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Abstract: Epidemiologists have used the timing of the peak of an epidemic to guide public health
interventions. By determining the expected peak time, they can allocate resources effectively and
implement measures such as quarantine, vaccination, and treatment at the right time to mitigate
the spread of the disease. The peak time also provides valuable information for those modeling
the spread of the epidemic and making predictions about its future trajectory. In this study, we
analyze the time needed for an epidemic to reach its peak by presenting a straightforward analytical
expression. Utilizing two epidemiological models, the first is a generalized S EIR model with two
classes of latent individuals, while the second incorporates a continuous age structure for latent
infections. We confirm the conjecture that the peak occurs at approximately T ∼ (ln N)/λ, where
N is the population size and λ is the largest eigenvalue of the linearized system in the first model or
the unique positive root of the characteristic equation in the second model. Our analytical results
are compared to numerical solutions and shown to be in good agreement.
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1. Introduction

Epidemic modeling has become a current issue with the 2020 pandemic caused by a
coronavirus. Technical concepts, such as the parameter R0, have emerged in the discourse of
policymakers. This type of modeling is necessary to understand the transmission dynamics of
infectious diseases, forecast the future trajectory of outbreaks, and assess strategies for epidemic
control [1–4]. Its significance has been emphasized by a series of viral infection epidemics,
including HIV since the 1980s [5, 6], the SARS epidemic in 2002–2003 [7–9], H5N1 influenza in
2005 [10, 11], H1N1 in 2009 [12, 13], Ebola in 2014 [14, 15], and the recent COVID-19
pandemic [16–19].
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The most important features to assess the severity of an epidemic are its final size and
timescale. The final size of the epidemic, typically measured by the number of people ultimately
affected by the disease, serves as a crucial indicator for the assessment of the extent of the
disease’s impact on the population. Grasping this dimension allows authorities to effectively plan
for necessary resources, such as hospital beds, medical equipment, and healthcare personnel.
This, in turn, helps to prevent healthcare systems from becoming overwhelmed and ensures an
appropriate response to the increasing demand during the epidemic’s peak. Nevertheless, effective
resource management during an epidemic can be optimized with precise knowledge of the peak
time [20]. Researchers use various data sources and mathematical models to determine peak date
of the epidemic and gain insights into the dynamics of the disease spread. In [21], the authors
present an analytical method for determining the peak time of an epidemic outbreak by utilizing
the S IR (susceptible-infected-recovered) model. The formula takes into account variables such as
the fraction of susceptible individuals, the infectious ratio, and the initial count of infected and
susceptible individuals. Empirical testing has confirmed the accuracy and utility of the formula in
terms of predicting the peak time of different epidemic diseases, including COVID-19. More
recently, in [22], the author proposes a simple yet accurate formula, relying on Pade
approximations, to estimate the peak date of an epidemic in an SIR-type epidemic model. The
author compares the results of their estimation with those of other existing formulas, highlighting
that the current estimation is the most accurate with a negligible error margin across the entire
parameter regime of the SIR model. In [23], the S EIR model is being studied to understand the
spread of infectious diseases like COVID-19, and to provide analytical expressions for the peak
and and their timing, as well as the long-term behavior of the affected populations.
In [20, Chapter 1], the author examines the asymptotic behavior of the time T required for an
epidemic, as modeled by S IR differential system, to reach its peak when the population size N is
large. The formula derived by the author for T is

T ∼ 1
a−b

{
log N

I0
+ log

[(
1 − b

a

)
log a

b

]
+

∫ log a
b

0
−1+e−u+u

u(1−e−u− b
a u)du

}
, where I0 is the initial number of

infected individuals, a is the effective contact rate and b is the recovery rate, with the assumption
that a > b. In [20, Chapter 2], the authors evaluated the S EIR epidemic model with the aim of
finding the date of the peak. They determined a lower bound for the date of the epidemic peak and
conjectured that it occurs at time T ∼ (ln N)/λ, where λ is the largest eigenvalue of the linearized
system.

Based on these works, we aim to determine the lower bound for the date of the epidemic peak
and the final number of individuals who contract the disease in two epidemiological models. Our
first model is a non-structured S EIR epidemic model that includes two latent classes (S E1E2IR),
while the second model incorporates a continuous age structure for latent infections. The results
confirm the conjecture that the peak occurs at approximately T ∼ (ln N)/λ where N is the
population size and λ is the largest eigenvalue of the linearized system in the first model or the
unique positive root of the characteristic equation in the second model. The findings from this
study will contribute to the understanding of the dynamics of disease spread and inform public
health interventions and planning for future outbreaks.
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2. A simple differential equation model

Consider a population of size N subjected to a contagious disease outbreaks. The population is
divided into four classes: susceptible S (t), exposed E(t), infectious I(t) or recovered from infection
R(t). The following model describes the evolution of this epidemic in time [24, 25]:

