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1. Introduction

Recently, fractional calculus emerged as a crucial tool for describing the dynamics of real-world
problems [1–3]. Indeed, many fractional-order systems (FOSs) have been reported in the literature,
focusing on stability, fault tolerant control, and sliding mode control, among other issues (see [4–6]
and references therein). Iterative learning control (ILC) is an interesting approach to obtain trajectory
tracking of repetitive systems operated over finite-time [7]. In recent years, FOSs and ILC have been
merged with the goal of increasing tracking performance. In [8], a Dα-type ILC scheme was designed
and its convergence was addressed. In [9–11], both the P- and D-type learning schemes were adopted
in FOSs with Lipschitz nonlinearities. In [12], fractional-order PID learning control was proposed for
linear FOSs, and output convergence was analyzed using the Lebesgue-p norm. In [13], the ILC
framework was adopted for FOSs with randomly varying trial lengths. In [14,15], ILC problems of
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multi-agent systems with fractional-order models were investigated. Despite many relevant
contributions, it should be pointed out that the above mentioned works mainly address linear and
Lipschitz FOSs. Moreover, a variety of control strategies have been proposed for nonlinear systems
(NSs) to achieve the desired performance. In [16,17], the convergence analysis for locally Lipschitz
NSs was addessed based on the contraction mapping approach. In [18], adaptive optimal control was
investigated for NSs based on the policy iteration algorithm. In [19], zero-sum control for tidal
turbine systems was studied though a reinforcement learning method.

Compared with classical Lipschitz nonlinearity, one-sided Lipschitz (OSL) nonlinearity possesses
less conservatism. Therefore, in recent years, is has often been used in control systems. Moreover, in
many practical problems, the OSL constant is much smaller than the Lipschitz one, which simplifies
the estimation of the influence of nonlinearities. OSL systems are a wide class of NSs, which contain
Lipschitz systems as particular cases. Practical examples are Chua’s circuits, Lorenz systems, and
electromechanical systems [20–22]. In [23–25], observer design issues for OSL NSs were
investigated. In [26], the classical OSL was considered, and an observer was designed by introducing
the quadratically inner-bounded (QIB) constraint. In recent years, observer design and control of OSL
NSs has attracted considerable attention. In [27], full- and reduced-order observers were derived via
the Riccati equation. In [28], exponential observer design was investigated. In [29], tracking control
for OSL nonlinear differential inclusions was considered. In [30], H∞ attenuation control was
considered for OSL NSs in the finite frequency domain. In [31], event-triggered sliding mode control
was studied for OSL NSs with uncertainties. In [32,33], consensus control was discussed for OSL
nonlinear multi-agent systems. Other meaningful results on ILC of OSL NSs have also been
reported [34–36]. In particular, the QIB constraint was employed to reach perfect trajectory
tracking [34,35]. Note that the above-mentioned results are about classical integer-order systems. To
the best of the authors’ knowledge, for FOSs with OSL nonlinearity, the problem of how to achieve
exact trajectory tracking through appropriate ILC design has not yet been investigated, which
motivates the present study.

This paper deals with the ILC of a family of Caputo FOSs, where the fractional derivative is in
the interval 0 and 1. The considered nonlinearity satisfies the OSL condition, which encompasses the
classical Lipschitz condition. Open- and closed-loop P-type learning control algorithms are adopted.
The convergence of the tracking error is guaranteed with the generalized Gronwall inequality. The
novelty of this paper is summarized in the next two points.

• Unlike the control methods in references [18,19,29–33], the ILC method proposed in this paper
can lead OSL nonlinear Caputo FOSs to exhibit perfect tracking capability;
• In contrast to the works of [34–36], the ILC theory is extended from integer-order OSL NSs to

fractional-order OSL NSs.

This paper is divided into 5 sections. Section 2 establishes some elemental assumptions and
formulates the ILC problem of fractional OSL NSs. Section 3 constructs the open- and closed-loop
P-type control algorithms, and presents the corresponding convergence results. Section 4 includes
a numerical example to show the suitability of the algorithms. Finally, Section 5 summarizes
the conclusions.
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2. Preliminaries and problem description

Some relevant lemmas and definitions are introduced. Afterwards, the problem to be tackled is
formulated.
Definition 1 [37]. The Riemann-Liouville integral of order α > 0 of a function x(t) is

Iα0,tx(t) =
1
Γ(α)

∫ t

0
(t − ξ)α−1x(ξ)dξ, t ∈ [0,∞),

where Γ(α) stands for the Gamma function.
Definition 2 [37]. The Caputo derivative of order 0 < α < 1 of a function x(t) is

CD
α
0,tx(t) = I1−α

0,t
d
dt

x(t) =
1

Γ(1 − α)

∫ t

0
(t − ξ)−α ẋ(ξ)dξ, t ∈ [0,∞).

