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Abstract: Training neural networks by using conventional supervised backpropagation algorithms is 
a challenging task. This is due to significant limitations, such as the risk for local minimum stagnation 
in the loss landscape of neural networks. That may prevent the network from finding the global 
minimum of its loss function and therefore slow its convergence speed. Another challenge is the 
vanishing and exploding gradients that may happen when the gradients of the loss function of the 
model become either infinitesimally small or unmanageably large during the training. That also hinders 
the convergence of the neural models. On the other hand, the traditional gradient-based algorithms 
necessitate the pre-selection of learning parameters such as the learning rates, activation function, 
batch size, stopping criteria, and others. Recent research has shown the potential of evolutionary 
optimization algorithms to address most of those challenges in optimizing the overall performance of 
neural networks. In this research, we introduce and validate an evolutionary optimization framework 
to train multilayer perceptrons, which are simple feedforward neural networks. The suggested 
framework uses the recently proposed evolutionary cooperative optimization algorithm, namely, the 
dynamic group-based cooperative optimizer. The ability of this optimizer to solve a wide range of real 
optimization problems motivated our research group to benchmark its performance in training 
multilayer perceptron models. We validated the proposed optimization framework on a set of five 
datasets for engineering applications, and we compared its performance against the conventional 
backpropagation algorithm and other commonly used evolutionary optimization algorithms. The 
simulations showed the competitive performance of the proposed framework for most examined 
datasets in terms of overall performance and convergence. For three benchmarking datasets, the 
proposed framework provided increases of 2.7%, 4.83%, and 5.13% over the performance of the 
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second best-performing optimizers, respectively. 
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1. Introduction 

Neural networks (NNs) are non-parametric machine learning models inspired by the structure and 
operation of the biological brain cells. They consist of interconnected computational units, called 
perceptrons, organized into layers [1]. In recent decades, NNs have been used in various classification, 
regression, and forecasting tasks [2–5]. Their architecture may vary depending on the specific tasks 
they are designed to solve, and their efficiency is highly affected by their learning process. Multi-layer 
perceptrons (MLP) are feedforward NNs consisting of sequential layers of neurons, also called 
perceptrons, that are interconnected through weighted synapses [1]. A simple MLP consists of three 
layers of perceptrons that are arranged as follows. The input layer receives the input signals, whereas 
the middle and output layers perform complex calculations and make the MLP capable of 
approximating any continuous function. MLPs are often trained on a set of labeled training instances 
that are prepared as input-target pairs to learn the association between inputs and outputs of the MLP 
model. The learning process of an MLP, which belongs to the group of NP-hard problems, involves 
adjusting the hyperparameters and weights of that MLP model by implementing two main categories 
of optimization techniques: gradient descent backpropagation algorithms and heuristic methods. The 
gradient-based algorithms such as gradient descent, conjugate gradient, and Levenberg Marquardt 
algorithms are conventional back-propagation supervised learning algorithms [6–9]. There are a few 
significant challenges associated with most of the gradient descent-based learning algorithms, namely, 
(1) the tendency to get stuck in local minima or saddle points in the loss function’s landscape of the 
MLP; (2) the slow convergence of the learning process, especially in vanishing and exploding gradient 
phenomena [10]; and (3) the strong dependency on initial weights and learning rates [11]. All of those 
limitations, and others, make it difficult for the MLP to learn effectively. 

Recently, heuristic optimization algorithms have shown several advantages over conventional 
gradient-descent methods in the training of MLPs. Many evolutionary and swarm-based 
optimization algorithms are extensively used to solve complex optimization problems and have been 
suggested in the literature as competitive alternatives to optimize the weights and hyperparameters 
of MLPs [12–14]. In contrast to gradient-based learning, heuristic optimization methods can prevent 
the occurrence of local minima since they are designed to search for global optima across complex 
search spaces of weights. This is particularly convenient in complex MLPs with many parameters, 
where finding a global optimum is essential to improve the overall performance [15]. 

Besides, heuristic algorithms for optimization can efficiently optimize the MLPs with non-
differentiable or discontinuous loss functions since they do not count on gradient information. 
Therefore, those optimization algorithms are suitable for problems with non-smooth objective 
functions [16,17]. 

