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Abstract: Biometric authentication prevents losses from identity misuse in the artificial intelligence 

(AI) era. The fusion method integrates palmprint and palm vein features, leveraging their stability and 

security and enhances counterfeiting prevention and overall system efficiency through multimodal 

correlations. However, most of the existing multi-modal palmprint and palm vein feature extraction 

methods extract only feature information independently from different modalities, ignoring the 

importance of the correlation between different modal samples in the class to the improvement of 

recognition performance. In this study, we addressed the aforementioned issues by proposing a feature-

level joint learning fusion approach for palmprint and palm vein recognition based on modal 

correlations. The method employs a sparse unsupervised projection algorithm with a “purification 

matrix” constraint to enhance consistency in intra-modal features. This minimizes data reconstruction 

errors, eliminating noise and extracting compact, and discriminative representations. Subsequently, the 

partial least squares algorithm extracts high grayscale variance and category correlation subspaces 

from each modality. A weighted sum is then utilized to dynamically optimize the contribution of each 

modality for effective classification recognition. Experimental evaluations conducted for five 

multimodal databases, composed of six unimodal databases including the Chinese Academy of 

Sciences multispectral palmprint and palm vein databases, yielded equal error rates (EER) of 0.0173%, 

0.0192%, 0.0059%, 0.0010%, and 0.0008%. Compared to some classical methods for palmprint and 

palm vein fusion recognition, the algorithm significantly improves recognition performance. The 

algorithm is suitable for identity recognition in scenarios with high security requirements and holds 

practical value.  
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1. Introduction 

Biometric recognition, due to its convenience and security, has replaced traditional identification 

methods and found widespread applications in various domains. Palmprint features are easy to collect 

and exhibit good stability. However, the accuracy of palmprint recognition [1] can be affected when 

the surface skin of the subject's palm is damaged, leading to incomplete feature information. Palm vein 

features, concealed beneath the epidermis, require collection under near-infrared light and are immune 

to theft via photography. Moreover, they enable liveness detection, making them a highly secure 

biometric feature. Nevertheless, the non-transparency, non-uniformity, and heterogeneity of the skin 

tissue covering the palm veins result in scattering of near-infrared light during imaging. This 

phenomenon can lead to unclear palm vein images in certain populations, thereby impacting the 

performance of palm vein recognition. 

The fusion biometric recognition method of palmprint and palm vein not only leverages the 

stability of palmprint features but also capitalizes on the high security of palm vein features. This 

approach enhances the system's anti-counterfeiting capabilities while improving the system's 

recognition performance. It is a biometric fusion recognition method with high security and high user 

acceptance. Furthermore, we were inspired by the literature [2] and focused on the inter-modal 

correlation problem. The idea of joint learning was applied to feature extractions of palmprints and 

palm vein features. 

At this stage, multimodal biometric recognition has gradually emerged as one of the primary 

focuses in the field of recognition. In this context, study [3] delves into the extraction of pixel 

difference vectors in multiple directions, achieving feature-level fusion by calculating differences 

between each pixel and its linear neighboring pixels in two modalities: palmprint and palm vein. 

Within literature [4], a deep scattering convolutional network is utilized to extract features from 

palmprints and palm veins, subsequently employing wavelet-based fusion. Moving on to literature [5], 

an effective fusion approach is employed, combining iris, face, and fingerprint features at the score 

level. This fusion technique integrates principal component analysis and local binary patterns. In 

literature [6], a structured robust and sparse least squares regression method is introduced, adaptively 

discriminating and recognizing fusion features from finger vein and finger knuckle print. In the realm 

of literature [7], a deep hash network is enlisted to extract binary templates for palmprint and palm 

vein features, followed by score-level fusion. For literature [8], key point detection and main line 

extraction are performed for hand geometry features and palmprint features, with corresponding points 

of the palmprint image detected through template-based matching for recognition. Finally, literature [9] 

employs Log-Gabor transform, histogram of oriented gradients (HOG), and local binary pattern (LBP) 

to extract features from palmprint and iris images, culminating in fractional level fusion. 