Lemma 1 [38]. Consider the differentiable vector x(t) ∈ Rn. It follows that, for any time instant t ≥ 0,
we have

CD
α
0,t(xT(t)x(t)) ≤ 2xT(t)CD

α
0,tx(t), ∀α ∈ (0, 1),

where the superscript T denotes the vector (or matrix) transpose.
Lemma 2. (Generalized Gronwall Inequality) [9] Consider that the function u(t) is continuous on the
interval t ∈ [0,T ], and let v(t − ξ) be nonnegative and continuous on 0 ≤ ξ ≤ t ≤ T . Additionally,
consider that the function w(t) is positive continuous and nondecreasing on t ∈ [0,T ]. If

u(t) ≤ w(t) +
∫ t

0
v(t − ξ)u(ξ)dξ, t ∈ [0,T ],

then we have
u(t) ≤ w(t)e

∫ t
0 v(t−ξ)dξ, t ∈ [0,T ].

To simplify the notation, in the following, we useDα to refer to the Caputo derivative CD
α
0,t.

Let us consider the nonlinear FOSDαxk(t) = Axk(t) + Buk(t) + f (xk(t)),
yk(t) = Cxk(t) + Duk(t),

(2.1)

where α ∈ (0, 1), t ∈ [0,T ], and k = 0, 1, 2, · · · is the repetition. Moreover, xk(t) ∈ Rn, uk(t) ∈ Rm,
and yk(t) ∈ Rp represent the state, control, and output of (2.1), respectively; f (xk(t)) ∈ Rn stands for a
continuous nonlinear function; and A, B, C, and D are constant coefficients matrices.
Assumption 1. The nonlinear function f (·) is OSL, meaning that, for ∀x(t), x̂(t) ∈ Rn,

⟨ f (x(t)) − f (x̂(t)), x(t) − x̂(t)⟩ ≤ σ∥x(t) − x̂(t)∥2,

where ∥ · ∥ denotes the Euclidean norm, ⟨·, ·⟩ represents the inner product, and σ ∈ R is the OSL
constant.
Remark 1. Note that the above constant σ can assume any real value, while the Lipschitz constant is
positive. From [26], a Lipschitz function is OSL (σ > 0), but the converse may not hold.
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Assumption 2. The desired trajectory yd(t) is possible, meaning that a control ud(t) exists, guaranteeingDαxd(t) = Axd(t) + Bud(t) + f (xd(t)),
yd(t) = Cxd(t) + Dud(t),

with xd(t) being the desired state.
Assumption 3. The system defined by expression (2.1) meets the initial condition

xk(0) = xd(0), k = 0, 1, 2, · · · ,

where xd(0) represents the desired initial state.
Remark 2. Assumption 2 is a representative condition for OSL Caputo FOSs in control law design.
Assumption 3 is the identical initialization condition, which has been widely used in ILC design to
obtain perfect tracking [7].

The main objective herein is to design a control sequence uk(t) so that the output yk(t) of (1) can
track the specified trajectory yd(t), with t ∈ [0,T ], as k → ∞.

3. The ILC design

For the nonlinear FOS (2.1), we design an open-loop P-type learning control algorithm

uk+1(t) = uk(t) + Ψek(t), (3.1)

where the output tracking error at the kth iteration is defined as ek(t) = yd(t) − yk(t) and the learning
gain matrix is Ψ ∈ Rm×p.
Theorem 1. Let us assume that Assumptions 1–3 hold for the FOS (2.1) with algorithm (3.1). If Ψ
can be chosen such that

ρ1 = ∥I − DΨ∥ < 1, (3.2)

then yk(t) converges to yd(t) for t ∈ [0,T ].
Proof. Let us use δ(·)k(t) = (·)k+1(t) − (·)k(t), where (·) stands for the variables x, u, and f . It follows
from (2.1) and (3.1) that

Dα(δxk(t)) = Aδxk(t) + Bδuk(t) + δ fk(t) = Aδxk(t) + δ fk(t) + BΨek(t). (3.3)

If we left-multiply (3.3) by (δxk(t))T and use Assumption 1, then we have

(δxk(t))TDα(δxk(t)) = ⟨Aδxk(t), δxk(t)⟩ + ⟨BΨek(t), δxk(t)⟩ + ⟨δ fk(t), δxk(t)⟩
≤ (Aδxk(t))Tδxk(t) + (BΨek(t))Tδxk(t) + σ∥δxk(t)∥2

