number of relapses from R counts variable, plots were non-monotonic for several
years for some of the parameters and initial conditions. For the constant death rate, the yearly number
of relapses from R was not monotonic in the parameters κE, ψ1, and ψ3 from 2022 to 2023; however,
these parameters did not show up as significant on the PRCC graphs for the yearly number of relapses
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Figure 11. Illicit opioids: PRCC results over time for the number of those individuals who
relapsed from T and went back to I, with grayed region denoting a lack of significance. These
results are summarized in the text and in Table 8. The left figures have a final time of 2030
whereas the right figures have a final time of 2040. The top figures keep δ and δE constant at
their 2020 values whereas the bottom figures use the extrapolation functions for δ and δE.

from R. For the constant death rate, the yearly number of relapses from R was not monotonic in
parameter ω from 2036 to 2037; however, this parameter did not show up as significant during this
time period on the PRCC graph for the yearly number of relapses from R. For the variable death rate,
the yearly number of relapses from R was not monotonic in parameters κE, ρE, ψ1, ψ2, and ψ3 from
2022 to 2024; however, these parameters did not show up as significant on the PRCC graphs for the
yearly number of relapses from R. For the constant death rate, the yearly number of relapses from R
was not monotonic in parameter ω in 2040. However, this parameter did not show up as significant
during this time on the PRCC graph for the yearly number of relapses from R.

Finally, we checked the monotonicity results for the yearly opioid overdose deaths. For the constant
death rate, the yearly number of opioid overdose deaths was not monotonic in parameter κE from 2024
to 2025; however, this parameter did not show up as significant on the 2030 PRCC graph and showed
up as insignificant during this time period on the 2040 PRCC graph for the yearly number of opioid
overdose deaths. For the constant death rate, the yearly number of opioid overdose deaths was not
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Figure 12. Illicit opioids: PRCC results over time for the number of those individuals who
relapsed from R and went back to I, with grayed region denoting a lack of significance. These
results are summarized in the text and in Table 8. The left figures have a final time of 2030
whereas the right figures have a final time of 2040. The top figures keep δ and δE constant at
their 2020 values whereas the bottom figures use the extrapolation functions for δ and δE.

monotonic in the parameters ψ1, ψ2, and ψ3 from 2024 to 2025; however, these parameters did not
show up as significant on the PRCC graphs for the yearly number of opioid overdose deaths. For the
variable death rate, the yearly number of opioid overdose deaths was not monotonic in parameters κE,
ρE, ψ1, ψ2, and ψ3 from 2024 to 2026; however, this parameter did not show up as significant on the
PRCC graphs for the yearly number of opioid overdose deaths.

As the theory requires, we do not use results of significance for the parameters in the years where
monotonicity fails. Similarly, in the ensuing discussion, we don’t consider the variables for the param-
eters in the years when monotonicity fails.

The following discussion presents variables of interest to the healthcare industry and policymakers.
The focus will be on the yearly number of the casual users who enter the IOUD class for the first time,
the yearly number of individuals who relapse from the T class, the yearly number of individuals who
relapse from the R class, and the yearly opioid overdose deaths due to all-illicit opioids. Although
these variables are not of the original system of equations, we calculate them by keeping track of their
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Figure 13. Illicit opioids: PRCC results over time for the number of yearly deaths, with
grayed region denoting a lack of significance. These results are summarized in the text and
in Table 8. The left figures have a final time of 2030 whereas the right figures have a final
time of 2040. The top figures keep δ and δE constant at their 2020 values whereas the bottom
figures use the extrapolation functions for δ and δE.

cumulative yearly totals.
Four graphs for each case correspond to the sensitivities for the constant death rates (at their 2020

values) in 2030 and 2040 (δ = 0.0343 and δE = 0.0078) versus the variable death rate in 2030 and
2040.

