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Abstract: Cardiovascular disease (CVD) is a leading cause of mortality worldwide, and it is of utmost 
importance to accurately assess the risk of cardiovascular disease for prevention and intervention 
purposes. In recent years, machine learning has shown significant advancements in the field of 
cardiovascular disease risk prediction. In this context, we propose a novel framework known as CVD-
OCSCatBoost, designed for the precise prediction of cardiovascular disease risk and the assessment of 
various risk factors. The framework utilizes Lasso regression for feature selection and incorporates an 
optimized category-boosting tree (CatBoost) model. Furthermore, we propose the opposition-based 
learning cuckoo search (OCS) algorithm. By integrating OCS with the CatBoost model, our objective 
is to develop OCSCatBoost, an enhanced classifier offering improved accuracy and efficiency in 
predicting CVD. Extensive comparisons with popular algorithms like the particle swarm optimization 
(PSO) algorithm, the seagull optimization algorithm (SOA), the cuckoo search algorithm (CS), K-
nearest-neighbor classification, decision tree, logistic regression, grid-search support vector machine 
(SVM), grid-search XGBoost, default CatBoost, and grid-search CatBoost validate the efficacy of the 
OCSCatBoost algorithm. The experimental results demonstrate that the OCSCatBoost model achieves 
superior performance compared to other models, with overall accuracy, recall, and AUC values of 
73.67%, 72.17%, and 0.8024, respectively. These outcomes highlight the potential of CVD-
OCSCatBoost for improving cardiovascular disease risk prediction. 
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1. Introduction 

CVD is currently the leading cause of death worldwide, creating a significant burden on global 
healthcare resources. The reliance on doctors’ personal experience and a range of tests for diagnosis 
can lead to misdiagnosis and high testing costs, negatively impacting patients’ well-being. The 
application of data mining and machine learning in this field has proven advantageous, harnessing the 
power of information mining and learning to predict disease risks beyond doctors’ personal experience. 
Early detection of cardiovascular disease can aid medical professionals in decision-making, reduce the 
medical burden on patients, and optimize the distribution of healthcare resources. 

The Framingham risk score (FRS) model was initially created in the US to predict coronary heart 
disease risk within a specific timeframe [1]. The European Society of Cardiology (ESC) developed a 
scoring program to enhance risk assessment accuracy for the European population [2]. The UK 
introduced the QRISK model, which assesses cardiovascular disease risk over ten years, considering 
endpoints like myocardial infarction, stroke, transient ischemic attack, and cardiovascular disease [3]. 
Cardiovascular risk scores derived from traditional biostatistical methods’ strict assumptions tend to 
oversimplify complex relationships and limit applications. Machine learning algorithms (MLA) were 
able to overcome these statistical drawbacks and improve discriminatory performance over traditional 
models. In a prospective cohort study, Weng et al. explored the potential of machine learning for 
improving cerebrovascular disease risk prediction. Their findings suggest that machine learning 
algorithms can significantly enhance prediction precision and are a viable approach for cardiovascular 
disease prediction [4]. Dimopoulos et al. explore the potential of employing machine learning methods 
to predict cardiovascular disease, especially when compared to the established risk tool, 
HellenicSCORE. The experimental results indicate that the machine learning method demonstrates 
remarkably high accuracy and sensitivity, making it a suitable prediction tool for cardiovascular 
disease [5]. Huang et al. employed integrated machine learning algorithms to explore novel data 
sources for cardiovascular risk prediction, incorporating detailed lifestyle questionnaires and 
continuous blood pressure monitoring. In comparison to the conventional risk scoring method, FRS, 
all integrated machine learning algorithms exhibited superior performance in both low and high-risk 
categories. However, it’s important to note that this study was constrained by the relatively small 
sample size of patients at high risk for CVD [6]. Ordikhani et al. employed genetic algorithms to 
construct a novel risk assessment model for predicting CVD events. In contrast to classical machine 
learning and statistical methods, the calibrated XPARS charts demonstrated the capacity to enhance 
existing models by balancing interpretability and predictive accuracy. This approach offers the 
advantages of both black and white box models, ensuring high performance and interpretability. 
However, it is crucial to acknowledge that the coverage of various factors may be limited due to dataset 
influences. Additionally, training on a large amount of data does not necessarily guarantee optimal 
prediction time and accuracy [7]. 

Machine learning classifiers have gained significant popularity in predicting cardiovascular 
diseases [8–10]. Kanagarathinam et al. curated a hybrid dataset with the objective of facilitating the 
development of optimal CVD risk prediction models. During the feature selection process, the Pearson 
correlation method was employed to eliminate redundant features. The risk prediction model was 
constructed utilizing six machine learning classifiers, and through a rigorous 10-fold cross-validation, 
the CatBoost ML classifier emerged as the top performer, achieving an impressive average accuracy 
of 94.34% [11]. Sung et al. showcased the precision of deep learning by contrasting the performance 
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of Cox risk regression with RNN-LSTM based on survival analysis. They utilized layer-wise relevance 
propagation (LRP) to extract known risk factors identified in prior clinical studies from the study 
results. The experimental findings indicated a notable decrease in the predictive power of deep learning 
methods over time. Furthermore, despite the assessment of risk factors using LRP alone, the specific 
impact of these factors remained unclear [12]. Pan et al. proposed an enhanced deep learning-assisted 
convolutional neural network (EDCNN) to aid and enhance outcomes for patients with heart disease. 
In comparison to traditional methods such as ANN, DNN, EDL-SHS, RNN, and NNE, the designed 
diagnostic system can accurately and efficiently determine the risk level of heart disease [13]. These 
advancements demonstrate the promising potential of combining machine learning techniques with 
other approaches to effectively predict and diagnose cardiovascular diseases. By leveraging the 
strengths of different algorithms and models, researchers are continuously improving the accuracy and 
reliability of predictions in this important domain. In Table 1, we show the summary of the latest work 
that has been done in the field of predicting heart disease. 

Table 1. The state-of-the-art on CVD with various methods. 

