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Abstract: Lung adenocarcinoma, a chronic non-small cell lung cancer, needs to be detected early. 

Tumor gene expression data analysis is effective for early detection, yet its challenges lie in a small 

sample size, high dimensionality, and multi-noise characteristics. In this study, we propose a lung 

adenocarcinoma convolutional neural network (LATCNN), a deep learning model tailored for accurate 

lung adenocarcinoma prediction and identification of key genes. During the feature selection stage, we 

introduce a hybrid algorithm. Initially, the fast correlation-based filter (FCBF) algorithm swiftly filters 

out irrelevant features, followed by applying the k-means-synthetic minority over-sampling technique 

(k-means-SMOTE) method to address category imbalance. Subsequently, we enhance the particle 

swarm optimization (PSO) algorithm by incorporating fast-decay dynamic inertia weights and utilizing 

the classification and regression tree (CART) as the fitness function for the second stage of feature 

selection, aiming to further eliminate redundant features. In the classifier construction stage, we 

present an attention convolutional neural network (atCNN) that incorporates an attention mechanism. 

This improved model conducts feature selection post lung adenocarcinoma gene expression data 

analysis for classification and prediction. The results show that LATCNN effectively reduces the 

feature dimensions and accurately identifies 12 key genes with accuracy, recall, F1 score, and MCC of 

99.70%, 99.33%, 99.98%, and 98.67%, respectively. These performance metrics surpass those of other 

comparative models, highlighting the significance of this research for advancing lung adenocarcinoma 

treatment. 

Keywords: lung adenocarcinoma; tumor gene expression; feature selection; k-means-SMOTE; 

LATCNN; attention mechanism 
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1. Introduction  

Global cancer statistics for 2020 projected approximately 19.29 million new cases and 9.96 

million deaths [1]. Among cancers, lung cancer claimed the highest mortality rate worldwide, 

contributing to 18% of total cancer-related deaths. Over recent decades, lung adenocarcinoma, a 

prevalent form of non-small cell lung cancer, has exhibited an upward trajectory in both incidence and 

mortality across many nations [2]. Studies have shown that lung adenocarcinoma detected and 

diagnosed at an early stage can be treated by resection, and patients generally have a survival rate of 

about 90% within 5 years or even long-term survival [3]. However, sometimes hematogenous 

metastasis of lung adenocarcinoma occurs at an early stage, which requires combined chemotherapy 

and targeted drug therapy, and the survival period is shortened [4]. Therefore, early prevention of lung 

adenocarcinoma and the development of screening tools for this disease are crucial. 

Clinical medicine and biomedical research have made tremendous progress with the development 

of gene chips and high-throughput sequencing technologies [5]. These technologies have 

revolutionized our understanding of the genome, proteome, and transcriptome, providing 

unprecedented opportunities for disease diagnosis, prevention, and treatment, and playing a key role 

in cancer research [6]. Advances in tumor genomics have helped scientists understand mutations in the 

genes that drive cancer, leading to the development of targeted therapies for specific mutations [7]. 

Common screening methods for lung adenocarcinoma include chest X-rays, blood biomarker tests, 

bronchoscopy, computed tomography (CT) scans, and genetic analysis. X-rays and blood biomarker 

tests are less effective in early screening, while bronchoscopy requires consideration of the patient’s 

physical condition and is inconvenient to perform. On the other hand, CT scans and genetic analysis 

are widely employed in early detection, and with technological advances, they are also beginning to be 

integrated with artificial intelligence. Chen et al. developed a self-distillation training multitasking 

dense attention network based on CT scans [8]. They also proposed a deep learning-based protocol for 

CT image analysis that accurately identifies lung adenocarcinoma categories and high-risk tumor 

regions [9,10]. In a separate study, Gao [11] et al. utilized the particle swarm algorithm and the artificial 

bee colony algorithm to enhance support vector machine (SVM), achieving a prediction accuracy of 

79.49% on lung adenocarcinoma gene expression data. 

However, machine learning-based approaches to analyzing gene expression data for tumor 

prediction and key gene screening encounter several challenges. First, the categories of gene 

expression data typically display extreme imbalance, resulting in poor prediction performance for 

smaller categories, as classifiers tend to be more biased toward the dominant categories during training. 

Second, gene expression data often exhibit a large number of feature dimensions, which can easily 

lead to a dimensionality catastrophe, complicating the training and analysis of models, and increasing 

the difficulty of screening for key genes. 

Many feature selection algorithms and classification prediction models have been applied to the 

study of gene expression profiling data [12]. Xie [13] et al. introduced a normalized mutual information 

method for screening key genes in unbalanced gene data, aiming to address the issue of traditional 

mutual information favoring multi-valued features. They approximated the gene subset size to 20–50 

across multiple tumor gene datasets. Ye [14] et al. proposed a hybrid feature selection algorithm that 

combines FCBF and support vector machine recursive feature elimination (SVM-RFE). Through 

experiments on five public datasets, they reduced the gene subset size to approximately 10 and 

validated it using a k-nearest neighbor classifier, achieving an accuracy ranging from 83.87% to 100%. 

Ludwig [15] et al. suggested a fuzzy decision tree algorithm for analyzing gene expression in colon 

cancer data classification, achieving an accuracy of 80.28%. Zeebaree [16] et al. employed a simple 
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CNN model to classify 10 cancer datasets for prediction and compared it with SVM and random forest. 

The results were excellent on most datasets, with an average classification accuracy of 94.74%. 

Nguyen [17] et al. proposed an improved hierarchical analysis method and incorporated the 

probabilistic neural network into it, achieving an accuracy of 88.89% in colon cancer data diagnosis. 

