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Abstract: Surface defect detection is of great significance as a tool to ensure the quality of steel
pipes. The surface defects of steel pipes are charactered by insufficient texture, high similarity between
different types of defects, large size differences, and high proportions of small targets, posing great
challenges to defect detection algorithms. To overcome the above issues, we propose a novel steel
pipe surface defect detection method based on the YOLO framework. First, for the problem of a low
detection rate caused by insufficient texture and high similarity among different types of defects of steel
pipes, a new backbone block is proposed. By increasing high-order spatial interaction and enhancing
the capture of internal correlations of data features, different feature information for similar defects is
extracted, thereby alleviating the false detection rate. Second, to enhance the detection performance
for small defects, a new neck block is proposed. By fusing multiple features, the accuracy of steel
pipe defect detection is improved. Third, for the problem of a low detection rate causing large size
differences in steel pipe surface defects, a novel regression loss function that considers the aspect ratio
and scale is proposed, and the focal loss is introduced to further solve the sample imbalance problem
in steel pipe defect datasets. The experimental results show that the proposed method can effectively
improve the accuracy of steel pipe surface defect detection.
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1. Introduction

Steel pipes are important metallurgical products that are widely used in industries such as petroleum,
construction, automotive, and power. During the production process for steel pipes, various defects may
exist on the surface of the pipes due to factors such as rolling equipment and processes. These defects not
only affect the overall aesthetics, it is also true that surface defects such as cracks, corrosion, and holes
may have significant impacts during use. For example, steel pipes with crack defects may experience
cracks under external forces due to factors such as stress concentration, resulting in safety hazards [1].
Timely detection of surface defects on steel pipes can effectively improve product quality and reduce the
property losses caused by surface defects. Therefore, studying the surface defect detection technology
of steel pipes is of great significance [2].

To date, many defect detection methods have been developed [3, 4], and for surface defect detection,
vision-based detection methods have a wide range of applications and have been extensively employed
in research. Traditional visual based detection methods mainly rely on edge detection [5], feature point
matching [6], template matching [7], etc. These methods have high accuracy on specific datasets, but
they usually have poor generalization ability. Deep learning technology provides effective solutions
to address the aforementioned issues. To date, many excellent deep learning based object detection
methods have been developed, such as Faster R-CNN [8], YOLO [9, 10], SSD [11], RefineDet [12],
Transfomers [13] etc. After improvement based on specific application scenarios, these methods are
widely used to detect defects on surfaces, such as printed circuit boards (PCBs) [14], steel plates [15],
solar cells [16], sanitary ceramics [17], sawn lumbers [18], etc. For example, Hu and Wang et al. [14]
proposed a defect detection method for PCBs based on the Faster R-CNN, which improves the detection
ability of small targets by introducing Garpn and the residual units of ShuffleNetV2. Song et al. [15]
proposed a steel plate surface defect detection algorithm based on the Faster R-CNN, and it overcomes
the problem of a complex shape and high similarity associated with steel plate surface defects by using
deformable convolution and background suppression algorithms. Tu et al. [18] introduced a Gaussian
distribution in YOLOv3 to estimate the coordinates and the localization uncertainty of the prediction box,
and they used the complete intersection over union (CIoU) as the loss function to apply the algorithm to
apply the algorithm for defect detection in steel pipes. Chen et al. [19] introduced an adversarial model
for brain vessel segmentation in time-of-flight magnetic resonance angiography (TOF-MRA) imaging,
enhancing feature representation by decomposing images into high and low frequencies and thereby
addressing sample imbalance.

The method proposed in this paper mainly focuses on the detection of surface defects in steel pipes
based on X-ray images, which have the following characteristics. First, natural images generally contain
rich textural information, making them suitable for target detection by using deep learning models.
However, the X-ray image texture for steel pipes and their surface defects is scarce, with high similarity
between normal and defect areas, and small differences between different defect types. For example, an
air-hole type defect is a solid small circle, while a hole-head type defect is a hollow small circle. In
the process of X-ray image acquisition, there is relative motion between the detected object and the
camera. The hollow position of the hollow-bead defect collected by the system often contains motion
blur, resulting in high similarity between these two types of defects and difficulty in distinguishing them.
Second, the sources of surface defects on steel pipes are different, and the scale of defects varies greatly.
For example, during the production process, high temperatures, conveyor belt transportation collisions,
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and other reasons can lead to the surface of steel pipes containing many small defects such as small
pores or scabs. As a comparison, the scale of defects such as surface cracks in steel pipes is relatively
large. Third, the frequency of different defects on the surface of steel pipes varies greatly, leading to
a serious imbalance in the number of samples with different defects. The above issues pose serious
challenges to the surface defect detection of steel pipes based on X-ray images, and they seriously
reduce the accuracy of defect detection algorithms.

To address the above issues, we propose a novel steel pipes defect detection method based on the
YOLO framework. The contributions of this paper can be summarized as follows.