At the level of biometric fusion, it can be categorized into two types based on fusion order: Pre-

matching and post-matching. This includes sensor-level and feature-level fusion as pre-matching, and 

score-level, rank-level, and decision-level fusion as post-matching [10]. Feature-level fusion is capable 

of modeling biometric features from multiple dimensions and perspectives, effectively leveraging 

multimodal information. This helps mitigate errors and uncertainties introduced by noise, insufficient 
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data, and non-robust features during single-feature extraction processes. Therefore, a palmprint and 

palm vein feature-level fusion recognition method based on joint learning is proposed. Due to the 

substantial amount of data involved in feature-level fusion, appropriate block-wise dimensionality 

reduction is applied to image features. This process aims to minimize the dimensions of the images 

while preserving the palmprint and palm vein features to the maximum extent. Subsequently, a sparse 

unsupervised projection algorithm with a “purification matrix” constraint is employed to perform 

dimensionality reduction and purification on the image features. This minimizes data reconstruction 

errors, eliminates redundant information in the subspace features, and extracts compact and 

discriminative feature representations. Following this, the partial least squares (PLS) algorithm is 

utilized to extract subspace features with high grayscale variation and intra-class correlation from each 

modality, promoting consistency in intra-class modality representation. The features extracted through 

joint learning enhance the stability of image features, emphasize the saliency of important information, 

and improve recognition performance. Finally, a weighted summation is employed to fuse the features 

extracted from palmprint and palm vein, jointly optimizing the contribution of each modality for 

classification recognition. The specific process is illustrated in Figure 1.  

In Figure 1, 𝑋 , 𝑌 , 𝑋 ′ , and 𝑌′  represent the training set and test set image matrices after 

preprocessing, chunking, and dimensionality reduction of palm lines and palm veins. Subsequently, 𝑋 

and 𝑌 undergo processing by the projection matrices 𝑃𝑋 and 𝑃𝑌 to obtain the new feature spaces 

𝐹𝑋 and 𝐹𝑌. The same projection matrices 𝑃𝑋 and 𝑃𝑌 are then applied to process the test set images, 

resulting in 𝐹𝑋′  and 𝐹𝑌′ .The obtained feature matrices, namely 𝐹𝑋 , 𝐹𝑌 , 𝐹𝑋′ , and 𝐹𝑌′ , undergo 

supervised feature extraction using partial least squares, yielding the feature matrices 𝑉𝑋, 𝑉𝑌, 𝑉𝑋′, and 

𝑉𝑌′  for fusion. 𝐿  and 𝐿′  represent the training set and test set images. Additionally, 𝐿  and 𝐿′ 

correspond to the fused features, while 𝑃′ and 𝐹′ in their fusion formulae represent two different 

modal features, respectively. The major contributions of the paper are: 

i. Introducing a novel approach that addresses challenges in multi-modal palmprint and palm vein 

feature extraction. The method employs a sparse unsupervised projection algorithm with a 

"purification matrix" constraint, ensuring consistent intra-modal features in a shared expression space, 

minimizing data reconstruction errors, and enhancing feature representations. 

ii. In this article, we utilized the partial least squares algorithm to extract high grayscale variance 

and category correlation subspaces from each modality. This promotes intra-modal representation 

consistency, improves the exploration of correlations among multi-modal samples, and thereby 

enhances recognition performance. 

iii. We introduce a weighted sum strategy for dynamically optimizing each modality's contribution 

to classification recognition. Experimental evaluations on five multimodal databases validate its 

suitability for high-security identity recognition scenarios. 

In summary, the contributions include a new feature-level fusion method, enhanced feature 

extraction, optimized inter-modal relationships, and effective fusion of palmprint and palm vein 

features, resulting in substantial improvements in recognition performance for multi-modal identity 

recognition scenarios. 
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Figure 1. System overall schematic diagram. 

2. Related work  

In the realm of multimodal biometric recognition, the fusion of palmprint and palm vein features 

offers significant advantages. However, most of the existing multi-modal palmprint and palm vein 

feature extraction methods only extract feature information independently from different modalities, 

ignoring the importance of the correlation between different modal samples in the class to the 

improvement of recognition performance. 