S ′(t) = −aS (t)
I(t)
N

(2.1)

E′1(t) = aS (t)
I(t)
N
− b1E1(t) (2.2)

E′2(t) = b1E1(t) − b2E2(t) (2.3)
I′(t) = b2E2(t) − cI(t) (2.4)
R′(t) = cI(t) (2.5)

In this model, there are two latent (exposed) periods. Individuals remain in the exposed class for
a certain latent period, passing through two stages E1(t) and E2(t) before becoming infective [24].
Recovered individuals are assumed to be immune and retain their immunity without a time limit.
The parameter a (a > 0) represents the average number of contacts per unit time that a susceptible
individual has with an infectious individual. b1 (b1 > 0) is the rate of progression from the first
exposed class to the second exposed class. b2 (b2 > 0) is the rate at which the exposed individuals
in the second exposed class become infectious and c (c > 0) is the rate of recovery. The figure
below displays the transfer diagram for the S E1E2IR system. Consider the initial conditions

Figure 1. Flow diagram representing the structure of the model described by Eqs
(2.1)–(2.5).

S (0) = N−(nE1+nE2+nI) > 0, E1(0) = nE1 ≥ 0, E2(0) = nE2 ≥ 0, I(0) = nI ≥ 0, R(0) = 0, (2.6)

with nE1 + nE2 + nI > 0.

One may argue that an infective individual in a totally susceptible population causes a new
infections per unit time, and the mean time spent in the infective compartment is 1/c. Thus, at the
beginning of the epidemic, an infected individual will infect on average R0 = a/c secondary cases
before entering the compartment R, despite undergoing the latent phase. The parameterR0 is called
the basic reproduction number. It is one of the most important parameters in epidemiology, and
it is defined as the average number of secondary cases generated by a single case in a completely
susceptible population [26]. The basic reproduction number is an important measure in the spread
of infectious diseases, as it helps to predict the potential magnitude and speed of an outbreak. The
value of R0 can vary depending on several factors, including the contagiousness of the disease, the
susceptibility of the population, and the effectiveness of public health interventions. If R0 > 1,
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then the disease may emerge in the population. However, if R0 < 1, the disease disappears [27].
We assume throughout this paper that a > c, which means that R0 > 1.

Let us commence by recalling the following proposition, proven via the same method as in the
classical S EIR model.

Proposition 1. The system defined by Eqs (2.1)−(2.5) has a unique solution which is defined for
all t > 0. Furthermore, S (t) > 0, E1(t) > 0, E2(t) > 0, I(t) > 0,R(t) > 0 and S (t) + E1(t) + E2(t) +
I(t) + R(t) = N for all t > 0.

Proof

The Cauchy-Lipschitz theorem [28, p. 74] ensures the existence and uniqueness of a solution
to the system described by Eqs (2.1)–(2.5) over a maximal interval [0; Tmax]. Additionally, for all
t ∈]0,Tmax[, we have

S (t) = S (0) exp
(
−

a
N

∫ t

0
I(u)du

)
> 0

since S (0) > 0. Let

X(t) =


E1(t)
E2(t)
I(t)

 , F(t) =


−b1 0 aS (t)/N
b1 −b2 0
0 b2 −c

 (2.7)

We then have
dX
dt
= F(t)X(t) (2.8)

We observe that X(0) ≥ 0 and X(0) , 0 because nE1 + nE2 + nI > 0, where the inequality ≥
between vectors signifies an inequality for all respective components. Additionally, because the
off-diagonal entries of the matrix F(t) are non-negative for all t ∈ [0; Tmax) and F(0) is irreducible,
the system (2.8) is consequently cooperative and irreducible; then, it is strongly monotone [20,29,
30]. Therefore, for all t ∈]0; Tmax[, E1(t) > 0, E2(t) > 0, and I(t) > 0. Since

R(t) = c
∫ t

0
I(u)du

we also deduce that R(t) > 0 for all t ∈]0; Tmax[. Note that

d
dt

(S + E1 + E2 + I + R) = 0

we derive

S (t) + E1(t) + E2(t) + I(t) + R(t) = S (0) + E1(0) + E2(0) + I(0) + R(0) = N

and
0 < S (t) < N, 0 < E1(t) < N, 0 < E2(t) < N, 0 < I(t) < N, 0 < R(t) < N

for all 0 < t < Tmax. Since the solutions remain bounded on the maximal interval ]0; Tmax[, it
follows that Tmax = +∞ [31, Corollary A.5]. Therefore, the system described by (2.1)–(2.5) has a
unique solution defined for all t > 0.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2835–2855.