1) First, a new backbone block is proposed to enhance the feature extraction capacity of the defect
detection method. By increasing the high-order spatial interaction and strengthening the capture
of internal information, the correlation within steel pipe defect features is fully utilized to extract
different features of similar defects, so as to reduce the false detection rate in steel pipe defect
detection.

2) Second, a new neck block is proposed to improve the detection performance for small defects in steel
pipes. By further strengthening the fusion of spatial feature information and making full use of the
feature information of the extracted target, the accuracy of steel pipe defect detection is improved.

3) Third, a novel regression loss function that considers the aspect ratio and scale is proposed to address
the issue of large differences in the scale of steel pipe surface defects. Meanwhile, focal loss is
introduced to further improve the sample imbalance problem in steel pipe defect dataset.

The remainder of this paper is organized as follows. Section II presents the related works. Section
III introduces the data source and the preprocessing method, and Section IV gives the details of the
proposed method. In Section V, the effectiveness of the improved method is demonstrated, comparing
the experimental results of other target detection algorithms. In Section VI, the paper is summarized
and further research directions are given.

2. Related work

Surface defects constitute a key factor affecting product quality; therefore, surface defect detection is
very important. The technology used for surface defect detection is directly related to the characteristics
of the product itself. Common surface defect detection technologies include laser based methods,
magnetic flux leakage based methods, infrared based methods, ultrasonic based methods, visual based
methods, etc. [1]. Among these methods, visual based detection methods have become a research feature
due to their wide applicability [5–7]. Particularly since the emergence of deep learning technology
[8, 9, 11–13], visual based surface defect detection technology has been widely applied [14–20].

The performance of surface defect detection technology is directly related to the characteristics of the
defect itself. Therefore, currently, visual based surface defect detection technology is usually developed
by improving general visual object detection algorithms based on the characteristics of specific surface
defects. Many defects have multiple types, large scale changes, and high similarity between different
types of defects. At the same time, in some scenarios, there is a high demand for real-time performance
of the algorithm. For example, for PCBs, their surface defects have the characteristics of small targets
and high detection speed requirements. To address this issue, Hu and Wang [14] proposed a defect
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detection method for PCBs based on the Faster R-CNN. In this method, a feature pyramid network
FPN is used to enhance the algorithm’s detection ability for small targets, while the region proposal
network is improved to enhance the accuracy of anchor position prediction, thereby reducing the
number of anchor points and improving the algorithm’s execution efficiency. For surface defects of
steel plates, there are many types of defects with complex and irregular shapes, and the sizes of defects
are various. Meanwhile, defect areas and normal areas have high similarity. To overcome the above
issues, Song et al. [15] proposed a surface defect detection algorithm for steel plates based on the Faster
R-CNN. In this method, a background suppression algorithm is included to improve the discrimination
between defect areas and normal areas, as well as the discrimination between different types of defects.
Second, deformable convolution is introduced into the Faster R-CNN algorithm to solve the problems
of complex and irregular defect shapes, as well as large changes in defect scale. For the defects of
solar cells, they have characteristics such as complex backgrounds, variable defect morphologies, and
large scale differences. To overcome these issues, Zhang and Yin et al. [16] proposed an improved
YOLOv5 algorithm. In this method, deformable convolution is included to overcome the problem of
variable defect morphology in solar cells, and modules such as the attention mechanism and small object
detection head are included to solve the problem of complex background and large changes in defect
scale in solar cells. For weld defects, they have high similarity between different types of defects, large
scale changes, and high real-time requirements for the system. To overcome the above issues, Wang
et al. [21] proposed an improved YOLOv5 method. In this method, the problem of large changes in
defect scale is solved by introducing a multi-scale alignment fusion (MSAF) module, and the real-time
performance of the system is improved by incorporating it with parallel feature filtering modules. At
the same time, in MSAF, the problem of high similarity between different types of defects is solved
by aligning features at one level to fuse all other scales. For the surface defects of sanitary ceramics,
they have a wide variety of characteristics, and different types of defects have significant differences in
morphology and scale. Hang et al. [17] proposed a lightweight real-time defect detection network based
on the lightweight backbone MobileNetV3, which achieves multi-scale detection of surface defects
in sanitary ceramics through multi-layer feature pyramids. A detection head with a channel attention
structure and low-level mixed feature classification strategy is used to achieve higher accuracy defect
classification, addressing the sample imbalance issue in TOF-MRA imaging, Chen et al. [19] proposed
a brain vessel segmentation method based on adversarial models. This method involves the separation
of TOF-MRA images into high-low frequency components, thereby enhancing the representation of
textures and edges. Such separation not only bolsters the model’s robustness and regularization, it also
significantly improves its capability to extract texture and edge features. Addressing the challenges
of 3D object detection, Liu et al. [22] proposed an improved PvNet model approach. This method,
by integrating per-pixel keypoint voting with depth imaging, enhances the precision and efficiency of
object detection. In the field of remote sensing data [23–26], object detection also has many challenges.
In the classification and identification of surface or subsurface materials in Earth science and remote
sensing, the performance of the model is limited by information diversification in some complex
scenes. To address this problem, Hong et al. [23] adopted a multi-modal deep learning framework and
specifically studied cross-modal learning. Through different fusion strategies and deep network training
techniques, the classification performance for complex scenes is effectively improved. In a multi-city
remote sensing environment, the existing artificial intelligence models, due to a lack of diverse remote
sensing information and high generalization ability, do not perform well in cross-city or regional case
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studies. To address this challenge, Hong et al. [24] developed HighDAN, a high-resolution domain
adaptation network. This network effectively adapts to the differences in remote sensing images between
different cities by combining high-low resolution fusion and adversarial learning, and it improves
the segmentation ability and generalization ability of the model. In hyperspectral anomaly detection
(HAD), the low-rank representation (LRR) model is limited by the manual selection of parameters
and insufficient generalization performance in practical applications. To solve this problem, Li et
al. [25] proposed a new network that combines an LRR model and deep learning technology: the
HAD baseline network (LRR-Net). LRR-Net uses the alternating direction method of multipliers to
optimize the LRR model, and it integrates its results into the deep network as prior knowledge. At the
same time, the regularization parameters are transformed into trainable parameters to reduce the need
for manual parameter tuning. The detection performance and generalization ability of the model are
improved. With an increasing amount of remote sensing data being acquired from satellites or airborne
platforms, the simultaneous processing and analysis of multi-modal remote sensing data poses new
challenges to researchers in the field of remote sensing. In response to this problem, Wu et al. [26]
proposed a new framework for multi-modal remote sensing data classification based on deep learning,
and they used a convolutional neural network as the backbone to develop an advanced cross-channel
reconstruction module called the CCR-Net. Through a cross-modal reconstruction strategy, the CCR-Net
more compactly fuses different remote sensing data sources to achieve a more effective information
exchange. For bubble defects in photoresist, limited by data collection conditions, there are problems
such as a small number of samples and high similarity between defect areas and normal areas. Yang et
al. [27] proposed an improved YOLOv5 algorithm to address the above issues. A method to increase
the number of defect samples based on generative adversarial networks has been proposed to address
the issue of a small number of defect samples. In response to the problem of high similarity between
defect areas and normal areas, which makes the algorithm difficult to train, they optimized the structure
and activation function of YOLOv5 to solve the dead zone problem of the activation function, reduce
the difficulty of model training, and improve the accuracy of the algorithm.