Year Authors Research Title Method 

2019 Pandey et 

al. [14] 

Automatic detection of arrhythmia from imbalanced ECG 

database using CNN model with SMOTE 

SMOTE+CNN 

2019 Ali et al. 

[15] 

An Automated Diagnostic System for Heart Disease 

Prediction Based on χ2 Statistical Model and Optimally 

Configured Deep Neural Network 

χ2-DNN 

2020 Mienye et 

al. [16] 

An improved ensemble learning approach for the prediction 

of heart disease risk 

Randomized decision 

tree ensemble 

2022 Pandya et 

al. [17] 

InfusedHeart: A Novel Knowledge-Infused Learning 

Framework for Diagnosis of Cardiovascular Events 

LBP+LSTM-CNN 

2022 Srinivas et 

al. [18] 

hyOPTXg: OPTUNA hyper-parameter optimization 

framework for predicting cardiovascular disease using 

XGBoost 

OPTUNA-XGBoost 

2023 Baviskar et 

al. [19] 

Optimization using Internet of Agent based Stacked Sparse 

Autoencoder Model for Heart Disease Prediction 

EPO+SSC-AE 

2023 Wei et al. 

[20] 

Risk assessment of cardiovascular disease based on 

SOLSSA-CatBoost model 

SOLSSA-CatBoost 

2023 Kumar et al. 

[21] 

An improved hawks optimizer based learning algorithms for 

cardiovascular disease prediction 

HO optimizer 

In conclusion, studies have predominantly relied on small and medium-sized cohort data, often 
lacking sufficient and effective validation. While the existing research demonstrates high prediction 
accuracy, there is a notable oversight in identifying certain risk groups. Improving the predictive 
accuracy of the model is an immediate and critical task. Furthermore, the application of models in most 
studies is based on a trial-and-error approach. To address these challenges, we have developed a 
systematic framework for cardiovascular disease risk prediction based on existing methods. This 
framework utilizes Lasso regression for feature selection, leveraging its good interpretability and 
protection against overfitting to select the optimal feature subset for accurate risk prediction. 
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Additionally, improved classifiers are integrated into the framework to enhance cardiovascular disease 
risk prediction. Recognizing the high dependence of the classifier on model parameters, we propose 
an enhanced cuckoo search algorithm by incorporating an opposition-based learning strategy. This 
modification aims to improve the convergence speed and accuracy for the rapid optimization of 
CatBoost model parameters. In summary, the systematic framework for cardiovascular disease risk 
prediction incorporates essential considerations such as data quality management, feature screening, 
and an improved classifier, resulting in accurate and stable prediction outcomes. 

The contribution of the study is summarized as follows: 
1) The proposed framework (CVD-OCSCatBoost) presents a systematic approach for predicting 

the risk of cardiovascular disease. It includes three key steps: outlier processing, feature screening, and 
the use of an improved classifier for accurate and stable predictions. 

2) An improved cuckoo search algorithm (OCS) is proposed, which combines the opposition-
based learning strategy with the cuckoo search algorithm. This approach generates high-quality initial 
populations during the initialization stage, accelerates the convergence rate, promotes exploration of 
the search area during the position update stage, and improves population diversity. 

3) The proposed approach (OCSCatBoost) aims to enhance parameter selection in the CatBoost 
model through the use of the OCS algorithm, allowing for a more efficient identification of the optimal 
parameter combination. 

4) Comparisons with popular machine learning algorithms and swarm intelligence algorithms 
validate the effectiveness of the OCSCatBoost algorithm. 

2. Materials and methods 

To enhance the accuracy of cardiovascular disease risk prediction, we propose the CVD-
OCSCatBoost framework based on machine learning. The framework incorporates several techniques, 
including data outlier handling, feature selection , and classifier improvement using the OCS algorithm. 
Outlier data is identified by utilizing a box-line plot and examined. Feature selection is carried out 
using the Lasso regression algorithm to obtain better input data. Finally, the optimal hyperparameter 
combination of the CatBoost classifier model is identified using the OCS algorithm to enhance 
predictive outcomes concerning cardiovascular disease risk. 

Let D = (x1,…,xm) represent a dataset with m examples, where each example is characterized by 
d attributes. Each example xi = (xi1,…,xid) is a vector in a d-dimensional sample space X, where xij is 
the value of xi on the j-th attribute and d is the dimension of the xi sample. Cardiovascular disease 
prediction involves establishing a mapping f : X→Y from the input space X to the output space Y, where 
y = f(x). Each (xi, yi) represents the i-th sample, where yi ∈ Y is the label of example xi. The set of all 
labels, Y, is {0,1}, where y = 0 represents a normal condition and y = 1 represents a disease. 

Based on existing research, we selected the linear regression method (logistic regression), KNN [5], 
support vector machine [8], two tree-based methods (decision tree [14], XGBoost), and ensemble 
optimization methods (CatBoost [21]) as the control group and utilized six stages to evaluate the six 
machine learning methods (as shown in Table 2). These six evaluation stages include: (1) Loading the 
dataset; (2) preprocessing data; (3) feature selection; (4) running the machine learning model; (5) 
applying evaluation metrics; and (6) processing classifier performance results. 
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Table 2. Overview of machine learning classification algorithms. 

Model Description Advantage Limitations 

Decision 
Tree 

Based on features, it segments data to create a 
tree-like structure of decision rules. 

Easy to interpret Prone to overfitting 

KNN Based on sample similarity, it predicts based on 
the class of K nearest neighbor samples to the 
current sample. 

Simple and easy to 
use 

Computationally 
intensive 

Logistic 
regression 

This algorithm utilizes linear methods to classify 
data into different categories or groups. 

Easy to implement Vulnerable to 
interference 

SVM Based on support vectors, it finds a linear or non-
linear classifier that maximizes class boundary. 

Suitable for high-
dimensional data 

Long training time 

XGBoost A joint-learned decision tree is built to reduce 
sample loss errors and prevent overfitting. 

Efficiently handles 
large datasets 

Sensitive to parameter 
tuning 

CatBoost It introduces categorical information processing 
features to avoid class bias and changes in 
weighted errors. 

High accuracy, 
suitable  
for categorical data 

Slow, memory issues, 
noise-sensitive 

Each method stage is described as follows: 
1) Load the data set. Select and load data from a data set containing clinical records of CVD 

patients. 
2) Preprocess the data. Check the loaded data, understand its content, and deal with missing 

and abnormal values to ensure the best results of the classification algorithm. 
3) Select attributes or the main influencing factors. In order to select the most important 

features that affect the performance of the model, Lasso regression is employed. Additionally, the 
dataset is split into two subsets: a training set and a test set (80% for training and 20% for testing). 

4) Run the machine learning model. This stage involves feeding the preprocessed data into the 
chosen machine learning algorithm and training it to make predictions. 

5) Apply evaluation indicators. According to five evaluation indexes, the training performance 
of the model is analyzed: accuracy, precision, recall rate, F1 score, and AUC value. 

6) Processing classifier performance results. This stage involves analyzing the results of the 
evaluation metrics, comparing performance across different methods, and drawing conclusions about 
the usefulness and effectiveness of each method. 

2.1. Lasso returns 

Lasso regression, proposed by Robert Tibshirani in 1996, adds a penalty term to the least squares 
method to achieve variable selection on sample data. The penalty term gradually reduces the 
coefficients of non-significant variables, resulting in only significant variables with non-zero 
coefficients, enabling data dimensionality reduction. 

