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Abstract: Competing failure models with degradation phenomena and sudden failures are becoming
more and more common and important in practice. In this study, the generalized pivotal quantity
method was proposed to investigate the modeling of competing failure problems involving both
degradation and sudden failures. In the competing failure model, the degradation failure was modeled
through a Wiener process and the sudden failure was described as a Weibull distribution. For point
estimation, the maximum likelihood estimations of parameters µ and σ2 were provided and the inverse
estimation of parameters η and β were derived. The exact confidence intervals for parameters µ, σ2,
and β were obtained. Furthermore, the generalized confidence interval of parameter η was obtained
through constructing the generalized pivotal quantity. Using the substitution principle, the generalized
confidence intervals for the reliability function, the pth percentile of lifetime, and the mean time
to failure were also obtained. Simulation technique was carried out to evaluate the performance
of the proposed generalized confidence intervals. The simulation results showed that the proposed
generalized confidence interval was effective in terms of coverage percentage. Finally, an example was
presented to illustrate the application of the proposed method.

Keywords: competing failure model; Wiener process; Weibull distribution; generalized confidence
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1. Introduction

With the development and progress of manufacturing technology, modern products are designed
with complex structures and have high reliability. However, for some high reliablity products, it is hard
to obtain their failure data through traditional life tests within a short period of time. However, in many
cases, degradation measurements can provide valuable information related to the failure mechanism of
the product. Therefore, the product’s reliability can be inferred and estimated through the degradation
data of quality characteristics obtained [1].

https://www.aimspress.com/journal/mbe
https://dx.doi.org/10.3934/mbe.2024140


3147

In recent years, various kinds of degradation models have emerged and been studied. Some of
these models are stochastic process models, mixed-effect models [2,3], and so on. Typical degradation
models include the general degradation path models and stochastic process models. Meeker et al.[4]
used a nonlinear regression model with mixed-effects to analyze constant-stress accelerated
degradation test (CSADT) data. Shi and Meeker [5] discussed the accelerated destructive degradation
test planning of a nonlinear regression model through the Bayesian method. The stochastic process
models include the Wiener process model [6–12], the Gamma process model [13–17], and the inverse
Gaussian (IG) process model [18–22]. Although Ye and Xie [23] have made a comprehensive study
on degradation analysis of products with single quality characteristics (QC), reliability analysis of
complex systems with two or more competing failure modes (e.g. sudden failure, degradation failure)
is still a challenge.

The modeling and statistical analysis of competing risk data has increasingly become a hot issue in
the field of reliability, and there are many literatures on the statistical analysis of competing risk data
(or competing risk model), such as Nassr et al. [24], Ramadan et al. [25], Mohamed et al. [26] and
Mohamed et al. [27]. Huang et al. [28] studied the optimal maintenance scheme of multi-dependent
competitive degradation and shock processes. Fan et al. [29] used degradation-shock dependence to
model the dependent competitive failure process and used Monte Carlo techniques to calculate the
reliability of the system. Xu et al. [30] modeled competing failure with the bivariate Wiener
degradation process. Wang et al. [31] proposed two semiparametric additive mean models for
clustered panel count data, and estimated the regression parameters of interest by constructing the
estimation equations. Mutairi et al. [32] studied the inverse Weibull model based on jointly type-II
hybrid censoring samples through the Bayesian or non-Bayesian methods. Bhat et al. [33] discussed
the properties and Bayesian estimation of the odd lindley power rayleigh distribution.

A motivating example of this study is provided by Huang and Askin [34]. Units in the system may
fail when the solder/pad interface breaks due to fatigue [35], or when the electrical/optical signal drops
to unacceptable levels due to aging degradation [36]. In this example, an electronic device failed caused
by two independent failure elements: the light intensity degradation (soft failure), which is considered
a degradation phenomenon, because at some common inspection times to observe and measure the
light intensity of the device, the solder/bond pad interface breaks, which is regarded as a sudden failure
(hard failure). The original data given in Tables 1 and 2 was measured under the same conditions.
The degradation data is the ratio of the current brightness to the startup brightness. When this ratio
is reduced by 60%, the product is assumed to fail. These two failure processes are both competitive
and independent of each other. In a competitive failure model, the lifetime of the system is the least of
many random lifetimes.

To analyze the above data, Huang and Askin [34] assumed that both the sudden and degradation
failures are modeled by a Weibull distribution and they discussed reliability analysis of this competing
failure model. In their paper, they assumed that the population is homogeneous and describe the
degradation process by assuming that the light intensity level at each inspection time follows a
Weibull distribution whose shape and scale parameters are time dependent. Both of the shape and
scale parameters are estimated by the degradation levels observed at each time. Zhao and Elsayed [37]
assumed that the sudden failure time follows a Weibull distribution and the degradation failure process
is modeled by a Brownian motion, and they used the maximum likelihood estimate (MLE) method to
obtain the estimates of the model. Studies based on Huang and Askin [34] and Cha et al. [38] assume
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Table 1. The ratio of current brightness and startup brightness.

