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Abstract: Early detection of the risk of sarcopenia at younger ages is crucial for implementing 

preventive strategies, fostering healthy muscle development, and minimizing the negative impact of 

sarcopenia on health and aging. In this study, we propose a novel sarcopenia risk detection technique 

that combines surface electromyography (sEMG) signals and empirical mode decomposition (EMD) 

with machine learning algorithms. First, we recorded and preprocessed sEMG data from both healthy 

and at-risk individuals during various physical activities, including normal walking, fast walking, 

performing a standard squat, and performing a wide squat. Next, electromyography (EMG) features 

were extracted from a normalized EMG and its intrinsic mode functions (IMFs) were obtained through 

EMD. Subsequently, a minimum redundancy maximum relevance (mRMR) feature selection method 

was employed to identify the most influential subset of features. Finally, the performances of state-of-

the-art machine learning (ML) classifiers were evaluated using a leave-one-subject-out cross-

validation technique, and the effectiveness of the classifiers for sarcopenia risk classification was 

assessed through various performance metrics. The proposed method shows a high accuracy, with 

accuracy rates of 0.88 for normal walking, 0.89 for fast walking, 0.81 for a standard squat, and 0.80 

for a wide squat, providing reliable identification of sarcopenia risk during physical activities. Beyond 

early sarcopenia risk detection, this sEMG-EMD-ML system offers practical values for assessing 

muscle function, muscle health monitoring, and managing muscle quality for an improved daily life 
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and well-being. 

Keywords: sEMG; empirical mode decomposition; feature selection; sarcopenia risk; machine 

learning 

 

1. Introduction  

Sarcopenia is a progressive age-related condition characterized by the loss of skeletal muscle 

mass, strength, and function. It is associated with an increased risk of falls, fractures, functional decline, 

and a reduced quality of life [1–3]. Sarcopenia affects approximately 50 million people worldwide, 

accounting for approximately 13% of individuals aged 60–70 years. Considering that the global 

population of individuals over 60 years is projected to double by 2050, the prevalence of sarcopenia is 

expected to significantly rise in the coming decades [4–6]. Therefore, early detection of the risk of 

sarcopenia at younger ages is essential for implementing preventive strategies, promoting healthy 

muscle development, and mitigating the adverse effects of sarcopenia on overall health and aging. It 

empowers individuals to take proactive steps toward maintaining muscle health and achieving better 

long-term outcomes [7]. A comprehensive approach to sarcopenia risk detection encompasses clinical 

assessments, physical performance tests, and the integration of relevant biomarkers and imaging 

techniques. However, this approach can be resource-intensive, time consuming, and requires 

specialized equipment, which may not be readily available in all health care settings. Currently, 

sarcopenia risk is assessed by various gold standard image modalities, such as dual-energy X-ray 

absorptiometry (DXA), magnetic resonance imaging (MRI), and computed tomography (CT) scans, 

which directly visualize and quantify muscle mass, volume, and composition. These modalities offer 

more precise and accurate measurements and provide detailed insights into muscle structure and 

distribution. Despite their widespread use, these clinical examinations appear to be underutilized due 

to their high cost, limited portability, radiation exposure to patients, and the need for highly skilled 

medical personnel [8–10].  

Signal processing is experiencing a vibrant revival across diverse industries. Its impact is 

particularly evident in industrial automation, where it empowers intelligent manufacturing systems 

through advanced gear health monitoring techniques [11–13]. Simultaneously, advancements in signal 

processing have revolutionized healthcare, thus paving a way for innovative solutions such as wearable 

devices and remote patient monitoring systems [14]. Recently, the increased popularity of smart 

sensors has provided a solution to overcome the limitations of the aforementioned image modalities 

and to enhance the accessibility of devices that can be effectively employed for the early diagnosis and 

monitoring of patients with sarcopenia. In addition, sEMG sensors are presently employed in numerous 

research studies to collect human motion data during physical activities. They have been widely used 

in various domains, including disease prediction, health reassessment, and medical care [15,16]. sEMG 

is a technique that measures the electrical activity produced by skeletal muscles. It involves the use of 

surface electrodes placed on the skin above the muscles. These electrodes detect and record electrical 

signals generated by muscle fibers during muscle contraction and relaxation [17]. The study reported 

in [18] investigated age-related differences in the time-frequency representation of sEMG data during 

a submaximal cyclic back extension exercise. The objective of this study was to examine whether 

EMG data analysis can serve as a potential biomarker for the early detection of sarcopenia. The results 
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revealed age-specific differences in the time-frequency representation of the EMG data during the back 

extension exercise. The researchers observed distinct patterns of muscle activation between the 

younger and older participants. These findings suggest that analyzing EMG data with a time-frequency 

representation can serve as a promising biomarker for detecting early signs of sarcopenia. Another 

study [19] demonstrated the effectiveness of supervised classifiers in evaluating sarcopenia using an 

sEMG-based platform. The results showed that an sEMG-based platform combined with supervised 

classifiers could provide a reliable means of evaluating sarcopenia. However, the study was conducted 

with a limited number of older adult individuals suffering from sarcopenia and did not involve young 

people who were at risk of sarcopenia, thus limiting its connection to the early detection of sarcopenia. 