Assume that the dependent variable is 1( ,..., )T
ny y y  , the independent variables are

( ,..., )T
1 j njX x x , 1, ...,j p , and 1( ,..., )T

n    are the coefficient vectors, and the residual term

 satisfies the Gauss-Markov hypothesis. The linear model is as follows: 

 y X    (1) 
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The choice of variables for the Lasso method is obtained by the following equation, with  is the 
canonical term parameter: 

 2

1 0 1

( ) | |
p pn

i j ij j
i j j

argmin y x   
  

      (2) 

The solution of the above equation can be transformed into an optimization problem with a 
penalty term, where k is the adjustment parameter, corresponding to : 

 2

1 0 1

( )  . . | |
p pn

i j ij
i j j

argmin y x s t k
j

  
  

      (3) 

The basic idea of Lasso regression is to minimize the sum of squared residuals by setting a penalty 
term. If the sum of absolute values of regression coefficients is less than a certain value, then some 
coefficients of variables are compressed to zero. The variables with zero coefficients are considered 
non-significant variables, and the corresponding key impact variables are identified. 

2.2. CatBoost 

CatBoost is a new machine learning algorithm framework developed by Russian search giant 
Yandex in April 2017. It is based on the gradient boosting decision tree (GBDT) algorithm framework 
and has the ability to handle category-based features more effectively. It can also use a combination of 
category features to greatly enrich the feature dimension. GBDT is an algorithm proposed by Friedman 
in 2000 to avoid the problem of overfitting. This problem is caused by integrating multiple decision 
trees into a single decision tree for regression and classification. GBDT utilizes gradient descent for 
optimization, constructing a learner in each iteration that reduces loss along the steepest direction of 
the gradient. This compensates for the shortcomings of the currently constructed model. The 
algorithmic model can be defined as follows: 

 
0 0

( , ) ( , ) ( , )
T T

t t t t t
t t

F x h x f x   
 

    (4) 

where: ( , )F x   is the output of the whole decision tree; x  is the input of the sample;   is the 

parameter of the whole decision tree; t   is the weight of the t-th tree; T is the number of trees; 

( , )t th x   is the output of the t-th decision tree; t  is the parameter of the t-th decision tree; ( , )t tf x   

is the output of the t-th decision tree after weighting. 
The optimal parameters of the model can be obtained by minimizing the loss function, defined as 

follows: 

 
0

( , ) ( , ( , )) 1,2,...,
N

t t i i
i

argmin L y F x t T  


   (5) 

where: ( , ( , ))i iL y F x   is the loss function, and usually the mean square error or absolute loss can be 

used as the loss function; iy  is the actual output of sample I; ix  is the actual input of sample I and 
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N  is the number of samples. 
CatBoost uses a more efficient strategy to reduce overfitting and effectively utilize data 

information during training. First, the algorithm converts categorical features into numerical features 
based on the statistical value of the prediction target. It uses an oblivious tree as the base predictor, and 
binarizes the floating-point features, statistical information, and one-hot encoding together. Second, 
the algorithm reduces the influence of less noisy and low-frequency category-type data on the data 
distribution by adding prior terms and weight coefficients. This helps to reduce model overfitting. 

 
{ }

1

{ }
1

ˆ
i i
j k

i i
j k

N

jx x
ji

k N

x x
j
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x
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 (6) 

where i
kx   is the i  -th category feature of the k  -th training sample; jy   is the label of the j  -th 

sample; p  is the added prior term; a  is the weight coefficient; I  is the indicator function, i.e., 1 
is taken when the two quantities in parentheses are equal, and 0 is taken vice versa, i.e., 
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j k

i i
j k

x x

x x
I

other

  


 (7) 

Last, the CatBoost algorithm employs a “greedy strategy” to process feature combinations. 
During the first split of the tree, no feature combinations are performed. However, during the second 
split, all current tree splits and category-based features are combined with all category-based features 
in the dataset. The new combined values are instantly converted to numerical features. All splits that 
are selected in the tree are considered category-based features with two values, and they are combined 
to generate combinations of numerical and categorical features. 

The CatBoost algorithm uses a leaf node calculation that can effectively avoid overfitting and 
make the model more general. It synchronizes the training dataset with the processing of category-
based features, thus greatly improving the efficiency of feature processing. The algorithm also 
binarizes floating-point features, statistical information, and unique thermal encoding features. It then 
uses binary features to calculate the model prediction. 

For each feature, prediction values change shows how much on average the prediction changes if 
the feature value changes. The bigger the value of the importance the bigger on average is the change 
to the prediction value if this feature is changed. 

Leaf pairs that are compared have different split values in the node on the path to these leaves. If 
the split condition is met (this condition depends on the feature F), the object goes to the left subtree; 
otherwise, it goes to the right one. 

 2 2
1 1 2 2

,

_ ( ) ( )
F

F
tree leafs

feature importance v avr c v avr c       (8) 

 1 1 2 2

1 2

v c v c
avr

c c

  



 (9) 

where c1, c2 represent the total weight of objects in the left and right leaves, respectively. This weight 
is equal to the number of objects in each leaf if weights are not specified for the dataset. V1, v2 represent 
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the formula value in the left and right leaves, respectively. 
If the model uses a combination of some of the input features instead of using them individually, 

an average feature importance for these features is calculated and output. 

2.3. Cuckoo search algorithm 

The Cuckoo search (CS) algorithm is an intelligent optimization algorithm developed by Yang 
and Deb in 2009 [22]. It is inspired by the breeding behavior of cuckoos and the Levy flight search 
mechanism. The CS algorithm has gained significant attention from researchers due to its simplicity, 
minimal parameter requirements, and ease of implementation. The CS algorithm comprises three major 
components: Best solution preservation: This component involves selecting the best solution and 
ensuring that it is carried forward to the next generation, akin to preserving the best bird nest. Local 
random movement: The algorithm incorporates local random movements to explore and search for 
optimal solutions. Global Levy flight: This part simulates the cuckoo’s behavior of finding the best 
nesting bird’s eggs through Levy flight, providing a mechanism for random global search. The CS 
algorithm is based on three idealized assumptions, and its specific model can be defined as follows: 

(1) Local random movement 
Local random processes can be defined as: 

 1 s ( ) ( )t t t t
i i j kx x H p x x         (10) 

where, t
jx  and t

kx  are two distinct random sequences. S represents the step length.   is the step 

scale factor.   denotes point-to-point multiplication. H(u) represents the Heaviside function. p  is 

the switching probability, responsible for balancing local and global search. is a randomly selected 
number from a distribution. 

(2) Global Levy flight 
The global stochastic process is characterized as a Levy flight. 

 1 ( , )t t
i ix x L s     (11) 

 01

( )sin( / 2) 1
( , )   0,   1 3L s s s

s 

   
 


     (12) 

where, t
ix   represents the position of the i-th bird’s nest in the t-th generation, L denotes the 

characteristic range of the problem of interest, and 0s  signifies the minimum step size. 

