
MBE, 21(2): 2787–2812. 

DOI: 10.3934/mbe.2024124 

Received: 14 October 2023 

Revised: 21 December 2023 

Accepted: 02 January 2024 

Published: 24 January 2024 

http://www.aimspress.com/journal/MBE 

 

Research article 

An optimization method for wireless sensor networks coverage based 

on genetic algorithm and reinforced whale algorithm 

Shuming Sun, Yijun Chen and Ligang Dong* 

School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Zhejiang 
Gongshang University, Hangzhou 310018, China 

* Correspondence: Email: jiangxian@zjgsu.edu.cn; Tel: +8615988495509. 

Abstract: In response to the problem of coverage redundancy and coverage holes caused by the 
random deployment of nodes in wireless sensor networks (WSN), a WSN coverage optimization 
method called GARWOA is proposed, which combines the genetic algorithm (GA) and reinforced 
whale optimization algorithm (RWOA) to balance global search and local development performance. 
First, the population is initialized using sine map and piecewise linear chaotic map (SPM) to 
distribute it more evenly in the search space. Secondly, a non-linear improvement is made to the 
linear control factor ‘a’ in the whale optimization algorithm (WOA) to enhance the efficiency of 
algorithm exploration and development. Finally, a Levy flight mechanism is introduced to improve 
the algorithm’s tendency to fall into local optima and premature convergence phenomena. Simulation 
experiments indicate that among the 10 standard test functions, GARWOA outperforms other 
algorithms with better optimization ability. In three coverage experiments, the coverage ratio of 
GARWOA is 95.73, 98.15, and 99.34%, which is 3.27, 2.32 and 0.87% higher than mutant grey wolf 
optimizer (MuGWO), respectively. 
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1. Introduction  

1.1. Background 

Wireless Sensor Network (WSN) [1] is a network composed of a series of spatially distributed 
sensor nodes used to collect, process, and transmit various types of data. Due to the large number of 
nodes in WSN and the relatively short communication distance between nodes, the design and 
implementation of WSN face many challenges and difficulties, such as energy constraints, low 
coverage, and redundant node distribution [2]. Among these challenges, coverage optimization has 
always been one of the most fundamental issues plaguing WSNs. The coverage optimization 
problem in WSN can be described as the node deployment problem within a specified monitoring 
area while ensuring the connectivity of the sensor network. It determines the service quality of the 
wireless sensor network. A reasonable and effective node deployment strategy can not only reduce 
network costs but also greatly improve network efficiency [3]. In most cases, sensor nodes are 
randomly placed in the target monitoring area, resulting in uneven distribution of sensor nodes and 
low coverage. Therefore, improving the coverage of WSN is of great significance for the future 
development of wireless sensor network applications. 

The traditional deployment of nodes in WSN faces problems of low coverage and redundant 
node distribution. In recent years, many intelligent optimization algorithms have been applied to 
WSN coverage optimization. Common optimization algorithms include the grey wolf optimizer 
(GWO) [4], the whale optimization algorithm (WOA) [5], and the genetic algorithm (GA) [6]. GWO 
can balance local optimization and global search, but it has the drawbacks of being prone to 
premature convergence, low convergence accuracy, and insufficient convergence speed for complex 
problems. WOA has fast convergence speed and strong global search capability, but it is prone to 
premature convergence for certain problems. GA has strong global search capability, but it has a slow 
convergence speed. Optimization algorithms face a series of challenges in practical applications, 
including low solution accuracy, a slow optimization process, susceptibility to local optima, and a 
narrow search space range. 