Furthermore, in the study, the performance comparison of the classification algorithms solely 

considered synthesized data generated from a minority oversampling technology (SMOTE) along 

with the edited nearest neighbor’s technique. Although existing research has demonstrated the 

potential of sEMG and machine learning (ML) for sarcopenia assessment, there are still existing 

gaps in the research. These include a lack of previous studies focused on the early detection of 

sarcopenia before the onset of significant clinical symptoms and limited investigations using the 

decomposition method to enhance feature extraction in sEMG signal classification.  

Our research aims to address these gaps by providing an sEMG dataset recorded during physical 

exercises for the early detection of sarcopenia, investigating the effectiveness of empirical mode 

decomposition (EMD) in pre-processing sEMG signals for improved sarcopenia risk classification, 

and exploring the performance of various ML algorithms in classifying young individuals with and 

without a risk of sarcopenia based on EMD-derived features. 

2. Materials and methods 

This section presents the workflow of the proposed method for detecting sarcopenia risk during 

daily activities, as shown in Figure 1. First, wearable sEMG signal sensors were employed to record 

the sEMG signals from the participants during daily activities. The raw sEMG signal underwent de-

noising, segmentation, normalization, and rectification through preprocessing. Subsequently, the 

preprocessed sEMG signal was decomposed into intrinsic mode functions (IMFs) using EMD. The 

time domain, frequency domain, and time-frequency domain features were extracted from each IMF. 

Then, a feature selection method was applied to identify the optimal subset of features. Finally, a binary 

classifier was employed to classify individuals into healthy and sarcopenia-risk groups based on the 

extracted features. 

2.1. sEMG data acquisition 

Excluding those who were illiterate, a total of 93 community-dwelling adults, aged between 20 

and 60 years old, were recruited for this study from the Kyung Hee University Medical Center, South 

Korea. This study included 44 men (47.3%) and 49 women (52.7%). Before participation, each 

individual provided an informed consent form, which included approval for the removal of hair from 

the quadriceps and hamstring areas for the attachment of sEMG sensors. The exclusion criteria were 

rigorously defined to include individuals with the following: (1) chronic kidney failure or end-stage 

renal disease, or those undergoing hemodialysis; (2) a history of cancer within the past five years or 

those currently undergoing chemotherapy; (3) current hormone therapy; (4) a myocardial infarction or 
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stroke within the past six months; (5) a pacemaker implant; (6) physical disabilities affecting the upper 

or lower limbs; (7) pregnant or breastfeeding women, or those planning pregnancy during the trial 

period; and (8) an inability to comply with the study requirements or deemed unsuitable by the 

principal investigator or physician. The characteristics of each group are detailed in Table 1. The study 

enrolled 93 subjects aged 20–59 years, categorized into a control group (n = 49) and a sarcopenia risk 

group (n = 44). Statistical analyses revealed that the control group exhibited significantly higher values 

in weight, body mass index (BMI), appendicular skeletal muscle mass index (ASMI) (p < 0.001), and 

knee-extension force (p < 0.05) when compared to the sarcopenia risk group. However, no 

significant differences were observed in terms of age and height between the two groups.  

 

Figure 1. Overview of the proposed sEMG technique for sarcopenia risk classification. 

The pipeline mainly includes sEMG signal acquisition, Pre-processing, EMD 

decomposition, feature extraction, feature selection, and machine learning classifiers. 

As shown in Figure 2, the experiment procedure included four physical exercises: normal walking, 

fast walking, a standard squat, and a wide squat. Each participant performed a walking task consisting 

of five round trips on a straight 7-meter surface at both normal and maximum walking speeds and two 

sets of 10 repetitions of standard squat and wide squat exercises. Four sEMG electrodes were used to 

record the data from the rectus femoris (RF) and biceps femoris (BF) in the thigh muscle, as well as 

the tibialis anterior (TA) and gastrocnemius (GA) in the calf muscle. For sEMG and inertial data 

acquisition (IMU), the DELSYS Trigno Wireless system was used, as shown in Figure 2. This system 

can simultaneously measure sEMG, acceleration, and angular velocity in various body parts. The 

sEMG data acquisition was performed at a sampling frequency of 1259 Hz, whereas the IMU data 

acquisition was conducted at a sampling frequency of 148 Hz. 
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Table. 1. Descriptive statistics of participants in the experimental procedure. 