Inspection time (hours)
Unit 500 1000 1500 2000 2500 3000 3500 4000

1 97.5 96.7 95.9 95.0 94.3 93.5 92.7 91.9
2 97.9 97.1 96.3 95.6 94.8 94.0 93.3 92.5
3 98.0 97.3 96.5 95.7 95.0 94.2 93.5 92.8
4 98.3 97.6 96.8 96.1 95.4 94.6 93.9 93.2
5 99.6 99.0 98.3 97.7 97.1 96.5 95.9 95.3
6 100 99.4 98.9 98.3 97.7 97.1 96.6 96.0
7 100 99.5 98.9 98.3 97.8 97.2 96.7 96.1
8 100 99.7 99.1 98.5 98.0 97.4 96.9 96.4
9 100 100 99.5 99.0 98.5 97.9 97.4 96.9

10 100 100 99.8 99.3 98.8 98.3 97.8 97.3

Table 2. The hard failure data for the weld interface fractures.

Unit 1 2 3 4 5 6 7 8 9 10
lifetime (days) 555 726 775 844 979 1000 1049 1142 1199 1268

that the large heterogeneity observed during degradation is described in part by considering two
distinct subpopulations and using least squares estimation to obtain the main reliability features.

Reliability is often closely related to system security. Hence, reliable inference procedures for
competing failure model studies with small sample cases have become an important issue in reliability
analysis. The challenge of providing reliable inference procedures based on small samples inspires us
to explore interval estimation approaches for competing failure models. In this paper, we propose a
Wiener-weibull competing failure model and develop the generalized pivotal quantity (GPQ) method
to explore the interval estimation of system’s reliability metrics under small sample case, and use the
proposed model and method to analyze the data in the motivated example.

The rest of the paper is arranged as follows. In Section 2, we outline the Wiener-weibull competing
failure model. In Section 3, the MLEs and inverse estimates (IEs) of model parameters are derived and
the exact confidence intervals (ECIs), generalized confidence intervals (GCIs) for model parameters,
and some important reliability metrics such as the pth quantile of lifetime, the reliability function,
and the mean time to failure (MTTF) of system are developed. In Section 4, Monte Carlo techniques
are used to examine the performance of the proposed GCIs in terms of the coverage percentage (CP)
and average interval length (AL). In Section 5, an illustrative example is given to apply the proposed
method. Finally, we summarize the article in Section 6.

2. Wiener-weibull competing failure model

Supposed that the system is equipped with two groups of components: The first group contains a
component, whose degradation process of quality characteristic is described as a stochastic process;
the second group contains a component, whose lifetime is modeled by sudden failure. Moreover, the
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two components are operating independently. In this paper, we assume that the degradation process of
quality characteristic for the first component is modeled by a Wiener process, and the lifetime of the
second component due to sudden failure follows a Weibull distribution.

2.1. Wiener degradation process

It is assumed that the degradation path of the quality characteristics of the first component can be
fitted using the Wiener process {X(t), t ≥ 0}, denoted by

X(t) = µt + σB(t)

where µ and σ > 0 are the drift and diffusion parameters, respectively, µ reflects the degradation rate,
and B(·) denotes a standard Brownian motion. The Wiener process X(t) has the following properties:

• X(0) = 0 is true with probability one.
• X(t|t ≥ 0) has independent increments, that is, the increments X(t1)−X(t0), . . . , X(tn)−X(tn−1) are

independent random variables for ∀ 0 < t0 < t1 < · · · < tn−1 < tn.
• Each increment, ∆X(t) = X(t + ∆t) − X(t), follows a normal distribution N(0, σ2∆t).

The lifetime T1 of the first component is defined as the first hitting time of X(t) to a degradation
threshold L. As is known to all, T1 follows the IG distribution IG(L/µ, L2/σ2). Therefore, the
cumulative distribution function (CDF) of T1 is presented as

F1(t|µ, σ2) = Φ
(
µt − L

σ
√

t

)
+ exp

(
2µL
σ2

)
Φ

(
−
µt + L

σ
√

t

)
, t > 0 (2.1)

where Φ(·) is the CDF of N(0, 1) distribution.

2.2. Weibull sudden failure mode

Suppose that the lifetime T2 of the second component due to sudden failure follows a Weibull
distribution, denoted by Weibull(β, η). The probability density function (PDF) of T2 is

f2(t|η, β) =
β

η
(

t
η

)β−1 exp
[
−(

t
η

)β
]
, t > 0 (2.2)

and the CDF of T2 is

F2(t|η, β) = 1 − exp
[
−(

t
η

)β
]
, t > 0 (2.3)

where η > 0 and β > 0 are the scale and shape parameters, respectively.
Therefore, the lifetime of the system can be defined as T = min(T1,T2). The CDF of T and the

reliability function of the system at time t are presented as

F(t) = F(t|µ, σ2, η, β) = 1 − [1 − F1(t|µ, σ2)][1 − F2(t|η, β)], (2.4)
R(t) = P(T > t) = [1 − F1(t|µ, σ2)][1 − F2(t|η, β)] (2.5)

respectively.
The MTT F of the system can be obtained by

MTT F =
∫ ∞

0
[1 − F1(t|µ, σ2)][1 − F2(t|η, β)]dt (2.6)
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2.3. Data of competing failure model

Suppose that n systems are tested. Let ri denote the number of measurements for the first component
of the ith system. The measurement times for the first component of the ith system ti,1, ti,2, . . . , ti,ri , 1 ≤
i ≤ n, are usually predetermined. Therefore, the degradation data is X = {X(ti, j); i = 1, 2, . . . , n, j =
1, 2, . . . , ri}. Let ∆ti, j=̂ti, j− ti, j−1, ∆Xi, j=̂X(ti, j)−X(ti, j−1) denote the degradation increment between ti, j−1

and ti, j, for i = 1, 2, . . . , n, j = 1, 2, . . . , ri. For convenience of expression, let T =
∑n

i=1
∑ri

j=1 ∆ti, j and
M =

∑n
i=1 ri denote the total test duration and the total number of measurements for the whole test,

respectively. The sudden failure time of the second component for the ith system is Ti,2, i = 1, 2, . . . , n.
Hence, the sudden failure times of the second component for n systems are T = (T1,2,T2,2, . . . ,Tn,2).