We will refer to the sensitivity results as being “highly significant” if it has a PRCC value of 0.85
or higher, “significant” if it has a PRCC value of 0.70–0.84, “somewhat significant” if it has a PRCC
value of 0.55–0.69, “slightly significant” if it has a PRCC value of 0.45–0.54, “borderline significant”
if it has a PRCC value of 0.40–0.44, and “not significant” if it has a PRCC value of under 0.40.
The significance of the initial conditions will also not be discussed as reasoned in Cole and Wirkus
(2022) [10]. Additionally, only parameters that may be changed due to external influence will be
discussed.
Yearly new I from E:
The variable yearly new I from E gives the count of the number of casual users from the E class who
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entered the I (all-illicit opioids) class; see Figure 10 and Table 8. The comparisons of the PRCC values
graphs are similar, and the discussion will be relevant for all four plots unless otherwise noted. The two
parameters βE and ζ ranked highly significant. Since the parameter βE (transmission rate of moving
to E from S through interaction with someone from E) was positively correlated, increasing this rate
would increase the number of yearly new I from E counts. On the other hand, since the parameter ζ
(rate of individuals in E returning to S ) is negatively correlated, increasing this rate would decrease
the number of yearly new I from E counts. Finally, the parameter β (transmission rate of moving to E
from S through interaction with someone from I) ranked as somewhat significant to significant. Since
it is positively correlated, increasing this parameter would increase the number of yearly new I from E
counts. Therefore, decreasing the transmission rates, with more focus on βE, plus increasing the rate
of individuals going back to the S class from E would be very beneficial to drive down the yearly new
I from E counts.

Yearly relapse T :
The variable yearly relapse T gives the count of the individuals who relapsed from the T class back
to the I class; see Figure 11 and Table 8. The comparisons of the PRCC values graphs are similar,
and the discussion will be relevant for all four plots unless otherwise noted. The two parameters
βE and ζ were highly significant. Since the parameter βE (transmission rate of moving to E from S
through interaction with someone from E) is positively correlated, increasing this rate would increase
the number of yearly relapse T counts, as expected. Since the parameter ζ (rate of individuals in E
returning to S ) is negatively correlated, an increase in this rate would decrease the number of yearly
relapse T counts, as expected. Two parameters, ω (rate of individuals in I who enter R by either
completing treatment in non-specialty facilities or “quitting cold turkey”) and α1 (rate of individuals in
R relapsing to I on their own accord) came up as significant. Sinceω is negatively correlated, increasing
this rate decreases the yearly relapse T counts. This decrease happens because fewer individuals would
go to the T class. However, we disregard this parameter because we want individuals to transition out
of I whether they go to R or T . Since α1 is positively correlated, a decrease in this rate would decrease
the yearly relapse T counts, which would be agreeable. The parameters η1 (rate of individuals in I
who enter specialty treatment on their own) and κ (rate of individuals leaving treatment and returning
to I) ranked as somewhat significant to significant. Since η1 is positively correlated, decreasing this
rate would reduce the number of yearly relapses from T counts because more individuals would be
in the T class. Although we want to decrease the number of relapses, we still wish for individuals
to go to treatment Therefore, we disregard this parameter. Since κ is positively correlated, decreasing
this rate would reduce the number of yearly relapses from T counts, as expected and agreeable. The
parameters η3 (rate of individuals in I who enter T through interaction with a susceptible), ρ (rate of
individuals leaving specialty treatment and entering the recovered class), and χ (rate of individuals in E
that transition to I) showed up as somewhat significant. Since η3 is positively correlated, increasing this
rate would increase the yearly relapse T counts. Following the same reasoning as η1, we disregard this
parameter. Since the parameter ρ is negatively correlated, an increase in this rate would decrease the
number of yearly relapse T counts, as expected and agreeable. Since χ is positively correlated, lowering
this rate would reduce the number of yearly relapse T counts, as expected and agreeable. First, it is
recommended to focus on starting with, most importantly, decreasing the casual user transmission rate
and increasing the rate of users returning to the S class from the E class. Then, it is beneficial to
decrease the relapse rates from the R class followed by the T class, increase the treatment completion
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rate from the T class, and decrease the rate of those casual users entering the I class.

Yearly relapse R:
The variable yearly relapse R gives the count of the individuals who relapsed from the R class back
to the I class; see Figure 12 and Table 8. The comparisons of the PRCC values graphs are similar,
and the discussion will be relevant for all four plots unless otherwise noted. The two parameters βE

(transmission rate of moving to E from S through interaction with someone from E) and ζ (rate of
individuals in E returning to S ) came up as highly significant. Since the parameter βE is positively
correlated, increasing this rate would increase the number of yearly relapse R counts. On the other
hand, since the parameter ζ is negatively correlated, an increase in this rate would decrease the number
of relapse R counts. The parameter α1 (rate of individuals in R relapsing to I on their own accord)
came up as significant in the short term but then decreased to somewhat significant in the long run for
both death rates. Since α1 is positively correlated, lowering this parameter would reduce the number
of relapse R counts. Hence in the short term, it is recommended to focus on decreasing the casual user
transmission rate, increasing the rate casual users go back to the susceptibles, and reducing the relapse
rate of individuals from the R class on their own. Finally, in the long run, the focus should be more
concentrated on the casual user transmission rate and the rate of the casual users back to S .