Although there are many suggested evolutionary approaches to optimize MLP models, there is 
still an open problem of stagnation in local optima because of the likely weak exploration and/or 
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exploitation of some of those heuristic approaches. Furthermore, evolutionary optimization approaches 
are generally slow since they require computing an objective function value for each candidate solution 
in the evolving populations. Motivated by these reasons, in this research, a new framework based on 
the recently introduced dynamic group-based cooperative optimizer (DGCO) optimization algorithm 
is suggested and validated for the training of MLPs with a single hidden layer. The DGCO, a meta-
heuristic evolutionary computing algorithm for optimization, is inspired by the dynamic collaboration 
of teamwork agents. The DGCO dynamically manages the exploration and exploitation tasks over all 
iterations until the final one is reached to solve complex optimization problems [18]. We examined the 
proposed approach for the optimization of MLP models by using five classification benchmarking 
datasets for engineering applications. The simulation results are compared to those obtained by 
commonly used optimizers in the literature, including cooperative and competitive evolutionary 
algorithms for optimization, namely the genetic algorithm (GA), grey wolf optimization GWO 
algorithm [19], and particle swarm optimization (PSO) algorithm, as well as those obtained by the 
conventional gradient descent-based algorithm. 

In general, the evolutionary computation (EC) algorithms deployed for the automatic learning of 
MLP models mainly aim to optimize either the structure of those models or the weights of the 
connections among their perceptrons. In this research, we validate our approach to optimizing the 
weights and biases of MLP models for classification. In this work, we introduce the DGCO as a 
competitive optimizer to optimize the parameters of MLP models for applications with limited training 
datasets, as shown in the simulation results in Section 6.2. 

The main contributions of this paper are as follows:  
1) Introducing a novel framework to optimize feedforward MLP models by using a cooperative 

EC algorithm. The framework validated the ability of the DGCO algorithm to optimize a machine 
learning model. The suggested optimizer showed its competitive performance in in its ability to avoid 
local optima as well as its fast convergence and optimization time. 

2) We validate the proposed framework’s ability to optimize the weights of MLP models even 
in cases of reduced or limited training datasets. 

3) We compare the performance of the proposed framework with other competitive evolutionary 
optimizers in terms of accuracy and run time. 

The remainder of this paper is organized as follows. Section 2 shows a background and introduces 
related work, and Section 3 briefly describes MLP models and their basic concepts. Section 4 
overviews the DGCO evolutionary algorithm and its equations and main features. In Section 5, we 
detail the proposed DGCO-based framework. The simulation results are depicted and discussed in 
Section 6. Finally, we conclude our work and summarize its limitations and how they can affect our 
future research perspectives in Section 7. 

2. Background and related work 

Swarm-based algorithms are the most investigated heuristic methods among the EC algorithms 
for the optimization of MLP models. Those population-based algorithms are nature-inspired, where a 
population consists of agents representing solution candidates for the optimization problem. The 
initially randomized solutions in the early populations are evolved and updated until a satisfactory 
solution is found or a stopping criterion is reached. The incorporated randomness in the EC algorithms 
permits the exploration of the search space and the move from a local search to a global one, which 
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makes those algorithms suitable for global optimization [15]. 
In general, the EC optimization algorithms are considered as either competitive, like the GA, or 

cooperative, like the PSO algorithm [20,21]. GAs, introduced in [22–24], constitute one type of the most 
investigated evolutionary heuristic algorithms for the optimization of MLP models [25–28]. Several 
swarm-based optimization algorithms are reported in the literature as NN optimizers, namely, the ant 
colony optimization algorithm [29,30] and the artificial bee colony (ABC) algorithm [31]. Those 
algorithms, with their variations, were investigated for their ability to optimize MLP models [32–36]. 
Besides, other EC algorithms, like the differential evolution (DE) [37] and the brain storm optimization 
algorithms [38] that simulate brainstorming process, are also employed to optimize the weights and 
biases of MLPs, effectively tweaking an MLP model to improve its performance [39,40]. Recently, 
optimizing MLP models by using heuristic evolutionary optimizers for medical, agriculture, food 
quality, and mineral grading applications have been reported in the literature [41–43]. In [43] the 
authors compared the performance of several EC heuristic optimizers like ABC, PSO, and the GA to 
estimate gold grade with highly sparse data. On the other hand, several papers have suggested 
combined approaches that hybridize gradient-based learning with EC for global optimization [44,45], 
while in others, hybridized heuristics are proposed to optimize MLP models [46]. In [44], the authors 
introduced and validated a framework that combines the DE optimizer with the local conjugate 
gradient optimization algorithm. The authors claimed that the DE-GC approach outperformed other 
optimizers, including two variants of DE. In a forecasting application, the authors of [45] proposed a 
hybrid PSO and conjugate gradient learning of MLP models to predict air pollution parameter data, 
namely the suspended particulate matter. The authors claimed that the hybrid approach provided better 
predictions than the gradient conjugate and PSO separately. In [46], the authors proposed a framework 
that hybridizes the GA algorithm and ABC algorithm to optimize MLP models for medical applications 
to detect diabetes and breast cancer cases. 