Characteristics Total (n = 93) 
Control group  

(n = 49) 

Sarcopenia risk  

group (n = 44) 
p-value 

Men (%) 93 (47.3) 26 (53.1) 18 (40.9) 0.300 

Age (years) 39.0 (29.0–49.5)  40.0 (29.0–49.5) 37.0 (27.5–49.8) 0.732 

Weight (kg) 59.4 (53.1–66.4) 65.0 (57.4–74.7) 53.4 (48.6–60.9) <0.001 

Height (cm) 
165.3  

(160.9–174.5) 

167.2  

(160.9–175.3) 

163.9  

(160.9–173.2) 
0.723 

BMI (kg/cm2) 21.5 (19.7–23.) 22.2–25.4 19.6 (18.5–20.4) <0.001 

ASMI (kg/m2) 6.6 (6.0–7.6) 7.4 (6.3–8.3) 6.3 (5.7–6.9) <0.001 

Knee-extension  

force (kg) 
36.6 (29.2–51.4) 39.6 (34.6–54.5) 33.4 (25.9–45.6) <0.05 

Knee-flexion force (kg) 27.2 (20.2–31.9) 28.7 (21.9–35.5) 24.5 (19.4–29.8) <0.05 

Notes: Values are presented as median (25th and 75th percentile (%)) or n (%) * P−values are calculated by 

the Mann-Whitney test for continuous variables and the chi-squared test or Fisher’s exact test for categorical 

variables. ASMI, appendicular skeletal muscle mass index; BMI, body mass index.  

 

Figure 2. (a) DELSYS Trigno Wireless system used for sEMG and inertial data acquisition, 

(b) positioning of the electrodes on the TA muscle, (c) walking action, and (d) squat action 

performed by each subject. 
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2.2. Pre-processing 

sEMG data acquired during physical exercises is susceptible to several challenges, including the 

following: motion artifacts caused by muscle movement and electrode slippage, power line 

interference affecting signal quality, inter-individual variability due to anatomical differences and 

physiological factors, and intra-individual variability due to inconsistencies in contraction levels. 

Consequently, preprocessing becomes essential for improving the quality and interpretability of the 

sEMG data. To eliminate high-frequency noise interference and motion artifacts, a band-pass filter was 

applied to the sEMG signal during the filtering process. The band-pass filter used was a Butterworth 

filter with a passband frequency range of 20 Hz to 400 Hz.  

 

Figure 3. Segmentation of the sEMG signal during walking action based on the angular velocity 

during shank flexion/extension. 

 

To mitigate the computational challenges posed by temporal variations in sEMG signals, 

segmentation was employed. This technique divides the signal into smaller time intervals, thereby 

facilitating the extraction of dynamic patterns and changes in muscle activation by ML algorithms, 
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thus enhancing the model's ability to discern diverse muscle activities. In this study, the IMU sensor 

data was employed to segment the filtered sEMG signal. Therefore, we applied time synchronization 

in both the sEMG and IMU sensor data. For sEMG data segmentation during the walking action, the 

angular velocity signal for the flexion/extension of the shank and the sEMG signal of the TA muscle 

was used, as shown in Figure 3. By identifying the maximum peak point of the angular velocity, the 

minimum left peak was determined as the point where the foot falls off the ground (Toe-off, TO), as 

marked with a green circle; moreover, the minimum right peak corresponded to the foot's contact with 

the ground (Heel Strike, HS), as marked with a red circle. The corresponding sEMG data was 

segmented by calculating the duration (one step time) between successive HS events detected from the 

angular velocity [20]. For sEMG data segmentation during the half and wide squat actions, the angular 

velocity signal for the flexion/extension of the shank and the sEMG signal of the RF muscle were used, 

as shown in Figure 4. The sign change point where the sign of the angular velocity changed from 

positive to negative was detected, and the sign change point to the next change point was defined as 

one cycle of the squat. The corresponding sEMG data was segmented by calculating the duration of 

one squat cycle and then used for analysis. 

 

Figure 4. Segmentation of the sEMG signal during squat action based on the angular 

velocity during shank flexion/extension. 