Compared with the above-mentioned defect detection problems, surface defect detection for steel pipes,
as addressed in this paper also faces the problems of multiple defect types, large changes in defect scale,
and high similarity between different defects. However, unlike the aforementioned defect detection issues,
this work entails the use of X-ray images, while previous algorithms mainly use natural images based on
visible light. Natural images based on visible light generally contain rich textural information, making
them suitable for target detection by using deep learning models However, the X-ray image texture for
steel pipes and their surface defects is scarred, which not only increases the difficulty of the algorithm to
capture defect features, it also exacerbates the impact of multiple defect types, large changes in defect
scale, and high similarity between different defects on the accuracy of the algorithm.

3. Data source and preprocessing

The dataset used in this paper is provided in the RAW format from raw video images by using a
real-time X-ray imaging system, as shown in Figure 1. Through batch processing, JPG images of the
same width and height were cut and exported, and 3408 original images of steel pipes with eight types
of defects were obtained. After that, the defect areas and defect categories of steel pipe welds were
marked by using the marking object software LabelMe, and then exported to the YOLO or PASCAL
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VOC2007 standard dataset format. Deep neural networks require a large number of training samples to
accurately and effectively classify and detect targets. In order to increase the amount of training data,
data augmentation methods such as rotation, cropping, translation, and mirroring were used for the steel
pipe defect dataset in this study. The steel pipe defect dataset was increased to four times the original
image, i.e., from 3408 images to 16,528 images. Finally, the dataset contained 16,528 images of eight
defect types: 3210 air holes, 1832 broken arcs, 2170 slag inclusions, 1428 cracks,1784 overlaps, 1050
bite edges, 1624 unfused, 3520 hollow beads, totaling 16,528 images. Some typical defects are shown
in Figure 2.

Figure 1. Real-time X-ray imaging system.

(a) Air hole (b) Broken arc (c) Slag inclusion (d) Crack

(e) Overlap (f) Bite edge (g) Unfused (h) Hollow bead

Figure 2. Sample of steel pipe defects.

4. Proposed model

For the target detection models, compared with methods such as the Faster R-CNN, SSD, and other
models of the YOLO family, YOLOv5 has the advantage of small models and fast training without any
significant decrease in accuracy [16,27,28]. It is more suitable for target detection in industry. Therefore,
the method proposed in this paper is based on the YOLOv5 model. Figure 3 gives a schematic diagram
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of the proposed method, where different background colors highlight the proposed “New backbone”
and “Neck+” blocks.

Figure 3. Schematic diagram of the proposed method, where different background colors to
highlight the proposed “New backbone” and “Neck+” blocks.