3. Multilayer perceptrons models 

MLPs are artificial NNs of the feedforward type where sequential layers of processing units 
called perceptrons are interconnected through weighted connections [1]. An MLP unit is a cell of 
computation called a perceptron. Each perceptron has an activation function that decides the final 
output of that perceptron. A simple MLP may consist of three layers of perceptrons that are arranged 
as follows: the input layer receives the input signals to map them to the next MLP layer, whereas the 
middle and output layers make the decisions about the input signals. An MLP may include an 
arbitrary number of hidden layers that perform complex calculations and make the MLP capable of 
approximating any continuous function for regression or classification. MLP layers are, in general, 
interconnected in a one-directional fashion. The connections are represented by real numbers that 
hold the knowledge of the MLP. 

The MLP models are trained on labeled input-target pairs to learn how to model the associations 
between input vectors and output targets. The learning process involves adjusting their parameters and 
weights through a supervised learning process. The supervised learning of MLP models is completed 
by using the classical gradient descent backpropagation algorithm or one of its variants or, more 
recently, by an EC-based learner. Figure 1 depicts the general structure of an MLP model with one 
hidden layer. The outcome of each perceptron is computed in two steps. First, the weighted sum of the 
inputs is calculated by using Eq (1). 
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𝑈  ∑ 𝑊  𝑥  𝑏         (1) 

where 𝒙𝒊 is the input to the jth perceptron and 𝒘𝒊𝒋 is the weight of the connection between the input 
𝒊 and the perceptron 𝒋 in the next layer. The bias 𝒃𝒋 of the perceptron 𝒋 decides the output of that 
perceptron against the value of the weighted input 𝑾𝒊𝒋 𝒙𝒊. In the second step, the final output of the 
neuron 𝒋, denoted by 𝜑 𝑈  is computed by applying an activation function 𝜑 .  on the summation 
value 𝑼𝒋 computed in Eq (1). Several types of continuous activation functions are commonly used in 

MLP models [1]. Equation (2) shows the computation of the output of neuron 𝒋 by using the sigmoid 
function that is widely used in the literature; 

𝜑 𝑈   
 

                            (2) 

where 𝑼𝒋 is the weighted summation of inputs to perceptron j, and 𝒂 is the slant parameter of the 

sigmoid function. 

 

Figure 1. An MLP NN with a single hidden layer. 

4. DGCO 

The DGCO [18] is influenced by the cooperative behavior adopted by swarm individuals to 
achieve their global goals. The optimization process handled by the DGCO starts with an initial random 
population of individuals representing candidate solutions to the problem being solved. Then, the 
fitness of each individual of the population is calculated. After that, the DGCO divides the population 
into two groups: the exploration group and the exploitation group (Figure 2). The responsibility of the 
exploration group is to search for promising areas in the search space. To do that, individuals in the 
exploration group apply one of two techniques. The first one searches the area around a solution. This 
strategy is mathematically modeled by using the following equations: 

𝐷 𝑟 . 𝑆 𝑡 1                         (3) 



2975 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2970–2990. 

𝑆 𝑡 1 𝑆 𝑡 𝐷.  2𝑟⃗ 1                        (4) 

where 𝑟⃗ and 𝑟⃗ are coefficient vectors in the intervals [0, 2] and [0, 1] respectively, 𝑡 refers to the 
current iteration, 𝑆 is the current solution vector, and 𝐷 is the distance between the current agent and 
the solution agent. 

The second strategy that is adopted by individuals of the exploration group is Mutation, which 
improves the diversity in the population and therefore helps to prevent stagnation into local optima. In 
general, these two strategies help to increase the DGCO’s exploration capabilities. 