Existing biometric fusion recognition methods can be categorized into those based on traditional 

methods and those based on deep learning methods. In the realm of traditional methods, a study [11] 

proposed a cross-spectral matching system that extracts palmprint and palm vein features from the 

near-infrared (NIR) and visible light (RGB) spectral bands. Local binary coding is applied to palmprint 

features, and the NIR palm vein template is matched with the registered RGB palmprint template, with 

the fusion of similarity scores to enhance recognition performance. Another study [12] employed a 

kernel-based approach to extract facial features, Hough transform, and Daugman algorithm for left and 

right iris features, and Gabor filter banks for features of two thumbprints. The feature vectors are then 

mapped to the Reproducing Kernel Hilbert Space, followed by dimensionality reduction for feature 

fusion. In a different approach, a study [13] utilized low and high-frequency wavelet sub-bands to 

extract local and global information from palmprints and faces. A nearest-neighbor classifier is 

employed for sub-band recognition, and weighted majority voting is used to fuse the obtained 

categories. Last, a research effort [14] captured multimodal data from the same region of the hand 

using a single device. To obtain correlated information, fingerprint and finger vein features are 

decomposed into shared and private features, aiming to enhance complementarity. 

In recognition methods based on deep learning, a study [15] proposed a wavelet-based fusion 

strategy for processing palmprint and palm vein images. Subsequently, deep scattering convolutional 

networks were employed for feature extraction and recognition. Another work [16] utilized a deep 

Hashing network (DHN) to extract binary templates for palmprint and palm vein authentication. This 
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approach employed a spatial transformer network to overcome rotation and misalignment issues. By 

fusing features from different spectra, the method leveraged its advantages and improved recognition 

performance for fusion recognition. Addressing iris, palm vein, and finger vein modalities, a study [17] 

introduced a hybrid fusion model that captures typical features through a multi-ensemble structure. It 

utilized the distribution information of scores to assist decision-making, enhancing recognition 

accuracy and security. Additionally, a research effort [18] proposed a spatial and temporal multimodal 

fingerprint and finger vein network named FS-STMFPFV-Net, based on fingerprint and finger vein 

modalities. Independent learning for the two channels was achieved, enhancing resistance to image 

variations, and feature selection was performed using ReliefFS. 

The traditional methods mentioned above use projection, encoding, and extraction of local global 

information to extract features, but ignore the importance of maximizing the correlation between 

different modal samples within a class during feature extraction to make the features more stable and 

discriminative, and to make the features more consistent in a common expression space for modal 

fusion recognition performance enhancement. On the other hand, deep learning methods, by increasing 

the depth of the feature extraction network, enhance the saliency of important features, making them 

more discriminative. However, this comes at the cost of increased complexity in the network model. 

In this research, we employ a sparse unsupervised projection method constrained by a 

“purification matrix” to enhance intramodal features, minimizing data reconstruction errors and 

bolstering discriminative capabilities. Following this, the partial least squares algorithm discerns 

significant gray-scale variance and category relevance within each modality. A weighted sum is then 

applied to optimize each modality’s contribution, ensuring precise classification results. 

We summarize the paper as follows. Section 3 describes the derivation of the methods mentioned 

in this article. Section 4 creates five multimodal databases and performs performance experiments on 

the method. Section 5 summarizes the article. 

3. Method 

3.1. Feature extraction 

In the image preprocessing stage, palmprint and palm vein images undergo denoising, contour 

extraction, determination of intersections and valley points, delineation of regions, and extraction of 

regions of interest (ROI) [19]. The ROIs obtained are of size 128 𝑝𝑖𝑥𝑒𝑙 × 128 𝑝𝑖𝑥𝑒𝑙 . To achieve 

optimal recognition performance within a database containing 200 to 500 individuals, it is necessary 

to perform non-overlapping block-wise dimensionality reduction on the palmprint and palm vein ROI 

images. 

In the feature extraction stage, due to the influence of environmental conditions, pose variations, 

and noise interference during image acquisition, it is necessary to suppress and eliminate various 

redundant information to the maximum extent in the feature extraction process. This ensures that the 

intra-class features are expressed with greater distinctiveness and consistency. The partial least squares 

(PLS) method, as a traditional feature extraction technique, excels in maximizing the correlation 

between the input feature matrix and identity information labels to extract features relevant to 

individual identity recognition. However, in the feature dimensionality reduction process, the PLS 

method does not adequately consider the sparsity of features, resulting in the extraction of features 

with potential redundancy. This leads to less compact feature representations, making it challenging to 
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accurately differentiate between individuals. Additionally, the PLS method lacks a noise elimination 

mechanism during the feature extraction process, making it susceptible to noise interference in image 

data. This can hinder the improvement of intra-modal correlation and subsequently affect recognition 

performance. 