Xiao [18] et al. conducted experiments on lung adenocarcinoma, gastric adenocarcinoma, and breast 

cancer by integrating multiple machine learning models using deep learning. They achieved a 

significant improvement in accuracy compared to a single machine learning classifier, reaching 

99.20%, 98.78%, and 98.41%, respectively. 

In summary, the primary challenges in the analysis and research of tumor gene data include data 

category imbalance and the difficulty of gene screening arising from high feature dimensions. In 

addition, due to the specificity of genetic data, there may be complex dependencies between certain 

genes, which should be considered during model construction. To address these challenges, we propose 

the LATCNN model, which is based on a hybrid feature selection approach and an attentional 

convolutional neural network, for analyzing gene expression data to predict lung adenocarcinoma. The 

initial step involves utilizing the FCBF algorithm for rapid filtering in feature selection to eliminate a 

substantial number of redundant genes. Subsequently, the k-means-SMOTE [19] method is employed 

to address the impact of data category imbalance. Following this, the dynamic inertia weight particle 

swarm optimization algorithm is applied to further refine the features, aiming to filter out key genes. 

Finally, atCNN is constructed for the prediction of lung adenocarcinoma. Accuracy, recall, F1 score, 

and MCC were used to measure the model performance. Extensive experiments demonstrate that 

LATCNN exhibits exceptional performance. The main highlights are as follows: 

1) We propose a hybrid feature selection algorithm that combines FCBF and an improved PSO 

algorithm. 

2) We propose a new adaptive inertia weight PSO (AWPSO) algorithm that decays rapidly to 

dynamically adjust the inertia weights based on the number of iterations. 

3) We use the k-means-SMOTE method to deal with the data category imbalance problem. 

4) We propose that attentional convolutional neural networks can better capture the dependencies 

between features through the attention mechanism. 

2. Materials and methods 

2.1. Architecture and workflow of the LATCNN model 

In this paper, we propose the LATCNN model for predicting lung adenocarcinoma and screening 

its key genes based on gene expression data. LATCNN consists of three main components: Data 

preprocessing, feature selection, and the construction of a classification model. To obtain gene 

expression data for lung adenocarcinoma, we performed data correction and variance analysis on gene 

microarray data. The FCBF algorithm was then applied to rapidly filter out irrelevant feature genes. 

Subsequently, the AWPSO algorithm containing dynamic inertia weights was utilized to further 

approximate the feature subset, reduce the data size and identify key genes. Additionally, the k-means-

SMOTE method was employed to address the issue of data category imbalance. The preprocessed 

feature data were fed into the constructed atCNN for the prediction of lung adenocarcinoma. Finally, 

a series of experiments were conducted to assess the model’s performance in both key gene screening 

and lung adenocarcinoma prediction. Figure 1 illustrates the overall structure and flow of LATCNN. 
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Figure 1. Architecture of the LATCNN model. 

2.2. Data collection and processing 

The original lung adenocarcinoma data utilized in this study were obtained from the GEO 

database, with the gene chip number GSE31210 [20,21]. Gene chips are composed of thousands of 

biomolecular probes, and each probe point corresponds to a gene. However, there was a situation where 

a gene was represented by more than one probe, so the downloaded cancer tissues and paracancerous 

tissues were subjected to probe transformation. During this process, gene probe IDs are replaced by 

gene names, the data with the same gene names were merged by averaging, and the data of the genes 

that had no differentiation were deleted. The number of samples with lung adenocarcinoma in the 

integrated dataset was 226, and the number of normal samples was 20, and the number of genes was 

20,248. A column of labels was added to the dataset to indicate whether the disease was present or not, 

with 1 label for lung adenocarcinoma samples and 0 for normal samples. 

Gene expression data from gene chips or high-throughput sequencing typically exhibit right-

skewed or left-skewed distributions, i.e., non-normal distributions, due to obeying different 

distributions. Logarithmic processing of the data can transform the data into a form that is closer to a 

normal distribution, which helps to satisfy the assumption of normality in statistical analysis and thus 

apply a wider range of statistical methods. Due to the variation introduced by experimental conditions 

or microarray differences, the abundance of gene expression is much different, and for the convenience 

of subsequent modeling, gene expression data need to be normalized. The specific steps of 

normalization are: First, calculate the quantile of each gene in each sample, and then adjust the data of 
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each sample to a common distribution of quantiles (usually the median), which helps to make the 

distribution of data consistent among different samples. The specific formula is given below: 

 ( / )*x x q Q =                                                                                      (1) 

where x  is the normalized gene data, x  is the original expression data, q  is the sample quartile, and 

Q  is the global quartile, and a comparison of the box-and-line plots before and after data correction is 

shown in Figures 2 and 3. 

 

Figure 2. Data before correction. 

 

Figure 3. Data after correction. 

The fold change method is the most basic method for gene expression analysis, which calculates 
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the fold difference between the diseased and normal gene data, and if the fold difference is greater than 

a specified threshold, the gene is identified as differentially expressed. If the multiplicity difference is 

greater than a specified threshold, the gene is identified as differentially expressed, and the expression 

formula is as follows: 

 1

2

( )
FC(i)=log2( )

( )

x i

x i
                                                                                     (2) 

where 1( )x i   and 2 ( )x i   denote the mean value of gene i in the two sets of data, respectively, and 

whether it is a differential gene is judged by comparing ( )FC i   with the specified threshold. The 

multiplicative change method can effectively reduce the data dimension, but it is not precise enough, 

and the limitation of this method is that the threshold value is not well determined, which is likely to 

result in a high proportion of false-positive results for genes. There are many characterized genes after 

screening, and other characterization screening methods should be used subsequently to further narrow 

down the screening scope. 