The degradation data refers to 10 electronic devices whose degradation level (brightness) was
measured at the same inspection times, with equal inspection time interval of 500 hours and the test
duration up to 4,000 hours. Suppose that the degradation process {X(t); t ≥ 0} is a Wiener process
with drift parameter µ and diffusion parameter σ2. As the degradation level reaches to (or exceeds)
the threshold level L, the device is considered as a fail. Where the degradation level is
X(ti, j) = 100 − Yi(ti, j), Yi(ti, j) denotes the light intensity (in percentage relative to the original
measurement) of the test unit i at time ti, j. The sudden failure data and the transformed degradation
data for test units are given in Tables 2 and 3.

Table 3. The transformed degradation data of luminance ratio for 10 test units.

Inspection time (hours)
Units 500 1000 1500 2000 2500 3000 3500 4000

1 2.5 3.3 4.1 5.0 5.7 6.5 7.3 8.1
2 2.1 2.9 3.7 4.6 5.2 6.0 6.7 7.5
3 2.0 2.7 3.5 4.3 5.0 5.8 6.5 7.2
4 1.7 2.4 3.2 3.9 4.6 5.4 6.1 6.8
5 0.4 1.0 1.7 2.3 2.9 3.5 4.1 4.7
6 0.0 0.6 1.1 1.7 2.3 2.9 3.4 4.0
7 0.0 0.5 1.1 1.7 2.2 2.8 3.3 3.9
8 0.0 0.3 0.9 1.5 2.0 2.6 3.1 3.6
9 0.0 0.0 0.5 1.0 1.5 2.1 2.6 3.1
10 0.0 0.0 0.2 0.7 1.2 1.7 2.2 2.7

3. Estimation for competing failure model

In this section, we first give the MLE of parameters µ andσ2 for the Wiener degradation process. On
basis of the MLEs of µ and σ2, the ECIs of µ and σ2 are obtained. Unfortunately, to get the confidence
interval of the scale parameter η as intractable, we develop the GCIs of parameter η for the sudden
failure model. It is well known that the pth quantile of system lifetime, the reliability function, and the
MTT F of a system are three important characteristics in reliability analysis. However, it is intractable
to obtain the ECIs of these three reliability characteristics, so we consider getting the GCIs of them.
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3.1. Estimation for Wiener degradation model

Notice that the degradation increments of quality characteristic ∆Xi, j are mutually independent, and
∆Xi, j ∼ N(µ∆ti, j, σ

2∆ti, j) for i = 1, 2, . . . , n, j = 1, 2, . . . , ri. Hence, on basis of the degradation data X,
the likelihood function is expressed as

L(µ, σ2|X) =
n∏

i=1

ri∏
j=1

1√
2π∆ti, jσ

exp
[
−

(∆Xi, j − µ∆ti, j)2

2σ2∆ti, j

]

Therefore, the MLEs of parameters µ and σ2 are obtained by

µ̂ =
1
T

n∑
i=1

ri∑
j=1

∆Xi, j, σ̂
2 =

1
M

n∑
i=1

ri∑
j=1

(∆Xi, j − µ̂∆ti, j)2

∆ti, j

respectively.
Next, we will develop the ECIs for parameters µ and σ2. To derive the ECIs of µ and σ2, the

following Theorem 1 is needed.

Theorem 3.1. Suppose that the degradation incrementsD = {∆Xi, j; i = 1, 2, . . . , n, j = 1, 2, . . . , ri} are
from the Wiener degradation process {X(t); t ≥ 0} above. Let µ̂ =

∑n
i=1

∑ri
j=1 ∆Xi, j/T ,

S 2 = 1
M−1

∑n
i=1

∑ri
j=1

(∆Xi, j−µ̂∆ti, j)2

∆ti, j
, then

1) µ̂ is an unbiased estimator of µ, and µ̂ ∼ N(µ, σ2/T );
2) S 2 is an unbiased estimator of σ2, and (M − 1)S 2/σ2 ∼ χ2(M − 1);
3) S 2 is independent of µ̂.

Proof Notice that
∑n

i=1
∑ri

j=1 ∆Xi, j ∼ N(µT , σ2T ), so µ̂ ∼ N(µ, σ2/T ) is obvious. By telescoping
∆Xi, j − µ∆ti, j as (∆Xi, j − µ̂∆ti, j) + (̂µ∆ti, j − µ∆ti, j), we have the following factorization:

n∑
i=1

ri∑
j=1

(∆Xi, j − µ∆ti, j)2

σ2∆ti, j
=

n∑
i=1

ri∑
j=1

(∆Xi, j − µ̂∆ti, j)2

σ2∆ti, j
+

(̂µ − µ)2T

σ2

According to Cochran [39], µ̂ and S 2 are independent and (M − 1)S 2/σ2 ∼ χ2(M − 1).
Using the results of Theorem 1, the 100(1 − γ)% ECIs of µ and σ2 are obtained by[̂

µ ±
S
√
T
· t1− γ2

(M − 1)
]

and

 (M − 1)S 2

χ2
1− γ2

(M − 1)
,

(M − 1)S 2

χ2
γ
2
(M − 1)


respectively, where tγ(n) and χ2

γ(n) are the lower γ percentiles of t and χ2 distributions with free degrees
n, respectively.