To enhance the intra-class correlation between different modal samples, we propose a method 

called sparse unsupervised projection with partial least squares (SUPLS), introducing a sparse 

unsupervised projection (SUP) method with a “purification matrix”. The “purification matrix” serves 

as a matrix aimed at eliminating noise information in image data while retaining useful information. 

Each element in the feature space of the “purification matrix” represents the weight or contribution of 

each feature in the samples. This method is applied to process the dimensionality-reduced image 

features. Through the “purification matrix”, the dimensionality-reduced image features maintain 

sparsity while eliminating noise, preserving compact and distinctive feature representations, ensuring 

that intra-class features are more consistent in a shared expression space. Assuming the biological 

feature matrix is denoted as X and the “purification matrix” as F, the purified biological feature matrix 

XF is obtained through matrix multiplication. When selecting F, it is subjected to sparse constraints to 

ensure that the weights of noise information approach zero, thereby enhancing the saliency of 

important features. 

The generation of the “purification matrix” is achieved by introducing constraints in the SUP 

method. Constraints are added during the projection process to minimize data reconstruction errors, 

eliminate noise, and ensure the consistency of intra-class feature representation. 

The SUP method can maintain the sparsity of the output image features and extract compact and 

distinctive feature representations. Through sparse projection, it effectively eliminates noise 

interference in the data, improving the robustness and stability of features. Under the constraints of the 

SUP method, the PLS method is employed to extract supervised, dimensionality-reduced, and purified 

features. This fully utilizes individual identity information, addressing noise and redundant 

information interference. The method maximizes the correlation between the input feature matrix and 

identity information labels, thereby extracting features with discriminative and correlated 

characteristics. The specific derivation of the method is as follows: 

Based on the unsupervised feature extraction method, we propose an optimization by introducing 

a weight allocation method in the sample space to capture the similarity between sample points. The 

weight allocation of sample points in the original sample space is represented as follows: 

              ∑ ‖𝑦𝑖 − 𝑦𝑗‖
2

2𝑛
𝑖,𝑗=1 𝑠𝑖𝑗 = 2𝑇𝑟(𝑌𝐿𝑌𝑇)                          (1) 

where 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ 𝑅𝑑×𝑛 represents the sample matrix, d represents the number of features, 

and n represents the number of samples. 𝑌 = 𝑃𝑇𝑋 and 𝑦𝑖 = 𝑃𝑇𝑥𝑖 are the sample matrix and the ith 

sample after dimensionality reduction, respectively. 𝑇𝑟 denotes the trace operation of the matrix, 𝑃 ∈

𝑅𝑑×𝑑′
(𝑑′ < 𝑑)  is the projection matrix, 𝑑′  denotes the subspace dimension, and 𝑠𝑖𝑗  denotes the 

similarity between 𝑥𝑖 and 𝑥𝑗. Building upon this, a “purification matrix” 𝐹 ∈ 𝑅𝑛×𝑑′
 is introduced 

to eliminate noise in the data while preserving useful information. Here, 𝜆  represents the 

regularization parameter, and a higher value of 𝜆  indicates greater similarity between F and the 

projection matrix P, resulting in less noise removal. 𝑆𝑡 = 𝑋𝑇𝐻𝑋 represents the global scatter matrix, 

while ‖𝑃‖2,0 = 𝑘 denotes the number of non-zero rows in the projection matrix, which is equal to k. 

The representation is as follows: 
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           𝑚𝑖𝑛
𝑃𝑇𝑃=𝐼,𝐹

1

2
∑ ‖𝑦𝑖 − 𝑦𝑗‖

2

2𝑛
𝑖,𝑗=1 𝑠𝑖𝑗 + 𝜆‖𝑋𝑇𝑃 − 𝐹‖𝐹

2
                      (2)                 

              𝑚𝑖𝑛
𝑃𝑇𝑃=𝐼,‖𝑃‖2,0=𝑘,𝐹

𝑇𝑟(𝐹𝑇𝐿𝐹)+𝜆‖𝑋𝑇𝑃−𝐹‖
𝐹

2

𝑇𝑟(𝑃𝑇𝑆𝑡𝑃)
                         (3) 

𝑚𝑖𝑛
𝑃,𝐹

𝑇𝑟(𝐹𝑇𝐿𝐹) + 𝜆𝑇𝑟(𝑃𝑇𝑋𝑋𝑇𝑃 − 2𝐹𝑃𝑇𝑋 + 𝐹𝐹𝑇)