The fold change method specifies a fold threshold of 1 and a threshold of 0.05 for the parameter 

p. The genes were selected as up-regulated genes if the expression difference was greater than 1-fold, 

and down-regulated genes if the expression difference was less than 0.5-fold. A total of 3099 

differential genes were screened by the fold change method of differential analysis. 

Comparison of gene expression data before and after all pretreatment steps is shown in Tables 1 

and 2. 

Table 1. Original data set. 

Sample DDR1 RFC2 … TMEM231 LOC100505915 Label 

GSE773540 2955.73 316.62 … 409.69 113.80 1 

GSE773541 2278.31 496.10 … 453.71 138.83 1 

GSE773542 2789.68 460.95 … 392.21 55.69 1 

… … … … … … … 

GSE773783 900.72 178.59 … 812.82 256.50 0 

GSE773784 2301.62 327.82 … 5591.64 382.99 0 

GSE773785 1476.74 277.21 … 2831.72 296.60 0 

Table 2. Preprocessed data set. 

Sample DDR1 RFC2 … TMEM231 LOC100505915 Label 

GSE773540 11.56 8.30 … 8.69 6.76 1 

GSE773541 11.12 9.02 … 8.90 7.29 1 

GSE773542 11.39 8.99 … 8.78 6.11 1 

… … … … … … … 

GSE773783 9.87 7.47 … 9.72 8.03 0 

GSE773784 11.21 8.16 … 12.61 8.40 0 

GSE773785 10.51 7.90 … 11.56 8.01 0 

In addition, in order to evaluate the performance of our proposed LATCNN model more 

comprehensively, we also chose three public tumor gene expression datasets for our experiments, 

namely, breast cancer, lung cancer, and DLBCL, which were obtained from the Kent Ridge Bio-
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medical dataset repository as mentioned in the literature [22]. It is worth noting that these datasets 

cover different types of cancers and are not limited to lung adenocarcinoma. By examining data from 

different cancer types, we aim to validate the generality and applicability of the LATCNN model, as 

well as its performance in handling diverse cancer expression data. Such a design allows us to gain a 

more comprehensive understanding of the potential broad application value of our proposed approach. 

Details of all datasets are shown in Table 3. 

Table 3. Details of datasets. 

Datasets Samples Attributes Classes 

Breast cancer 97 24481 2 

Lung cancer 39 2880 2 

DLBCL 58 7129 2 

GSE31210 246 3099 2 

2.3. Feature selection methods 

2.3.1. FCBF 

FCBF [23] is a fast-filtering feature selection algorithm with symmetric uncertainty (SU) instead 

of information gain (IG) as a relevance measure. 

The information entropy [24], is a measure of uncertainty of a random variable in information 

theory. Assuming that there is a random variable 1 2 },  ,  ..  { ., nX x x x=  , with probability ( )p x  , the 

information entropy ( )H X  of X  is expressed as: 

 H( ) ( ) log( )
x X

X p x x


= −                                                                             (3) 

The greater the information entropy, the greater the amount of information it contains. Assuming 

that there is a random variable Y , the information entropy of X , i.e., the conditional entropy ( | )H X Y , 

after observing the entropy value of Y , is expressed as: 

 ( | ) ( ) ( | ) log( | )
y Y x X

H X Y p x p x y x y
 

= −                                                     (4) 

where ( )p y  is the probability of y , and ( | )p x y  denotes the probability of event x  occurring under 

the given condition y . 

The information gain ( | )IG X Y , on the other hand, measures the extent to which the information 

entropy of the random variable X  is reduced, conditional on the information entropy of the random 

variable Y   being computed. In short, the information gain quantifies the amount of information 

provided by Y  for the prediction of X . The larger its value, the higher the correlation between X  

and Y . The expression is: 

 ( | ) ( ) (X | )IG X Y H X H Y= −                                                                     (5) 

The SU value is a measure that describes the degree of correlation between two nonlinearly 

correlated variables, which is calculated using information entropy, a normalized form of mutual 

information, capable of solving the problem of the tendency of mutual information to refer to more 

than one characteristic, and a normalized form of information gain, with symmetric uncertainty 
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( , )SU X Y  expressed as: 

 
( | )

( , ) 2
( ) ( )

IG X Y
SU X Y

H X H Y
=

+
                                                                   (6) 

From the above equation, when the value of ( , )SU X Y  is 0, it indicates that there is no correlation 

between variables X  and Y . When the value of ( , )SU X Y  is 1, it indicates that variables X  and Y  

are perfectly correlated. 

2.3.2. ReliefF algorithm 

Feature weight is a metric for evaluating the importance of features in the ReliefF algorithm and 

is used to update the weights of features in each iteration [25]. Feature weight [ ]w A  is an important 

metric used to measure the relationship between the distance value between the original feature set and 

feature A . The expression for [ ]w A  is: 

 
1

( , , )

[ ] [ ] ( )

k

j

j

diff A R H

w A w A D C
mk

=
= − +


                                                  (7) 

 
( ) 1

( )
( ) [ ( , , ( ))] / ( )

1 ( ( ))

k

j

C class R j

P C
D C diff A R M C mk

P class R =

=
−

                                       (8) 

R  represents a random sample drawn from the initial sample set. ( )class R  represents the sample 

class containing sample R . ( )P C  then denotes the ratio of the number of selected sample features to 

the total number of sample features among all sample classes. H  is the k-nearest neighbor sample 

among samples of the same class as R , and M  is the k-nearest neighbor sample among samples that 

are not of the same class as R . 1 2( , , )diff A R R  denotes the difference between samples 1R  and 2R  on 

feature A  , and ( )jM C   denotes the jth k-nearest neighbor sample of class C  . The expression for 

1 2( , , )diff A R R  is given by: 

 

1 2

1 2 1 2

1 2

| [ ] [ ] |

max( ) min( )

( , , ) 0 , [ ] [ ]

1 , [ ] [ ]

R A R A

continuousA A

diff A R R discrete R A R A

discrete R A R A

−
 −


= 
 =



                                  (9) 

The features are ranked according to the feature weights w   and the top-ranked features are 

selected as the final feature subset. 