2.4. Evaluation indicators 

To evaluate the predictive effectiveness of models for cardiovascular disease classification, five 
statistical metrics are commonly used: Accuracy, precision, recall, F1 score, and AUC value, as shown 
in Eqs (13)–(16). Precision measures the proportion of samples accurately predicted as belonging to 
the positive class. In contrast, recall measures the proportion of samples correctly classified as positive. 
Recall is also referred to as the true class rate or sensitivity. The prediction results of a binary 
classification model include TP, FN, FP, and TN. These metrics are shown in Table 3. These indices 
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provide useful information to evaluate model performance. Additionally, the ROC curve combines 
recall (sensitivity) and true-negative class rate (specificity) to provide a comprehensive analysis, where 
different thresholds are tested to obtain recall and true-negative class rates, and then the curve is plotted 
with recall on the vertical axis and (1–true-negative class rate) on the horizontal axis. 

In addition to the aforementioned evaluation metrics, the ROC curve is a composite indicator that 
reflects the accuracy of the model when distinguishing between positive and negative samples. The 
ROC curve takes into account the continuous variables of recall (sensitivity) and true-negative class 
rate (specificity). To obtain the curve, different thresholds are set, and a series of recall and true-
negative class rates are calculated. The curve is then plotted with recall as the vertical axis and the 
false positive rate (1–true-negative class rate) as the horizontal axis. 

Table 3. Model evaluation metrics. 

Indicators Description 

True Positive (TP) actual disease and predicted disease 

False negative (FN) actual disease, but predicted normal results 

False Positive (FP) actual normal, but predicted to have disease 

True negative (TN) actual normal and predicted results show normal 

 
TP TN

accuracy
TP FN FP TN




  
 (13) 

 
TP

recall
TP FN




 (14) 

 
TP

precision
TP FP




 (15) 

 
2 ( )

1
recall precision

F
recall precision

 



 (16) 

 
FN

FNR
FN TP




 (17) 

where, FNR represents the proportion of actual positive instances that were incorrectly predicted as 
negative by the model. 

3. Proposed methods 

3.1. Representation of agents 

The swarm intelligence (SI) algorithm is primarily designed for traditional continuous 
optimization problems. However, to solve optimization problems in various applications, certain 
components need to be modified accordingly to enhance the algorithm’s adaptability and effectiveness. 
In the case of parameter optimization for the CatBoost algorithm, which is discussed in this paper, the 
range and meaning of each parameter are often different. Therefore, we adopt a more standardized 
proxy representation that facilitates algorithm interpretation and optimization. 
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Assuming that m parameters of the CatBoost algorithm are selected for adjustment, we express 
the values of these parameters in a proportional manner, as each parameter may have distinct 
requirements regarding value ranges and types. Specifically, the proportional method involves 
generating random numbers within the range of [0,1] to represent the proportion of the parameter value 
range at a given position. Let xj (j = 1, 2, 3, …, m) denote the value of the proxy at different parameter 
positions. When evaluating the effect of the parameter combination represented by the proxy, it is 
necessary to convert the proxy value into the corresponding actual parameter value and input it into 
the model for calculation. 

The formula designed to implement the aforementioned theory is as follows: 

 ( )j j j j jp low up low x     (18) 

where pj as the effective parameter value after conversion, while lowj and upj represent the lower and 
upper bounds, respectively, of the default value range for the parameters. By employing the 
representation described above, the SI algorithm can be applied to the task of finding the optimal 
parameter combination for the CatBoost algorithm. 

3.2. Proposed Cuckoo search algorithm with opposition-based learning (OCS) 

Opposition-based learning (OBL) is a method first proposed by Tizhoshz [23], which has proven 
to be effective in enhancing various meta-heuristic optimization algorithms [24–26]. OBL calculates 
the opposite solution of a given solution during the evaluation process, providing an additional 
opportunity to discover a more globally optimal solution. This approach involves evaluating both the 
feasible solution and its inverse solution. Excellent individuals are selected from the inverse population 
and the current population to form a new population, thus increasing the diversity of the population. 
The underlying idea of this strategy is to retain solutions of higher quality while replacing solutions of 
poorer quality, resulting in the exploration of a larger solution space. 

The current population is represented as X(N) = (X1, X2,…,Xn), and the opposite population, 
OBX(N) = (OBX1, OBX2,…, OBXn), based on the OBL strategy, is calculated as follows. 

 ( )k kOBX up low X    (19) 

The convergence rate of the cuckoo search algorithm is slow, and population diversity diminishes 
during the later stages of evolution. The OBL strategy is integrated with the CS algorithm to generate 
an initial population of higher quality. This integration enhances convergence speed, promotes 
exploration in the search area, and leads to improved population diversity. The proposed strategy is 
divided into two stages: The initialization stage and the location update stage. 

(1) Initialization 
The initial population is generated randomly, while the opposition population is created using the 

OBL strategy. Subsequently, these randomly generated initial individuals and those produced through 
the OBL strategy are merged into a new population. From this combined population, the top N solutions 
are selected to form the initial population. A high-quality initial population plays a pivotal role in the 
convergence and iterative performance of the algorithm, with the OBL strategy guaranteeing its quality. 

(2) Updating stage 
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Utilizing the OBL strategy, we generate opposing nests from the initial nest locations. During the 
exploration phase, the OBL strategy is employed to expand the search space, enabling comprehensive 
exploration within it. In the local stochastic process, the OBL strategy can be considered a mutation 
factor, aiding the algorithm in breaking free from local optimal solutions and facilitating the full 
exploitation of local space. OBL generates a new nest with a certain probability, denoted as p. First, 
we generate a random value between 0 and 1. If the random value is less than p, we use OBL to produce 
an opposing nest based on the existing nest. We then compare and select the nest that retains the best 
based on fitness values. 

For more details, the pseudo code for the OCS algorithm is provided in Algorithm 1. 

Algorithm 1 : The proposed OCS Algorithm 
Initialize the random nest population X(N) 
Generate an opposite population OBX(N) by Eq (21) 
Calculate the fitness of nest in 𝑋 𝑁 ∪ 𝑂𝐵𝑋 𝑁  
The top N individuals with fitness values are selected as the current population X(N) 
While (t<T) 

for (each nest individual) 
Levy flight Eqs (11) and (12) are used to update the position, replacing it if the new 

solution is better 
if (rand < 0.3) 

Generate an opposite population OBX(N) by Eq (19) 
Calculate the fitness of nest in OBX(N), replacing it if the opposite solution is better

end if 
Generate a random number, 'r,' following a normal distribution 
if (r > pa) 

Update the position with random walk Eq (10) and replace if the new solution is 
better 

end if 
end for 
t = t + 1 

end while 

Suppose the population size is N, the individual dimension is D, and the number of iterations is 
T. The computational complexity of OCS depends on four processes: Initialization, generation of 
opposing populations, fitness evaluation, and location updating. The computational complexity of 
population initialization is O (N × D), that of opposing population generation is O (T × N × D), that of 
the updating mechanism is O (T × N × D), and that of fitness evaluation is O (T × N). Therefore, the 
total computational time complexity of the OCS algorithm is O (T × N × D), and the space complexity 
is O (N × D). 
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3.3. The cardiovascular disease risk prediction model based on OCSCatBoost 

CatBoost is highly regarded by scholars for its strong feature classification ability and high 
accuracy in various applications. Disease data are often accompanied by classification characteristics, 
making CatBoost suitable for cardiovascular disease risk prediction. However, it has been observed 
that CatBoost faces challenges related to parameter setting, which can lead to issues such as falling 
into local optimal solutions and overfitting. To address this concern, we have introduced the proposed 
OCS algorithm as an optimization technique to fine-tune the parameters of the CatBoost model. 