4.1. Overview of the original YOLOv5 model

The network structure of the orignial YOLOv5 can be divided into four parts: input, backbone,
neck, and prediction. The methods used at the input include Mosaic data enhancement, adaptive anchor
box calculation, and adaptive image scaling. Among them, the backbone is mainly composed of the
Conv module, the BottleneckCSP module, and the SPP module, which can be seen in Figure 3. In the
model, BottleneckCSP in the backbone is used to extract deep semantic information from images, and
BottleneckCSP in the neck is used to fuse feature maps of different scales to enrich semantic information.
Bottleneck is composed of two 1*1 convolutional layers plus a 3*3 convolutional layer. There are
two 1*1 convolutional layers, where the first 1*1 convolution reduces its dimension, and then a 3*3
convolutional layer is applied to reduce the number of parameters in the calculation process and speed
up training, subsequently, a 1*1 convolutional layer is used to restore the original dimension.

4.2. Model improvements

From Figure 2 it can be seen that the existence of X-ray image texture for steel pipes and their
surface defects is scarce, with high similarity between normal and defect areas, and small differences
between different defect types. For example, an air-hole type defect is a solid small circle, while a
hole-head type defect is a hollow small circle. In the process of X-ray image acquisition, there is relative
motion between the detected object and the camera. The hollow position of the hollow-bead defect
collected by the system often contains motion blur, resulting in high similarity between these two types
of defects and difficulty in distinguishing them. Second, the sources of surface defects on steel pipes
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are different, and the scale of defects varies greatly. For example, during the production process, high
temperatures, conveyor belt transportation collisions, and other reasons can lead to the surface of steel
pipes containing many small defects such as small pores or scabs. As a comparison, the scale of defects
such as surface cracks in steel pipes is relatively large; Additionally, the frequency of different defects
on the surface of steel pipes varies greatly, leading to a serious imbalance in the number of samples with
different defects. The above issues pose serious challenges to the surface defect detection for steel pipes
based on X-ray images, and they seriously reduce the accuracy of defect detection algorithms.

In order to better adapt to the detection of steel pipe defects, we have made the following improve-
ments to YOLOv5. First, to enhance the feature extraction capacity, the recursive convolutional blocks
and BoTBlock are adopted to form a new backbone framework, and the attention module CoordAttention
(CA) is embedded in the new framework. By increasing high-order spatial interaction and enhancing
the capture of the internal correlations of data features, different feature information for similar defects
is extracted, thereby alleviating the false detection rate of the proposed method. Second, a novel C3HB
module has been designed based on GnConv Block, which is embedded in the original FPN to form
a new neck structure, namely Neck+. This neck structure can enhance the fusion of spatial feature
information and fully utilize the feature information of the target, thus improving the accuracy of steel
pipe defect detection. Third, a novel regression loss function that considers the aspect ratio and scale
has been designed to address the issue of large differences in the scale of steel pipe surface defects.
Meanwhile, the focal loss [29] is introduced to further improve the imbalanced sample problem in the
steel pipe defect dataset. Focal loss addresses sample imbalance by increasing the gradient contribution
of high-quality samples during network training. The above modules can be seen in Figure 3. Details
are as follows.

4.2.1. New backbone block

The location of the proposed new backbone is given in Figure 3, and its schematic diagram is
shown in Figure 4. As shown in Figure 3, one key block of the proposed backbone is GnConv Block,
which is a convolutional layer structure that contains group normalization (GN) operations. GN is a
normalization operation that is more efficient when processing small batches of data, and it is more
robust to the network than traditional batch normalization. GN divides the channel into groups and
then independently normalizes the means and variance of the features within each group. This reduces
redundancy between features and increases the differentiation of feature representations. The input of
GnConv block is a feature map, and the output feature map is obtained after a convolution operation.
Before the convolution operation, a GN operation is performed on the input feature map, that is, GN is
used to normalize the feature map. Then the normalized feature map is input into the convolutional layer
for the convolution operation. Finally, the feature map obtained after the convolution operation is output.
By introducing GN operations before the convolutional layer, GnConv block is able to improve the
expressiveness and discrimination of features. The GN operation helps to reduce correlations between
features, making the features of different channels more independent and representative. Gnconv goes
through a series of convolutional and fully connected layers to form the GnConv Block module in the
backbone. Following the same meta-architecture as a Transformer to build GnConv Block, including
a spatial mixing layer and feed forward network, under the condition that the accuracy would not
change much, it also greatly reduces the amount of ground parameters in the calculation process, and it
strengthens the spatial interaction, which is conducive to extracting the effective location information
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for defects in the dataset. This is very important for the training and learning process of neural networks,
as it can improve the performance and robustness of the model. Therefore, GnConv Block can improve
the effect of feature extraction and classification, as well as improve the accuracy and accuracy of
model detection and classification. In order to make better use of the feature information extracted by
GnConv block and better retain the position information of small targets, this paper introduces a new
architectural BoTCA for the backbone part, where BoTCA consists of a component module BoT in
BoTNet and a plug-and-play mobile network attention mechanism (CA). The BoT module replaces
the traditional convolutional layer with a Transformer module based on the self-attention mechanism
to better capture the global contextual information and improve the representation ability of features.
The BoT module consists of several key components: a Bottleneck structure, a BoT block, residual
connectivity, and layer normalization. Through the combination of these components, the BoT module
can effectively capture global context dependencies in visual data and generate feature representations
with strong representation capabilities. Compared with traditional convolutional neural networks, BoT
modules have better performance in terms of handling tasks such as long-distance dependence and
global information interaction. Because the attention mechanism of the CA module establishes global
associations in different locations, it is more sensitive to local information. It achieves the effect of
reducing the computational complexity and improving the ability to identify defective targets. In the
backbone and head switch, it should be as simple as possible. Not only can the captured location
information be fully utilized, but the area of interest can also be captured. Spatial relationships can
also be captured effectively. In this way, the accurate position information for the global receptive field
coding can be well obtained, the spatial position information for the defect target can be further extracted,
and the target omission can be reduced. In the process of developing an image recognition system, it
is essential to retain more important semantic information for the next step of feature extraction. This
approach helps to ensure that the most relevant and distinguishing characteristics of the images are used
when training the model, leading to more accurate and reliable results.