2839

2.1. Final size of the epidemic

The final size of an epidemic, represents the ultimate number of infected individuals in a
population during the course of an outbreak. It is a mathematical measure used to evaluate the
spread and impact of a disease.

The function S (t) is a non-negative, smooth, and decreasing function which converges to a limit
S∞ ≥ 0 as t → +∞. The function R(t) is a non-negative, smooth, and increasing function which
converges to a limit R∞ ≤ N as t → +∞. The sum of Eqs (2.4) and (2.5) is given by

(I + R)′(t) = b2E2(t) ≥ 0 (2.9)

Thus, I + R is a non-negative, smooth, and increasing function, and it converges to a limit as
t → +∞. As R(t) converges, I(t) also converges to a limit I∞ ≥ 0. The sum of Eqs (2.3)–(2.5) is
given by

(E2 + I + R)′(t) = b1E1(t) ≥ 0 (2.10)

Therefore, E2+ I+R is a non-negative and smooth increasing function that is bounded by N; hence
it converges to a limit as t → +∞. As both R(t) and I(t) converge, E2(t) also converges to a limit
E2,∞ ≥ 0. By utilizing Eqs (2.2)–(2.5), it can be proven that E1 + E2 + I + R is a non-negative,
smooth, increasing, and bounded function that also converges to a limit as t → +∞. Consequently,
as E2(t), R(t), and I(t) converge, E1(t) converges to a limit E1,∞ ≥ 0.

Let us prove that I∞ = E2,∞ = E1,∞ = 0. Integration of Eq (2.5) gives

R(t) = c
∫ t

0
I(u) du (2.11)

Because R(t) is bounded by N, I(t) cannot converge to a strictly positive limit; then I∞ = 0.
Similarly, using the sum of the equations for I and R, gives

I(t) + R(t) − I(0) = b2

∫ t

0
E2(u) du (2.12)

from which we conclude that E2,∞ = 0.
By performing a similar calculation using the sum of the equations for E2, I, and R, we obtain

E2(t) + I(t) + R(t) − E2(0) − I(0) = b1

∫ t

0
E1(u) du (2.13)

it follows that E1,∞ = 0.
By utilizing the equations for S and R, Eq (2.5) can be written as

R′(t) =
−cN
aS (t)

S ′(t) (2.14)

Then
R(t) = −

cN
a

ln
S (t)
S (0)

(2.15)

we obtain the following at the limit

R∞ = −
cN
a

ln
S∞

S (0)
(2.16)
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this shows that S∞ > 0, and it leads to the equation

S∞ = N − R∞ = N +
cN
a

ln
S∞

S (0)
(2.17)

Denote by x∞ =
S∞
N

, x0 =
S (0)

N
and define the function

f (x) = 1 − x +
c
a

ln
x
x0

(2.18)

Clearly f (x∞) = 0 and 0 < x∞ ≤ 1. In addition

f
′

(x) =
c

ax
− 1 > 0 if 0 < x <

c
a

f
′

(x) < 0 if
c
a
< x < 1 (2.19)

On the other hand

f (1) =
c
a

ln
1
x0
> 0

f (x)→ −∞ if x→ 0+

f
(c
a

)
= 1 −

c
a
+

c
a

ln
c
a

x0
> 1 −

c
a
+

c
a

ln
c
a
> 0 (2.20)

The last inequality stems from the assumption that c/a < 1 and the property of g(u) = 1−u+u ln u
being a monotonically decreasing function in the interval ]0, 1[ with g(1) = 0 and g(u) > 0 for
u ∈]0, 1[.

As a result, the function f increases from −∞ to f ( c
a ) > 0 on the interval ]0, c

a [ and decreases
from f ( c

a ) > 0 to f (1) > 0 on the interval ] c
a , 1[. Therefore, the equation f (x) = 0 has a unique

solution in the interval ]0, 1[, and this solution lies within the interval ]0, c
a [. We conclude that

0 <
S∞
N
<

c
a

(2.21)

2.2. Epidemic peak

To start, clarify the definition of the epidemic peak; we have

(E1 + E2 + I)′(t) =
(
aS (t)

N
− c

)
I(t) (2.22)

Suppose that
S (0)

N
= 1 −

(nE1 + nE2 + nI)
N

>
c
a

(2.23)

Under the assumption that a > c, this inequality holds as long as N is sufficiently large. Because
I(t) > 0 for all t > 0, the function S (t) is monotonically decreasing from S (0) > cN/a to S∞ <
cN/a on the interval [0,+∞[ also, there exists a unique time T > 0 such that S (T ) = cN/a.
According to Eq (2.22), the function E1 + E2 + I is monotonically increasing on the interval [0,T ]
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and monotonically decreasing on the interval [T,+∞[. We refer to T as the time of the epidemic
peak. It is worth noting that in general, this time does not correspond to the maximum of I or the
maximum of Ei (i = 1, 2). Using Eq (2.15), we get