2.3.3. SVM-RFE 

The objective of SVM is to construct an optimal hyperplane to maximize the classification 

interval to achieve accurate classification of samples. When the samples are linearly differentiable and 

satisfy the constraints, the objective function of SVM can be expressed as: 
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2

1

, 0, 1,2(
1

min( || || ) ,. 1 ,. ..
2

.)
n

T

ii ii

i

i i nw c s t y w x b  
=

+    +   =−  (10) 

where w  represents the weight vector of the hyperplane, b  represents the classification threshold, and 

y  represents the category labels. 

In solving the nonlinear high-dimensional pattern recognition problem, SVM uses the kernel 

function ( )i jK x x  to map the data into a high-dimensional space to find the optimal classification 

hyperplane to achieve linear differentiability. Ultimately, SVM computes the discriminant function by 

applying quadratic programming and Lagrange’s dyadic theorem: 

 
1

( ) sgn{ } sgn{ ( , ) }
n

i i i

i

f x w x b y K x x b
=

=  + = +                                         (11) 

SVM-RFE uses a linear kernel function and the ordering coefficients can be defined as: 

 
2 2

1

( ) ,
n

i i i i i

i

Rank i w w y x
=

= =                                                                (12) 

According to the above equation, the weight w  represents a linear combination of non-zero   

support vectors, and an increase in weight indicates that the feature contains more categorical 

information. 

2.3.4. PSO 

The PSO algorithm is a heuristic global optimization method that achieves an approximate 

optimal solution by simulating the social behavior of a flock of birds in a multidimensional space [26]. 

Each object in the PSO algorithm is referred to as a particle, and each particle has the attributes of 

position and velocity. Assuming that the algorithm runs in n-dimensional space, the pth iteration 

position and velocity of particle i can be denoted as 1 2[ , , , ]p p p p

i i i inx x x x=  , 1 2[ , , , ]p p p p

i i i inv v v v=  , 

respectively. In the iterative process, each particle judges the superiority of the current position 

according to the calculated value of the fitness function, and denotes the value of the best position of 

particle i in the previous p iterations in the dth dimension by 
p

idpbest , and denotes the value of the best 

position of all particles in the previous p iterations in the dth dimension by 
p

idgbest  . The particle 

decides the next position and velocity by the current position, velocity and the above two best positions, 

and the update formula for particle i is as follows. 

 
1

1 1 2 2( ) ( )p p p p p p

id id id id id idv v c r pbest x c r gbest x+ = + − + −                                       (13) 

 
1

1

1

1
1 ( ) (0,1)

1

0

p
id

p

idp v
id

sigmoid v U
x e

otherwise

+

+

+ −


= 

= +



                                         (14) 

Here, 1c , 2c  are called learning coefficients, 1r  and 2r  take the random numbers from 0 to 1,   

are the inertia weights of the particles during the iteration [27], which are generally taken as constants, 
(0,1)U  denotes the random numbers from 0 to 1 obeying a uniform distribution. In addition, the 

velocity of each particle during iteration must be limited to min max[ , ]v v . 
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2.3.5. Fast-decay adaptive inertia weights PSO algorithm (AWPSO) 

Although the PSO algorithm possesses strong search ability, it often misses the optimal solution 

by falling into the local optimum when facing multi-polar problems. In order to further enhance the 

overall search ability of the particles, this paper introduces adaptive inertia weights to update the 

particle velocity: 

 max min
min ( )

(1 )
1 max

iter iter

iter

e iter 

 
 

− −

−
= + −

+
                                                       (15) 

Here, 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 are the maximum and minimum inertia weights, respectively;   and   

are the empirical value of 0.01 and 50; iter   is the current iteration number; max iter   is the preset 

maximum iteration number. From Eq (15), the value of iter  eventually decreases from max to min 

with iterations. inertia weights have the function of balancing the global and local search of the particle 

swarm algorithm. When iter  is larger, it can improve the global search ability of PSO; when it is 

smaller, PSO possesses stronger local search ability. 

The fitness function is an index for evaluating the quality of individual particles, and the selection of 

fitness function has a great influence on the convergence speed of PSO algorithm and whether it can find 

the optimal solution. The fitness function selected in this paper is adapted from the literature [28], and the 

specific formula is as follows: 

 ( ) (1 ) (1 )(1 )
f

t

N
f x P

N
 = − + − −                                                               (16) 

where   is a hyperparameter that decides the tradeoff between the classifier performance P , and the 

size of the feature subset fN
 concerning the total number of features tN

. The classifier performance 

can be the accuracy, F-score, precision, and so on. In this paper, the accuracy of CART and the current 

number of features are used as the fitness function, because it has the ability of feature selection, which 

will lead to better verification of the feature subset and better evaluation of the quality of individual 

particles. 