𝑇𝑟(𝑃𝑇𝑆𝑡𝑃)
 

𝑠. 𝑡. 𝑃𝑇𝑃 = 𝐼, ‖𝑃‖2,0 = 𝑘                     (4) 

Upon performing dimensionality reduction and purification of the ROI image under the sparse 

unsupervised constraint with the “purification matrix”, we obtain the corresponding subspace sample 

features F and the corresponding projection matrix P. The test image is then sparsely projected using 

the projection matrix P to obtain its subspace features. The subspace features of the training and test 

set images, which have undergone dimensionality reduction and purification under the sparse 

unsupervised constraint, are taken as the dependent variable matrix Y, while the image-category 

information is considered the independent variable matrix X. The relationship between the two is 

established to extract more discriminative features. The specific derivation is as follows: 

In the context of biometric feature extraction, the independent variable matrix X consists of p 

image samples, and the dependent variable matrix Y consists of the corresponding class labels of the p 

image samples, denoted as 𝑋 = (𝑥1,x2, ⋯ , 𝑥𝑝)
𝑇

 𝑎𝑛𝑑 𝑌 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑝)
𝑇
 , respectively. Here, 

𝑥𝑡(𝑡 = 1,2, ⋯ , 𝑝) represents the column vector formed by the t-th image. We extract the first pair of 

components from the variables X and Y, which are a linear combination of X and Y: 

       𝑇1=w11𝑋1 + 𝑤12𝑋2 + ⋯ + 𝑤1𝑝𝑋𝑝 = 𝑤1
𝑇𝑋                    (5) 

                     𝑈1 = 𝑣11𝑌1 + 𝑣12𝑌2 + ⋯ + 𝑣1𝑞𝑌𝑞 = 𝑣1
𝑇𝑌                     (6) 

where 𝑇1  and 𝑈1  carry as much information as possible about the variantion in their respective 

matrices, and both need to satisfy the following conditions in order to maximize their correlation. 

    𝑀𝐴𝑋(𝑐𝑜𝑣(𝑇1, 𝑈1)) = √𝑣𝑎𝑟(𝑇1)𝑣𝑎𝑟(𝑈1)𝑟(𝑇1, 𝑈1)               (7) 

In the above equation, 𝑐𝑜𝑣(. )  represents the covariance operator, 𝑣𝑎𝑟(. )  represents the 

variance operator, and 𝑟(. ) represents the correlation coefficient operator. Then, the score vectors for 

the first pair of components are calculated based on the standardized observation matrices X and Y, 

and linear regression is performed on the score vectors. The relationship model between X and Y is 

represented as follows: 

𝑌 = 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑚𝑋𝑚 + 𝑌𝑚                       (8) 

The above set of feature vectors 𝛽1, 𝛽2, ⋯ , 𝛽𝑚 represents a set of coordinate coefficients. The 

ROI image undergoes projection onto a set of vectors, resulting in coordinates that signify its position 

in the subspace. These coordinates form the basis for subsequent classification. 
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3.2. Feature fusion and matching  

After feature extraction by the SUPLS method, the palmprint feature vector S and the palm vein 

feature vector Z in the multimodal image database can be obtained. In order to eliminate the adverse 

effects of the numerical imbalance between the two sets of features on the feature-level fusion, S and 

Z are standardized, respectively: Let 𝑆 ′ = 𝑆/‖𝑆‖ , 𝑍′ = 𝑍/‖𝑍‖ , S and Z are transformed into unit 

vectors, 𝑆 ′ and 𝑍′ are the standardized two modal features, and the double vertical lines represent 

the 2-norm. The combined feature vectors are as follows: 

𝐿 = [𝜔𝑍′(1 − 𝜔)𝑆′]                              (9) 

where 𝜔  represents the weight, indicating the contribution of different modalities in the fusion 

process. The optimal value can be determined through experiments in the multimodal image database. 

After obtaining the fused feature, matching is performed by calculating the Euclidean distance between 

the p-th feature vector 𝐿𝑝 and the q-th feature vector 𝐿𝑞 extracted from the database. This distance 

can be denoted as: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑞 = |𝐿𝑝 − 𝐿𝑞|                           (10) 

If the following condition is met: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑡                              (11) 

If it is determined that this pair of fused features originates from the same individual, it is accepted; 

otherwise, it is rejected. The parameter t represents a pre-defined threshold. 