3.2. Estimation for Weibull sudden failure model

In this subsection, for the Weibull sudden failure model, we will give the ECI of shape parameter
β. Moreover, for point estimation, the IEs of parameters η and β are obtained. To construct the ECI for
parameter β, the following Lemmas 1 and 2 tend to be useful.
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Lemma 3.1. Suppose that Y1,Y2, . . . ,Yn are independent identically distributed (i.i.d) random
variables from Weibull distribution (2). Let Zi = (Yi

η
)β, i = 1, 2, . . . , n, then the Z1,Z2, . . . ,Zn are

independent standard exponential variables.

Lemma 1 is obvious, so here we neglect the detailed proof. □

Lemma 3.2. Given that Z1,Z2, . . . ,Zn are standard exponential random variables and Z(1),Z(2), . . . ,

Z(n) are their order statistics, let ξ1 = nZ(1), ξi = (n−i+1)(Z(i)−Z(i−1)), i = 2, 3, . . . , n; S i =
∑i

j=1 ξ j,U(i) =

S i/S n, i = 1, 2, . . . , n − 1, and S n =
∑n

i=1 ξi, then
1) ξ1, ξ2, . . . , ξn are independent standard exponential random variables;
2) U(1) < U(2) < · · · < U(n−1) are the corresponding order statistics of uniform distribution U(0, 1) with
sample size n − 1;
3) 2S n follows the distribution χ2(2n).

Proof 1) As is known to all, the joint probability density function (JPDF) of (Z(1),Z(2), . . . ,Z(n)) is

f (z1, z2, . . . , zn) = n! exp(−
n∑

i=1

zi), 0 < z1 < · · · < zn

Notice that
∑n

i=1 ξi =
∑n

i=1 Z(i) and the Jacobian determinant is J = |∂(Z(1),Z(2),...,Z(n))
∂(ξ1,ξ2,...,ξn) | =

1
n! , so the JPDF of

(ξ1, ξ2, . . . , ξn) is obtained by

f (ξ1, ξ2, . . . , ξn) = n! exp(−
n∑

i=1

ξi)
1
n!
= exp(−

n∑
i=1

ξi), ξi > 0

That is, ξ1, ξ2, . . . , ξn are independent standard exponential random variables.
2) From U(i) = S i/S n, i = 1, 2, . . . , n − 1, we know that ξ1 = U(1)S n, ξn = S n − U(n−1)S n and

ξi = U(i)S n − U(i−1)S n, i = 2, . . . , n − 1. As the Jacobian determinant J = | ∂(ξ1,ξ2,...,ξn)
∂(U(1),...,U(n−1),S n) | = S n−1

n , the
JPDF of (U(1), . . . ,U(n−1), S n) is given by

f (u1, . . . , un−1, sn) = sn−1
n exp(−sn), 0 < u1 < · · · < un−1 < 1, sn > 0

By marginal integral, the JPDF of (U(1), . . . ,U(n−1)) is obtained by

f (u1, . . . , un−1) =
∫ +∞

0
sn−1

n exp(−sn)dsn = (n − 1)!, 0 < u1 < · · · < un−1 < 1

Hence, U(1) < U(2) < · · · < U(n−1) are the corresponding order statistics of uniform distribution U(0, 1)
with sample size n − 1.

3) Notice that S n ∼ Ga(n, 1), then we have 2S n ∼ Ga(n, 1/2) = χ2(2n). □
Next, we will construct pivotal quantities (PQs) for parameters β and η. Since the sudden failure data

T is a sequence from the Weibull distribution (2), the corresponding order failure data is denoted by
{T(1),2,T(2),2, . . . ,T(n),2}. Based on Lemma 1, we know that the transformation {(Ti,2/η)β, i = 1, 2, . . . , n}
is a sequence of standard exponential random variables. Thus, from Lemma 2, we have that

U(i) =

∑i
j=1 T β( j),2 + (n − i)T β(i),2

T β(1),2 + T β(2),2 + · · · + T β(n),2

, i = 1, 2, . . . , n − 1
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are order statistics of the uniform distribution U(0, 1).
For shape parameter β, consider the following PQ

W1 = −2
n−1∑
i=1

log U(i) = 2
n−1∑
i=1

log


∑n

j=1 T β( j),2∑i
j=1 T β( j),2 + (n − i)T β(i),2

 (3.1)

From Eq (3.1), we find that for Weibull distribution (2), W1 is a function with respect to the shape
parameter β and free of the scale parameter η.

It is obvious that W1 is nonnegative. Notice that
∑n−1

i=1 log U(i) =
∑n−1

i=1 log Ui and Ui, i = 1, 2, . . . , n−1
are i.i.d random variables from the uniform distribution U(0, 1). Moreover, we can prove the fact that
W1 ∼ χ

2(2n − 2).
Next, we will prove that W1 is strictly monotonic with respect to parameter β. Let

Q( j, i) = (T( j),2/T(i),2)β. Note that∑n
j=1 T β( j),2∑i

j=1 T β( j),2 + (n − i)T β(i),2
= 1 +

∑n
j=i+1 Q j,i − (n − i)∑i
j=1 Q j,i + (n − i)

(3.2)

It can be observed from Eq (3.2) that W1 is strictly increasing with respect to parameter β, because
Q( j, i) is strictly increasing (decreasing) for j > i ( j < i). Hence, given a realization W1 from χ2(2n−2),
there exists a unique solution g(W1,T) of β for Eq (3.1), then the PQ for parameter β is given as
P1 = g(W1,T). Therefore, an ECI of β for the Weibull distribution can be derived by the following
Theorem 2.