≤ (∥A∥ + |σ|)∥δxk(t)∥2 + ∥BΨ∥∥δxk(t)∥∥ek(t)∥. (3.4)

According to Lemma 1,

Dα((δxk(t))Tδxk(t)) ≤ 2(δxk(t))TDα(δxk(t)). (3.5)

From (3.4) and (3.5), we get
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Dα(∥δxk(t)∥2) ≤ 2(∥A∥ + |σ|)∥δxk(t)∥2 + 2∥BΨ∥∥δxk(t)∥∥ek(t)∥
≤ (2 ∥A∥ + 2 |σ| + 1)∥δxk(t)∥2 + ∥BΨ∥2∥ek(t)∥2

= c1∥δxk(t)∥2 + c2∥ek(t)∥2, (3.6)

where c1 = 2 ∥A∥ + 2 |σ| + 1 and c2 = ∥BΨ∥2. Applying the α-order integral on (3.6), we get

Iα0,tD
α(∥δxk(t)∥2) ≤ Iα0,t(c1∥δxk(t)∥2 + c2∥ek(t)∥2). (3.7)

It follows from Assumption 3 that ∥δxk(0)∥2 = 0, and we further get

Iα0,tD
α(∥δxk(t)∥2) = Iα0,tI

1−α
0,t

d
dt

(∥δxk(t)∥2) = I1
0,t

d
dt

(∥δxk(t)∥2)

= ∥δxk(t)∥2 − ∥δxk(0)∥2 = ∥δxk(t)∥2,

which, together with (3.7), leads to

∥δxk(t)∥2 ≤ Iα0,t(c1∥δxk(t)∥2 + c2∥ek(t)∥2)

=
c1

Γ(α)

∫ t

0
(t − ξ)α−1∥δxk(ξ)∥2dξ +

c2

Γ(α)

∫ t

0
(t − ξ)α−1∥ek(ξ)∥2dξ

=
c1

Γ(α)

∫ t

0
(t − ξ)α−1∥δxk(ξ)∥2dξ +

c2

Γ(α)

∫ t

0
(t − ξ)α−1e2λξ{e−2λξ∥ek(ξ)∥2}dξ

≤
c1

Γ(α)

∫ t

0
(t − ξ)α−1∥δxk(ξ)∥2dξ +

c2

Γ(α)

∫ t

0
(t − ξ)α−1e2λξdξ ∥ek∥

2
λ . (3.8)

We can see that ∫ t

0
(t − ξ)α−1e2λξdξ

t−ξ=τ
−−−−→

∫ t

0
τα−1e2λ(t−τ)dτ

= e2λt
∫ t

0
τα−1e−2λτdτ

2λτ=ξ
−−−−→

e2λt

(2λ)α

∫ 2λt

0
ξα−1e−ξdξ

<
e2λt

(2λ)α

∫ +∞

0
ξα−1e−ξdξ

=
e2λt

(2λ)α
Γ(α). (3.9)

From (3.8) and (3.9), we have

∥δxk(t)∥2 ≤
c1

Γ(α)

∫ t

0
(t − ξ)α−1∥δxk(ξ)∥2dξ +

c2e2λt

(2λ)α
∥ek∥

2
λ .

Setting

v(t − ξ) =
c1

Γ(α)
(t − ξ)α−1,
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w(t) =
c2e2λt

(2λ)α
∥ek∥

2
λ ,

and using Lemma 2, we get

∥δxk(t)∥2 ≤
c2e2λt

(2λ)α
e

c1
Γ(α)

∫ t
0 (t−ξ)α−1dξ

∥ek∥
2
λ

=
c2e2λt

(2λ)α
e

c1
Γ(α)

tα
α ∥ek∥

2
λ

≤
c2e2λt

(2λ)α
e

c1Tα

Γ(α+1) ∥ek∥
2
λ .

Multiplying the above inequality by e−2λt, and using the λ-norm ∥ · ∥λ, we have

∥δxk∥
2
λ ≤

c2e
c1Tα

Γ(α+1)

(2λ)α
∥ek∥

2
λ ,

where ∥ · ∥λ = supt∈[0,T ]{e
−λt∥·∥}.

Therefore, we get
∥δxk∥λ ≤

c3
√
λα
∥ek∥λ , (3.10)

where

c3 =

√
c2e

c1Tα

Γ(α+1)

2α
.