E1(T ) + E2(T ) + I(T ) = N − S (T ) − R(T ) = N −
cN
a
+

cN
a

ln
c
a

S (0)
N

(2.24)

2.3. Lower bound

Consider the following linear system

e′1(t) = −b1e1(t) + ai(t)
e′2(t) = b1e1(t) − b2e2(t) (2.25)
i′(t) = b2e2(t) − ci(t)

Define

A =


−b1 0 a
b1 −b2 0
0 b2 −c

 (2.26)

Note that the determinant of matrix A is given by det(A) = b1b2(a − c) > 0. Whether A has three
real eigenvalues or one real eigenvalue and two complex conjugates, it always has at least one
eigenvalue that is strictly positive. Define

σ(A) = {λ ∈ C | det(A − λI) = 0} the spectrum of A

and

λ+ = max{Re(λ) | λ ∈ σ(A)} the stability modulus of matrix A

From Eq (2.2), we have
E′1(t) ≤ −b1E1(t) + aI(t) (2.27)

Due to the non-negative off-diagonal coefficients of matrix A, we can apply a comparison theorem
for cooperative systems [20, Corollary 2.3.1]; we obtain

E1(t)
E2(t)
I(t)

 ≤ etA


nE1

nE2

nI

 (2.28)

for all t ≥ 0, where the inequality between vectors is component by component. Thus

E1(T ) + E2(T ) + I(T ) ≤ (1 1 1) eT A


nE1

nE2

nI


≤ (nE1 + nE2 + nI)eT A (2.29)
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Because A is a Metzler matrix (the off-diagonal coefficients are non-negative [32]) and

A2 =


b2

1 ab2 −a(b1 + c)
−b1(b1 + b2) b2

2 ab1

b1b2 −b2(b2 + c) c2

 , 0

A is irreducible [33]; thus, λ+ is an eigenvalue of multiplicity equal to 1 [29, Corollary 4.3.2].
Therefore there exists an invertible matrix X [34] such that

A = XJX−1 (2.30)

We distinguish two cases:

• Case 1: A is diagonalizable. Thus

J =


λ+ 0 0
0 λ1 0
0 0 λ2

 (2.31)

and

eJT =


eλ+T 0 0

0 eλ1T 0
0 0 eλ2T

 (2.32)

Consequently, there exists a constant k1 > 0, independent of T and N, such that

||eAT || ≤ k1 eλ+T (2.33)

• Case 2: A is not diagonalizable. Thus

J =


λ+ 0 0
0 λ1 1
0 0 λ1

 (2.34)

and

eJT =


eλ+T 0 0

0 eλ1T Teλ1T

0 0 eλ1T

 (2.35)

Let us define the function g(T ) = Te(λ1−λ+)T ; this function increases on the interval [0, 1/(λ+ − λ1)]
and decreases on the interval [1/(λ+ − λ1),+∞]. Moreover g(0) = 0 and lim

T→+∞
g(T ) = 0. Hence

g(T ) ≤ g
( 1
λ+ − λ1

)
=

1
λ+ − λ1

e−1 (2.36)

We get

Teλ1T ≤
1

λ+ − λ1
e−1+λ+T (2.37)
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Consequently, there exists a constant k2 > 0, independent of T and N, such that

||eAT || ≤ k2eλ+T (2.38)

It then follows from Eq (2.29) that

E1(T ) + E2(T ) + I(T ) ≤ (nE1 + nE2 + nI)||eAT || ≤ keλ+T (2.39)

where k > 0 is a constant which depends only on a, b1, b2, c, nE1 , nE2 and nI , but not on N.
Because S (0)/N < 1, it follows that − ln(S (0)/N) > 0. Hence, we obtain from Eq (2.24) the
following inequality

N
(
1 −

c
a
+

c
a

ln
c
a

)
≤ E1(T ) + E2(T ) + I(T ) (2.40)

In conclusion, based on Eqs (2.39) and (2.40), the following inequalities are derived

N(1 −
c
a
+

c
a

ln
c
a

) ≤ E1(T ) + E2(T ) + I(T ) ≤ keλ+T (2.41)

Finally, there exists another constant K ∈ R that only depends on the parameters a, b1, b2, c, nE1 ,
nE2 and nI , but not on N, such that

T ≥
ln N
λ+
+ K (2.42)

This lower bound supports the following conjecture

T ∼
ln N
λ+
, N → ∞ (2.43)

3. A model with age of infection

In the previous section, a model was presented by using ordinary differential equations to
describe the progression of an infection. This section extends that model by stratifying the latency
phase based on the time since infection. The new model tracks the time since infection,
represented by the variable x, and considers individuals who have been in the exposed class for a
duration of x. These individuals move to the infected class at a rate of b(x), which is a
non-negative function of x. The model is described by the following system, with notation from
the previous section 

S ′(t) = −aS (t)
I(t)
N

∂E
∂t
+
∂E
∂x

= −b(x)E(t, x)

E(t, 0) = aS (t)
I(t)
N

I′(t) =
∫ ∞

0
b(x)E(t, x) dx − cI(t)

R′(t) = cI(t)

(3.1)
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The following assumptions are made regarding the parameters of the system:

(H1) a, c > 0.