 

Addressing both inter- and intra-individual variability in sEMG data acquired during specific 

actions necessitated signal normalization. This was achieved by dividing segmented sEMG signals by 

the reference maximum voluntary contraction (MVC) values obtained from the corresponding muscle 

during the wide squat action. Additionally, the sEMG signal was rectified using full rectification to 

ensure comparability and suitability for further processing of the normalized sEMG signals. [21]. 
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2.3. Empirical Mode Decomposition 

Analyzing EMG signals is crucial to assess muscle weakness and fall risks in patients with 

sarcopenia. However, raw EMG signals are complex and often contain various frequency components 

originating from muscle action potentials (MAPs), motor unit action potentials, and noise. The 

presence of these various components can make it difficult to directly analyze the features of MAPs 

that are most relevant to the risk of sarcopenia. Signal decomposition techniques help separate the 

different components of the EMG signal, thus allowing for a focused analysis of muscle activity 

relevant to sarcopenia. EMD is a signal processing technique used to decompose a non-linear and non-

stationary signal into a set of IMFs. Each IMF represents a component with a well-defined 

instantaneous frequency [22]. Because of their non-linear and non-stationary characteristics, sEMG 

signals can be effectively analyzed using the EMD method. Moreover, sarcopenia risk detection relies 

on identifying specific features or patterns within the sEMG signals that correspond to muscle 

dysfunction. By decomposing the EMG signal into IMFs, EMD allows for a more detailed examination 

of the underlying motor unit activity, thus providing insights into changes associated with a reduced 

muscle mass. A decrease in muscle mass results in fewer motor units and muscle fibers, thus leading 

to heightened effort and strain on the remaining muscle tissue during physical activities, ultimately 

causing a faster onset of muscle fatigue. Muscle fatigue is associated with changes in the frequency 

and amplitude characteristics of EMG signals. EMD decomposition enables the identification and 

analysis of specific frequency bands that are indicative of fatigue-related alterations. In this study, 

IMFs were extracted from the preprocessed EMG signal. Extracting time and frequency domain 

features from IMF signals can lead to more reliable and sensitive markers of muscle weakness. The 

EMD algorithm can be summarized as follows. First, identify the local maxima and minima (extrema 

points) in the preprocessed sEMG signal x(t) , as shown in Figure 5. The mean envelope mi(t)  is 

calculated by averaging the upper xmax(t) and lower envelopes xmin(t) as follows: 

mi(t) =
(xmax(t)+ xmin(t))

2
                                       (1) 

In order to obtain the first intrinsic mode function di(t), subtract the mean envelope mi(t) from the 

preprocessed sEMG signal x(t) as follows: 

di(t) = x(t) - mi(t)                                       (2) 

It is necessary to examine whether di(t) satisfies the criterion to be classified as an IMF or not, 

as written below: 

1) The number of zero-crossings must be either equal to or differ by at most one from the number 

of extrema;  

2) The mean value of the envelope defined by the local maxima and the envelope defined by the 

local minima must be either zero or very close to zero across the entire data segment. If the signal di(t) 

does not satisfy the criterion, it is considered as a new signal and the decomposition process is repeated 

on this new signal to obtain the next IMF. If the signal di(t) satisfies the above conditions, it is treated 

as an IMF and then subtracted from x(t) to obtain the residual as follows: 

rk (t) = x(t) - ∑ ck(t)
k
i=1                                    (3) 

The process concludes with the extraction of all IMF1(t), IMF2(t)..., IMFi(t) in a descending order 

of frequency and residual component. The number of IMFs generated by the EMD can vary for each 
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EMG signal. The number of IMFs depends on factors such as the characteristics of the EMG signal, 

its length, complexity, and the presence of noise. The first few IMFs typically capture the dominant 

frequency components of the signal. These components are crucial for understanding the primary 

oscillatory patterns present in the EMG signal. In this study, we used the first five IMFs to extract 

EMG features and the decomposed IMFs of sEMG during the normal walk action, as shown in Figure 6. 

 

Figure 5. The decomposition flowchart of the EMD method. 
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Figure 6. The sEMG signal recorded from the BF muscle during normal walking was 

decomposed into IMFs using EMD. 

2.4. Feature extraction and selection 

sEMG signals are large and complex, encompassing a considerable amount of redundant 

information. Not all segments of the sEMG signal equally contribute to understanding muscle activity. 

Feature extraction helps to identify and extract the most relevant and informative features from the 

signal, thereby significantly reducing its dimensionality and focuses on extracting specific 

characteristics, such as amplitude, frequency, and time-domain parameters, that are directly related to 

muscle activation patterns and muscle strength [23–25]. This study explored 36 prominent EMG 

features, which were subsequently employed for training and evaluating different ML classifiers. A 

comprehensive list of these features is available in Table 2. We conducted feature extraction in two 

different cases. Case 1 involved extracting several features from the normalized sEMG signal without 

using the EMD decomposition technique (36 features * 4 muscles = 144 features). 
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Table 2. List of extracted time domain, frequency domain and time-frequency domain 

features from sEMG signals. 