Besides, individuals in the exploitation group are responsible for finding better positions in the 
search space. To achieve that, individuals in the exploitation group apply two different techniques. The 
first one allows the search agents to move toward the best solution found so far by using random walks. 
This task is mathematically modeled by using the following equations: 

𝐷  𝑟⃗ .  �⃗� 𝑡  𝑆 𝑡                         (5) 

𝑆 𝑡 1 𝑆 𝑡 𝐷                          (6) 

where 𝒓𝟑 is a random vector of values in the interval [0, 2] that controls the moving steps toward the 
best solution, also referred to as the solution, 𝒕 refers to the current iteration, 𝑆 is the vector of the 
current solution, �⃗� is the vector of the best solution, and 𝐷 indicates the distance vector. 

 

Figure 2. Exploration and exploitation groups of the DGCO. 

The second technique used by individuals in the exploitation task permits to randomly search 
around the best solution. This strategy is modeled by using the following equations: 
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𝐷 �⃗� 𝑡 ∗ 𝑘  𝑟                        (7) 

𝑆 𝑡 1 𝑆 𝑡 𝐷.  2𝑟⃗ 1                          (8) 

𝑘 2   

_
                      (9) 

where 𝑟⃗ and 𝑟⃗ are random vectors of numbers in the interval [–1, 1], 𝑘 decreases exponentially 
from 2 to 0 throughout iterations, �⃗� is the vector of the best solution, 𝑆 is the current solution vector, 
and 𝐷 indicates the diameter of the circle in which the solution looks for better solutions. 

One of the advantages of the DGCO algorithm is its ability to achieve exploration and exploitation 
balance up to the last iterations of the algorithm. The DGCO dynamically changes the number of 
individuals in each sub-group during each iteration based on its recorded convergence history. Initially, 
the DGCO starts with a 70/30 schema, which assigns 70% of the population to the exploration group 
and the remaining 30% to the exploitation group. Starting with more individuals in the exploration 
group helps the model to find more promising areas in the search space. 

Throughout iterations, the DGCO decreases the number of individuals in the exploration group 
and increases the number of individuals in the exploitation group. The DGCO applies an elitism 
operation by electing the best solution in each iteration to be in the next population. This facilitates 
improvement of the convergence behavior of the algorithm. 

At any iteration, the DGCO may increase the number of exploring individuals and decrease the 
number of individuals in the exploitation group if the fitness of the leader solution does not improve 
significantly for three consecutive iterations. Finally, the DGCO may randomly interchange the roles 
of individuals of each group in each iteration to guarantee the diversity of the population. The pseudo-
code of the DGCO algorithm is presented in Algorithm 1. 

Algorithm 1. Pseudo-code of DGCO optimization algorithm 

Initialize the population �⃗�  𝑺𝟏, 𝑺𝟐, … , 𝑺𝒅  
L = the best solution (leader)  
 
While t < iters_count 
 Calculate fitness of each solution, calculate best solution  
 k = 2 – 2 * t / iter_count  
 Update the number of solutions in each group 
 if best fitness did not change from previous 2 iterations 
   Increase the number of solutions in the exploration group 
 end if  
  
 for each solution in the exploration group 
   update r1, r2, and p 
      elitism of the best solution 
   if p >= 0.5 
   mutate the solution  
   else 
          search around current solution (Eq (4))  
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     end if 
 end for 
  
 for each solution in the exploitation group 
    elitism of the best solution 
    update r2, r3, r4, p 
   if p >= 0.5 
   move towards the best solution (Eq (6)) 
   else 
          search around the best solution (Eq (8)) 
     end if 
 end for 
 amend solutions that go beyond the search space 
 update prev_fitness1, prev_fitness2 
end while 

5. DGCO-based framework for training the MLP 

The proposed framework is based on the DGCO algorithm for training MLP models with a single 
hidden layer. We will refer to this framework by the abbreviation DGCO-MLP. Two main factors need 
to be carefully selected when a heuristic optimization algorithm is designated to train an MLP model, 
namely, the representation of the search agents and the selection of the fitness function, also named the 
objective function. In the DGCO-MLP, each search agent is represented by a one-dimensional vector 
that represents the hyperparameters of a candidate MLP model. A group of search agents, also referred 
to as the population, consists of a number of search agents that evolve from one training epoch to the 
next one. Each vector that represents an agent in a population contains the weights and biases of the 
MLP candidate related to that agent. The dimension of each vector is equal to the total number of 
connections among the perceptrons in the sequentially connected layers of the MLP model, plus the 
number of biases of those perceptrons, as shown in Eq (10). 