(H2) b ∈ L∞(R+), with the essential upper bound b̄.

(H3) We suppose that there exist B > 0 and X > 0 such that for all x > X, b(x) > B.

The phase space for the system is defined as Y = R+× L1
+×R

+×R+, where L1
+ represents the space

of non-negative and integrable functions on (0,∞), with a norm defined by

||(y1, y2, y3, y4)||Y = |y1| +

∫ ∞

0
|y2(x)|dx + |y3| + |y4|

Biologically, this norm gives the total population size N. In our case, N = S +
∫ ∞

0
E(t, x)dx+I+R

which is constant. The initial condition for Eq (3.1) is

(S (0), E(0, .), I(0),R(0)) ∈ Y

where

S (0) = N − nE − nI > 0,
∫ ∞

0
E(0, x) dx = nE ≥ 0, I(0) = nI ≥ 0, R(0) = 0 (3.2)

with nE + nI > 0.
Let π(x) denote the probability of survival in the exposed class until age x, where for x ≥ 0, π(x) is
defined as

π(x) = e−
∫ x

0 b(s)ds (3.3)

3.1. Final size of the epidemic

It can be proved, as done in Subsection 2.1, that

S∞ = lim
t→∞

S (t) > 0 and R∞ = lim
t→∞

R(t) < N (3.4)

The sum of the equations for I and R gives

(I + R)′(t) =
∫ ∞

0
b(x)E(t, x) dx ≥ 0 (3.5)

Hence I + R is an increasing function that is bounded by N; also, it follows that it has a limit.
Because R(t) converges, I(t) also converges to a limit of I∞ ≥ 0.
Therefore, because R(t) = c

∫ t

0
I(s) ds is bounded by N, I(t) cannot converge to a positive limit and

instead reaches I∞ = 0. Furthermore,( ∫ ∞

0
E(t, x) dx + I(t) + R(t)

)′
= aS (t)

I(t)
N
≥ 0 (3.6)

Therefore, because
∫ ∞

0
E(., x) dx + I + R is a increasing and bounded function, it converges to a

limit. Because I and R also converge, it can be concluded that
∫ ∞

0
E(t, x) dx converges to a limit as

well.
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Next, we will prove that lim
t→∞

∫ ∞
0

E(t, x) dx = 0.
Integrating the second equation of Eq (3.1) with the boundary equation and initial condition, yields

E(t, x) =


E(t − x, 0)π(x) t > x

E(0, x − t)
π(x)
π(x − t)

t ≤ x
(3.7)

It follows that∫ ∞

0
E(t, x) dx =

∫ t

0
E(t, x) dx +

∫ ∞

t
E(t, x) dx =

∫ t

0
E(t − x, 0)π(x) dx +

∫ ∞

t
E(0, x − t)

π(x)
π(x − t)

dx

= G1(t) +G2(t) (3.8)

where G1(t) =
∫ t

0
E(t − x, 0)π(x) dx and G2(t) =

∫ ∞
t

E(0, x − t)
π(x)
π(x − t)

dx

It follows that
lim
t→∞

∫ ∞

0
E(t, x) dx = lim

t→∞
G1(t) + lim

t→∞
G2(t) (3.9)

We have the following inequalities

0 ≤ G1(t) ≤
∫ ∞

0
E(t − x, 0)π(x) dx (3.10)

then
0 ≤ lim

t→∞
G1(t) ≤ lim

t→∞

∫ ∞

0
E(t − x, 0)π(x) dx (3.11)

Bacause lim
t→∞

I(t) = 0, it follows that

1) lim
t→∞

E(t − x, 0)π(x) = lim
t→∞

aS (t−x)
N I(t − x)π(x) = 0

2) E(t − x, 0)π(x) = aS (t−x)
N I(t − x)π(x) ≤ aNπ(x); then, |E(t − x, 0)π(x)| ≤ aNπ(x)

Therefore, by the dominated convergence theorem [35], we obtain

lim
t→∞

∫ ∞

0
E(t − x, 0)π(x) dx =

∫ ∞

0
lim
t→∞

E(t − x, 0)π(x) dx = 0 (3.12)

On the other hand, we have

G2(t) =
∫ ∞

t
E(0, x − t)