1 Mean absolute value (MAV)  19 Modified mean absolute value 

(MMAV) 

2 RMS value (RMS)  20 Modified mean absolute value 

(MMAV2) 

3 Variance (VAR)   21 Integrated EMG (IEMG) 

4 Standard deviation (STD_DEV)  22 Average energy (ME) 

5 Kurtosis (KURT)  23 Interquartile range (IQR) 

6 Skewness (SKEW)  24 Difference variance value (DVARV)  

7 Willison amplitude (WAMP) 25 Cardinality (CARD) 

8 Slope sign change (SSC)  26 Hurst exponent (H) 

9 Waveform length (WL)  27 Sample entropy (SE) 

10 Mean absolute deviation (MEAN_AD)  28 Poincare plot index (SD1) 

11 Median absolute deviation 

(MED_AD)  

29 Poincare plot index (SD2) 

12 Simple square integral (SSI) 30 Zero crossing (ZC)  

13 Average amplitude change (AAC)  31 Mean frequency (MNF) 

14 Difference absolute standard deviation 

value (DASDV) 

32 Median frequency (MDF) 

15 Myopulse percentage rate (MYOP) 33 Total power (TTP) 

16 Max fractal length (MFL) 34 Mean power (MNP)  

17 Difference absolute mean value 

(DAMV) 

35 Peak frequency (PKF) 

18 Log detector (LD) 36 Maximum EMG power (MAXP) 

Case 2 entailed extracting features from the normalized sEMG signal and the IMFs generated 

through the EMD decomposition technique (144 features from normalized EMG, 720 from IMFs, and 

4 demographic variables). Therefore, the feature set consisted of 868 features, including the following 

four variables as demographic information: age, sex, height, and weight of the subject. To enhance the 

ML model performance and reduce the signal processing complexity, the minimum redundancy 

maximum relevance (mRMR) feature selection technique was implemented to identify the most 

influential subset of EMG features [26]. The best subset of features from sEMG during the four 

activities (i.e., normal walking, fast walking, standard squat, and wide squat) is presented in Table 3. 
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Table 3. The most significant features were selected using the mRMR method for normal 

walking, fast walking, squat, and wide squat actions, involving the RF (rectus femoris), 

BF (biceps femoris), TA (tibialis anterior), GA (gastrocnemius) muscles, and IMF1 to 

IMF5 (1st to 5th IMF) through the EMD. 

 

Exercise Normalized 

EMG 

IMF1 IMF2 IMF3 IMF4 IMF5 

Normal 

walk 

PKF_TA, 

WAMP_BF, 

SE_TA, 

WAMP_GA, 

MFL_BF, 

PKF_RF, 

MNF_RF 

DVARV_RF, 

SE_TA, 

SKEW_BF, 

ZC_BF, 

MFL_BF, 

VAR_TA, 

PKF_GA, 

SD2_TA, 

KURT_BF 

VAR_TA, 

PKF_GA, 

SE_TA, 

SD2_TA, 

PKF_RF, 

MFL_BF  

PKF_GA, 

MNF_RF 

SKEW_RF, 

KURT_RF, 

SKEW_GA, 

SE_TA, 

MFL_BF 

MFL_BF 

Fast walk ZC_BF, 

MFL_BF, 

PKF_GA, 

SE_TA, 

PKF_BF, 

CARD_BF, 

SSC_TA, 

MNF_GA 

SE_TA, 

SKEW_BF, 

MFL_BF, 

PKF_GA, 

MDF_BF, 

ZC_BF, 

MDF_RF  

PKF_GA, 

SE_TA, 

MAXP_TA, 

MFL_BF, 

TTP_TA, 

ZC_TA  

TTP_TA, 

SE_TA 

H_RF, 

SKEW_RF, 

PKF_GA, 

H_TA, 

MFL_BF  

MFL_BF, 

SE_TA 

Standard 

squat 

CARD_RF, 

SKEW_RF, 

WAMP_BF, 

SE_BF 

PKF_BF, 

WAMP_GA, 

MDF_GA, 

ZC_BF, SE_BF, 

MYOP_BF, 

MFL_RF 

SKEW_RF, 

MYOP_GA, 

SE_TA, 

MAXP_BF, 

PKF_BF, 

H_TA, 

PKF_TA, 

SSI_BF, 

MDF_GA, 

MYOP_BF 

TTP_RF, 

PKF_BF, 

MDF_GA, 

PKF_GA, 

SSI_RF,   

PKF_BF, 

H_TA  

H_TA, 

PKF_BF 

Wide squat WAMP_GA, 

PKF_RF, 

ZC_GA, 

SE_BF, 

CARD_BF, 

MDF_GA   

MNF_GA, 

SE_TA, 

VAR_GA, 

MYOP_BF, 

PKF_BF, 

ZC_BF, 

MFL_TA 

PKF_BF, 

TTP_BF, 

MNF_GA, 

MDF_TA, 

MYOP_BF, 

MDF_GA 

PKF_BF, 

IEMG_RF, 

MNF_GA  

SD2_RF, 

PKF_TA, 

PKF_BF, 

IEMG_RF  

KURT_GA,  
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2.5. Machine learning classifier  

In this study, the sEMG data was categorized into two classes: the healthy group and the 

sarcopenia risk group. Leave-One-Subject-Out Cross-Validation (LOSO-CV) was used to evaluate the 

classification performance. LOSO-CV uses all data points of subjects for both training and validation. 