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡 𝑠 𝑣𝑒𝑐𝑡𝑜𝑟 𝑛 ℎ ℎ 2 1         (10) 

where 𝒏 is the dimension of the input layer and 𝒉 is the dimension of the hidden layer. Equation (10) 
includes the number of connections among input units and hidden perceptrons 𝒏 𝒉 , the number 
of connections among the hidden perceptrons and the output perceptron ℎ 1 , and the number of 
biases of the hidden perceptrons ℎ 1  and the output perceptron 1 . Figure 3 illustrates the 
compositions of a search agent’s vector in the DGCO-MLP framework. 
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Figure 3. The compositions of a search agent’s vector in the DGCO-MLP framework. 

We adopted the mean square error (MSE) as the value of the fitness of each search agent. The 
MSE is calculated as the difference between the actual output of the MLP 𝒚  and the exact value 
𝒚 that is available for each instance in the training dataset. Equation (11) shows the calculation of the 
MSE for one epoch of training. 

𝑀𝑆𝐸  ∑  𝑦  𝑦         (11) 

where 𝒏 is the number of training instances in the training dataset. 
The main steps of the DGCO adopted in the DGCO-MLP framework are as follows: 
Step 1. Initialization: The first generation of the search agent’s population is randomly initialized. 

Each search agent designates a potential MLP candidate. 
Step 2. Fitness estimation: The potential of each search agent in the pool of candidates is 

estimated by using a designated fitness function, also named “cost function”. This is realized by 
assigning the weights and biases stored in each vector that represents a search agent to an MLP. Then, 
the obtained MLP is evaluated by using training and validation datasets. The heuristic-based training 
aims to find an MLP candidate that produces the minimal MSE during the training phase.  

Step 3. Updating the population: The positions of the search agents are dynamically updated by 
using the equations described in Section 4. 

Steps 2 and 3 are repeated until an adopted stopping criterion is reached. The MLP with the 
optimal fitness score is returned as the solution for the optimization problem. That MLP is then 
validated on an unseen testing subset. 

Figure 4 shows the main steps of the DGCO-MLP approach for MLP learning. 
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Figure 4. Main chart of the DGCO-MLP framework. 

6. Simulations and discussion 

We evaluated the proposed DGCO-based approach for training MLPs by using five standard 
benchmarking datasets for classification. We selected those datasets from the University of California 
at Irvine machine learning repository [47] and the Kaggle repository [48]. Table 1 shows some 
parameters of these datasets in terms of the number of training and testing samples, classes, and 
features. Every selected dataset has a particular number of each of those coordinates. Therefore, we 
created several MLP models with different numbers of input units to validate the DGCO-MLP against 
each dataset. Table 2 depicts the MLP structure for each examined dataset. In the literature, several 
approaches are used to select the number of perceptrons in the hidden layer with no standard that 
guarantees superiority. In our simulations, we adopted the following formula to decide the number of 
hidden units in the hidden layer of the examined MLP; 

ℎ          (12) 

where 𝒏 is the number of input units, which, in our case, is equal to the number of features in the 
dataset, and 𝒎 is the number of output units. 

We validated and compared the accuracy of the proposed DGCO-MLP framework against the 
classical gradient descent backpropagation algorithm and other commonly used heuristic evolutionary 
optimizers, namely GWO, PSO, and the GA. Table 3 lists the controlling parameters of the examined 
evolutionary optimizers with their related initial values. 
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Table 1. Datasets for classification to validate the evolutionary optimization approach. 

Dataset # Classes # Features Training Samples Testing Samples 
Parkinson’s 2 22 130 65 
Ionosphere 2 34 234 127 
Hepatitis 2 10 104 51 
Vertebral 2 6 208 103 
Water Potability 2 9 1529 764 

Table 2. MLP structure for each examined dataset. 

Dataset # Features MLP Structure 
Parkinson’s 22 22-12-1 
Ionosphere 34 34-18-1 
Hepatitis 10 10-6-1 

Vertebral 6 6-4-1 
Water Potability 9 9-5-1 

Table 3. Controlling parameters of the examined evolutionary optimizers. 