To overcome the aforementioned limitations, many scholars have conducted valuable research 
on optimizing WSN coverage using intelligent optimization algorithms. Jin et al. proposed the 
improved sparrow search algorithm (MSSA) that integrates multiple strategy enhancements [7]. In 
the initialization stage of the sparrow search algorithm, they introduced an excellent point-set 
strategy for population initialization to ensure diversity and thoroughness. MSSA is then applied to 
optimize WSN coverage, addressing the two key issues of network coverage and network lifespan 
balance. Zhang et al. introduced the hybrid particle swarm butterfly algorithm (HPSBA) and 
designed a control strategy for parameter ‘c’ based on logistic mapping [8]. HPSBA optimizes 
coverage with a higher coverage ratio, effectively reducing node redundancy and extending the 
lifespan of WSN. Trong-The Nguyen et al. used elite backward learning, multi-directional strategy 
modification, and updating equations to propose the improved honey-badger algorithm (IHBA) [9]. 
The IHBA algorithm exhibits effective optimization performance, convergence speed, and increased 
feasible coverage. Zeng et al. proposed an improved wild horse optimizer algorithm (IWHO) [10], 
which uses backward learning and a Cauchy mutation strategy to escape local optima and broaden 
the search space, achieving better and more effective sensor connectivity and coverage. Sajjad et al. 
improved the existing GWO by mutating some of the original agents and designing a mutant grey 
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wolf optimizer (MuGWO) [11]. It enhances resource utilization by maximizing coverage while 
maintaining connectivity. 

At present, scholars both domestically and internationally have conducted extensive research on 
the coverage optimization problem in planar area wireless sensor networks and have made certain 
progress. The main research methods can be divided into two categories: coverage optimization 
based on geometric methods and coverage optimization based on intelligent algorithms. Mahboubi et 
al. [12] proposed a node deployment algorithm based on the Voronoi diagram, using virtual forces 
applied by polygon vertices and boundaries to find new positions for nodes. Simulation results 
demonstrate that this algorithm can enhance coverage. Liu et al. [13] optimized node deployment 
using an improved virtual force algorithm. This algorithm, considering the interaction forces between 
nodes based on traditional virtual force algorithms, can drive sensor nodes to cover the entire 
monitoring area. However, it still faces challenges in achieving high coverage ratio. 

In recent years, with the development and widespread application of intelligent algorithms, 
researchers have found that intelligent algorithms can effectively address the coverage optimization 
problem in wireless sensor networks. Intelligent algorithms have the advantages of simple 
computation and strong search capabilities. Mahnaz et al. [14] proposed an improved Whale 
Optimization Algorithm for WSN coverage optimization. It tackles complex coverage issues through 
methods like exploration development, spiral attack, and bubble-net attack. Experimental results 
demonstrate that this algorithm can prolong the network’s lifespan, but it is prone to getting stuck in 
local optima. Kavita et al. [15] introduced a node deployment method based on GWO. This approach 
maximizes coverage while ensuring network connectivity by enhancing the fitness function and 
population position updating method. Yin et al. [16] presented a wireless sensor network coverage 
optimization method based on a Yin-Yang Crow-inspired optimization algorithm, which improves 
coverage and convergence. Bacanin et al. [17] introduced a quasi-reflective learning algorithm that 
overcame the shortcomings of the original WOA and was used for WSN localization. Wang et al. [18] 
designed an efficient routing algorithm based on elite hybrid metaheuristic optimization algorithm to 
maximize the survival time of wireless sensor network routing with aggregation nodes. Zivkovic et 
al. [19] proposed an improved version of GWO, that had been applied to improve the network 
lifetime optimization. Xue et al. [20] proposed a self-adaptive particle swarm optimization algorithm 
for feature selection, especially for large-scale feature selection. Xue et al. [21] proposed a multi-
objective evolutionary algorithm with a probability stack for neural architecture search, which 
considered the two objects of precision and time consumption. Hu et al. [22] proposed a fuzzy 
multiobjective feature selection method with particle swarm optimization for a feature selection 
problem with fuzzy cost. Banoth et al. [23] proposed a new energy-aware algorithm for the coverage 
and connectivity of the sensor nodes to maximize the number of cover sets and energy-aware 
connectivity. Kumar et al. [24] presented various machine learning algorithms for WSNs with their 
advantages, drawbacks, and parameters effecting the network lifetime. Chaturvedi et al. [25] 
provided the classification of coverage approaches especially related to that of target coverage. 
However, the efficiency of these algorithms is low, and they cannot be applied in complex 
environments. 

1.2. Contributions 

Recent research on coverage optimization in WSN has achieved some results, but there are still 
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some issues. In recent years, most researchers have focused on studying specific scenarios without 
considering the optimization performance of algorithms in multiple scenarios. This makes it difficult 
to apply them effectively in various complex environments. Although the WOA algorithm has 
successfully addressed some problems in the field of wireless sensor networks, it still struggles to 
effectively handle multi-objective optimization problems and is prone to getting trapped in local 
optima. To effectively enhance WSN coverage optimization, the genetic algorithm and reinforced 
whale optimization algorithm (GARWOA) is proposed, which can achieve high coverage ratio in 
various coverage environments. 