In each iteration, the model excludes samples of one subject for validation and trains the model on the 

remaining subject’s samples. The process is repeated for all subjects in the dataset, with each subject 

being excluded once. The performance of the model was assessed by aggregating the results obtained 

from each iteration. This approach is valuable for providing unbiased performance estimates and 

insights into its ability to handle various data patterns and potential overfitting issues. To effectively 

classify sarcopenia risk, we employed a diverse array of ML algorithms, each with unique strengths 

and approaches.  

The K-nearest neighbors (KNN) algorithm is a widely used non-parametric classification method 

known for its ease of implementation and high accuracy. KNN makes predictions by identifying the 

majority class among the k-nearest data points to a given query instance in the feature space. The 

variable k is the number of nearest neighbors to consider for classification. Choosing the right k value 

is crucial for an optimal performance [27].  

The naive Bayes (NB) classifier is a probabilistic ML algorithm that is widely employed for 

classification tasks. It is based on the Bayes theorem and operates on the assumption of feature 

independence, thereby simplifying computations by treating each feature as conditionally independent 

given the class label [28].  

The random forest (RF) classifier is a powerful ensemble learning algorithm that is widely 

employed for both classification and regression tasks. Built upon the idea of constructing multiple 

decision trees and combining their outputs, the RF classifier excels in improving the predictive 

accuracy and mitigating overfitting. Each tree in the forest is trained on a random subset of the dataset, 

and the final prediction is determined by aggregating the individual predictions through voting [29].  

The extreme gradient boosting (XGB) classifier is a state-of-the-art machine learning algorithm 

that belongs to the ensemble learning family, specifically gradient boosting frameworks. Renowned 

for its exceptional predictive performance, XGB builds a strong predictive model by combining the 

outputs of multiple weak learners, typically decision trees. It employs a gradient boosting approach, 

thereby sequentially adding trees that correct the errors of the previous ones [30].  

The multi-layer perceptron (MLP) classifier is a type of artificial neural network that is known 

for its capability to handle complex and non-linear relationships within data. As a feedforward neural 

network, the MLP consists of multiple layers, including an input layer, one or more hidden layers, 

and an output layer. Each layer contains interconnected nodes (neurons), and the network uses a 

supervised learning approach to adjust its weights and biases during training, thus optimizing for 

accurate predictions [31]. 

3. Results 

This section presents the performance of the proposed ML classifiers for predicting sarcopenia risk 

using features extracted both with and without EMD decomposition. To evaluate the classifier 

performance, experiments were conducted on 93 subjects belonging to two classes: healthy and 

sarcopenia risk. The classifiers performance was assessed by comparing the feature extraction with 
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and without EMD decomposition. Each ML model was trained using the optimal feature set determined 

through the mRMR feature selection technique. Subsequently, the hyper-parameters of each classifier 

were optimized using the GridSearchCV technique. To analyze the classifier performance, several 

metrics were calculated: accuracy, precision, recall, F1-score, and confusion matrices. Confusion 

matrices allow for visualization of the model performance in classifying instances from each class. 

Performance metrics for the different classifiers were recorded using features extracted without EMD 

decomposition for normal walking, fast walking, and standard and wide squat actions, as shown in 

Tables 4 and 5.  

Table 4. Performance metrics of the different classifiers using features extracted without 

EMD decomposition for normal and fast walking actions. 

As shown in Table 4, among the classifiers evaluated for normal walking action, NB exhibited the 

lowest accuracy at 0.46, while MLP achieved the highest with 0.83. This trend persists for fast walking 

actions, with NB again demonstrating the lowest accuracy at 0.68 and MLP attaining the peak at 0.85. 

Overall, XGB and MLP surpassed other models in performance for both normal and fast walking. 

Furthermore, Table 5 reveals the classification performance on squat actions. NB displayed the lowest 

accuracy at 0.61, while XGB achieved the highest accuracy at 0.81 for the standard squat. In the case 

of the wide squat action, KNN demonstrated the lowest accuracy at 0.68, and MLP showed the highest 

at 0.79. The consistent high performance of XGB and MLP across all four actions highlights their 

effectiveness in extracting relevant EMG features for sarcopenia risk classification tasks. Classification 

accuracy alone may not adequately represent the true effectiveness of a model and does not separately 

consider the individual performance of each class. To address this limitation, the confusion matrices 

of the subject-wise average accuracies were evaluated for the best performing classifier in all four 

actions, as depicted in Figure 7. 