Theorem 3.2. If T1,2,T2,2, . . . ,Tn,2 are i.i.d random variables from Weibull distribution (2),
T(1),2,T(2),2, . . . ,T(n),2 are the corresponding order statistics, then for any 0 < γ < 1,[

W−1
1

(
χ2
γ/2(2n − 2)

)
,W−1

1

(
χ2

1−γ/2(2n − 2)
)]

is a 1−γ level confidence interval of the shape parameter β. Here χ2
γ(n) denotes the lower γ percentile

of the χ2 distribution with freedom degrees n, and for t > 0, W−1
1 (t) is the solution of β for the equation

W1(β) = t.

Notice that W1 ∼ χ
2(2n − 2) and E(W1) = 2(n − 1). So, W1 converges to 2(n − 1) with probability

one. Let W1 = 2(n − 1). Based on the following Eq (3.3), we can get the point estimator β̂ of the shape
parameter β

n−1∑
i=1

log


∑n

j=1 T β( j),2∑i
j=1 T β( j),2 + (n − i)T β(i),2

 = n − 1 (3.3)

similar to the discussion above. Eq (3.3) also has a unique solution for parameter β.
Denote An =

∑n
i=1(Ti,2/η)β, so An ∼ Ga(n, 1) and E(An) = n. Similarly, let An = n, and the

corresponding point estimator η̂ of η is obtained by

η̂ =


∑n

i=1 T β̂(i),2
n


1/̂β

(3.4)

The estimators obtained from Eqs (3.3) and (3.4) are named as IEs of parameters β and η, which was
proposed in Wang [40].
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3.3. GCIs for η,Tp,R(t0), and MTT F

In practical applications, some reliability metrics of a system, such as the pth quantile of lifetime,
the reliability function R(t0), and the MTT F of system, may be of more importance than the model
parameters. However, since these reliability metrics involve multiple parameters, it is intractable to
obtain their exact confidence intervals. Therefore, we develop the GCIs for these reliability metrics.

Now we will construct the GPQ for the scale parameter η. Based on Lemmas 1 and 2, we know the
quantity

W2 =
2
ηβ

n∑
i=1

T β(i),2 ∼ χ
2(2n)

then the scale parameter η can be expressed as η = (2
∑n

i=1 T β(i),2/W2)1/β. Recall that the PQ of β is
P1 = g(W1,T). Using the substitution method given by Weerahandi [41], we replace β by P1 in the
expression of η and obtain the GPQ of parameter η

P2 =

2 n∑
i=1

T P1
(i),2/W2

1/P1

(3.5)

It can be observed from Eq (2.3) that for Weibull sudden failure model, the reliability is R2(t0) =
1 − F2(t0|η, β). Using the substitution method, the GPQ of reliability R2(t0) is obtained by

R2(t0) = exp
(
−(

t0

P2
)P1

)
To derive the GPQ for reliability R1(t0) of the Wiener degradation model, we first construct the PQs

of µ and σ.
Let

U =
√
T (̂µ − µ)/σ, V = (M − 1)S 2/σ2 (3.6)

Obviously, U ∼ N(0, 1) and V ∼ χ2(M − 1) and they are mutually independent. Thus, µ and σ can be
formulated as

µ = µ̂ − U
√

(M − 1)S 2/(VT ), σ =
√

(M − 1)S 2/V

respectively, so the GPQs of µ and σ are obtained by

P3 = µ̂ − UP4/
√
T , P4 =

√
(M − 1)S 2/V (3.7)

It should be pointed out that µ̂ and S 2 are treated as known quantities in generalized inference [41].
Using the substitution method given in [41], the GPQ of R1(t0) is given by

R1(t0) = Φ
(

L − P3t0

P4
√

t0

)
− exp

(
2P3L

P2
4

)
Φ

(
−

P3t + L
P4
√

t0

)
Based on Eqs (2.4)–(2.6), the GPQs for pth quantile of lifetime T , the reliability function, and the

MTT F of a system can be obtained by

P5 = F−1(p|P1, P2, P3, P4), (3.8)
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P6 =

[
Φ

(
L − P3t0

P4
√

t0

)
− exp

(
2P3L

P2
4

)
Φ

(
−

P3t + L
P4
√

t0

)]
exp[−(

t0

P2
)P1], (3.9)

P7 =

∫ ∞

0

[
Φ

(
L − P3t

P4
√

t

)
− exp

(
2P3L

P2
4

)
Φ

(
−

P3t + L

P4
√

t

)]
exp[−(

t
P2

)P1]dt (3.10)

respectively.
Let Pi,γ denote the γ percentile of Pi, then [Pi,γ/2, Pi,1−γ/2], i = 2, 5, 6, 7 are the 1 − γ level GCIs of

η,Tp,R(t0), and MTT F, respectively. The percentiles of Pi, i = 2, 5, 6, 7 can be acquired through the
following Monte Carlo Algorithm.