The main contributions can be outlined as follows:  
1) We designed an reinforced whale optimization algorithm (RWOA). First, sine map and 

piecewise linear chaotic map (SPM) initializes the population, ensuring a more even distribution in 
the search space. Next, we implemented a non-linear improvement on the linear parameter “a” in 
WOA to enhance the efficiency of algorithm exploration and development. Finally, we incorporated 
a Levy flight mechanism to mitigate the algorithm’s tendency to fall into local optima and premature 
convergence phenomena. 

2) We applied the GARWOA algorithm for WSN coverage optimization to enhance node 
coverage ratio. 

3) We compared the performance of GARWOA and five other algorithms on standard functions 
to validate its optimization capabilities. 

4) We compared the network coverage results of GARWOA and five other algorithms in 
different environments to assess their effectiveness in improving network coverage. 

1.3. Paper organization 

This paper is structured as follows: Section 2 presents the WSN coverage and energy 
consumption model. Section 3 outlines the related concepts used in the GARWOA algorithm, while 
Section 4 details the steps taken in the optimization of WSN coverage using the GARWOA 
algorithm. Furthermore, Section 5 includes experimental simulations that confirm the algorithm’s 
effectiveness. Finally, Section 6 summarizes the entire paper and provides an outlook for potential 
future research. 

2. System model 

This section will describe the coverage model and energy consumption model adopted by WSN. 

2.1. WSN coverage model 

The node coverage model is an important issue in WSN, involving how to select the positions 
and quantity of nodes to achieve the maximum coverage area under a certain number of nodes and 
complete coverage of the target area. The WSN node coverage optimization problem refers to the 
scenario where each sensor can only sense within a fixed sensing radius at their expected deployment 
positions. When deploying sensors in the required monitoring area, each sensor can only perform 
sensing and exploration within its sensing radius [26]. 

Therefore, the deployment of each node must adhere to the restricted sensing radius to ensure 
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communication between each other and with the entire network. The optimization objective of this 
problem is to find the coverage problem of its internal objects within the possible range. 

The WSN monitoring model is illustrated in Figure 1. Assuming the WSN is set up in a two-
dimensional monitoring area of S = H×W(m²), N sensor nodes are randomly initialized. Let the set 
of nodes be denoted as M, represented as M={Mi, i=1,2,⋯,N}. The coordinates of Mi are {(Mi(x), 
Mi(y)), i = 1,2,⋯,N}. The sensing range of sensor nodes is a circle with a sensing radius of Rp. 
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Figure 1.  WSN monitoring model. 

The two-dimensional WSN monitoring model is based on the following assumptions [27]:  
1) The sensing radius and communication radius of each sensor node are Rp and Rc, 

respectively, satisfying Rc≥2Rp. 
2) Each sensor node possesses the same parameters and communication capabilities. 
3) The positions and deployment of nodes remain unchanged over a certain period, meaning 

that node mobility or failure are not considered. 
To facilitate calculations, the rectangular area of the deployed network is divided into H×W 

grids of equal area. The nodes to be monitored, denoted as G={Gj, j=1,2,⋯,L= H×W}, are located at 
the center of each grid. The coordinates of Gj are {(Gj(x), Gj(y)), j=1,2,⋯,L}. The Euclidean distance 
between the sensor node Mi and the target monitoring node Gj is defined as: 

      2 2
, ( ) ( ) ( ) ( )i j i j i jd M G M x G x y G yM     (1) 

When the distance between the target monitoring node Gj and any sensor node is less than or 
equal to the sensing radius Rp, it indicates that the monitoring node is sensed by the sensor. Therefore, 
the sensing probability p is as follows: 
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In general, multiple sensor nodes can simultaneously sense a target monitoring node. The joint 
probability P that the target monitoring node is sensed by all deployed sensor nodes is introduced, 
which can increase the probability of the target monitoring node being sensed. The joint probability 
P is defined as follows: 

 
1

( , ) 1 [1 ( , )]
N

j i ji
i

P M G p M G


    (3) 

The network coverage ratio can be defined as the ratio of the sum of monitored target 
monitoring nodes in the monitoring area to the sum of deployed target monitoring nodes in the 
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monitoring area, defined as follows: 
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2.2. Energy consumption model 

The energy consumption model [28] for the wireless radio network used in this section is shown 
in Figure 2. 
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Figure 2.  Radio network energy consumption model. 