 

 

 

 

Model Normal walking action Fast walking action 

Accuracy Precision Recall  F-1 

score 

Accuracy Precision Recall  F-1 

score 

KNN 0.68 0.72 0.72 0.72 0.70 0.77 0.77 0.77 

NB 0.46 0.36 0.46 0.40 0.68 0.68 0.68 0.68 

RF 0.76 0.78 0.78 0.78 0.78 0.77 0.77 0.77 

XGB 0.81 0.81 0.81 0.81 0.78 0.75 0.75 0.75 

MLP 0.83 0.86 0.86 0.86 0.85 0.89 0.89 0.89 
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Table 5. Performance metrics of the different classifiers using features extracted without 

EMD decomposition for standard squat and wide squat action. 

 

Figure 7. The confusion matrices of the average accuracies for the best performing 

classifier using feature extraction without EMD decomposition were evaluated for four actions: 

(a) Normal walking, (b) Fast walking, (c) Standard squat, and (d) Wide squat action. 

Model Standard squat action Wide squat action 

Accuracy Precision Recall  F-1 

score 

Accuracy Precision Recall  F-1 

score 

KNN 0.64 0.71 0.71 0.71 0.65 0.68 0.65 0.66 

NB 0.61 0.72 0.66 0.69 0.68 0.72 0.70 0.71 

RF 0.75 0.77 0.76 0.76 0.72 0.74 0.74 0.74 

XGB 0.81 0.82 0.82 0.82 0.75 0.76 0.76 0.76 

MLP 0.71 0.76 0.76 0.76 0.79 0.79 0.79 0.79 
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Table 6 and Table 7 comprehensively illustrate the performance metrics of various classifiers for 

four actions, thereby employing features extracted via EMD decomposition. The tabulated results 

indicate that the MLP model achieved the highest classification accuracy of 0.88 for normal walking, 

0.89 for fast walking, 0.81 for the standard squat, and 0.80 for wide squat actions. KNN and NB 

demonstrated the lowest accuracy across all actions. Overall, XGB and MLP emerge as consistent top 

performers across all action categories. Additionally, Figure 8 illustrates the confusion matrices of the 

subject-wise average accuracies for the best performing classifier in all four actions, further 

highlighting the superiority of the MLP model in terms of classification performance across all actions. 

Table 6. Performance metrics of the different classifiers using feature extraction with EMD 

decomposition for normal and fast walking actions. 

Table 7. Performance metrics of the different classifiers using feature extraction with EMD 

decomposition for standard squat and wide squat action. 

 

Model Normal walking action Fast walking action 

Accuracy Precision Recall  F-1 

score 

Accuracy Precision Recall  F-1 

score 

KNN 0.66 0.70 0.70 0.70 0.66 0.72 0.72 0.72 

NB 0.60 0.65 0.63 0.64 0.64 0.65 0.65 0.65 

RF 0.82 0.83 0.82 0.82 0.76 0.75 0.75 0.75 

XGB 0.77 0.76 0.76 0.76 0.78 0.79 0.79 0.79 

MLP 0.88 0.89 0.89 0.89 0.89 0.92 0.92 0.92 

Model Standard squat action Wide squat action 

Accuracy Precision Recall  F-1 

score 

Accuracy Precision Recall  F-1 

score 

KNN 0.63 0.73 0.73 0.73 0.70 0.73 0.71 0.72 

NB 0.64 0.67 0.66 0.66 0.66 0.76 0.71 0.73 

RF 0.79 0.80 0.79 0.79 0.78 0.78 0.78 0.78 

XGB 0.80 0.81 0.81 0.81 0.78 0.78 0.78 0.78 

MLP 0.81 0.82 0.82 0.82 0.80 0.80 0.80 0.80 
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Figure 8. The confusion matrices of the average accuracies for the best performing 

classifier using feature extraction with EMD decomposition were evaluated for four actions: 

(a) Normal walking, (b) Fast walking, (c) Standard squat, and (d) Wide squat action. 

4. Discussion 

This paper presents a novel technique that leverages sEMG signals, EMD decomposition, and 

ML to identify sarcopenia risk during physical activities. We evaluated the ML model classification 

performance on sEMG data collected from 93 subjects, including both control and sarcopenia risk 

groups. We used sEMG signals to understand muscle function and potential dysfunction related to 

sarcopenia. sEMG signals contain diverse information about muscle activity, including their strength, 

contraction patterns, and even specific frequency components. This rich data makes sEMG valuable 

for detecting and potentially predicting sarcopenia. However, sEMG signals can be complex and 

challenging to directly interpret. EMD decomposition offers a powerful tool for further investigation 

by analyzing the frequency components associated with sarcopenia-related changes in muscle activity. 