Figure 4. Schematic diagram of the new backbone block.

4.2.2. Neck+ block

The neck block is the key component for information fusion. The neck block of the original YOLOv5
model is mainly composed of an FPN and a path aggregation network (PAN). In order to further improve
the ability of feature extraction and fusion in the model, we have optimized the neck structure by
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introducing a novel C3GB block based on GnConv Block (as shown in Figure 5), referred to as Neck+.
The location of the proposed Neck+ module is shown in Figure 3, and its structure is given in Figure
6. The C3GB structure consists of three convolutional layers and a sequence of GnConv Blocks, as
shown in Figure 5. It processes the input by using two different paths and then combines the results of
the two paths. This design can increase the width of the network without significantly increasing the
computational complexity, often helping to improve the performance of the model. Compared to the
feature fusion structure of the original FPN and PAN, C3GB allows for dynamic and recursive feature
fusion processes. The recursive process allows the block to capture more contextual information across
continuous levels, thereby improving the model’s ability to detect small targets. Meanwhile, C3GB can
flexibly adjust the features of interest based on different input data, further distinguishing targets with
similar appearances or shapes. After C3GB fusion, the feature fusion structure leads to more complex
feature fusion due to the recursive property of C3GB, which allows the model to distinguish similar
categories and reduces the possibility of defect identification errors. It also allows the model to adapt its
feature extraction and fusion strategies in the training process, so as to better deal with complex defect
detection tasks. Therefore, the Neck+ proposed in this paper can significantly improve the model’s
detection ability for small defect targets and similar targets.

Figure 5. Schematic diagram of the proposed C3GB module.

Figure 6. Schematic diagram of the proposed Neck+ block.
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4.2.3. Improved loss function

Our algorithm modifies the bounding box parameters, which increases the scale of the length and
width of the prediction box to make the prediction box more consistent with the ground truth position.

In the original YOLOv5, the loss function used is the CIOU loss function.The CIOU loss function
is shown in Eq (4.2):

CIOU = IOU − (
ρ2(b, bgt)

c2 + αv) (4.1)

τCIOU = 1 − IOU +
ρ2(b, bgt)

c2 + αv (4.2)

v =
4
Π2 (arctan

wgt

hgt − arctan
w
h

)2 (4.3)

α =
v

(1 − IOU) + v (4.4)

In the CIOU loss function, v is the parameter used to measure the consistency of the aspect ratio, and α
is the parameter used to achieve a trade-off. The CIOU scales the length and width of the prediction
box to ensure that the prediction box is closer to the true ground position. However, the aspect ratio in
CIOU is a relative value, and it is not clear and does not consider the problem of sample imbalance.
Therefore, it is not suitable for surface defect detection for steel pipes. In order to overcome the above
problems, a new loss function ExIOU is proposed based on the improved EIOU. The original EIOU
calculates the difference between width and height based on the CIOU instead of the aspect ratio, and it
applies focal loss to solve the problem of sample imbalance. The EIOU loss function is defined as in
Eq (4.5):

τEIOU = τIOU + τdis + τasp =1 − IOU +
ρ2(b, bgt)

c2 +
ρ2(w,wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(4.5)

where c is the diagonal distance between the center points of the predicted bounding box and the ground
truth bounding box, and Cw and Ch are the width and height of the smallest enclosing box covering both
the predicted and ground truth rectangles.