According to this energy consumption model, when the sender transmits n bits of data to the 
receiver located at a distance of l, the energy consumed by the sender is given by: 
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where Eelec is the unit energy consumption for receiving or transmitting data, εfs and εmp are the 
power amplification loss factors, and l0 is the threshold distance. When the transmission distance is 
less than l0, it follows the free space model; otherwise, it follows the multi-path fading model. 

The energy consumed by the receiver to receive an n-bit data packet is: 
 Rx elec ( )E nEn   (7) 

If each regular node sends an S-bit data round to the cluster head, the total energy consumed in 
the round in the network is: 
  4 2

Round elec DA mp CB fs CH= 2SE lNE NE k lk   
 (8) 

where k is the number of clusters, lCB is the average distance between all cluster heads and the base 
station, and lCH is the average distance between cluster members and cluster heads, as shown in the 
following equation: 
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3. Design of GARWOA 

This section will introduce the concepts of GA and WOA and then combine these two 
algorithms to design the GARWOA optimization algorithm for WSN coverage optimization. 

3.1. GA 

GA is an algorithm that simulates natural genetic operations in the biological world. It conducts 
a random search in the population by simulating natural selection and genetic mechanisms. It 
iteratively repeats key operations such as individual encoding, selection, crossover, mutation, and 
fitness function calculation, continuously updating and improving individuals, and gradually 
approaching the optimal solution as shown in Figure 3. By randomly searching the entire solution 
space, GA can find relatively optimal solutions to complex problems and has a certain global search 
ability. 

 

Figure 3. Genetic algorithm flow chart. 

3.1.1. Selective operation 

Selection is an important step in GA, determining whether a specific individual participates in 
the reproduction process. The probability of an individual being selected for reproduction depends on 
its fitness. Individuals with higher fitness are more likely to be selected, while those with lower 
fitness may be eliminated. In this paper, the roulette wheel selection method is adopted, which 
allocates all possible strings to a wheel in proportion. Based on their fitness values, a portion of the 
wheel is allocated to them. The wheel is then rotated to select specific solutions to participate in the 
formation of the next generation. According to the roulette wheel selection method, the probability of 
an individual i being selected is: 
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where Fi is the fitness value of individual i, and N is the number of individuals in the population. 
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3.1.2. Crossover operation 

A crossover operation generates new individuals based on a certain crossover probability and 
method. Specifically, two individuals are randomly selected from the population, and by exchanging 
parts of the chromosomes, the excellent features of the parent individual are passed on to the 
offspring individual, thereby producing an individual with new advantages. In this paper, real 
number encoding is used, so the crossover operation adopts the real number crossover method. The 
crossover operation for the k-th chromosome ak and the l-th chromosome al at the j-th position is as 
follows: 

 
 
 

1

1

kj kj lj

lj lj kj

a a b a b

a a b a b

  


  
 (11) 

where b is a random number in the range [0, 1], akj and alj represent the genes of the k-th 
chromosome and the l-th chromosome at the j-th position. 

3.1.3. Variational operation 

A mutation operation randomly selects an individual from the population and mutates at a 
selected point on that individual to generate an individual with better characteristics. Such mutation 
operations help introduce new genetic variations, allowing the population to better explore the 
solution space, thereby increasing the potential searchability of the evolutionary algorithm. The 
mutation operation for the j-th gene alj of the i-th individual is as follows: 
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    2

2 max1 /f g r g G   (13) 

where amax and amin represent the upper and lower bounds of the gene alj, r2 is a random number, g is 
the current iteration number, Gmax is the maximum number of evolutions, and r is a random number 
in the range [0,1]. 