4. Experiments and analysis of results  

4.1. Database  

After conducting a search, it was discovered that there are limited publicly available databases 

capable of accommodating multiple hand-based features from the same individual simultaneously, 

such as palmprint, palm vein, fingerprint, knuckle pattern, finger vein, hand shape, etc. Therefore, we 

construct five multimodal databases comprising hand-based features, utilizing four unimodal palm 

vein databases and two unimodal palmprint databases. Table 1 provides the specific details of the 

utilized unimodal databases. 

Table 1. Based on the single-modal hand database description. 

Databases Traits Subject Sample Total 

CASIA-P Palmprint 200 6 1200 

Tongji-P Palmprint 600 20 12000 

Tongji-V [20] Palm-vein 600 20 12000 

CASIA-V [21] Palm-vein 200 6 1200 

PolyU-NIR [22] Palm-vein 250 6 1500 

Self-built Palm-vein 530 10 5300 



3137 

 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 3129-3145. 

The multimodal database CASIA-PV comprises two publicly available unimodal databases, 

derived from the CASIA multispectral palmprint database, for the extraction of palmprint and palm 

vein features from images captured at 460nm and 850nm wavelengths, respectively. These databases 

are then combined to form the new database, CASIA-PV. CASIA-P and CASIA-V contain palmprint 

and palm vein features obtained from the left and right hands of 100 individuals. Each individual has 6 

images, and the features from the left and right hands are treated as separate individuals, resulting in a 

total of 1200 images for CASIA-P and CASIA-V. The region of interest (ROI) size is 

128 𝑝𝑖𝑥𝑒𝑙 × 128 𝑝𝑖𝑥𝑒𝑙. 

The multimodal database Tongji-PV consists of two publicly available unimodal databases: 

Tongji-P, which employs contact-based palmprint image acquisition and includes 12,000 palm vein 

images from 600 individuals, and Tongji-V, which adopts non-contact palm vein image acquisition 

with a light source wavelength of 940 nm and includes 12,000 palm vein images from 600 individuals 

aged between 20 and 50. The ROI region size for both databases is 128 𝑝𝑖𝑥𝑒𝑙 × 128 𝑝𝑖𝑥𝑒𝑙. 

The multimodal database NIR-CAP consists of the PolyU-NIR (Hong Kong Polytechnic 

University Multispectral Palm Vein Database) and the CASIA-P (CASIA Palm Vein Database). The 

PolyU-NIR database acquires palm vein images under near-infrared (NIR) illumination, using a CCD 

camera and a high-power halogen light source as the contact-based acquisition device. The NIR-CAP 

database contains two databases, each with 200 individuals, and 6 samples per individual. The ROI 

region size is 128 𝑝𝑖𝑥𝑒𝑙 × 128 𝑝𝑖𝑥𝑒𝑙. 

The multimodal database Self-built-CAP consists of a self-built database (Self-built) and a 

CASIA-P palmprint database (CASIA-P). The Self-built database was used to acquire non-contact 

palm pulse images from the left hand of 530 individuals aged between 20 and 50 years, with 10 images 

per individual, resulting in a total of 5300 images. The Self-built-CAP database contains two databases, 

each with 200 individuals, and 6 samples per individual. The ROI region size is 128 𝑝𝑖𝑥𝑒𝑙 ×

128 𝑝𝑖𝑥𝑒𝑙. 

The multimodal database NIR-TP contains the Hong Kong Polytechnic University multispectral 

palmprint database (PolyU-NIR) and the Tongji University palmprint database (Tongji-P). It consists 

of a total of 250 individuals from each of the two database, with 6 samples per individual and an ROI 

region size of 128 𝑝𝑖𝑥𝑒𝑙 × 128 𝑝𝑖𝑥𝑒𝑙. Table 2 presents the details of the used multimodal database. 

Table 2. Description of the multimodal hand-based database. 

Databases Subject Sample Total Image size 

CASIA-PV 200 6 2400 128 × 128 

Tongji-PV 500 6 6000 128 × 128 

NIR-CAP 200 6 2400 128 × 128 

Self-built-CAP 200 6 2400 128 × 128 

NIR-TP 250 6 3000 128 × 128 

4.2. Performance indicators  

To evaluate the accuracy of the proposed hand feature fusion recognition method, the training and 

test subsets are selected from each of the six multimodal databases, with approximately 50% of 

individuals randomly chosen from each database. The individuals in the training and test subsets are 

disjointed. Feature extraction and feature fusion are performed simultaneously on the test subset, 
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followed by classification and matching with the training subset. 