Although the EIOU directly minimizes the difference in width and height between the target box
and the anchor box, it does not account for the scale difference of the target. However, targets at
different scales may have different importance in object detection. In steel pipe defects, for defects with
small targets and high similarity, the inspection process leads to low accuracy and false detection. To
overcome this problem, we have improved the performance of EIOU on te task of identifying steel pipe
images by adding a scaling function. The proposed ExIOU loss function is as in Eq (4.9):

θ = 1 − σ(exp(S )) (4.6)

S = wgt ∗ hgt (4.7)

ExIOU = IOU −
ρ2(b, bgt)

c2 − θ ∗ (
ρ2(w,wgt)

C2
w

+
ρ2(h, hgt)

C2
h

) (4.8)
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τExIOU =1 − IOU +
ρ2(b, bgt)

c2 + θ ∗ (
ρ2(w,wgt)

C2
w

+
ρ2(h, hgt)

C2
h

) (4.9)

where S is the area where the target is detected. S is computed by using label values to ensure that
the weights are stable during training and truly represent the size of the object. When θ decreases, the
value of θ approaches 0, and when S increases, the value of θ approaches 1. To amplify the size error of
smaller targets, 1 - θ is used as the weight of the size error. This gives smaller targets greater weight.

Regarding the proposed loss function, the weight function can improve the difference between
different targets and the importance of identifying smaller defects, thereby improving the detection
accuracy of small targets. Then, using the sigmoid nonlinear function to further adjust the scaling
function can make the scaling function more flexible, making the fusion more responsive to actual needs.
From the subsequent ablation experiments, it can be seen that ExIOU is superior to the original loss
function EIOU.

5. Experiment

5.1. Experimental settings

The experimental settings of this study are as follows. The development environment was Python
3.8, PyTorch (1.12.0+cu102), and CUDA 11.6. Eight percent of samples in the steel pipe defect dataset
were used as the training set, and the rest of the data were used as the test set. To fully evaluate the
performances of the proposed method and other compared methods,we adopted a series of indicators
such as precision, recall, average precision (AP), and mean average precision (mAP). MAP@0.5 is the
AP calculated for all images in each category for an IOU of 0.5 that is then averaged.

5.2. Experimental results

5.2.1. Performance of the proposed method

In this section, first, we give the test results on all types of defects in Table 1 and Figure 7, and we
present comparisons of the proposed method with eight other widely used detection methods in Table 2
to prove the effectiveness of the proposed method.

From Table 1 and Figure 7, it can be seen that, for the proposed method, the precision and recall of
some types of defects can be 100%, and the AP of most types of defects are greater than 99%, which
indicates that the proposed method can effectively detect surface defects of steel pipes. In Table 2,
we compare the proposed method with eight widely used detection methods, incluidng YOLOv3,
YOLOv3 spp, YOLOv3 tiny, YOLOv6, YOLOv7, SSD, and Faster R-CNN. Among these methods,
YOLOv3, YOLOv3 spp, YOLOv3 tiny, YOLOv6, and YOLOv7 belong to the YOLO family. SSD and
Faster R-CNN are typical one-stage and two-stage high performance detection methods. As shown
in Table 2, it can be seen that, compared to other models, the proposed method demonstrates the best
performance in terms of steel pipe defect detection. The proposed method does not only improve the
mAP, it also significantly improves the APs in multiple defect categories such as the air hole, broken
arc, etc.
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Table 1. The test results for the proposed method.
f Air hole Broken arc Slag inclusion Crack Overlap Bite edge Unfused Hollow bead
Precision 51.3 100.0 93.4 99.0 99.0 100.0 100.0 99.0
Recall 98.0 100.0 100.0 100.0 100.0 100.0 99.0 100.0
AP 99.2 99.5 99.1 99.5 99.5 99.5 92.6 98.7
Computational complexity 179.6 GFLOPS
MAP@0.5 98.9
MAP@0.5 0.95 67.4

(a) Air hole (b) Broken arc (c) Slag inclusion (d) Crack

(e) Overlap (f) Bite edge (g) Unfused (h) Hollow bead

Figure 7. Some detection results for typical steel pipe defects. (a) Air hole. (b) Broken arc.
(c) Slag inclusion. (d) Crack. (e) Overlap. (f) Bite edge. (g) Unfused. (h) Hollow bead.

Table 2. Comparative experimental results on different general object detection methods.
Model name AP AP AP AP AP AP AP AP MAP@0.5

Air hole Undercut Broken arc Crack Overlap Bite edge Unfused Hollow bead
Ours 99.2 99.5 99.1 99.5 99.5 99.5 92.6 98.7 98.9
YOLOv3 98.9 99.5 98.1 99.5 99.5 99.6 91.0 98.7 98.1
YOLOv3 spp 99.0 99.5 98.4 99.5 99.5 99.6 91.8 98.8 98.3
YOLOv3 tiny 97.2 99.5 97.2 99.5 99.5 99.5 94.1 98.6 98.1
YOLOv7 98.1 95.5 83.8 99.1 99.5 99.5 81.6 98.6 95.0
YOLOv6 - - - - - - - - 92.4
SSD - - - - - - - - 88.6
Faster RCNN - - - - - - - - 79.21

5.2.2. Comparisons with other methods

In order to further verify the effectiveness of the proposed model, eight state-of-the-art defect
detection methods were tested for comparison [28, 30–36], and the results are shown in Table 3; some
images of typical detection results are given in Figure 8.

From Table 3, it can be seen that the results of the proposed method are better than those of the
comparison model. Note that some comparison model algorithms have poor detection results for small

Mathematical Biosciences and Engineering Volume 21, Issue 2, 3016–3036.