π(x)
π(x − t)

dx =
∫ ∞

0
E(0, x)

π(x + t)
π(x)

dx (3.13)

Using (H3), we obtain

G2(t) =
∫ ∞

0
E(0, x)e−

∫ x+t
x b(s) ds dx ≤

∫ ∞

0
E(0, x) dxe−Bt (3.14)

It can be deduced that
lim
t→∞

G2(t) = 0 (3.15)
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To summarize, we have established that

lim
t→∞

∫ ∞

0
E(t, x) dx = 0 (3.16)

Bacause N = S +
∫ ∞

0
E(t, x) dx + I + R, we obtain, at the limit, that S∞ + R∞ = N.

By utilizing arguments similar to those in Subsection 2.1, it can be demonstrated that

0 <
S∞
N
<

c
a

(3.17)

3.2. Epidemic peak

First, clarify the definition of the epidemic peak; we have( ∫ ∞

0
E(t, x) dx + I(t)

)′
=

(aS (t)
N
− c

)
I(t) (3.18)

Assume that
S (0)

N
= 1 −

(nE + nI)
N

> c
a < 1, which is true for sufficiently large N; we have that

I(t) > 0 for all t > 0. The function S (t) decreases monotonically from S (0) > Nc
a to S∞ < Nc

a
on the interval [0,+∞[. Therefore, there exists a unique time T > 0 such that S (T ) = cN

a . As in
Subsection 3.2, the time of the epidemic peak is referred to as T .
We have ∫ ∞

0
E(T, x) dx + I(T ) = N − S (T ) − R(T ) = N −

cN
a
+

cN
a

ln
c
a

S (0)
N

(3.19)

3.3. Lower bound

Let (S (t), E(t, x), I(t),R(t)) be a solution of Eq (3.1) with the initial condition given by Eq (3.2).
The fact that S/N ≤ 1 implies that (E(t, x), I(t)) satisfies the following conditions:

∂E
∂t

= −
∂E
∂x
− b(x)E(t, x)

E(t, 0) ≤ aI(t),

I′(t) =
∫ ∞

0
b(x)E(t, x) dx − cI(t)

(3.20)

Let (Ē(t, x), Ī(t)) be the solution of the following auxiliary system

∂Ē
∂t

= −
∂Ē
∂x
− b(x)Ē(t, x)

Ē(t, 0) = aĪ(t)

Ī′(t) =
∫ ∞

0
b(x)Ē(t, x) dx − cĪ(t)

(3.21)
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with (Ē(0, x), Ī(0)) = (E(0, x), I(0)).
Let F(t, x) = Ē(t, x) − E(t, x), J(t) = Ī(t) − I(t); then, (F(t, x), J(t)) satisfies

∂F
∂t

= −
∂F
∂x
− b(x)F(t, x)

F(t, 0) = aJ(t) +W(t)

J′(t) =
∫ ∞

0
b(x)F(t, x) dx − cJ(t)

F(0, x) = J(0) = 0

(3.22)

where W(t) = aI(t)(1 − S (t)
N ) ≥ 0.

Next, we need to show that (F, J) ≥ (0, 0).
The integration of the first equation of Eq (3.22) with the specified boundary and initial

conditions yields
F(t, x) = F(t − x, 0)π(x) (3.23)

The integration of the equation for J in Eq (3.22), combined with Eq (3.23), yields

J(t) =
∫ t

0
e−c(t−s)

∫ t

0
b(x)F(s − x, 0)π(x) dx ds (3.24)

Define B(t) = F(t, 0); then,

B(t) =
∫ t

0

∫ t

0
Ψ(x)B(s − x) dxe−c(t−s) ds +W(t) (3.25)

where Ψ(x) = ab(x)π(x).
Let us consider the following sequence{

Bn+1(t) =
∫ t

0

∫ t

0
e−c(t−s)Ψ(x)Bn(s − x) dx ds +W(t) n ∈ N

B0(t) = W(t) ≥ 0
(3.26)

Because B0, Ψ and W are non-negative and continuous functions, by the induction method, we can
prove that it is the same for Bn, for all n ≥ 0.

Next, we prove the convergence of {Bn(t)}n to B(t) for all t ∈ [0, T̃ ] by using the contraction
mapping principle. For this purpose, we introduce a variable

B̄n(t) = e−λ̄tBn(t) for some λ̄ > 0 (3.27)