2.4. K-means-SMOTE methods 

In gene expression profiling data, category imbalance is an important issue. This means that the 

sample instances are unevenly distributed across different classes and hence the results of unbalanced 

data classification are biased towards the majority class. SMOTE is an improved algorithm for the 

random oversampling method, as the random oversampling method is a direct re-adoption of a few 

classes, which will result in a lot of duplicate samples in the training set, and is prone to cause 

overfitting problems in the resulting model [29]. The basic idea of the SMOTE algorithm is that for 

each minority class sample ix , randomly select a sample ˆ
ix  from its nearest neighbors ( ˆ

ix  is a sample 

in the minority class and defaults to 1), and then randomly select a point on the line between ix  and 

ˆ
ix  as the newly synthesized minority class sample. The distance formula is: 

 
2

1

( , ) ( )
n

i i

i

dist X Y x y
=

= −                                                               (17) 
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For each randomly selected nearest neighbor b, respectively, a new sample is constructed 

according to the following formula: 

 ˆ(0,1) ( )new i i ix x rand x x= +  −                                                               (18) 

The process of the SMOTE algorithm to synthesize few class samples is shown in Figure 4. 

 

Figure 4. SMOTE algorithm process. 

K-means-SMOTE is an enhanced version of the SMOTE algorithm proposed by Douzas et al. in 

2018 [19], introducing a clustering operation on the basis of the SMOTE algorithm. Initially, the spatial 

domain is partitioned into k clusters using the K-means clustering method. Subsequently, based on the 

imbalance ratio, clusters requiring oversampling are selected, and additional samples are allocated to 

the sparser minority class clusters. For each selected cluster, the SMOTE algorithm is then applied to 

perform oversampling. The final output consists of a new dataset containing both the original samples 

and the synthesized samples. 

2.5. Improved convolutional neural networks based on attention mechanism (atCNN) 

To predict lung adenocarcinoma more accurately, we propose a neural network classification 

model that becomes atCNN, which consists of an input layer, two convolutional layers, two pooling 

layers, two dropout layers, an attention module layer, two dense fully connected layers, a flat layer, 

and an output layer. AtCNN’s network structure and the overall structure of the LATCNN model are 

shown in Figure 5. 
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Figure 5. Network structure of atCNN. 

The feature genes extracted by different feature selection algorithms are considered input features. 

In the convolutional layer, the convolutional kernel width is defined as 3. The convolutional layer’s 

activation function employs the LeakyRelu function, a derivative of the Relu function that solves the 

Relu dead zone problem by introducing a small non-zero slope. When presented with an input sample, 

the convolutional layer functions in the subsequent manner: 

 

11
k

pq ,

0 0

( ) Re ( )
QP

ik i p q

p q

convolution x lu w x
−−

+

= =

=                                                                (19) 

 Re ( ) max(0, )lu x x=                                                                                     (20) 

 
0

Re ( )
0

x if x
Leaky lu x

ax if x

 
= 

 
                                                                       (21) 

Where w   denotes the convolution kernel size and ,

k

pq i p qw x +   denotes the weight matrix of the kth 

convolution kernel with matrix size P Q . 

To achieve enhanced precision in results, the utilization of pooling layers is deemed essential for 

the reduction of output dimensionality derived from the convolutional layer. Typically, the pooling 

layer can be categorized into two types: average pooling and maximum pooling. In the context of this 

research, the choice has been made to employ the maximum pooling layer for processing. The 

maximum pooling operation involves the selection of the highest value within the filtering range. Two 

distinct pooling window sizes, namely 2 and 3, are applied respectively. The process of channeling the 

convolution-processed data into the maximum pooling layer is detailed as follows: 
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, 1, 2, 1,( ) max( , , ,..., )ik iM k iM k iM k iM M kpooling X X X X X+ + + −=                                (22) 

To prevent overfitting, a stochastic deactivation layer is attached after the pooling layer with the 

parameter set to 0.5.  

An attention module is added before the second convolutional layer to introduce a self-attention 

mechanism to improve the performance of the model. The self-attention mechanism serves to introduce 

a kind of context-dependent weighted pooling in the intermediate layer of the model in order to capture 

long-distance dependencies in the input data. The relationships between different features can be 

complex, and the self-attention mechanism can help the model better understand these relationships. 

The core formula for the attention mechanism is: 

 ( , , ) ( )
T

i i
i i i i

k

Q K
Attention Q K V SoftMax V

d
=                                                               (23) 

where, 

 

i Q i

i K i

i V i

Q W X

K W X

V W X

=

=

=

                                                                                             (24) 

Here, iX   is the ith element of the input sequence, QW  , KW  , VW   are the corresponding weight 

matrices, and kd  is the dimension of the attention header. Q (Query) is a query vector that is used to 

query all other Key vectors to determine the weight given to a given Key in the attention mechanism, 

K (Key) is a key vector used to compare the query vectors, which denotes the importance of each 

element in the input sequence, and the V (Value) vectors are the values associated with each Key, 

which are used to generate the final output. In the self-attention mechanism, for each query vector, a 

weight is computed based on the Key vectors corresponding to it, and then the Value vectors associated 

with these Keys are weighted and summed using these weights. The final output is this weighted sum. 

The input matrix transforms an output vector through the utilization of a flattening layer after the 

application of data filtering. Within this model, two dense fully connected layers with 128 and 64 

neurons, respectively, are employed. The processing of these dense layers is segregated into two phases: 

Forward propagation and backpropagation. The former is employed for the computation of the desired 

output results, while the latter is utilized to iteratively optimize the parameters of the forward 

propagation process. The parameters, which are updated post-backpropagation, are subsequently 

reused for the computation of the output values. An activation function known as Relu is applied to 

each output. The mathematical expression representing the dense fully connected layer is presented 

below: 

 
1

n

i ij j i

j

a w x b
=

= +                                                                                        (25) 

 *

i iloss a a= −                                                                                            (26) 

 ij ij
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m w

 = −


                                                                                (27) 
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n loss
b b
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 = −


                                                                                (28) 

The output of the dense layer, denoted as ia , is influenced by the weights, symbolized by ijw . 