Several scholars have optimized different model parameters using the improved CS algorithm 
and verified that the improved CS algorithm’s search function can effectively enhance the model’s 
performance [27–30]. By integrating the OCS algorithm into CatBoost, several benefits are achieved. 
First, the OCS algorithm facilitates faster convergence, allowing the model to reach an optimal solution 
more quickly. Second, it enhances the global search ability of the model, enabling it to explore a wider 
range of potential solutions. Finally, the OCS algorithm promotes higher population diversity, reducing 
the risk of the model getting trapped in local optimal solutions. 

Applying the OCS algorithm to optimize CatBoost parameters improves the generalization 
performance, prediction accuracy, and stability of the model. This optimization technique helps to fine-
tune the model’s parameters effectively, thereby mitigating the risk of overfitting and improving its 
ability to handle complex classification tasks. 

The OCSCatBoost algorithm is designed to optimize the parameter values of the CatBoost model 
by employing the OCS algorithm. To accomplish this, the hyperparameters of CatBoost (please refer 
to Table 4 for information on the function, default value, and value range of the hyperparameters) are 
mapped to the position matrix of each nest individual in multidimensional space. Furthermore, the 
fitness function of the OCSCatBoost algorithm model is designed to solve for the individual 
corresponding to the smallest global value. The fitness function defined in this paper is expressed in 
Eq (20). Consequently, the location of the nest individual is the global optimal solution, and the optimal 
parameters of the CatBoost model can be obtained through the mapping relationship (as shown in Eq 
(18)) between the nest location and corresponding parameters. This leads to the generation of an 
accurate CatBoost model with optimal parameters. The operating principle of the cardiovascular 
disease risk prediction model based on OCSCatBoost is depicted in Figure 1. 

 Fitness recall   (20) 
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Figure 1. OCSCatBoost flow chart. 

The algorithm flow of the OCS algorithm to optimize CatBoost is as follows: 
Step 1: Parameter initialization: Set parameters such as the population size N, the search space 

dimension d, and the maximum number of iterations T. The nest positions are randomly initialized. 
Step 2: Define the objective function. Train the CatBoost model to classify the dataset, using -

recall as the fitness function to identify the nest individual with the least fitness. 
Step 3: Calculate the objective function value for each nest position and compare to obtain the 

current optimal function value. 
Step 4: Levy flight (Eqs (11) and (12)) is employed to update the nest location, followed by the 

generation of a random number. Determine whether to employ the OBL strategy to generate the 
opposite nest of the new location based on the magnitude of the random number. If the OBL strategy 
is employed, the fitness values of the two nests are compared, and the nest with the superior fitness 
value is selected as the new nest location. 

Step 5: A nest location is randomly selected and compared with the fitness value of the new nest 
location. If the fitness value of the new nest location is better, it is updated and recorded. 

Step 6: Generate a random number r. If r > pa, randomly update (Eq (10)) the nest position once; 
otherwise, keep the nest position unchanged. 

Step 7: If the maximum number of iterations is reached, proceed to the next step; otherwise, go 
back to step 4. 

Step 8: Output the global optimal nest position, representing the optimal parameter for the model. 
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Table 4. Hyperparameters to be optimized. 

Hyperparameters Description Default value General range of values 

num_boost_round Number of model integration trees 500 [0,1000] 
learning_rate Model Learning Rate 0.03 [0,1] 
max_depth Maximum depth of the tree in the 

model 
6 [1,16] 

subsample Data proportion in random sampling 0.66 [0.5,0.9] 
reg_lambda L2 regularization coefficient 3 [1,100] 

n_estimators: Influences memory usage and training duration. Adjusting the number of trees 
helps to detect significant overfitting and underfitting issues more effectively. 

learning_rate: Reduces the weight of each step to mitigate overfitting. 
max_depth: Setting a limit on the tree’s depth simplifies the model and decreases the risk of 

overfitting. 
subsample: Controls the sample proportion within each tree. Assigning a value less than 1 to this 

parameter decreases the tree’s variance, thus preventing overfitting. 
reg_lambda: Applying L2 regularization to the model’s weights reduces model complexity and 

mitigates the risk of overfitting. 

4. Experimental analysis 

4.1. Experimental data 

The experiment utilized the Kaggle data platform Cardiovascular Disease dataset, which includes 
70,000 cases encompassing characteristics like age, gender, height, weight, systolic and diastolic blood 
pressures, cholesterol, and glucose levels. Additionally, it contains information regarding habits such 
as smoking, alcohol consumption, physical exercise, and the status of cardiovascular disease, making 
for a total of 12 characteristics (as illustrated in Table 5). 

Table 5. Description of the data set. 

Features Description Range and symbol description 

age Age (year) [39,64] 
height Height (cm) [142.5,186.5] 
weight Body weight (kg) [39.5,172] 
ap_hi Systolic blood pressure (mmHg) [60,120] 
ap_lo Diastolic blood pressure (mmHg) [90,200] 
cholesterol Cholesterol 1 = normal, 2 = above normal, 3 = well above normal
gluc Blood sugar 1 = normal, 2 = above normal, 3 = well above normal
smoke Smoking 0 = no smoker, 1 = Smoker 
active Exercise 0 = no exercise, 1 = exercise 
alco Alcohol consumption 0 = no drink alcohol, 1 = drink alcohol 
gender Gender 1 = female, 2 = male 
cardio Cardiovascular disease 0 = normal, 1 = sick 
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The presented data in Tables 6 and 7 indicate that individuals with cardiovascular disease had 
higher age, weight, diastolic and systolic blood pressure levels than those without. Additionally, high 
cholesterol prevalence was highest among individuals with much higher than normal levels, being 
28.57% higher than those with normal levels and 16.57% higher than those with higher than normal 
levels. Blood glucose prevalence was highest among individuals with much higher than normal levels, 
being 14.05% higher than those with normal levels and 2.88% higher than those with higher than 
normal levels. Data analysis suggests that smoking and alcohol consumption have an impact on 
cardiovascular disease, however, the effect is not significant, with a difference of about 2% between 
those with and without smoking and drinking habits. People who do not exercise are more likely to 
suffer from cardiovascular disease than those who do. 