Multiplying both sides of Eq (3.26) by e−λ̄t yields

B̄n+1(t) =
∫ t

0

∫ t

0
Ψ(x)B̄n(s − x)eλ̄(s−x)dxe−c(t−s)−λ̄t ds + W̄(t) (3.28)

where W̄(t) = e−λ̄tW(t).
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It can be deduced that if convergence of B̄n(t) to B̄(t) for any t ∈ [0, T̃ ] is established, then Bn(t)
will converge to B(t).
For any n ∈ N, we have

||B̄n+1(t) − B̄n(t)||∞ ≤
∫ t

0

∫ t

0
Ψ(x)|B̄n(s − x) − B̄n−1(s − x)|eλ̄(s−x) dxe−c(t−s)−λ̄t ds

≤

∫ t

0

∫ t

0
Ψ(x)eλ̄(s−x) dxe−c(t−s)−λ̄t ds||B̄n(s − x) − B̄n−1(s − x)||∞ (3.29)

or
∫ t

0

∫ t

0
Ψ(x)eλ̄(s−x) dxe−c(t−s)−λ̄tds ≤

ab̄
λ̄2

:= Mλ̄ for λ̄ > 0, where b̄ is defined in (H2).

Substituting this estimate into Eq (3.29) yields

||B̄n+1(t) − B̄n(t)||∞ ≤ Mλ̄||B̄n(t) − B̄n−1(t)||∞ ≤ Mn
λ̄
||B̄1(t) − B̄0(t)||∞ (3.30)

As a result, for any m, n ∈ N (m > n) and λ̄ that is sufficiently large,

||B̄m(t) − B̄n(t)||∞ ≤ ||B̄m(t) − B̄m−1(t)||∞ + .... + ||B̄n+1(t) − B̄n(t)||∞
≤ (Mm−1

λ̄
+ .... + Mn

λ̄
)||B̄1(t) − B̄0(t)||∞

≤
Mm−n
λ̄

1 − Mλ̄
||B̄1(t) − B̄0(t)||∞ (3.31)

We choose λ̄ large enough such that Mλ̄ < 1.
Therefore, as m and n approach infinity, ||B̄m(t)→ B̄n(t)||∞ tends to zero, which means that {B̄n(t)}n
is a Cauchy sequence. It follows that B̄n(t) converges to B̄(t); thus, Bn(t) also converges to B(t) as
n approaches infinity.
Let

N̄(t) =
∫ ∞

0
F(t, x) dx + J(t) (3.32)

for t ∈ [0, T̃ ); we have

N̄′(t) = (a − c)J(t) +W(t) ≤ (a − c)N̄(t) + aN (3.33)

for t ∈ [0, T̃ ). By using the standard comparison lemma [36], we can conclude that

N̄(t) ≤
aN

a − c

(
e(a−c)t − 1

)
(3.34)

which implies that lim
t→T̃−

sup N̄(t) < ∞. Thus, the maximal interval of existence for the solution of

Eq (3.22) is R+.
To summarize, we have shown that the solution of Eq (3.22) is non-negative, which implies that

E(t, x) ≤ Ē(t, x), I(t) ≤ Ī(t) ∀ t ≥ 0, x ≥ 0 (3.35)
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When looking for solutions of Eq (3.21) of the form Ē(t, x) = u(x)eλt and Ī(t) = veλt where λ is
constant, by substituting in Eq (3.21), we obtain the following:

λu = −
∂u
∂x
− b(x)u(x)

u(0) = av

λv =
∫ ∞

0
b(x)u(x) dx − cv

(3.36)

Solving the first equation of Eq (3.36) yields

u(x) = ave−λx−
∫ x

0 b(s)ds (3.37)

By inserting Eq (3.37) into the last equation of Eq (3.36), we obtain the following characteristic
equation,

a
∫ ∞

0
b(x)e−λx−

∫ x
0 b(s) ds dx = λ + c (3.38)

The characteristic equation can be rewritten in the following form:

R(λ) = 1 (3.39)

where

R(λ) =
a
∫ ∞

0
b(x)e−λx−

∫ x
0 b(s) ds dx

λ + c
(3.40)

We define the basic reproduction number by

R0 = R(0) =
a
c

(1 − e−
∫ ∞

0 b(x) dx) (3.41)

For λ < −c, R(λ) is negative and the characteristic equation Eq (3.39) does not have a solution.
For λ > −c, R(λ) is a decreasing function of λ which approaches ∞ as λ → −c and zero as

λ → ∞. As a result, the characteristic equation given by Eq (3.39) has a unique real solution λ∗.
In addition, if R0 > 1, this real solution satisfies that λ∗ > 0.
Therefore, the solution of Eq (3.21) is given by:

Ē(t, x) = aveλ
∗(t−x)−

∫ x
0 b(s)ds, Ī(t) = veλ

∗t (3.42)

We denote u(x) = ave−λ
∗x−

∫ x
0 b(s) ds. Using Eq (3.35), we get∫ ∞

0
E(t, x) dx + I(t) ≤

∫ ∞

0
u(x) dxeλ

∗t + veλ
∗t

≤

( ∫ ∞

0
u(x) dx + v

)
eλ
∗t

≤ keλ
∗T (3.43)
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where k is a positive constant that is independent of both N and T .
Because S (0)/N < 1, we have that − ln(S (0)/N) > 0. We can deduce the following inequality from
Eq (3.19):