The input to the output of the pooling layer, which is referred to as jx , contributes to this process. 

Additionally, a bias parameter, represented by ib  , is incorporated. The updated weights and bias 

parameter, denoted as ijw   and ib  , respectively, play a crucial role in this context. It is imperative to 

highlight that the loss function quantifies the cumulative error. 

In the classifier’s ultimate output layer, the SoftMax activation function is incorporated, 

facilitating the assignment of a numerical range of 0 to 1 to each element within the vector. Furthermore, 

the cumulative sum of these elements invariably equals 1. This characteristic proves particularly 

advantageous in conveying the likelihood of the presence of lung adenocarcinoma. The mathematical 

expression for the SoftMax function is provided below: 

 

1

( )
i

k

y

i k y
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e
SoftMax y

e
=

=


                                                                       (29) 

2.6. Model evaluation indicators 

The most effective approach for illustrating the model’s robustness and utility is regarded as the 

utilization of k-fold cross-validation [30]. In this research, a cross-validation technique is employed 

for the evaluation of the method’s predictive capability. Furthermore, several potent assessment 

metrics have been chosen to validate the model’s feasibility. These chosen metrics encompass accuracy 

(ACC), sensitivity (Sn), specificity (Sp), precision (Pre), the F1 index (F1), and Matthew’s correlation 

coefficient (MCC). 

A confusion matrix usually evaluates the model’s output for a classification query. Table 4 shows 

the confusion matrix. 

Table 4. Confusion matrix. 

 Predicted positive Predicted negative 

Actual positive TP FP 

Actual negative FN TN 

For the binary classification model, after the classifier classifies instances into positive and 

negative classes, there are four classification outcomes. True positive (TP): A positive class instance 

that is also classified as a positive class. True negative (TN): A negative class instance that is classified 

as a negative class. False positive (FP): An instance of a negative category, but is judged to be a positive 

example. False negative (FN): An instance of a positive category, but is judged to be a negative 

category. The relevant definitions and formulas for the six indicators are represented below: 

Accuracy is the degree to which an instance is correctly described and is calculated as: 

 
TP TN

ACC
TP TN FP FN

+
=

+ + +
                                                              (30) 
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Specificity is the ability to correctly identify negative class samples and is calculated as: 

 
TN

Sp
TN FP

=
+

                                                                               (31) 

Sensitivity is the proportion of correctly predicted positive class instances to the total number of 

actual positive class samples and is calculated as: 

 
TP

Sn
TP FN

=
+

                                                                                (32) 

Precision is the accuracy of predicting positively classified samples and is the proportion of 

samples predicted to be positively classified that are correctly predicted, calculated by the formula: 

 Pr
TP

e
TP FP

=
+

                                                                                   (33) 

Accuracy and sensitivity are conflicting indicators. In general, when accuracy is high, sensitivity 

tends to be low, while when accuracy is low, sensitivity tends to be high. The F1 index is a weighted 

average of accuracy and sensitivity, which enables the two indicators to be taken into account together, 

and is calculated using the following formula: 

 
2

1
2

TP
F

TP FP FN
=

+ +
                                                                         (34) 

Matthews correlation coefficient is a comprehensive evaluation index that takes into account the 

sensitivity and specificity and takes the value between [0,1], the larger the value of MCC, the better 

the classification effect of the model, and the calculation formula is: 

 
* *

( )( )( )( )

TP TN FP FN
MCC

TP FN TP FP TN FP TN FN

−
=

+ + + +
                                  (35) 

In addition, the model was evaluated using the AUC value of the area under the curve of the ROC 

curve, which describes the performance of the classification model as a function of threshold, with no 

point on the curve reflecting the perceptibility of the same signal stimulus. It is a curve plotted with 

the true positive rate as the vertical coordinate and the false positive rate as the horizontal coordinate. 

When comparing two or more models, it is possible to visualize the strengths and weaknesses of the 

models. The closer the curve is to the upper left corner, the better the model performance. The formula 

for calculating the true positive rate is the same as for the sensitivity, and the formula for calculating 

the false positive rate is: 

 FDR
FP

TN FP
=

+
                                                                          (36) 

The larger the area under the curve, the better the performance of the corresponding model, and 

the AUC value takes the range. 

2.7. Algorithm description and pseudo-code 

When using the hybrid feature selection algorithm proposed in this paper, the FCBF algorithm is 

first used to do the initial feature selection to quickly filter out a large number of irrelevant features 
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using symmetric uncertainty as a metric, next we propose a PSO optimization algorithm that 

dynamically adjusts the inertia weights to do the second stage of the feature selection using the 

performance of the CART and the number of features together to form the fitness function in order to 

further narrow down the the optimal gene subset. The following is the pseudo-code for this description. 

Input: Tumor gene expression data ( , )X C , where 1 2{ , , , }mX x x x= , 1 2{ , , , }T

nC c c c= . 

Output: The best subset of features G. 

1)     G = {}  # Initialize G as an empty set 

2)     for i in range(1, n+1): 

3)         Calculate C-correlation value ( , )iSU c d  

4)         G = G + { ic } 

5)     end 

6)     Sort G in descending order based on SU values 

7)     G = Top 100 elements of G 

8)     For each particle i: 

9)         Calculate initial fitness value fit[i] 

10)     If fit[i] is better than individual best fitP[i], update fitP[i] and individual best position 

Xpb[i] 

11)       If fitP[i] is better than global best fitG, update fitG and global best position Xgb 

12)   For each particle i: 

13)     Update particle velocity V[i], including the update for adaptive inertia weight 

14)     Update particle position X[i] 

15)   Repeat steps 8−14 until reaching the maximum iteration count max_iter 

16)   Return the global best feature subset Xgb 

17)   G = Xgb 

3. Result and discussion 

In order to verify the effectiveness of LATCNN, the dataset made from gene chip GSE31210 and 

three publicly available datasets are chosen for experiments in this paper. The experiments in this paper 

were all conducted at Google Colab with an Intel Xeon Dual Core 2.2 GHz CPU and NVIDIA Tesla 

K80 GPU. 