3029

target defect images of steel pipes. For example, the Image-Adapt-YOLO algorithm has low detection
accuracy for small targets. In this study, a new neck network structure was formed by using the C3GB
module, which strengthens the ability of the model to perform multi-scale feature fusion and further
improves the detection ability of the model for small targets.

(a) Air hole(1) (b) Air hole(2) (c) hollow bead(1) (d) hollow bead(2)

(e) slag inclusion(1) (f) slag inclusion(2) (g) Bite edge(1) (h) Bite edge(2)

(i) Broken arc(1) (j) Broken arc(2) (k) Crack(1) (l) Crack(2)

(m) Overlap(1) (n) Overlap(2) (o) Unfused(1) (p) Unfused(2)

Figure 8. Comparison between the proposed model and the method in [36].

Among these eight methods, the model proposed in [36] is similar to the method proposed in this
paper. In this paper and [36], on the premise of using similar steel pipe datasets, YOLOv5x is used for
detection. However, [36] mainly uses a Hough transform to detect the straight line of the weld edge
and improve the detection accuracy of the model for defects. As shown in Table 3, it can be seen that
the detection performance of the method in [36] is worse than that of the algorithm of this paper. In
order to show the advantages of the proposed method in detail, the results of steel pipe defect image
detection from [36] and this paper’s algorithm are shown in detail in Figure 8, where 1 represents the
algorithm in this paper, and 2 represents the algorithm proposed in [36]. From Figure 8 it can be seen
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that the performance of the method of [36] is worse than that of the model in this paper. It is worth
noting that [36] reported poor detection ability on broken arc defects, while the model proposed in this
paper yielded correct identification results and is more inclusive in special situations. The feasibility of
the model is further verified by this set of comparative experiments.

Table 3. Comparison with other defect detection methods.

Model name (%) Layer number MAP@0.5 (%) GLOPs
Li et al. [35] 235 98.2 12.6
Liu et al. [33] - 98.2 -
Liu et al. [30] 412 97.8 16.3
Yang et al. [36] 607 93.9 220.6
Cheng et al. [34] 198 98.5 14.8
Ye et al. [32] 604 82.1 314.1
Zhu et al. [28] 567 98.6 145.6
Liu et al. [31] 235 98.2 12.6
Ours 501 98.9 179.6

5.2.3. Ablation experiments

In order to further prove the portability of the model improvement demonstrated in this paper, we
conducted ablation experiments on several improvement points; the results are shown in Table 4.

Table 4. Ablation experiment results.

Result (%) Model size Parameters Layers MAP@0.5 (%) MAP@0.5 0.95 (%)
YOLOv5x 169 MB 88,480,857 607 92.2 57.8
YOLOv5x-EIOU 173 MB 88,480,757 607 97.9 65.1
YOLOv5x-Ex IOU 169 MB 89,607,797 607 98.7 66.8
YOLOv5x-BoT CA 155 MB 81,268,077 635 98.6 67.4
YOLOv5x-GnConv Block 167 MB 78,574,877 343 98.5 66.2
YOLOv5x-C3GB 202.8 MB 101,121,077 725 98.7 66.1
YOLOv5x-Ourselves 159 MB 83,244,957 501 98.9 67.4

From the above ablation experiment, it can be seen that in the case of the improved model, the
accuracy of different improved modules is higher than that of the original YOLOv5. In order to further
demonstrate the performance of the model in this paper, the convergence processes for different models
are shown, as presented in Figure 9. The figure shows the convergence of loss functions of YOLOv5,
the improved YOLOv5 model (YOLOv5 EGBC) and the YOLOv7 model during experimental training
and verification. It can be seen from the loss convergence diagram in the above figure that the YOLOv5
model tends to converge when the number of epochs is 60 in the steel pipe defect dataset. In the training
of each model for the detection of steel pipe images, it can be seen from the convergence diagram for the
loss function that the stability of the YOLOv5 series is better than that of YOLOv7, and that YOLOv7
has obvious oscillation during the training process. In the case of YOLOv5, the final improved model
stability is maximized in the YOLOv5 series. It can be seen that the improved YOLOv5 model has
better performance and is also more stable.
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(a) Bounding Box Loss (b) Validation Bounding Box Loss

(c) Classification Loss (d) Validation Classification Loss

(e) Objectness Loss (f) Validation Objectness Loss

Figure 9. Visualization of training and validation set loss functions.

5.2.4. Additional experiment

Some experiments were carried out to reflect the difficulties in the X-ray image detection process and
demonstrate the advantages of the proposed method. On the basis of the existing X-ray image dataset,
we have added natural images to construct a mixed dataset. These natural images have six types of
defects, including patches, a pitted surface, roll in scale, scratches, inclusions, and crazing. YOLOv5
was used for training and validation on the mixed dataset. After training, the network model trained on
the mixed dataset was used for further testing on the mixed defect images. The results are shown in
Table 5.