Therefore, we employed the EMD method to decompose the sEMG signal into multiple IMFs. Each 

IMF represents a specific frequency range, thus providing insights into the various muscle activities 
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contributing to the overall signal. Then, EMG features were extracted from both the normalized EMG 

signal and each IMF. Notably, the mRMR feature selection technique was employed to identify the 

most relevant features for each ML model. In this study, five ML models were trained using the best 

feature set obtained through a feature selection technique.  

The performance of the model was evaluated by comparing the feature extraction with and 

without EMD decomposition. Based on the above results and utilizing feature extraction with EMD 

decomposition, it is evident that the MLP classifier demonstrated the best performance across all four 

actions: the classification accuracy for normal walking, fast walking, and standard and wide squat 

actions were 0.88, 0.89, 0.81, and 0.80, respectively. This demonstrates a notable enhancement in the 

model performance due to feature extraction from IMFs, with improvements ranging from 4-5% across 

all actions. The integration of feature extraction from normalized EMG and IMFs generated through 

the EMD technique offers distinct advantages. It enables the capture of multi-dimensional information 

while effective handling of the non-stationary nature of the sEMG signals. Furthermore, features 

selected from the first three IMFs, which typically capture the dominant frequency components, can 

potentially enhance the accuracy of sarcopenia risk prediction, as evidenced in Table 3. Figure 8 (a) 

and (b) presented the confusion matrices for healthy and sarcopenia risk individuals during four actions: 

normal walking, fast walking, standard squat, and wide squat. Each matrix visualizes the classifier 

performance by showing how many subjects were correctly and incorrectly classified for each group. 

Based on the confusion matrices for normal walking and fast walking, it is evident that the MLP 

classifier exhibits an accuracy of over 0.90 for each individual class. The MLP algorithm outperforms 

other ML models in classifying sarcopenia risk due to its multiple hidden layers. These layers act as 

intermediate stages, thus allowing the model to learn intricate relationships between complex data such 

as EMG features and the corresponding subject groups. Additionally, a multi-layer structure may give 

it an edge over simpler models that might struggle with such complexities. 

In the classification accuracy for all actions, fast walking demonstrated a higher accuracy 

compared to normal walking, the standard squat, and the wide squat. Conversely, the wide squat 

exhibited a lower classification accuracy compared to all other actions. The EMG signal captured 

during fast walking typically exhibited greater strength and amplitude compared to the EMG signal 

recorded during normal walking. The greater amplitude of signals in the EMG data during fast walking 

may provide additional discriminative information that can potentially facilitate the classification 

process using ML algorithms. The results presented above provide evidence that the proposed 

classification technique in this study effectively achieves a high classification performance for 

identifying sarcopenia risk during daily activities. However, the proposed models exhibited a 

misclassification rate of 15% to 20% due to the criteria used to group the healthy individuals and those 

with sarcopenia, which involved a combination of BMI and self-reported physical activity 

questionnaires. To achieve a significantly higher classification accuracy, our work will be extended to 

incorporate sequence models, transformers, and multi-head attention-based networks. Additionally, we 

plan to extract more non-linear features to enhance the model's performance. Furthermore, it is 

essential to test the model with a broader range of daily actions to ensure its robustness and 

generalizability. To ensure more accurate ground truth labels, we will utilize grouping criteria based 

on quantitative analyses, such as muscle mass and handgrip strength. 
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5. Conclusions 

In conclusion, our paper presents a novel sarcopenia risk detection method that combines sEMG 

signals and empirical mode decomposition with ML algorithms. To evaluate the classification 

performance of the model, sEMG data was recorded from healthy individuals and those at risk for 

sarcopenia during four physical activities. EMD enabled the decomposition of the sEMG signals into 

IMFs for an enhanced analysis. Then, the extracted EMG features from the IMFs were fed into the ML 

algorithms for the classification of sarcopenia risk. Our results demonstrate that the proposed system 

achieves a promising performance in sarcopenia risk classification. By leveraging the power of ML 

algorithms, we successfully classified individuals into healthy and sarcopenia risk groups based on the 

sEMG signals. The proposed system displayed a high accuracy, with accuracy rates of 0.88 for normal 

walking, 0.89 for fast walking, 0.81 for the standard squat, and 0.80 for the wide squat, thus providing 

reliable identification of sarcopenia risk during daily activities. 

Moreover, the integration of EMG signals and the EMD technique proves to be advantageous, as 

it captures multi-dimensional information and effectively handles the non-stationary nature of the 

signals. This enables a more comprehensive analysis of muscle dysfunction and aids in the early 

detection of sarcopenia. In future work, we will focus on expanding the dataset to include individuals 

diagnosed with sarcopenia, incorporating more diverse daily activities, and exploring advanced ML 

techniques such as recurrent neural networks and attention-based models. Overall, our research 

highlights the potential of combining sEMG and EMD with ML algorithms in designing accurate and 

efficient sarcopenia risk detection techniques for improved healthcare and quality of life. 
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