Algorithm : The percentiles of η,Tp,R(t0), and MTT F.
Step 1 Given degradation data X and sudden failure data T, compute µ̂, S 2, and T .
Step 2 Generate W1 ∼ χ

2(2n − 2),W2 ∼ χ
2(2n),U ∼ N(0, 1), and V ∼ χ2(M − 1), respectively.

Based on Eqs (3.1),(3.5), and (3.7), compute P1, P2, P3, and P4.
Step 3 Based on P1, P2, P3, and P4, using Eqs (3.8)–(3.10) to compute P5, P6, and P7

Step 4 Repeat steps (2) and (3) K times, then K values of Pi, i = 2, 5, 6, 7 are obtained, respectively.
Step 5 Sorting all Pi values in ascending order: Pi,(1) < Pi,(2) < . . . < Pi,(K), i = 2, 5, 6, 7, then the γ

percentile of Pi is estimated by Pi,(γK).

4. Simulation study

The Monte Carlo simulation technique is used to evaluate the performance of the proposed GCIs
in the aspect of the CP and AL. Table 4 lists the different combinations of the model parameters
µ, σ2, η, β and the threshold L for simulation study. Moreover, we take n = 10, 15, 20, ri=̂r = 8, 10, 12,
∆ti, j=̂∆t = 10, and K = 10, 000 in the simulation study. Based on 5000 replications, all the simulation
results are provided in Tables 5–9.

Table 4. Parameter settings for the simulation study.

Case µ σ2 η β L
I 0.04 0.64 150 3.00 12
II 0.20 0.25 180 2.00 18
III 0.40 0.36 140 4.00 32
IV 0.50 0.49 130 5.00 40

To examine the performance of the point estimates of model parameters (µ, σ2, β, η), simulation
studies were carried out in terms of relative-bias (R-Bias) and relative-mean square error (R-MSE)
under the parameter setting II, III, and IV for (n, r) = (10, 8), (15, 10), (20, 12). Motivated by Luo et.
al. [42], the R-Bias and R-MSE are defined as:

R-Bias = |
1
n

n∑
i=1

θ̂i − θ

θ
|,R-MSE =

1
n

n∑
i=1

(̂θi − θ)2

θ2

where θ and θ̂i are the true value and the estimate of a parameter, respectively.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3146–3164.



3156

Based on 5000 replications, the simulation results about the R-Bias and R-MSE of the proposed
estimates for model parameters (µ, σ2, β, η) are provided in Table 5. It can be seen from Table 5 that
both the R-Bias and R-MSE are small compared with the true values, and for given parameter settings
as n and r increase, the R-MSEs decrease as expected. The simulation results show that these estimates
perform well in aspect of both R-Bias and R-MSE. Hence, we recommend the proposed point estimates
for model parameters (µ, σ2, β, η).

Table 5. R-Bias∗100 and R-MSE∗100 (in parentheses) of the point estimates for model
parameters based on 5000 replications under parameter settings II, III, and IV.

Case (n, r) µ σ2 β η

(10, 8) 0.05(0.77) 1.27(2.51) 9.33(11.55) 1.55(2.72)
II (15, 10) 0.04(0.43) 0.61(1.34) 5.35(6.24) 1.22(1.85)

(20, 12) 0.02(0.26) 0.58(0.82) 3.99(4.11) 0.88(1.42)
(10, 8) 0.04(0.28) 1.14(2.48) 9.42(11.58) 1.15(0.70)

III (15, 10) 0.04(0.15) 0.62(1.34) 5.68(6.24) 0.77(0.46)
(20, 12) 0.04(0.09) 0.39(0.84) 3.91(4.09) 0.66(0.34)
(10, 8) 0.06(0.24) 1.23(2.53) 8.61(11.15) 1.06(0.47)

IV (15, 10) 0.05(0.13) 0.76(1.31) 5.86(6.44) 0.64(0.30)
(20, 12) 0.01(0.08) 0.35(0.84) 3.92(4.16) 0.53(0.23)

It is well known that the parametric bootstrap method is a classic approach to get confidence
intervals for model parameters. In order to fully assess the performances of the GCIs, we also
considered the bootstrap CIs for the proposed competing failure model. A comparative analysis is
conducted between the CIs obtained by the GPQ method and the bootstrap-p method. Based on 5,000
bootstrap samples, the bootstrap-p CIs are obtained and provided in Tables 6–9.

It is observed from Tables 6–9 that the CPs of the proposed GCIs are quite close to the nominal
levels, even in the small sample case. In many cases, the differences between the real CP and the
nominal level are small, ranging in 1%, but the CPs obtained by the bootstrap-p method are away from
the nominal levels for some parameters and quantities. In particular, we find that the bootstrap-p CIs
of the scale parameter η are far below the nominal levels for all cases. In addition, from Tables 6 and 8
we also find that the bootstrap-p CIs perform bad for some quantities. For example, the CPs of lifetime
quantile T0.1 and reliability function R(5) deviate from the nominal levels.

When the sample size n turns large, the CPs of the bootstrap-p CIs also near the nominal levels.
Tables 6–9 report that, for fixed parameter settings, when n and r increase, the ALs become shorter
for both GPQ and bootstrap-p CIs as expected. The comparison shows that the GCIs perform better
than the corresponding bootstrap-p CIs in terms of CP. Hence, we recommend the GCIs for model
parameter η and some quantities, such as Tp,R(t0),MTT F, particularly in the case of small sample.
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Table 6. The CPs and ALs (in parentheses) of different CIs under case I for nominal levels
0.9, 0.95, based on 5000 replications.