Yearly deaths:
The variable yearly death gives the count of the number of opioid overdose deaths from the E class
and the I class; see Figure 13 and Table 8. Since the comparisons of the PRCC values graphs are
similar, the discussion will be relevant for all four plots unless otherwise noted. The two parameters
βE (transmission rate of moving to E from S through interaction with someone from E) and ζ (rate
of individuals in E returning to S ) came up as highly significant. Since the parameter βE is positively
correlated, a decrease in this rate would decrease the number of yearly death counts. Since the pa-
rameter ζ is negatively correlated, an increase in this rate would reduce the number of yearly death
counts. Two parameters, ω (rate of individuals in I who enter R by either completing treatment in
non-specialty facilities or “quitting cold turkey”) and α1 (rate of individuals in R relapsing to I on
their own accord) came up as significant. Since ω is negatively correlated, increasing this rate will
decrease the yearly death count. Since α1 is positively correlated, reducing this rate would lower the
yearly death count. Therefore, we recommend focusing on starting with, most importantly, decreasing
the casual user transmission rate and increasing the rate casual users go back to the susceptible class.
Then, increasing the rate of individuals going to the recovered class from I and decreasing the relapse
rate of the R class on one’s own.

The sensitivity results for the overdose death rate parameters are similar to the heroin-only dataset.
Although in the beginning, the parameters δ and b display high significance as time goes on, this
significance drops. A high death rate leading to a higher number of overdose deaths led to fewer users
in the I class over time. As a result, there are fewer individuals in I to interact with susceptibles.
Therefore, this parameter is less sensitive in the long run because the number of individuals being
influenced decreases, leading to an overall reduction in the I population and fewer yearly deaths. This
case advocates the urgency to expedite users out of the I class into treatment to be protected from the
high overdose death rate.
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4. Summary and discussion

We presented a model for the heroin epidemic dynamics and illicit opioid use epidemic dynamics.
We do not intend to assert that these results apply to the more general opioid epidemic, which was
initially driven by legitimate prescriptions. In Cole and Wirkus (2022) [10], we illustrate one such
model called the IOUD model, which features four classes: susceptibles, IOUD class, specialty treat-
ment facilities, and recovered and use datasets from heroin use. Here we additionally extend this to
include illicit opioid use (IOUD). There are multiple ways an individual could cycle among the classes.
For example, one could cycle from IOUD to treatment to recovery and then back to the IOUD class.
However, once an individual had IOUD, they could no longer cycle back to the susceptibles. This
model also featured a saturation treatment function which limits the flow into the specialty treatment
facilities from the IOUD class due to the limited availability of care. We extended the IOUD model
in Cole and Wirkus (2022) [10] to include a casual user class and a corresponding specialty treatment
facilities class. We referred to this new version as the IOUD model with a casual user class.

We found realistic parameter values through the literature and parameter estimation and matched
them to the CDC and SAMHSA data. The IOUD model with a casual user class displayed linearly
increasing overdose death rates. This increase started in 2011 for the HUD overdose death rates, δ and
δE using the heroin-only dataset. However, this increase started in 2013 using the all-illicit opioids
dataset. On the basis that the IOUD model with a casual user class approaches constant population
N∗ = (Λ−δI∗−δEE∗)/µ, we scaled the SAMHSA data to a population of 200,000 (ignoring the overdose
death rate). Scaling in such a way permitted us to enhance our understanding of the heroin/illicit
opioids epidemic dynamics.