3.1. Comparison of feature selection methods 

For the comparison of feature selection algorithms, we used SVM as a classifier and performed 

ten trials on the best subset of features screened by each dataset. Five-fold cross-validation was used 

for each experiment, and the average result of the ten trials was used as the final accuracy. In order to 

better evaluate the hybrid feature selection algorithm combining FCBF and AWPSO proposed in this 

paper, this paper also conducts comparative experiments with the following algorithms, including 

FCBF-PSO, ReliefF-AWPSO, ReliefF-SVMRFE, and FCBF-SVMRFE used in the literature [14]. 

Among them, the filtering algorithms FCBF and ReliefF’s are both selected to rank the top 100 features. 

Table 5, Figures 6 and 7 show the experimental results for the four datasets under the five algorithms, 

where ats denotes the size of the subset of optimal genes and acc denotes the final accuracy. 
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Table 5. Feature selection results. 

 ReliefF-

AWPSO 

ReliefF-

SVMRFE 

FCBF-PSO FCBF-

SVMRFE 

FCBF-

AWPSO 

 Atts Acc(%) Atts Acc(%) Atts Acc(%) Atts Acc(%) Atts Acc(%) 

GSE31210 21 97.01 27 94.18 19 98.7 22 97.01 12 100 

Breast cancer 29 91.71 33 83.26 27 91.71 33 90.55 21 94.7 

Lung cancer 13 81.22 17 79.4 13 81.67 13 80.32 6 89.03 

DLBCL 25 87.67 27 84.51 24 86.4 25 88.56 19 91.07 

 

Figure 6. Number of attributes for different methods. 

 

Figure 7. Accuracy for different methods. 
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In summary, it can be seen that the FCBF-AWPSO algorithm proposed in this paper has the 

smallest size of the best gene subset selected on each dataset, and none of the classification accuracies 

are lower than the other combinations. This indicates that the combination of FCBF and AWPSO is a 

better feature selection algorithm. It can also be seen that compared to ReliefF, FCBF is more suitable 

for gene priming in the first stage of the hybrid feature selection algorithm. 

 

Figure 8. Feature selection time. 

As shown in Figure 8, we also recorded the time taken to run these algorithms, and it can be seen 

that the algorithms in this paper took the least amount of time on each dataset. 

Based on the above analysis, the hybrid feature selection algorithm using FCBF combined with 

AWPSO can quickly and accurately capture the feature information of tumor gene data. Therefore, we 

adopt this method to construct the LATCNN model. 

3.1.1. Analysis of key genes 

The 12 key genes of GSE31210 after screening were COL10A1, AFAP1-AS1, MNX1, ENTREP2, 

GALNT7, LGI3, RCC1, B3GNT3, ST6GALNAC3, KDELR3, STIL, and TACC1. Among these genes, 

COL10A1, AFAP1-AS1, MNX1, B3GNT3, and TACC1 have been documented to be associated with 

lung adenocarcinoma [31−35]. GO functional enrichment analysis of these genes was performed, and 

the results are shown in Figure 9, in which RCC1, STIL, and TACC1 belong to the same 3 pathways: 

GO:0007052, GO:1902850, GO:0007051. GALNT7, B3GNT3, and ST6GALNAC3 belong to the 

same 5 pathways: GO:0006486, GO:0043413, GO:0070085, GO:0009101, GO:0009100, and 

GO:0016757. The function of each gene is described in Table 6. 
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Figure 9. GO enrichment analysis histogram. 

Table 6. Functional description of key genes. 

Gene name Description Gene biotype 

COL10A1 collagen type X alpha 1 chain  Protein coding 

AFAP1-AS1 AFAP1 antisense RNA 1 lncRNA 

MNX1 motor neuron and pancreas homeobox 1  Protein coding 

ENTREP2 endosomal transmembrane epsin interactor 2  Protein coding 

GALNT7 polypeptide N-acetylgalactosaminyltransferase 7  Protein coding 

LGI3 leucine rich repeat LGI family member 3  Protein coding 

RCC1 regulator of chromosome condensation 1  Protein coding 

B3GNT3 UDP-GlcNAc:betaGal beta-1,3-N-

acetylglucosaminyltransferase 3  

Protein coding 

ST6GALNAC3 ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 3  Protein coding 

KDELR3 KDEL endoplasmic reticulum protein retention receptor 3 Protein coding 

STIL STIL centriolar assembly protein  Protein coding 

TACC1 transforming acidic coiled-coil containing protein 1 Protein coding 

3.1.2. K-means-SMOTE algorithm result 

The K-means-SMOTE algorithm is used after the initial screening of features for FCBF to balance 

the minority samples. Since the second stage of feature selection is influenced by the classifier, it is 

affected by the unbalanced data. The balancing of the dataset is achieved by adding new minority 

instances and making them equal to the majority instances. Table 7 compares the results before and 
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after using the SMOTE algorithm on the original dataset. 

Table 7. Data balance before and after. 

 Dataset (original) Dataset (using SMOTE) 

LUAD class instances 226 226 

Normal class instances 20 226 

Total no. of instances 246 452 

3.2. Comparison of multiple methods 

Table 8. Classifier Performance Comparison. 