Table 6. Statistical distribution of continuous fields in the dataset. 

Features Suffering from cardiovascular disease 
(mean ± std) 

Normal 
(mean ± std) 

age 54.47 ± 6.35 51.23 ± 6.77 
height 164.31 ± 7.69 164.52 ± 7.51 
weight 76.65 ± 14.63 71.57 ± 13.11 
ap_hi 133.77 ± 16.94 119.67 ± 12.29 
ap_lo 84.52 ± 9.28 78.20 ± 7.99 

Table 7. Statistical distribution of discrete fields in the dataset. 

Features Category Suffering from cardiovascular disease (33568) Normal (34290) 

cholesterol normal 22172 (43.56%) 28724 (56.44%) 
above normal 5465 (59.58%) 3708 (40.42%) 
well above normal 5931 (76.15%) 1858 (23.85%) 

gender Female 21798 (49.23%) 22476 (50.77%) 
Male 11770 (49.91%) 11814 (50.09%) 

gluc normal 27451 (47.58%) 30248 (52.42%) 
above normal 2935 (58.75%) 2061 (41.25%) 
well above normal 3182 (61.63%) 1981 (38.37%) 

smoke no 30784 (49.72%) 31129 (50.28%) 
yes 2784 (46.83%) 3161 (53.17%) 

active no 7108 (53.37%) 6210 (46.63%) 
yes 26460 (48.51%) 28080 (51.49%) 

alco no 31845 (49.57%) 32403 (50.43%) 
yes 1723 (47.73%) 1887 (52.27%) 

4.2. Data pre-processing and feature selection 

4.2.1. Missing and abnormal values analysis and processing 

By visualizing the raw data, it is possible to observe the potential data distribution, which aids in 
comprehending the subsequent data processing. Owing to the substantial size of raw data and notable 
outlier issues, data preprocessing has a considerable impact on the later predictive models. The 
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framework proposed in this study employs box-line diagrams to detect outliers, as shown in Figure 2. 
In addition to the age field, all the continuous features in the figure contain outliers. The outliers are 
discarded based on the physical examination data range of the real population and the criteria of the 
boxplot. 

 

Figure 2. Analysis of outliers in CVD dataset. 

4.2.2. Data balance 

Following the processing of missing and abnormal data values, the CVD dataset eventually 
comprised 67,858 samples, including 33,568 cases of cardiovascular disease and 34,290 healthy 
samples. It is apparent that the number of healthy samples in this dataset is somewhat greater than 
those afflicted with cardiovascular disease. Therefore, this dataset is considered to be balanced, without 
further consideration of the balance status required for subsequent experiments. 

4.2.3. Feature screening-Lasso regression 

The processed data underwent Lasso regression analysis to determine the optimal number of steps 
responsible for producing the smallest cp value. Thereafter, eight features, including age, weight, ap_hi, 
ap_lo, cholesterol, smoke, alco, and active, with non-zero coefficients at that step, were retained as 
critical indicators for cardiovascular disease risk prediction (as illustrated in Table 8). 

4.3. Experiment settings 

After data preprocessing and feature selection, eight feature variables appearing in Table 7 were 
designated as input variables. It was decided to use 80% of the data as training set samples and 20% 
as test set samples. The experimental platform used for this study was Pycharm, and the development 
language was Python 3.10, with the running environment being Windows 10 Education Edition. 
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In this paper, PSO [31], SOA [32], and CS are selected for comparison with the OCS algorithm 
in the experiments. The parameter settings of these SI algorithms are as suggested in the original 
articles. Additionally, we select KNN, decision tree, logistic regression, grid-search SVM, grid-search 
XGBoost, the default CatBoost, and grid-search CatBoost as the default machine learning comparison 
algorithms. The SI algorithms will run independently 30 times with a maximum iteration limit of 50 
and a population size of 30. Information about the optimal solutions obtained will be recorded. 
Conversely, non-heuristic traditional machine learning algorithms only need to run once due to their 
deterministic nature, resulting in a unique solution. 

The crucial hyperparameters for the optimization classification algorithm CatBoost include 
num_boost_round, learning_rate, max_depth, subsample, and reg_lambda. These parameters have a 
significant impact on the model’s overall performance. Num_boost_round helps expose evident 
overfitting and underfitting problems, whereas adjusting the learning rate reduces the gradient step 
size, which affects the training time and helps alleviate the overfitting issue. All SI algorithms aim 
to find the best parameter combination within the general range of the five key parameters of the 
CatBoost model. 

Table 8. Lasso regression coefficients. 

Features Lasso regression coefficient 

age 0.009230188 
weight 0.001534384 
ap_hi 0.011303342 
ap_lo 0.001446262 
cholesterol 0.078921746 
smoke –0.00818737 
alco –0.005719433 
active  –0.022278004 

4.4. Analysis of prediction results 

This section will analyze and describe the comparison experiments conducted for the CVD dataset. 
Figure 3 shows the curve of the iterative process of the heuristic algorithms. It can be seen from Figure 
3 that the OCS used in this paper can converge at a faster speed and obtain better results. As seen from 
the curve in the figure, the improvement of the CS algorithm has essentially met our expectations. In 
the early stages of iteration, OCS achieves better results with fewer iterations; in the later iterations, 
the algorithm effectively escapes local optimal solutions, resulting in improved convergence. The 
parameter combinations of the CatBoost algorithm found by the SI algorithms are shown in Table 9. 

Table 9. The parameter combinations found by the SI algorithms. 

Hyperparameters PSO SOA CS OCS 

learning_rate 1 0.9933111 1 0.77050522 
num_boost_round 988 993 383 524 
max_depth  6 9 6 5 
subsample 0.812155539 0.747217395 0.69472235 0.89777281 
reg_lambda 28 99 85 58 
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Figure 3. The iteration curves of comparison algorithms. 

In addition to the SI algorithms, other ensemble learning methods were selected for comparison 
in this paper, using the aforementioned evaluation criteria. Table 10 presents the classification 
outcomes and corresponding evaluation metrics for various classification models applied to the 
cardiovascular disease dataset. It is important to highlight that in this study, the fitness value of the SI 
algorithm is calculated based on the training set, while the values presented in Table 10 reflect the 
results obtained by evaluating the model’s performance using the test set. It should be noted that a 
higher value of evaluation metrics indicates a greater level of effectiveness for the model. Based on 
the results presented in Table 10, it is evident that the OCSCatBoost model proposed in this paper 
surpasses the comparative SI algorithm across all indicators. When compared to the default CatBoost 
and grid search CatBoost, it can be observed that grid search has a certain impact on tuning CatBoost. 
However, the OCS algorithm yields significant improvements in comparison to the grid search method. 