(n, r) parameter GCI bootstrap-p CI
0.9 0.95 0.9 0.95

(10, 8) η 0.8976(60.6624) 0.9496(75.5279) 0.8486(52.8904) 0.9042(62.9178)
T0.1 0.9048(33.5554) 0.9496(40.7777) 0.9148(33.2292) 0.9582(40.2477)

R(60) 0.9020(0.2545) 0.9512(0.3038) 0.9108(0.2393) 0.9574(0.2829)
MTT F 0.9008(47.3605) 0.9488(57.0865) 0.8776(43.9562) 0.9350(52.2961)

(15, 10) η 0.9026(47.4454) 0.9490(58.0224) 0.8716(43.5975) 0.9242(51.8963)
T0.1 0.9094(25.2029) 0.9542(30.5427) 0.9132(24.7783) 0.9616(29.9122)

R(60) 0.9084(0.1910) 0.9556(0.2287) 0.9114(0.1825) 0.9580(0.2166)
MTT F 0.9060(36.2650) 0.9536(43.5008) 0.8916(34.5873) 0.9434(41.1789)

(20, 12) η 0.8946(40.4670) 0.9482(49.1140) 0.8734(37.9671) 0.9308(45.2166)
T0.1 0.9042(20.5991) 0.9538(24.9078) 0.8968(20.1873) 0.9548(24.3112)

R(60) 0.9020(0.1566) 0.9546(0.1878) 0.8964(0.1505) 0.9516(0.1789)
MTT F 0.9030(30.1033) 0.9516(36.0576) 0.8856(29.0400) 0.9420(34.5984)

Table 7. The CPs and ALs (in parentheses) of different CIs under case II for nominal levels
0.9, 0.95, based on 5000 replications.

(n, r) parameter GCI bootstrap-p CI
0.9 0.95 0.9 0.95

(10, 8) η 0.8974(110.0716) 0.9482(137.8236) 0.8486(93.8018) 0.9042(111.5813)
T0.1 0.9054(35.1877) 0.9524(41.8983) 0.9066(32.3995) 0.9524(38.1550)

R(60) 0.9034(0.2730) 0.9506(0.3255) 0.9076(0.2620) 0.9522(0.3088)
MTT F 0.9076(27.0296) 0.9524(32.8026) 0.8932(25.8157) 0.9532(31.0193)

(15, 10) η 0.9020(86.2084) 0.9458(105.6588) 0.8716(77.6595) 0.9242(92.4329)
T0.1 0.9042(28.4509) 0.9520(34.1215) 0.9044(26.5164) 0.9522(31.4011)

R(60) 0.8996(0.2126) 0.9494(0.2544) 0.9082(0.2059) 0.9578(0.2438)
MTT F 0.8982(20.1974) 0.9458(24.4035) 0.8988(19.5675) 0.9518(23.4498)

(20, 12) η 0.8958(72.9375) 0.9460(88.6254) 0.8734(67.7529) 0.9308(80.6800)
T0.1 0.9006(24.6766) 0.9446(29.6178) 0.8952(23.0544) 0.9448(27.3529)

R(60) 0.9032(0.1782) 0.9522(0.2134) 0.8998(0.1744) 0.9494(0.2069)
MTT F 0.9022(16.4666) 0.9534(19.8527) 0.8950(16.0827) 0.9472(19.2492)

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3146–3164.



3158

Table 8. The CPs and ALs (in parentheses) of different CIs under case III for nominal levels
0.9, 0.95, based on 5,000 replications.

(n, r) parameter GCI bootstrap-p CI
0.9 0.95 0.9 0.95

(10, 8) η 0.8974(40.3022) 0.9482(52.5941) 0.8486(37.3906) 0.9042(44.5036)
T0.1 0.9050(18.7724) 0.9500(23.8917) 0.9112(16.1704) 0.9576(19.9001)

R(60) 0.8998(0.1886) 0.9460(0.2290) 0.9128(0.1699) 0.9592(0.2026)
MTT F 0.9090(14.7466) 0.9542(17.8925) 0.8922(13.9173) 0.9450(16.6816)

(15, 10) η 0.9026(33.1871) 0.9490(40.5561) 0.8716(30.7260) 0.9242(36.5886)
T0.1 0.9096(12.9419) 0.9532(16.4730) 0.9116(11.5954) 0.9610(14.3047)

R(60) 0.9080(0.1367) 0.9526(0.1659) 0.9142(0.1263) 0.9614(0.1510)
MTT F 0.9074(10.7145) 0.9532(12.9335) 0.9010(10.3162) 0.9542(12.3455)

(20, 12) η 0.8946(28.3307) 0.9482(34.3704) 0.8734(26.7226) 0.9308(31.8347)
T0.1 0.9022(10.1226) 0.9528(12.8281) 0.8996(9.2039) 0.9534(11.3419)

R(60) 0.9018(0.1102) 0.9536(0.1337) 0.9028(0.1030) 0.9544(0.1232)
MTT F 0.9030(8.5655) 0.9542(10.3142) 0.9034(8.2973) 0.9452(9.9235)

Table 9. The CPs and ALs (in parentheses) of different CIs under case IV for nominal levels
0.9, 0.95, based on 5,000 replications.