Recognition performance was evaluated using metrics such as the false rejection rate (FRR), false 

accept rate (FAR), correct recognition rate (CRR) [23], equal error rate (EER), and receiver operating 

characteristic (ROC) curves [24]. CRR is defined as: 

𝐶𝑅𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠
× 100% 

EER is a comprehensive indicator of the performance of an identification system. In general, a 

smaller EER indicates superior performance in the identification system. The ROC curve visually 

depicts the variations in FAR and FRR as the discrimination threshold changes. 

   

(1) CASIA-P                 (2) Tongji-P               (3) Tongji-V 

   

(4) CASIA-V                (5) PolyU-NIR              (6) Self-built 

Figure 2. ROI samples of single-modal database. 

4.3. Parameter adjustment  

Before joint feature selection and extraction of sparse unsupervised projections, the image is first 

chunked to reduce the dimensionality, and we ensure that the major features are highlighted while 

reducing the number of image features. The sample dimension d1 after sparse processing and subspace 

denoising, the number of features selected k1, and the number of feature primes k generated after the 

image has been processed by partial least squares are adjusted, provided that the size of the chunks is 

in the range of 2 × 2, 4 × 4, and 8 × 8. 

Based on findings from literature [25], it is recommended to choose the sample dimension (d1) 

and the number of features (k1) with the same value. Experimental results indicate that maintaining 

these values equal maximizes the positive impact on the overall procedure. In experiments, it is ensured 

that both values remain consistent and do not surpass the original sample dimension of the image. 

Similarly, from the literature [23], it can be seen that for chunking and dimensionality reduction in an 

image of size 128 × 128, when the chunking is 2 × 2, the chunking is too small, which will lead to a 

large amount of redundant information in the image features. This significantly increases the 

recognition time and incomplete dimensionality reduction. When the chunking is 8 × 8, the main 

texture information in the image features cannot be fully highlighted because the chunking is too large, 

leading to a lower recognition accuracy. Therefore, the 4 × 4 chunking standard was used for the 

experiment. The following parametric experiments were carried out using a Self-built database. 

  



3139 

 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 3129-3145. 

Table 3. EER and CRR of different principal component number, sample dimension and 

feature number (Self-built database). 

Principal element (k) Subspace sample dimension(d1)/ Number of feature selection(k1) 

400 500 600 700 800 900 1000 

50 EER (%) 6.2743 6.2083 6.4043 6.6044 6.2124 6.4740 6.4043 

CRR (%) 97.45 97.62 96.76 97.54 98.45 96.81 96.55 

100 EER (%) 6.4043 6.2273 6.3418 6.4753 6.1839 6.2870 6.0895 

CRR (%) 97.65 96.66 97.25 97.65 96.99 98.86 96.6912 

150 EER (%) 3.3378 3.0536 2.7010 2.6702 2.7333 2.5918 2.5367 

CRR (%) 97.21 97.66 98.13 97.44 97.34 97.95 97.73 

200 EER (%) 0.8011 0.7907 0.5337 0.4680 0.4789 0.4090 0.4052 

CRR (%) 99.25 99.41 99.41 99.48 99.44 99.69 99.72 

250 EER (%) 0.2588 0.1366 0.1333 0.1334 0.1250 0.0787 0.0765 

CRR (%) 99.84 99.91 99.92 99.97 99.97 99.97 99.97 

300 EER (%) 0.0725 0.0444 0.0191 0.0129 0.0056 0.0045 0.0028 

CRR (%) 99.97 99.98 99.99 99.99 99.99 99.99 100.00 

As the number of master elements (k) increases, the recognition rate gradually improves. The 

dimensionality reduction technique uses a 4 × 4 chunking standard, resulting in image features of size 

32 × 32 after reduction. The number of sample dimensions (d1) and the number of selected features 

(k1) need to be controlled within the image sample dimensions, with 1000 being close to the upper 

limit. Table 3 shows that within this range, when the number of master elements reaches 300, the EER 

is 0.0028%, and the CRR is 100%. However, as the number of elements reaches 1000, further increases 

will lead to an increase in the number of features and a decrease in program efficiency. 