From Table 5, it can be seen that using the same network model and parameter settings, the MAP@0.5
results for X-ray image detection are worse than those of natural images. Table 5 also shows that the
defect test results for X-ray images are also worse than those for natural images. Therefore, it can be
seen that object detection in X-ray images is more difficult than that in natural images.
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Table 5. Mixed dataset training and validation results.
Result (%) Air hole Slag inclusion Broken arc Crack Overlap Bite edge Unfused Hollow bead Patches Pitted surface Rolled inscale Scratch Inclusion Crazing
AP 58.2 96.7 82.7 99.2 78.4 91.4 82.7 99.0 99.4 99.3 99.5 99.1 99.1 99.5
Test result 30.0 82.0 52.0 81.0 30.0 59.0 30.0 80.0 81.0 76.0 47.0 76.0 81.0 80.0
MAP@0.5 90.0

Data are often subject to various degradations, noise effects, or variations during imaging. In [37], a
new spectral mixture model called the augmented linear mixture model is proposed. The inverse problem
of hyperspectral unmixing is handled by implementing a data-driven learning strategy, which handles
the main spectral variations independently and solves the mixing difficulties due to spectral variations
in hyperspectral imaging. Considering that similar interference may also occur in the application of
the steel pipe defect detection model, in order to further verify the effectiveness of the proposed model
under degradation factors such as noise, we have added the relevant experiments. First, influential
factors such as noise were added to the steel pipe image, and then the steel pipe image was detected
by using the network model proposed in this paper. The types of added noise, parameter settings and
corresponding recognition results were shown in Table 6. Some of the recognition results are shown in
Figure 10.

(a) Air hole (b) Broken arc (c) Slag inclusion (d) Crack

(e) Overlap (f) Bite edge (g) Unfused (h) Hollow bead

Figure 10. Detection results on images with degradation. (a) Air hole. (b) Broken arc. (c)
Slag inclusion. (d) Crack. (e) Overlap. (f) Bite edge. (g) Unfused. (h) Hollow bead.

It can be ascertained from Table 6 that the proposed model has a good recognition effect on steel
pipe images with influential factors, regardless of the addition of Gaussian distribution or salt and
pepper noise, and there is no particularly obvious difference between different noises and different
noise intensities. It can be seen in Figure 10 that the proposed network model has a good detection
effect for various types of steel pipe defects when a variety of different noise and other common
degradation factors are added. For example, the detection of small targets such as pores and hollow
beads demonstrated high confidence and accurate positioning. There are no instances of erroneous
detection of defects such as air holes, hollow beads. Therefore, under the degradation factors, the
network model proposed in this paper still has good detection and identification ability, which further
reflects the stability and effectiveness of the model in this paper.
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Table 6. Noise parameter setting and identification results.
Noise type Noise intensity Air hole Slag inclusion Broken arc Crack Overlap Bite edge Unfused Hollow bead
Salt and pepper 0.01 0.72 0.88 0.90 0.88 0.86 0.82 0.94 0.92
Salt and pepper 0.03 0.72 0.88 0.88 0.87 0.89 0.80 0.94 0.92
Gaussian distribution 20 0.78 0.87 0.90 0.88 0.90 0.86 0.94 0.94
Gaussian distribution 50 0.76 0.88 0.87 0.85 0.87 0.78 0.94 0.94
Poisson distribution 20 0.76 0.87 0.89 0.88 0.90 0.83 0.94 0.93
Poisson distribution 50 0.74 0.89 0.89 0.83 0.87 0.76 0.94 0.95

6. Conclusions

This paper first analyzes the features of the surface defects in steel pipes, and then it presents a
defect detection method based on the YOLO framework. First, a new feature extraction backbone
block was constructed to enhance the feature extraction capacity of the defect detection method. By
increasing high-order spatial interaction and enhancing the capture capability of internal correlations of
data features, different feature information regarding similar defects is extracted, thereby alleviating the
false detection rate of the proposed method. Second, a new neck network structure was designed to
improve the detection performance for small defects in steel pipes. By further enhancing the fusion of
spatial feature information and fully utilizing the feature information of the target, the accuracy of steel
pipe defect detection is improved. Third, a novel regression loss function that considers the aspect ratio
and scale was proposed to address the issue of large differences in the scale has been steel pipe surface
defects. Meanwhile, the focal loss has been introduced to further improve the imbalanced sample
problem in steel pipe defect datasets. Extensive experiments proved the effectiveness of the proposed
method. In summary, our research constitutes significant progress in the direction of addressing the
challenges of low detection accuracy of small objects in steel pipe images, missed detection, and
unbalanced samples, thus improving the accuracy of steel pipe defect detection. Looking forward,
several avenues for further research emerge. First, exploring advanced deep learning algorithms can
lead to more robust solutions for object detection in complex industrial scenarios. Moreover, integrating
more diverse datasets, including those with rare defect types, can further improve the model’s ability
to handle sample imbalance. Finally, there is a very high possibility that these research results can be
translated into real industrial applications. These future research directions not only have the potential
to refine defect detection methods, but they will also make a significant contribution to the field of
industrial image processing and quality control.
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