Table 10. Experimental results. 

Model Accuracy Precision Recall F1 AUC FNR AUPRC 

KNN 69.69% 70.58% 67.65% 69.08% 0.7435 32.38% 0.7708 
DT 65.84% 68.65% 58.45% 63.14% 0.6690 41.73% 0.7394 
Logistic 72.89% 75.79% 67.35% 71.32% 0.7944 32.65% 0.7974 
Grid-search SVM 71.91% 77.34% 62.05% 68.86% 0.7930 37.95% 0.7919 
Grid-search XGBoost 73.29% 75.67% 69.75% 72.04% 0.7974 31.25% 0.8003 
Default CatBoost 72.78% 74.32% 69.72% 71.95% 0.7861 30.28% 0.7960 
Grid-search CatBoost 73.31% 74.63% 70.74% 72.63% 0.8003 29.26% 0.8001 
PSO CatBoost 73.44% 74.17% 72.02% 73.08% 0.8013 27.98% 0.8010 
SOA CatBoost 73.53% 74.78% 71.12% 72.90% 0.8015 28.88% 0.8018 
CS CatBoost 73.56% 74.39% 71.95% 73.15% 0.8018 28.05% 0.8019 
OCSCatBoost 73.67% 74.45% 72.17% 73.29% 0.8024 27.83% 0.8027 
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In comprehensive analysis, SVM achieved a high precision rate of 77.34%, whereas the ensemble 
learning model ranked second-best with a precision rate of approximately 75%. However, the 
predictive performance of support vector machines was inconsistent, with a recall rate of only 62.05%. 
It can be observed from the confusion matrix that the support vector machine exhibits a low proportion 
of false positive (FP) and a high proportion of false negative (FN), leading to a relatively high precision 
rate but a relatively low recall rate. In contrast, ensemble learning models exhibit the opposite behavior. 
However, the integration of the OCS algorithm enhanced CatBoost’s prediction results to some extent, 
reducing FP and FN, thereby increasing recall rates and slightly improving precision. The combined 
F1 values revealed the ensemble learning model to be more efficient, with relatively high accuracy and 
recall rates. The F1 values were about 3 percentage points higher compared to KNN and SVM and 
around 9 percentage points higher than DT. In terms of AUC values highlighted in Table 9, the KNN 
and DT algorithms had relatively small AUC values, while the integrated algorithm had AUC values 
hovering around 0.8. This suggests that the model can accurately identify 80% of cardiovascular 
diseases, indicating improved performance. As a predictive model for cardiovascular disease, the focus 
was on the model’s recall rate, which measures the proportion of affected individuals correctly 
identified. The OCSCatBoost model had the highest recall rate, with a 4.52, 13.72, 4.82, 10.12, and 
2.42 percentage point improvement compared to the KNN, DT, logistic regression, grid-search SVM, 
and grid-search XGBoost models, respectively. The OCSCatBoost model enhanced the recall rate of 
CatBoost from 69.72% to 72.17%, indicating an improvement of 2.45 percentage points. Thus, the 
improved OCSCatBoost model effectively enhanced the recall rate of CatBoost, consequently 
improving the overall performance and predictive ability of the model. Overall, the OCSCatBoost 
outperformed other models regarding accuracy, recall, F1 score, AUC, FNR, and AUPRC. 

The ROC curves for all algorithms are plotted in Figure 4, where plot (b) provides a partial 
enlargement of plot (a). It can be observed from Figure 4 that the OCSCatBoost model exhibits the 
best ROC curve, although its advantages are not as pronounced compared to the integrated algorithm. 
This suggests that there is room for further improvement in this algorithm. Based on the analysis 
mentioned above, it is evident that the performance of the OCSCatBoost model proposed in this paper 
surpasses that of other selected comparison algorithms in most indicators, except for precision. While 
there is potential for improvement in the proposed algorithm, this experiment successfully 
demonstrates its superiority and delivers satisfactory results in other metrics. In summary, the 
experiments conducted in this section validate the effectiveness of OCSCatBoost. Additionally, the 
analysis of the aforementioned results indicates that the OCS algorithm effectively leverages parameter 
tuning to enhance the performance of the CatBoost model. 

To verify the predictive efficacy and robustness of the classifier, it is essential to employ 
appropriate evaluation methods. The K-fold cross validation method uses the average performance 
index as the performance estimation. The experiment in this section adopts a 10-fold cross validation 
strategy, dividing the data into ten equal subsets. In each iteration, one of the ten subsets is used as the 
test set, while the remaining subsets are utilized for model learning. This process is repeated until all 
subsets have been used as test sets once. Such a method provides a reliable estimate of the model’s 
generalization ability. The results are shown in Table 11. As seen in Table 11, OCSCatBoost achieved 
good results in 10-fold cross-validation, with accuracy, precision, recall, F1 value, and AUC scores of 
72.65%, 74.34%, 68.27%, 71.18%, and 0.79 respectively. The corresponding standard deviations were 
0.005687, 0.006570, 0.007142, 0.006142, and 0.006438. These values are comparable to the 
performance observed in the separated test set, indicating a good fit of the model. 
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(a)                                         (b) 

Figure 4. The ROC curves of comparison algorithms. 

Table 11. Ten-fold cross-validation results. 

 Accuracy Precision Recall F1 AUC 

MEAN 72.65% 74.34% 68.27% 71.18% 0.79 

STD 0.005687 0.006570 0.007142 0.006142 0.006438 

To compare the difference in prediction effect between the proposed algorithm in this paper and 
the latest algorithm, we compared it with the most recent algorithm using the same dataset, and the 
experimental results are presented in Table 12. As indicated in the table, the accuracy of the algorithm 
proposed in this paper surpasses that of other recent algorithms, particularly outperforming deep 
learning algorithms like ANN and GA-ANN employed by Arroyo et al. In relation to recall and F1 
value, it outperforms the XGBH algorithm proposed by Peng et al., thus confirming the effectiveness 
of this algorithm. Furthermore, since a high recall rate indicates the system's ability to accurately detect 
the presence of diseases among patients, we place greater emphasis on the algorithm's recall rate and 
optimizes the model using the recall rate as the fitness function. The experimental results highlight a 
noticeable improvement in the recall rate, and although the improvement in accuracy is relatively 
modest, it surpasses other algorithms. 

Table 12. Comparison between the proposed method and other state-of-the-art methods. 