Algorithm Parameter Value 
GWO population size 

maximum number of iterations 
randomization interval 

200 
350 
[–1, 1] 

PSO population size 
maximum number of iterations 
acceleration constants c1 , c2  
inertia weight values 

200 
350 
{2.1, 2.1} 
[0.6, 0.9] 

GA population size 
maximum number of iterations 
crossover probability  
mutation rate  
selection mechanism  

200 
350 
0.9 
0.1 
roulette wheel 

DGCO population size 
maximum number of iterations 
randomization interval 
exploration initialrate 

200 
350 
[–1, 1] 
70% 

6.1. Simulation setup 

In our simulations, we used Python as the primary programming language to implement our 
version of the DGCO and all of the examined optimization algorithms. Training and validation routines 
were also implemented and validated with Python frameworks and libraries. We have benefited from 
the extensive Python libraries and tools such as Scikit-learn 0.24.2 packages that require Python 3.6 or 
newer versions [49]. Scikit-learn provides many machine learning algorithms, preprocessing 
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techniques, and evaluation tools. All simulation related tasks, including training and testing of 
examined optimizers and models, were implemented by using the following processor: Intel® Core™ 
i7-2720QM CPU 2.20 GHz, with 4.00 GB RAM. 

All examined datasets were divided into 70% for training and 30% for testing. In a preprocessing 
step, we normalized each dataset’s feature values to eliminate the effect of features with different scales 
in their values. We adopted the min-max normalization described by Eq (13). 

𝑝    

   
                 (13) 

 

where p is the exact value of parameter P. 𝒎𝒂𝒙 𝑷  and 𝒎𝒊𝒏 𝑷  are the maximum and minimum 
values of the parameter P, respectively. 

All optimization experiments were executed for thirty runs, each with 350 iterations (generations). 
The simulations were run with the standard DGCO parameter values described in [18]. 

6.2. Results and discussions 

Table 4 shows the statistical scores obtained over the 30 runs of each optimizer on each 
benchmarking dataset, namely the average (AVG), the standard deviation (STD), the best accuracy 
(BEST), the worst score (WORST), and the median (MEDIAN). 

Table 5 shows each examined trainer’s average run time (in seconds), including the heuristic 
optimizers and the backpropagation learning algorithm. The run time scores in each row were 
computed as the average elapsed time of an optimizer over thirty runs on each dataset. For heuristic 
optimizers, each run consists of 350 iterations (generations) of evolution. For the gradient-based trainer, 
each run consisted of 350 epochs of backpropagation training. 

Table 4. Performance scores of tested trainers. Scores in bold rank first, and the underlined 
rank second. 

Dataset BP GWO PSO GA DGCO 
Parkinson’s AVG 0.65448 0.71791 0.72089 0.71791 0.74039 

 STD 0.01626 0.01990 0.02227 0.02213 0.02582 
 BEST 0.68656 0.77611 0.77611 0.76119 0.80597 
 WORST 0.64179 0.68656 0.68656 0.68656 0.70149 
 MEDIAN 0.64179 0.71641 0.71641 0.71641 0.73380 
Ionosphere AVG 0.86416 0.95416 0.93241 0.88875 0.86061 
 STD 0.11939 0.01365 0.04871 0.06663 0.07192 
 BEST 0.95000 0.98333 0.96666 0.96666 0.97800 
 WORST 0.55 0.93333 0.75 0.73333 0.67333 
 MEDIAN 0.9125 0.95416 0.94166 0.90416 0.89133 
Hepatitis AVG 0.66666 0.66132 0.66320 0.66698 0.69918 

 STD 0.00000 0.02966 0.04297 0.04468 0.03631 
 BEST 0.66667 0.73585 0.75472 0.75662 0.78872 

Continued on next page
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Dataset BP GWO PSO GA DGCO 
 WORST 0.66666 0.603773585 0.58490 0.56603 0.67490 
 MEDIAN 0.66666 0.66037 0.66981 0.66981 0.69811 
Vertebral AVG 0.70755 0.817925 0.816038 0.83396 0.82316 

 STD 0.00000 0.026525 0.024003 0.026928 0.021512 
 BEST 0.70755 0.84905 0.84905 0.88679 0.86449 
 WORST 0.70755 0.754717 0.745283 0.792453 0.79266 
 MEDIAN 0.71 0.82 0.82 0.83 0.82 
Water Potability AVG 0.60124 0.61333 0.60000 0.60729 0.64476 
 STD 0.00877 0.02818 0.02572 0.02961 0.04716 
 BEST 0.60320 0.66667 0.63333 0.66250 0.83167 
 WORST 0.56395 0.53333 0.52916 0.55 0.61233 
 MEDIAN 0.60319 0.61666 0.60416 0.6125 0.63916 

Table 5. Average elapsed time (in seconds) of optimizers against each examined dataset 
over the simulation runs. Scores in bold indicate the fastest, and the underlined rank second. 