It is obvious that

ek+1(t) = ek(t) −Cδxk(t) − Dδuk(t) = (I − DΨ)ek(t) −Cδxk(t). (3.11)

It follows from (3.2), (3.10), and (3.11) that

∥ek+1∥λ ≤ ∥I − DΨ∥∥ek∥λ + ∥C∥∥δxk∥λ

≤ ρ1∥ek∥λ + ∥C∥∥δxk∥λ

≤ ρ1∥ek∥λ +
c3∥C∥
√
λα
∥ek∥λ

= ρ̂1∥ek∥λ, (3.12)

where
ρ̂1 = ρ1 +

c3∥C∥
√
λα
.

As 0 ≤ ρ1 < 1 by (3.2), we can select λ as large as needed so that ρ̂1 < 1. Thus, we obtain

lim
k→∞
∥ek∥λ = 0.

Note that ∥ek∥s ≤ eλT ∥ek∥λ, with ∥ · ∥s = supt∈[0,T ] ∥·∥ denoting the supremum norm. Therefore,
lim
k→∞
∥ek∥s = 0, meaning that

lim
k→∞

yk(t) = yd(t), t ∈ [0,T ].
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This ends the proof.
Now, we design a closed-loop P-type learning control algorithm, such that

uk+1(t) = uk(t) + Φek+1(t), (3.13)

where the learning gain is Φ ∈ Rm×p.
Theorem 2. Consider that Assumptions 1–3 hold for the FOS (2.1) with the learning algorithm (3.13).
If the gain Φ can be chosen such that

ρ2 = ∥(I + DΦ)−1∥ < 1, (3.14)

then yk(t) converges to yd(t) for t ∈ [0,T ].
Proof. From (2.1) and (3.13), we get

Dα(δxk(t)) = Aδxk(t) + Bδuk(t) + δ fk(t) = Aδxk(t) + δ fk(t) + BΦek+1(t). (3.15)

Left multiplying (3.15) by (δxk(t))T and considering Assumption 1, we obtain

(δxk(t))TDα(δxk(t)) = ⟨Aδxk(t), δxk(t)⟩ + ⟨BΦek+1(t), δxk(t)⟩ + ⟨δ fk(t), δxk(t)⟩
≤ (Aδxk(t))Tδxk(t) + (BΦek+1(t))Tδxk(t) + σ∥δxk(t)∥2

≤ (∥A∥ + |σ|)∥δxk(t)∥2 + ∥BΦ∥∥δxk(t)∥∥ek+1(t)∥. (3.16)

Obviously, (3.16) together with (3.5) implies

Dα(∥δxk(t)∥2) ≤ 2(∥A∥ + |σ|)∥δxk(t)∥2 + 2∥BΦ∥∥δxk(t)∥∥ek+1(t)∥
≤ (2 ∥A∥ + 2 |σ| + 1)∥δxk(t)∥2 + ∥BΨ∥2∥ek+1(t)∥2

= c1∥δxk(t)∥2 + c4∥ek+1(t)∥2, (3.17)

where c4 = ∥BΦ∥2. Similarly to the procedure adopted in Theorem 1, we get

∥δxk∥λ ≤
c5
√
λα
∥ek+1∥λ , (3.18)

where

c5 =

√
c4e

c1Tα

Γ(α+1)

2α
.

From expressions (2.1) and (3.13), we have

ek+1(t) = ek(t) −Cδxk(t) − Dδuk(t) = ek(t) −Cδxk(t) − DΦek+1(t),

that is
(I + DΦ)ek+1(t) = ek(t) −Cδxk(t),

where the symbol I stands for the identity matrix. Since I + DΦ is nonsingular, we get

ek+1(t) = (I + DΦ)−1(ek(t) −Cδxk(t)).
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Furthermore, we derive

∥ek+1∥λ ≤ ∥(I + DΦ)−1∥∥ek∥λ + ∥(I + DΦ)−1C∥∥δxk∥λ

≤ ρ2∥ek∥λ + ∥(I + DΦ)−1C∥∥δxk∥λ. (3.19)

Substituting (3.18) into (3.19) yields

∥ek+1∥λ ≤ ρ2∥ek∥λ +
c5
√
λα
∥(I + DΦ)−1C∥∥ek+1∥λ.

Taking λ such that
c5
√
λα
∥(I + DΦ)−1C∥ < 1,

then we have
∥ek+1∥λ ≤ ρ̂2∥ek∥λ, (3.20)

where

ρ̂2 =
ρ2

1 − c5√
λα
∥(I + DΦ)−1C∥

.