Authors Year Method Accuracy Recall F1 

Maiga et al. [33] 2019 RF 73 – – 

Nikam et al. [34] 2020 DT 73.13 – – 

Arroyo et al. [35] 2022 ANN 68.35 – – 

GA-ANN 73.43 – – 

Mengxiao Peng et al. [36] 2023 XGBH – 70.4 73 

Proposed Method 2023 Lasso+OCS-CatBoost 73.67 72.17 73.29 
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4.5. Feature importance analysis 

In Figure 5, the global importance of each feature of cardiovascular disease is presented. The 
vertical coordinate represents the eight features, while the horizontal coordinate represents the 
percentage of each feature’s importance to the total importance. According to CVD-OCSCatBoost, 
ap_hi, age, and cholesterol are considered more important, accounting for 49.93%, 24.51%, and 
15.2%, respectively. These three features together account for 90% of the total importance of the 
feature. On the other hand, smoke and alco were identified as the least important, accounting for 0.94% 
and 0.81%, respectively. 

 

Figure 5. Feature importance. 

It is evident from the interpretability of the model that systolic blood pressure, age, and cholesterol 
levels play a significant role in determining the presence of cardiovascular diseases in the future. These 
findings align with previous clinical studies that also identified systolic blood pressure, age, and 
cholesterol levels as important risk factors [10]. It is important to note that these three indicators are 
considered traditional risk factors utilized in Framingham’s 10-year risk score for cardiovascular 
diseases. Among these factors, systolic blood pressure has the most prominent influence, followed by 
age and cholesterol levels. In comparison to systolic blood pressure, age, and cholesterol levels, 
smoking and drinking have a relatively lesser impact on cardiovascular disease risk prediction. 
However, in real-life scenarios, physical activity, smoking, and drinking are significant factors that can 
contribute to changes in cardiovascular risk. Therefore, they deserve close attention and control in 
order to effectively prevent cardiovascular diseases. Additionally, it is worth mentioning that the risk 
factors identified in the above conclusions have been consistently included in research on 
cardiovascular diseases in different countries, further supporting the validity of these findings [37–41]. 

5. Discussion 

Although previous studies have achieved higher model accuracy, their datasets have often been 
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reliant on small and medium-sized queue data, lacking sufficient and valid validation in real-world 
scenarios. Therefore, we explore the Kaggle cardiovascular disease dataset, consisting of 70,000 
instances, to enhance the practicality, efficiency, and robustness of the proposed model. 

We have developed a systematic framework for predicting cardiovascular disease risk, aiming for 
more accurate predictions. The first segment of this framework involves data processing and feature 
selection. Initially, outliers are identified using a boxplot, and those screened are removed. In the 
feature selection phase, Lasso regression, chosen for its interpretability in data dimensionality 
reduction and the ability of the L1 norm to prevent overfitting, is employed. Eight features are selected 
as the optimal subset for prediction, reducing the model’s computational complexity and enhancing 
prediction effectiveness. 

Many scholars have observed that intelligent optimization algorithms can effectively optimize the 
parameters of machine learning algorithms. In response to the challenge of different parameter 
combinations affecting the prediction results of the CatBoost model, we propose an enhanced cuckoo 
search algorithm. In literature [42], an opposition-based cuckoo algorithm is presented, integrating 
opposition-based learning with cuckoo position updates. This algorithm utilizes either the cuckoo 
position update mode or opposition-based learning mode, updating the position based on the control 
parameter CR. The divergence from previous algorithms can be attributed to two main aspects. First, 
we employ opposition learning to generate the initial population. The best individuals from the two 
populations are selected as the initial population, enhancing the quality of the initial solution and 
expediting algorithm convergence. Furthermore, opposition-based learning is applied to the generation 
of new positions. After the position update of the cuckoo search algorithm, it determines whether to 
generate the opposition solution of the new position by comparing the generated random number with 
a set probability. The algorithm selects the superior position as the new one and continues the 
subsequent selection iteration. This strategy aids the algorithm in breaking free from local optimal 
positions and fully exploring the solution space. 

The second half of the framework employs the OCSCatBoost model for predictions. CatBoost 
has consistently demonstrated robust feature classification capabilities and high accuracy across 
various applications, making it particularly suitable for cardiovascular disease risk prediction [11,43]. 
However, some parameters of the CatBoost model lack high interpretability, and different parameter 
settings significantly influence prediction outcomes. To attain an optimal state, we utilize the improved 
cuckoo search algorithm to optimize the model’s parameters. The fitness function is defined as the 
recall, and the optimal parameter combination is determined through continuous iteration. In 
comparison with three other optimization algorithms, experimental results demonstrate that the 
OCSCatBoost model exhibits superior predictive accuracy in cardiovascular disease risk prediction. 
Additionally, we analyze computational complexity, revealing that the proposed model completes 
training and testing in an average of 2 seconds, with each iteration using OCS parameter optimization 
taking approximately 360 seconds. 

We believe this study holds significant value for predicting CVD risk. For patients, it can 
effectively guide lifestyle changes, reducing disease risks. Likewise, for doctors, it aids in identifying 
potential risks and trends, enabling the screening of high-risk groups, and reducing misdiagnosis rates. 
However, the study does have limitations and suggests directions for future research. First, the absence 
of clear cholesterol threshold ranges impedes an accurate assessment of specific cholesterol values' 
impact on cardiovascular disease. Second, cardiovascular disease risk assessment data exists in diverse 
structured forms, encompassing clinical, imaging, pathological, and multiomics data. Yet, the method 
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proposed in this paper is solely validated on datasets containing partial types. In future work, we aim 
to integrate the proposed model into telemedicine platforms or mobile applications, potentially 
enhancing access to early diagnosis, particularly for individuals facing geographic or financial barriers. 
The field of cardiovascular disease risk prediction stands to benefit significantly from the ongoing 
advancements in interaction prediction research within various realms of computational biology. 
Particularly, the exploration of genetic markers and non-coding RNAs (ncRNAs) interaction 
predictions, such as miRNA-lncRNA interactions, holds promise for providing deeper insights into the 
molecular mechanisms underlying cardiovascular diseases. We will incorporate GFPA [44], 
scAAGA [45], MDA-AENMF [46], and other models [47–51] that reveal potential links between 
genes and diseases into our study. Embracing these computational approaches and continuously 
evolving our understanding of genetic and ncRNAs interactions will undoubtedly drive innovation and 
transformative breakthroughs in the prevention and treatment of cardiovascular diseases. 

6. Conclusions 

Complex problems like cardiovascular disease risk prediction and diagnosis require physician 
expertise and medical experience, and machine learning algorithms can assist physicians in making 
quick and accurate decisions. We propose a CVD-OCSCatBoost framework for predicting 
cardiovascular disease risk, using the Lasso regression model to determine input features and the OCS 
algorithm to optimize the CatBoost parameters, improving the accuracy and recall rate of 
cardiovascular disease risk prediction. The results reveal that the OCSCatBoost model outperforms 
other algorithms in terms of classification accuracy, recall, and algorithm stability, validating the 
superiority of the algorithm. The proposed framework provides efficient and accurate classification 
and has significant application value. An importance analysis of each feature has also been conducted, 
highlighting the crucial features that need attention for cardiovascular disease prevention and thereby 
providing effective guidance for preventive measures. 
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