4.4. Ablation experiments  

For the proposed method SUPLS in this paper, feature ablation experiments and module ablation 

experiments were conducted to verify the performance from PLS-based feature-level fusion 

recognition and SUPLS-based unimodal recognition, respectively, in which the EER display order was 

palm vein/palmprint in the unimodal experiments of SUPLS. The experimental results are shown in 

Tables 4 and 5 below. 

Table 4. Feature-level fusion recognition results based on PLS (palm vein/palmprint). 

Databases CASIA-PV Tongji-PV NIR-CAP Self-built-CAP NIR-TP 

EER (%) 0.8870/0.6667 0.8623/0.9447 0.5070/0.6667 0.4179/0.6667 0.8664/0.2810 

Table 5. Single mode recognition results based on SUPLS. 

Databases CASIA-PV Tongji-PV NIR-CAP Self-built-CAP NIR-TP 

EER (%) 0.2633/0.1123 0.7585/0.6667 0.1000/0.2633 0.5600/0.2633 0.1742/0.2400 
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4.5. Recognition performance 

To evaluate the performance of the proposed SUPLS method, we test it on a multimodal database 

and compares its performance with several classical methods commonly used in palmprint and palm 

vein recognition, including DCT_fusion [26], Pca+Lpp, DBM [27], 2DLDA [28], PLS [29], and 

JPCDA [30]. For the aforementioned methods, the palmprint and palm vein features from the 

multimodal database were extracted independently. The modal features were then normalized, and a 

weight-based fusion method was applied to obtain new fused features. The recognition performance 

was evaluated, and the experimental results are presented in Table 6 below. The ROC curves 

representing the recognition performance of the previously mentioned methods in the five multimodal 

fusion galleries are presented in Figures 3 to 7 below. In the four multimodal databases, our method 

improves the EER by 0.1494%, 0.1511%, 0.0195%, 0.0132%, and 0.0029%, respectively, compared 

to the other methods, which are more effective (JPCDA). The performance compared to the remaining 

other methods can be visualized from the ROC graphs in Figures 3 to 7, and the performance effect of 

our method remains stable. 

Table 6. Comparison of equal err rate of multiple methods. 

 DCT_fusion Pca+Lpp DBM 2DLDA PLS JPCDA SUPLS 

CASIA-PV 34.3667 28.3417 25.6738 30.6333 0.6598 0.1667 0.0173 

Tongji-PV 0.6667 1.2068 0.5384 1.0133 0.4728 0.1703 0.0192 

NIR-CAP 25.5000 12.4865 2.2654 26.3000 0.4912 0.0254 0.0059 

Self-built-CAP 25.2000 16.1667 7.6318 8.3057 0.4144 0.0142 0.0010 

NIR-TP 1.5581 8.0669 0.2709 2.5765 0.3200 0.0037 0.0008 

 

Figure 3. ROC curve of CASIA-PV database. 
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Figure 4. ROC curve of Tongji-PV database. 

 

Figure 5. ROC curve of NIR-CAP database. 

 

Figure 6. ROC curve of Self-built-CAP database. 



3142 

 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 3129-3145. 

 

Figure 7. ROC curve of NIR-TP database. 

5. Conclusions  

In this paper, we propose a joint learning-based feature-level fusion recognition method for 

palmprints and palm veins. This method initially employs a sparse unsupervised projection algorithm 

with a “purification matrix” constraint to process palmprint and palm vein region-of-interest images. 

Subsequently, the use of partial least squares algorithm extracts subspaces with high grayscale variance 

and high category correlation from each modality, promoting the consistency of intra-modal 

representations. Finally, a weighted sum is applied to fuse palmprint and palm vein features, 

dynamically optimizing the contribution of each modality for classification recognition. Experimental 

evaluations conducted on five multimodal databases, composed of six unimodal databases, including 

the Chinese Academy of Sciences multispectral palmprint and palm vein databases, yielded EER of 

0.0173%, 0.0192%, 0.0059%, 0.0010%, and 0.0008%. Both the stability of palmprint features and the 

high security of palm pulse features are utilised to increase the anti-counterfeiting function of the 

system. It can be widely used in authentication and access control of confidential information in 

artificial intelligence restaurants, unmanned hotels, smart banks, smart medical care, smart 

communities, traffic security checks, and other fields. 
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