3.2. RWOA 

This section will introduce RWOA. Firstly, the SPM chaotic mapping [29] is utilized to 
initialize the population, ensuring a more uniform distribution in the search space. Next, a non-linear 
improvement is applied to the linear parameter ‘a’ in WOA to enhance the algorithm’s 
efficiency in exploration and development. Finally, a Levy flight mechanism is incorporated to 
address the issues of the algorithm getting stuck in local optima and premature convergence. 

3.2.1. Standard WOA 

The WOA algorithm is an efficient algorithm designed based on the behavioral characteristics 
of whales when hunting prey. This algorithm leverages the diversity and global optimization 
capability of whale populations and exhibits good local search capabilities. During the iterative 
process of the algorithm, whales continuously adjust their positions and states based on their own 
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positions and the information of the surrounding environment to search for better solutions. 
Therefore, each position of a whale corresponds to a feasible solution, and the goal of the algorithm 
is to find the optimal one among these solutions. When hunting, each whale adopts different 
strategies. Some whales may encircle the prey, while others may approach other whales. Another 
method involves using bubble nets, a cooperative hunting technique. Whales will exhale a circle of 
bubbles in the water to surround the prey in the center and then swim towards the center together to 
gather the prey, making it easier for the whales to hunt. In each hunting action, whales randomly 
choose a method to prey on. When a whale besieges its prey, it will select the target based on its own 
condition and the surrounding environment, but this selection is not entirely random. 

WOA updates individual positions based on the position update strategy of whale bubble attack 
behavior and finally obtains the current global optimal solution position based on prey search 
behavior as follows: 
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The hunting behavior of whales is determined based on the probability factor p. When p < 0.5, 
whales adopt a strategy of updating their positions in a spiral manner; when p≥0.5, whales use a 

surrounding prey strategy to update their positions. In Eq (14), 1t
ic   represents the spatial position of 

whale i in the current iteration round t+1, b is a constant, p is a random number in the range of [0, 1], 
l is a random number uniformly distributed in the range of [−1, 1], best

tC  represents the position of the 

best whale individual in the current iteration round n, and 1t
is   represents the prey searching behavior 

as follows: 
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In prey searching behavior, when the coefficient |A|<1, the whale moves towards any other 
whale in the population; when the coefficient |A|≥1, the whale chooses to move towards the position 

of the best whale seen so far. In Eq (15), rand
tC  represents the position of any whale individual in the 

current iteration round t, C is a random number uniformly distributed in the range of [0, 2], and A is a 
random number uniformly distributed in the range of [−a, a]. The definitions of A, C, and a are as 
follows:  

 12A ar a   (16) 

 22C r  (17) 

 
maxIterate

2
2

t
a    (18) 

Here, r1 and r2 are random numbers within the range of [0, 1], maxIterate represents the 
maximum number of iterations, and a represents a control parameter that linearly decreases from 2 to 
0 with the increase of iteration round t. 

3.2.2. SPM chaotic mapping 

The initialization of the population has a significant impact on the efficiency of most current 
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intelligent optimization algorithms. A uniformly distributed population can moderately expand the 
search range to improve convergence speed and solution accuracy. The unpredictability and 
aperiodicity of chaos can be used to enhance algorithmic performance. The original WOA algorithm 
initializes the population with the rand function, resulting in uneven population distribution and 
overlapping individuals, leading to a rapid decrease in population diversity in later iterations. Chaos 
is a unique and widely present form of non-cyclic motion in nonlinear systems. Due to its traversing 
and random characteristics, it is widely used in population-based intelligent algorithms to optimize 
population diversity. In this paper, the SPM chaotic mapping model is introduced, which has 
excellent chaotic and traversing properties. The expression is as follows: 
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(a) Circle mapping  (b) Logistic mapping  (c) SPM mapping 

Figure 4.  Chaotic mapping histogram. 

 
(a) Circle mapping  (b) Logistic mapping  (c) SPM mapping 

Figure 5.  Chaotic mapping scatterplot. 
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This section employs commonly used logistic and circle mappings. Under the condition of the 
same initial value and 2000 iterations, these mappings are compared with the SPM mapping. 
Figure 4 displays histograms of three chaotic mappings, where the horizontal axis represents the 
chaotic values and the vertical axis represents the frequency of each chaotic value. The results 
demonstrate that the SPM mapping exhibits superior chaotic performance and traversing capability. 
Therefore, the SPM mapping is selected to enhance population diversity and achieve a more uniform 
distribution. Figure 5 illustrates the population distributions when different chaotic mappings are 
applied to the appearance of the population. 