With the parameter estimates, we determined that extrapolated δ-values resulted in bistability. In
this region, although the effective reproductive number, Reff, is less than one, we found both the DFE
and EE stable. For the extended IOUD model, with realistic parameter values for heroin data and the δ
and δE values extrapolated to future values; for example their 2026 values (δ ≈ 0.0501, δE ≈ 0.0205),
we found both the DFE and an EE were stable; and for sufficiently large values of δ and δE (the late-
2045 values of 0.1025 and 0.042, respectively), we found that only the DFE was stable. This discovery
of backward bifurcation emphasizes a complication for eliminating HUD. For the IOUD model with
the heroin-only dataset, there is a minimum threshold ϵ value below which we did not have bistability.
In other words, increasing accessibility to specialty treatment facilities is vital to ending this epidemic.
In addition, including the casual user class also appears to increase the region of bistability.

We discovered an alarming result concerning the overdose death rate for the PRCC results for
yearly death counts in the IOUD model with the casual user class. The following applies to both
heroin and all-illicit opioids datasets. The significance of the overdose death rate was initially high, as
expected. However, its relevance decreased as time moved on, indicating the higher death rate reduced
the population in the IOUD class to a degree where fewer individuals interacted with the susceptibles.
This decreased interaction led to fewer individuals flowing into the IOUD class. Although we want
fewer individuals individuals departing to go to the IOUD class, we do not wish for the reason to be
higher overdose deaths. Therefore, there is an urgency to expedite users out of the IOUD class into
treatment. This PRCC result concurs with our startling revelation discovered for our original HUD
model. For the sake of considering potential scenarios, suppose the growth rate of overdose death rates
continues while the other parameters remain at their current estimated values. In that case, the DFE
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will be the only stable, biologically relevant equilibrium predicted to happen by 2038 in the original
HUD model and by 2046 for the HUD model (=IOUD model with heroin dataset) with casual users.
Again, this emphasizes the importance of driving down the future outlook of this epidemic ending
with overdose deaths from heroin use. Strategies that could reduce this rate or keep it constant include
increased police and law intervention, updated enforcement policies, and unprecedented procedures
targeted at enforcement of laws.

Although one would intuitively predict many of our sensitivity analysis results, some interesting
results emerged. A surprising result in the sensitivity analysis for the all-illicit opioids dataset was the
importance of the casual user transmission rate over-ranking the IOUD transmission rate by far. Thus,
it is essential not to overlook the casual users contributing to this epidemic.

Although the last parameter discussed showed significance for some of the variables in the extended
model with both datasets, the parameter quantifying the rate of relapse from recovery on their own
accord consistently had significance for most of the variables. Furthermore, this case was especially
apparent in the opioid dataset and exemplified when comparing the heroin-only and all-illicit opioids
dataset parameter values. We note that the parameter for individuals moving to the recovered class
through non-specialty treatment facility means or quitting on their own is much higher for the all-illicit
opioid epidemic than the heroin epidemic. We hypothesize that relapse may be more problematic for
those individuals who go directly to the recovered class instead of going through specialty treatment
facilities. Focus on recovered people that are relapsing came there by omega than not through specialty
treatment route. Efforts to increase those going into specialty treatment and decrease the relapse rate
for the individuals in recovery are exceptionally beneficial for the all-illicit opioid epidemic.

Comparing parameters between the datasets for the IOUD model with a casual user, we discover
intriguing results. We note that the rate quantifying how many individuals go back to being susceptible
from casual use is much higher for the heroin epidemic than the all-illicit opioids epidemic. Individuals
remain longer in the casual user class of the all-illicit opioid epidemic. This development concurs with
the PRCC results on the importance of not considering how influential the casual users are in driving
the opioid epidemic. We also note that the going to treatment rates were significantly smaller for those
in the opioid epidemic, whether casual users or the IOUD class. It signifies that illicit opioid pain
medication users are more unlikely to seek treatment. It would be beneficial to raise awareness of this
fact.

Future work extends the IOUD model with a casual user class by adding a general treatment class to
distinguish between specialty treatment facilities and non-specialty treatment facilities. Furthermore,
adding a prescription class to the IOUD model with a casual user class to incorporate those using opioid
prescriptions by a physician’s order is also another consideration forthcoming. As mentioned earlier,
an age-structured model as well as allowing for parameters to change with time could be additional
extensions [12, 13]. Finally, additional data collection could be undertaken (e.g., by SAMHSA) that
would give more frequent data points for what is presented in Tables 4–6. Besides likely requiring
additional funding, this would necessitate further collaboration with modelers with the hope that the
results would give additional insight for best ways to address this epidemic.
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