(n, r) parameter GCI bootstrap-p CI
0.9 0.95 0.9 0.95

(10, 8) η 0.8976(31.5194) 0.9478(39.1515) 0.8486(27.9632) 0.9042(33.2995)
T0.1 0.9030(15.3897) 0.9502(19.6977) 0.9116(13.3539) 0.9578(16.4499)

R(60) 0.9030(0.1596) 0.9476(0.1954) 0.9132(0.1387) 0.9586(0.1664)
MTT F 0.8986(13.2911) 0.9508(16.0827) 0.8918(12.6293) 0.9470(15.1124)

(15, 10) η 0.9026(24.6554) 0.9490(30.1209) 0.8748(23.0181) 0.9288(27.4190)
T0.1 0.9118(10.3997) 0.9510(13.1759) 0.9062(9.5117) 0.9478(11.6812)

R(60) 0.9076(0.1111) 0.9530(0.1357) 0.9090(0.1016) 0.9526(0.1219)
MTT F 0.9068(9.6637) 0.9536(11.6334) 0.8928(9.3528) 0.9404(11.1791)

(20, 12) η 0.8946(21.0556) 0.9482(25.5404) 0.8754(19.9908) 0.9212(23.8194)
T0.1 0.9060(8.0458) 0.9526(10.1003) 0.9076(7.4800) 0.9526(9.1577)

R(60) 0.9022(0.0880) 0.9528(0.1074) 0.9088(0.0815) 0.9530(0.0979)
MTT F 0.9030(7.6923) 0.9528(9.2405) 0.9036(7.4955) 0.9536(8.9546)

5. An illustrative example

In this section, we use the proposed Wiener-Weibull competing failure model and the GPQ method
to analyze the real example provided by Huang and Askin [34]. The product is treated as a fail when the
luminance ratio decreases by 60%. For convenience, we assumed that the original brightness is 100,
so the threshold is L = 60. The transformed degradation data of luminance ratio is presented in Table 3
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and the weld interface fracture data (sudden failure data) is given in Table 2. Figure 1 shows the
luminance ratio degradation paths of 10 test units. In this study, we use the Wiener process to model
the degradation data in Table 3. Similar to Huang and Askin [34], the sudden failure data is also fitted
by a Weibull distribution.

For point estimation, the MLEs of µ and σ2 are given by µ̂ = 0.0310, σ̂2 = 0.0076, respectively. The
IEs of η and β are given by η̂ = 1.0350× 103, β̂ = 4.7684, respectively. Figure 2 shows the degradation
paths, the sample average degradation path, and the fitted mean degradation path by model. It is clear
that the estimates of the mean degradation paths provide good fitting for the sample average degradation
paths. This means that it is reasonable to use the Wiener process to fit the luminance ratio degradation
data. Given p = 0.1, L = 60, and t0 = 800(days), the pth percentile of lifetime, the reliability function
at time t0, and the MTT F of the system are obtained by T0.1 = 642.8386(days), R(800) = 0.7416,
MTT F = 943.5986(days), respectively. The point estimate of M̂TT F = 22646(hours) is near to the
estimate of MTT F (22,765 hours) provided by Huang and Askin [34].

Figure 1. Degradation paths of 10 test units.

Figure 2. Sample average degradation path and the fitted mean degradation path.

For interval estimation, we use the GPQ method proposed in Section 3 to analyze the real dataset.
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As is known to all, some reliability metrics such as the pth percentile of lifetime T , the reliability
function, and the MTT F of a system are more important than the model parameters in reliability
analysis. However, as these metrics are very complicated, getting their interval estimations is usually
difficult, so we developed the GCIs for them. Based on Eqs (3.8)–(3.10) and using the GPQ method,
the GCIs of Tp,R(t0), and MTT F can be obtained. Take K = 10000; the results are given in Table 10.
According to the methods in Huang and Askin [34] and Cha et al. [38], they can only provide the point
estimation for MTT F and not give its interval estimation.

Table 10. The 90 and 95% CIs of model parameters and some reliability metrics.

CIs Parameters 90% 95%
µ (0.0273, 0.0345) (0.0266,0.0352)

ECIs σ2 (0.0060, 0.0102) (0.0057,0.0108)
β (2.7806, 7.0237) (2.4794, 7.5985)
η (0.9132, 1.1793) ×103 (0.8836, 1.2231) ×103

T0.1 (425.3078, 795.1926) (359.8561, 822.6494)
GCIs R(t0) (0.5284, 0.9022) (0.4796, 0.9255)

MTT F (0.8244, 1.0868) ×103 (0.7938, 1.1271) ×103

6. Conclusions

In this paper, a competing failure model involving both degradation failure and sudden failure was
studied by modeling degradation failure as a Wiener process and sudden failure as a Weibull
distribution. For model parameters, the MLEs of µ, σ2, and the IEs of η, β were derived and the ECIs
of parameters µ, σ2, and β are obtained.

In this study, the GPQ method was proposed to investigate the scale parameter and some reliability
metrics of the competing failure model. By constructing the GPQs, the GCI of parameter η was
developed. Using the substitution method, the GCIs for the reliability function, the pth percentile of
the lifetime, and the MTT F of a system were also developed. Simulation studies were carried out to
assess the performances of the proposed intervals. Simulation results reported that the proposed GCIs
work well in aspect of the CP and are better than the corresponding bootstrap CIs. Finally, we applied
the proposed model and the GPQ method to a real data example and found the ECIs and GCIs of
model parameters and some reliability metrics.
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