N(1 −
c
a
+

c
a

ln(
c
a

)) ≤
∫ ∞

0
E(T, x) dx + I(T ) (3.44)

Therefore, from Eqs (3.43) and (3.44), we arrive at the following inequalities:

N
(
1 −

c
a
+

c
a

ln
(c
a
))
≤

∫ ∞

0
E(T, x) dx + I(T ) ≤ keλ

∗T (3.45)

Hence, there exists another constant K ∈ R that is independent of both N and T such that

T ≥
ln N
λ∗
+ K (3.46)

This lower bound suggests the following conjecture

T ∼
ln N
λ∗
, N → ∞ (3.47)

4. Numerical simulations

4.1. Example 1

We have chosen the parameters a = 9/10, b1 = 3/4, and b2 = 2/5, with the initial conditions
nE1 = nE2 = 0 and nI(0) = 1. We have also chosen three values of the recovery rate c such that
R0 = a/c ∈ {2, 2.5, 4.5}. We have considered various values of the population N ranging from 103

to 106. We have solved the system of equations for S E1E2IR and determined the peak time T ,
which is the time at which the number of cases reaches its maximum, represented by the sum of
E1, E2, and I. Figure 2 depicts the variation of T as a function of ln N (represented by solid lines),
as well as (ln N)/λ+ (represented by small circles). The curves appear to align, which is consistent
with the conjecture. Additionally, Figure 2 suggests that the next term in the asymptotic expansion
of T is a constant, which is negative when R0 is close to 1 and becomes positive as R0 increases.
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Figure 2. Epidemic peak time in the S E1E2IR model as a function of ln N with solid
lines, and (ln N)/λ+ with small circles.

4.2. Example 2

For the model given by Eq (3.1), we have applied the following:

b(x) =
{

0 if x ≤ 1
0.75 if x > 1

The value of a is set to 9/10, nE is zero, and nI(0) = 1. We have also considered three different
recovery rates c to obtain R0 values of {2.5, 3, 4.5}. The population N is varied between 103 and
108. We have solved Eq (3.1) and determined the peak time T , which is the time at which the
maximum of

∫ ∞
0

E(t, x)dx + I(t) is reached. Figure 3 displays the relationship between T and ln N
with continuous lines, and (ln N)/λ∗ with small circles. The data appear to indicate that the two
sets of values coincide, in accordance with the conjecture.

5. Conclusions

The calculation of the peak epidemic is important because it gives information about the
timing and severity of an outbreak. Assuming that the contact coefficient already incorporates
certain health restrictions, having an idea of the peak date may allow one to at least predict the
order of magnitude of the duration of these restrictions (weeks or months).

In this work, we have established a lower bound for the peak date of two epidemic models.
The first model is an S E1E2IR epidemic model with two latent categories. These categories
encompass two chains of different lengths and are placed between the susceptible and infectious
compartments. The second model includes a continuous age structure for latently infected
individuals. We have demonstrated that the formula for the lower bound of the peak date is given
by T ∼ (ln N)/λ, where N is the population size and λ represents the largest eigenvalue of the
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Figure 3. Epidemic peak time in the age-structured SEIR model as a function of ln N
with solid lines and (ln N)/λ∗ with small circles.

linearized system for the first model, and the unique positive root of the characteristic equation
given by Eq (3.39) for the second model.

Although we were unable to prove that the epidemic peak is reached at T ∼ (ln N)/λ, our
numerical findings support this conjecture. Looking ahead, a future avenue for this research
involves endeavors to formally demonstrate this equality and extend the technique employed in
this work to determine the date of the epidemic peak for other models that are more general,
complex, and realistic.
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36. H. K. Khalil, Nonlinear Systems, 3rd edition, Patience Hall, 115 (2002).

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2835–2855.

http://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/https://doi.org/10.1007/978-1-4613-0003-8
http://dx.doi.org/http://dx.doi.org/10.1090/surv/041
http://dx.doi.org/https://doi.org/10.1137/0516030
http://dx.doi.org/https://doi.org/10.1515/9780691187655
http://dx.doi.org/https://doi.org/10.1137/1.9781611971262
http://dx.doi.org/https://doi.org/10.1051/978-2-7598-2419-9.toc
http://dx.doi.org/https://doi.org/10.1137/0714065
http://creativecommons.org/licenses/by/4.0

	Introduction
	A simple differential equation model
	Final size of the epidemic
	Epidemic peak
	Lower bound

	A model with age of infection
	Final size of the epidemic
	Epidemic peak
	Lower bound

	Numerical simulations
	Example 1
	Example 2

	Conclusions