As 0 ≤ ρ2 < 1, we can choose λ as large as needed so that ρ̂2 < 1. From expression (3.20), we
can obtain

lim
k→∞
∥ek∥λ = 0.

As ∥ek∥s ≤ eλT ∥ek∥λ, we know that lim
k→∞
∥ek∥s = 0, and it follows that

lim
k→∞

yk(t) = yd(t), t ∈ [0,T ].

This completes the proof.

4. An illustrative example

We illustrate the applicability of the P-type learning algorithms by means of a practical example.
Let us choose the following nonlinear FOS, which can be used to describe the motion of a moving

object in Cartesian coordinates [39]D0.5xk(t) = Axk(t) + Buk(t) + f (xk(t)),
yk(t) = Cxk(t) + Duk(t),

where xk(t) = [x1k(t) x2k(t)]T, with t ∈ [0, 1],

A =
 1 − 2
− 1 1

 , B =
1 0
2 1

 , C =
1 0
0 2

 , D =
1 0
0 1

 ,
f (xk(t)) =

−x1k(t)(x2
1k(t) + x2

2k(t))
−x2k(t)(x2

1k(t) + x2
2k(t))

 .
Mathematical Biosciences and Engineering Volume 21, Issue 2, 3095–3109.
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We know from [26] that the nonlinear function f (·) is globally OSL with σ = 0 in R2. Let us use

yd(t) =
sin(3πt)

te−0.1t

 ,
and consider

xk(0) =
00
 , u0(t) =

00
 .

i) Open-loop algorithm (3.1).
Using the gain matrix

Ψ =

0.5 0
0 0.5

 ,
we then have

ρ1 = ∥I − DΨ∥ = 0.5 < 1.

Figures 1 and 2 depict the desired trajectories y(1)
d (t) and y(2)

d (t), and the outputs y(1)
k (t) and y(2)

k (t),
respectively, at the 3rd, 5th, and 7th iterations, obtained with the learning algorithm (3.1). Figure 3
represents the errors, showing that perfect tracking is reached as the number of iterations increases.

0 0.2 0.4 0.6 0.8 1

t/s

-1

-0.5

0

0.5

1

1.5

y d(1
) (t

) 
, y

k(1
) (t

)

k=3
k=5
k=7

y
d
(1)(t)

Figure 1. Desired trajectory and system output, y(1)
d (t) and y(1)

k (t), at the 3rd, 5th, and 7th
iterations, when using the learning algorithm (3.1).
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Figure 2. Desired trajectory and system outputs, y(2)
d (t) and y(2)

k (t), at the 3rd, 5th, and 7th
iterations, obtained with the learning algorithm (3.1).
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Figure 3. The output tracking errors versus the number of iterations, obtained with the
learning algorithm (3.1).

ii) Closed-loop algorithm (3.13).
Using the gain matrix

Φ =

1 0
0 1

 ,
Mathematical Biosciences and Engineering Volume 21, Issue 2, 3095–3109.



3105

then we have
ρ2 = ∥(I + DΦ)−1∥ = 0.5 < 1,

meaning that the convergence is verified. Figures 4 and 5 illustrate that y(1)
k (t) and y(2)

k (t) follow
the desired trajectories from the 6th iteration. Figure 6 shows that the error converges under
algorithm (3.13).
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k (t), at the 2nd, 4th, and 6th
iterations, when using the learning algorithm (3.13).
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Figure 6. The output tracking errors versus the number of iterations, obtained with the
learning algorithm (3.13).

We also verify that, at the 10th iteration, ||e(i)
k ||s (i = 1, 2) achieves [1.4 × 10−3, 5.7 × 10−3] and

[0.5× 10−3, 1.4× 10−3] when using algorithms (3.1) and (3.13), respectively. This confirms the results
observed in Figures 3 and 6, meaning that algorithm (3.13) performs better than (3.1) in terms of
convergence speed.

5. Conclusions

The ILC for a class of Caputo FOSs with OSL nonlinearity was investigated. Open- and
closed-loop P-type learning algorithms were designed to guarantee perfect tracking of a desired
trajectory, and their convergence was verified using the generalized Gronwall inequality. An example
was provided to verify the theoretical results. It should be noted that the QIB constraint was used in
the framework of ILC for OSL NSs with irregular dynamics [34,35]. To some extent, this limits the
applicability of NSs due to their need to simultaneously satisfy the OSL and QIB constraints.
Therefore, the ILC for irregular OSL nonlinear FOSs needs to be further investigated by relaxing or
removing the QIB constraint.
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