3.2.3. Non-linear improvement 

Since the control parameter a in the WOA algorithm does not undergo nonlinear changes, it is 
difficult to reflect the actual optimization process, and it is prone to getting stuck in local optima. 
Therefore, this paper proposes a nonlinear factor updating formula as follows: 

 
I

1 sin
2 max terate

t
a

      
 

 (20) 

where t represents the current iteration. This nonlinear factor is compared with the original a function 
in standard WOA under the condition of setting the maximum iteration times to 100. As shown in 
Figure 6, in the first 50 rounds, the value of a used for exploration in this function is larger, 
indicating a broader exploration range compared to the original function. In the latter 50 rounds, the 
value of a used for exploitation in this function is smaller, allowing the algorithm to converge more 
quickly [30]. 

 

Figure 6.  Comparison plot of improved parameter a with original WOA parameter a. 

3.2.4. Levy flight perturbation strategy 

Based on the study of the foraging trajectories of birds and insects by biologists, it has been 
found that the probability of straight-line segments appearing in the flight paths of some organisms is 
similar to the basic characteristics of a Levy distribution, indicating a Levy flight behavior. Levy 
flight belongs to a class of random walk strategies where the step lengths follow a heavy-tailed stable 
distribution, resulting in alternating movements between relatively short and relatively long 
distances. Therefore, incorporating a Levy flight search mechanism in bio-inspired swarm 
intelligence optimization algorithms can effectively increase the exploration range of the search 
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space, enhance the diversity of population search, and make it possible for the search algorithm to 
escape local optima [31]. In the WOA algorithm, the introduction of the Levy flight mechanism 
disrupts the position update process during the optimization process, improving the algorithm’ s 
tendency to fall into local optima and premature convergence. Through the Levy flight, the new 
position update formula is as follows: 

 ( 1) ( )x t x t Levy     (21) 

where  is the step size control factor set to 0.01. The calculation formula for the random step length, 
Levy, is as follows: 
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where 1 and 2 are both 1 × d random matrices following a normal distribution, with 1~(0,2) and 
1~(0,1).  is a constant, set to 1.5, and  is defined as follows: 
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




 


 
  

 
 

  
 

 (23) 

3.3. GARWOA 

GA tends to converge to local optima in the final iterations, making it unable to perform proper 
local searches. The local search capability of the RWOA compensates for the shortcomings of GA. 
Therefore, we design the GARWOA, that combines the global search ability of GA with the local 
search ability of RWOA, to enhance the performance of the optimization process in finding 
approximate global solutions. 

GARWOA consists of two stages. In the first stage, GA performs initial optimization by 
searching the design space for a limited number of iterations, and the optimal solution found in this 
stage is denoted as Cbest. In the second stage, RWOA is used to conduct a more refined search on 
Cbest through a limited number of iterations. 

GA constructs an initial population randomly distributed across the entire space, while in 
RWOA, Cbest is directly transformed into the optimal initial population. 

Algorithm 1 represents the pseudocode of the GARWOA algorithm, described as follows: 
Figure 7 represents the GARWOA flow chart. 
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Algorithm 1：The proposed GARWOA algorithm 
Input：Population size N, initialization coefficients a, r, Gmax and η, etc., maximum 
number of iterations Max, maxIterate 
Output：The optimal solution Cbest 

1. The objective function ( )f x  
2. Initialize the population and produce an initial population of N chromosomes 

( 1,2,..., )iY i N  
3. Calculate the degree of adaptation ( )f x  
4. while (t < Max) do 
5.   Selection of a pair of chromosomes according to the fitness according to Eq (10) 
6.   Crossover operation on selected pairs according to Eq (11) crossover probability 
7.   According to Eq (12) the mutation is applied to the offspring with mutation 

probability 
8.   Updating populations and recalculating fitness 
9. end while 
10. The objective function ( ) bestf x C  
11. Initialize the population 0C  according to Eq (19) 
12. while (t < maxIterate) do 
13.   for [1, ]i N  
14.     Update the parameters a, A, C, l, r1, r2 and p 
15.     if (p≥0.5) then 
16.       if ( | |<1A ) then 
17.        Update whale position by moving toward the current best position according to 