Data Classifier Acc(%) Recall(%) F1(%) MCC(%) 

GSE31210 SVM 81.01 78.39 71.71 72.76 

 RF 87.65 92.80 75.43 77.22 

 XGBOOST 86.29 70.48 76.80 79.93 

 CNN 96.37 96.66 96.90 95.17 

 DNN 97.57 99.02 98.84 97.13 

 LSTM 93.08 92.20 89.33 88.66 

 atCNN 99.70 99.33 99.98 98.67 

Breast cancer SVM 87.63 84.39 78.92 77.40 

 RF 94.75 92.37 94.06 92.10 

 XGBOOST 94.26 95.33 91.17 92.05 

 CNN 93.92 96.15 91.83 91.22 

 DNN 95.60 100 94.31 94.72 

 LSTM 93.08 93.10 92.37 90.14 

 atCNN 96.99 100 97.47 97.50 

Lung cancer SVM 79.49 82.30 74.06 74.66 

 RF 88.18 89.35 84.62 83.51 

 XGBOOST 87.22 91.73 84.67 82.15 

 CNN 92.78 93.35 90.41 91.69 

 DNN 93.54 98.06 91.32 90.75 

 LSTM 89.25 89.44 86.93 86.20 

 atCNN 95.73 96.67 94.56 94.99 

DLBCL SVM 81.03 82.57 81.26 81.86 

 RF 89.43 87.54 83.20 82.33 

 XGBOOST 89.03 86.44 87.62 85.48 

 CNN 93.57 94.80 91.55 91.32 

 DNN 93.02 95.28 90.71 91.60 

 LSTM 91.46 79.92 90.29 88.74 

 atCNN 96.00 95.10 94.42 94.84 

In order to objectively evaluate LATCNN, we launched a series of experiments on the 

independent dataset GSE31210 and three public datasets. Each method was subjected to 5 experiments 

on each dataset, and 10-fold cross-validation was used each time, with the most average value as the 

final result. For classifier comparison, we chose three machine learning and three deep learning 
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baseline methods, namely SVM, Random Forest, XGBOOST, CNN, DNN, and LSTM, and accuracy, 

recall, F1 score, and MCC are used as evaluation metrics, respectively. Table 8 shows the results of 

these methods on each dataset. 

As can be seen from Table 8, atCNN performs better on all datasets compared to other classifiers. 

On the lung adenocarcinoma independent dataset GSE31210, the accuracy, recall, F1 score, and MCC 

reached 99.70%, 99.33%, 99.98%, and 98.67%, respectively. 

We also compare LATCNN with some of the existing models in the literature, including the 

proposed FCBF-PA-SVM in literature [11], the FCBF-SVMRFE feature selection using FCBF-

SVMRFE features and prediction using four machine learning classifiers as mentioned in literature [14], 

and a CNN model as mentioned in literature [16]. 

Table 9. Comparison with existing models. 

 Literature [11] Literature [14] Literature [16] LATCNN 

GSE31210 81.50 94.29 95.33 99.70 

Breast cancer 88.49 85.71 92.10 97.85 

Lung cancer 78.06 90.26 94.03 99.71 

DLBCL 87.15 93.06 93.89 98.53 

 

Figure 10. Accuracy before and after model modification. 

Table 9 shows the accuracy comparison between LATCNN and the above three models on each 

dataset, and the model in this paper achieves the best performance on all four datasets, reaching 99.64, 

97.85, 99.71, and 98.53, respectively. We also modified the models in the above three literatures by 

replacing their original methods with the feature selection method proposed in this paper, and Figure 
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10 shows the comparison between before and after replacement. It can be seen that after the 

replacement, the accuracy of all these models is improved, proving that the feature selection method 

proposed in this paper can indeed improve the model performance. 

Compared with other models, LATCNN has two advantages: First, the hybrid feature selection 

algorithm can remove irrelevant and redundant features and accurately select the optimal subset of 

features, which on the one hand facilitates the subsequent classification prediction of the model, and 

on the other hand, it also filters out the key genes at the same time. Second, the convolutional neural 

network with the introduction of the attention mechanism performs better than traditional machine 

learning classifiers and also performs better than other deep learning models. However, our model has 

some shortcomings, compared with machine learning, deep learning models take longer to train and 

are more susceptible to hardware factors. Thus, finding better hyperparameters will be the key to 

optimize the model in the future. In summary, LATCNN can be applied to tumor genetic data for 

prediction and key gene screening. 

4. Conclusions 

Tumors are extremely harmful to humans, and early identification and screening of key genes are 

particularly critical. We take lung adenocarcinoma as an example and propose the LATCNN model, 

which aims to accurately predict lung adenocarcinoma and screen key genes. We face the problem of 

how to better downsize the gene data to narrow the scope and more accurately make predictions. 

Initial steps include processing the gene chip data to prepare a usable tumor gene expression 

dataset. The next step is feature extraction using a hybrid feature selection algorithm, which includes 

fast filtering using FCBF, unbalanced categories using K-means-SMOTE, and further feature reduction 

using AWPSO to achieve optimal feature extraction. Finally, atCNN was constructed for prediction, 

achieving an accuracy of 99.70 and the best results on the other three public datasets. Comparison with 

existing methods shows that LATCNN performs better in lung adenocarcinoma prediction and key 

gene screening, and has the potential to analyze other oncogene data. 

Our aim of this study is to explore better methods for oncogene screening as well as prediction. 

In the future, better integration with clinical data is suggested to further improve prediction accuracy. 

In addition, for gene chips prepared in different ways, a suitable batch correction method is searched 

for to obtain a better dataset through joint analysis of multi-chip data. By solving these problems, it 

will eventually help our research on tumors. 
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