Dataset BP GWO PSO GA DGCO 
Parkinson’s 0.369 369.006 294.528 236.692 178.086 
Ionosphere 0.508 518.267 401.460 230.194 229.363 
Hepatitis 0.193 113.812 111.629 114.144 93.058 
Vertebral 0.152 103.754 97.330 108.404 89.642 
Water Potability 0.065 156.262 145.451 151.856 131.714 

The scores illustrated in Table 4 show that, on most of the datasets, the DGCO-based trainer 
outperforms the other heuristic and gradient-based trainers to produce the best performing MLP either 
with the best average of correct classifications over the runs (AVG), or with the best score in one of 
the elapsed runs (BEST). On other datasets, the DGCO trainer performed competitively on the task of 
optimizing the MLP models, ranking in the second best place (underlined scores), as shown for 
the Ionosphere and Vertebral datasets. 

For the datasets Parkinson’s, Hepatitis, and Water Potability, the DGCO-based framework 
provided an amelioration of 2.7%, 4.83%, and 5.13% relative to the second best performing optimizers, 
respectively. The amelioration for Water Potability is given by Eq (14): 

5.13% .   .

.
100                         (14) 

To quantify the statistical significance of the observed results, we applied the Student’s t-test [50]. 
This statistical significance test aims to check if the differences between the obtained mean values in 
Table 4 are significant for the cases when the DGCO-MLP optimizer is the best performing. In our 
experiments, we used a significance level of 0.05. That indicates a 5% risk of concluding that a 
difference exists when there is no actual difference between the examined means. Table 6 shows the 
results of the Student’s t-test for the scores obtained on the datasets Parkinson’s, Hepatitis, and Water 
Potability where the DGCO-MLP rank first. 

The comparative classification scores provided by the DGCO trainer indicate that the DGCO-
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MLP framework is a competitive optimizer that can prevent premature convergence toward local 
minima in the search for the best hyperparameters of an MLP model, namely the synaptic weights and 
biases. This is due to the excellent exploration capabilities of the DGCO in spaces with either moderate 
or high numbers of dimensions. Furthermore, the competitive performance of the DGCO-MLP trainer 
is shown with the datasets that include limited training data records, as illustrated in Tables 1 and 4. 
The problem of reduced training datasets is an open challenge in machine learning and data science 
projects, mainly when researchers apply gradient-based trainers. 

Table 6. Student’s t-test as a statistical significance test. 

dataset: Parkinson’s 
variables variable 1: PSO variable 2: DGCO 
observations 30 30 
means 0.72089 0.74039 
variance 0.000495 0.000666 
𝑷 𝑻 t) One Tail 0.01003 .05 
𝑷 𝑻 t) Two Tail 0.02006 .05 

 
dataset: Hepatitis 
variables variable 1: GA variable 2: DGCO 
observations 30 30 
means 0.66698 0.69918 
variance 0.001996 0.001555 
𝑷 𝑻 t) One Tail 0.01030 .05 
𝑷 𝑻 t) Two Tail 0.02060 .05 

 
dataset: Water Potability 
variables variable 1: GWO variable 2: DGCO 
observations 30 30 
means 0.61333 0.64476 
variance 0.000794 0.002224 
𝑷 𝑻 t) One Tail 0.00732 .05 
𝑷 𝑻 t) Two Tail 0.01464 .05 

The average run times of the examined learners in Table 5 show that the gradient-based 
backpropagation learner's run time is much shorter than those related to the competing heuristic 
optimizers. This is expected since those global optimizers involve computing the objective function of 
multiple solutions in the evolving population in each iteration (generation). In contrast, the gradient 
descent learner involves the calculation of gradients of an error function. On the other hand, the scores 
in Table 5 indicate that the DGCO-MLP optimizer is much faster than the other benchmarked 
optimizers. This could be justified by the dynamic mechanism of controlling the exploration in the 
DGCO during the evolved populations up to the final steps of this optimizer. Figure 5 shows the 
convergence curves for the GWO, GA, PSO, and DGCO optimizers when examined on each of the 
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five benchmarking datasets. The curves show the MSEs produced by the MLPs that have been 
optimized by the five optimizers for a randomly selected run among the thirty independent runs. For 
clarity, Figure 5 shows the MSE for the first 30 training iterations on each benchmark dataset. The 
charts indicate that the DGCO exhibits a fast convergence in the first iterations for two datasets. For 
other classification datasets, the DGCO shows competitive performance compared to the best method 
in each case. 

Figure 6 shows the boxplots for each of the benchmarking classification datasets. The boxplots 
are depicted for 30 MSEs that were obtained by each optimizer at the beginning of the training phase. 
Each box in this plot is related to the interquartile range. The whiskers depict the minimum and 
maximum MSEs, and the bars inside the boxes represent median values. Besides, the small circles 
represent outliers when they exist. 

 

 

 

Figure 5. MSE convergence curves for evolutionary optimizers on different classification datasets. 

The dynamic changes in the number of individuals in each of the two sub-groups of exploration 
and exploitation in each iteration is the main characteristic that empowers the DGCO algorithm. This 
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particular feature of the DGCO ensures a progressive exploration of the promising areas in the search 
space, which helps the model to avoid local minimum points. The algorithm uses the convergence 
history of the individuals to handle the dynamic changing of individuals’ numbers in each sub-group, 
which causes a balance between exploration and exploitation performance. On the other hand, the 
exploitation formula permits the rigorous investigation of the local neighbors of the current best agent 
in the exploitation team. The convergence of the DGCO-MLP trainer is ensured by 
the elitism mechanism that holds the current best agent B* and transfers it to the next population. 
Moreover, the search agents in the DGCO tend to search locally around the promising candidate agents. 
The cooperative behavior of the exploration agents in each generation leads to a high exploration 
characteristic of the evolutionary algorithm. That allows it to show better local minimum avoidance. 

The results indicate that most of the benchmarked evolutionary algorithms, including the DGCO, 
show competitive scores when dealing with datasets with a small number of training data records as 
shown for most of the examined datasets. The issue of minor or reduced training datasets in the training 
of NNs is a significant challenge in machine learning. 

 

 

 

Figure 6. Boxplot charts for different classification datasets. 
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7. Conclusions 

In this research, we propose and validate an EC framework to train MLP models. The consistent 
convergence and the high local optima avoidance were the essential motivations for introducing the 
recently proposed evolutionary cooperative optimization algorithm, the DGCO. The objective of the 
optimization algorithm was to minimize the MSE of MLP responses by optimizing the synaptic 
weights and biases of those MLPs through EC. Using to the different numbers of features in each of 
the five examined datasets, we built an MLP model with a particular structure for each dataset to 
validate our optimization framework against that dataset. Therefore, each MLP had its particular 
number of input and hidden perceptrons to suit the classification problem described in each dataset. 
We compared the performance of the proposed DGCO-based against the conventional 
backpropagation algorithm and several commonly used evolutionary optimization algorithms, namely 
the GA, GWO, and PSO. The simulation results showed the competitive performance of the proposed 
optimizer against other examined ones on most of the benchmarked datasets in terms of overall 
performance and convergence. The DGCO showed its ability to avoid local minima in the loss 
landscape of the objective function, which is, in our case, the MSE of an MLP response. This is due to 
the ability of the DGCO to balance between exploration and exploitation capabilities by applying its 
dynamic mechanism to manage the number of agents in the two cooperative teams of exploration and 
exploitation. The simulation results concluded that the DGCO-MLP trainer is reliable for training 
MLPs to classify datasets with different difficulty levels including the number of features and the 
available training data records.  

The DGCO-MLP performed well on the task of optimizing MLP models with a competitive run 
time on all examined datasets. Moreover, it outperformed the benchmarked optimizers on the task of 
training MLP models on very limited datasets that include less than 135 data records for training. 
Optimizing MLPs with limited data is still one of the open challenges.  

A minor limitation of our current work is that it studies the optimization of one type of artificial 
NN, namely the MLPs. Another limitation could be the exploration of the capacity of our framework 
for the engineering application of classification, as well as the comparison of the performance of this 
framework with commonly used heuristic optimizers in the literature that did not include comparing it 
against hybrid optimization approaches. Hence, extending the current simulations to different datasets 
with more features and many data records is one of the next steps for future work. Another perspective 
involves applying the proposed framework to optimize the MLP to approximate regression and 
forecasting task functions. Combining the DGCO evolutionary algorithm with other types of NNs can 
also be a valuable contribution. 
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