Eq. (14)  
18.       else  ( | | 1A  ) 
19.         Updating whale positions by random movement according to Eq (14) 
20.      end if 
21.     else if (p < 0.5) 
22.       Spiral update of whale positions according to Eq (13) 
23.     end if 
24.   end for 
25.   Levy flight perturbation to update whale position according to Eq (21) 
26.   Finding the optimal solution Gbest 
27. end while 
28. return The optimal solution Gbest 
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Figure 7.  GARWOA flow chart. 
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3.4. GARWOA time complexity analysis 

In this section, analyze the time complexity of GARWOA algorithm. Assuming the maximum 
number of iterations of the algorithm is T, the population size is N, and the problem dimension is D. 
The time complexity of GA algorithm is O(N*logN*D*T), while the time complexity of WOA 
algorithm is O(N*D*T). Therefore, the time complexity analysis of the algorithm in this article is as 
follows: 

1) The initialization time complexity of the GA population is O(N*D), and the time complexity 
of calculating the fitness of various populations is O(N). 

2) The time complexity of the GA selection operation is O(N*logN*D*T/2), while the time 
complexity of the crossover and mutation operations is O(N*D*T/2). 

3) The initialization time complexity of the RWOA population is O(N*D). 
4) The time complexity of RWOA position update strategy is O(N*D*T/2), and the time 

complexity of Levy flight strategy is O (D*T/2). 
Therefore, the time complexity of GARWOA is O(N*logN*D*T), which is the same as GA and adds 
a certain amount of computational complexity compared to WOA algorithm. But the coverage ratio 
of this algorithm is better than other algorithms. 

4. WSN optimized coverage based on GARWOA 

Based on GARWOA, the objective of optimizing coverage in Wireless Sensor Networks 
(WSNs) is to cover a larger area using the same number of sensors while maintaining effective 
communication. The population consists of the coordinates of sensor nodes. Initially, GA is used for 
preliminary optimization to obtain the optimal solution, Cbest. Cbest is then utilized as the optimal 
initial population for RWOA, which conducts a more refined search to obtain a more precise optimal 
solution, Gbest. Gbest represents the deployment positions of sensor nodes that maximize coverage.  

The following are the steps for WSN coverage optimization based on GARWOA: 
Step1 Input the size of the WSN detection area, the number of sensors, the sensing radius, and 

the communication radius. Initialize various parameters in the GA algorithm. 
Step2 Generate the initial population, where each individual represents a coverage scheme. In 

this step, sensors are dispersed around the detection area. 
Step3 Evaluate each individual in the population. Calculate fitness based on Eq (4) and select 

the best individual. 
Step4 Apply crossover operations to the current individual based on Eq (11) to obtain offspring 

individuals. 
Step5 Apply mutation operations to the current individual based on Eq (12) to obtain offspring 

individuals. 
Step6 Compare the optimal value of the parent population with the current individual. Iterate 

with the higher-fitness individual. 
Step7 Determine if the termination condition is met. If not, loop back to Step4. If yes, use the 

optimal solution, Cbest, as input for RWOA. 
Step8 Initialize various parameters in the RWOA algorithm and initialize the population based 

on Eq (19). 
Step9 Decide the hunting behavior of whales based on whether the probability, p, is less than 0.5. 
Step10 If the probability, p, is greater than or equal to 0.5, whales perform prey encircling. If 
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the absolute value of random number A is less than 1, the whale selects the best position among the 
whales encountered so far to move towards. If the absolute value of random number A is greater 
than 1, the whale moves towards any other whale in the population. 

Step11 If the probability, p, is less than 0.5, whales move in a spiral shape towards the prey. 
Step12 If the termination condition is met, the algorithm stops and outputs the current optimal 

solution, Gbest. Otherwise, loop back to Step9. 
Step13 Output the coverage scheme with the highest coverage ratio for sensor nodes. 

5. WSN optimized coverage based on GARWOA 

This section employs MATLAB 2021b as the simulation software. Firstly, by comparing the 
performance of five algorithms (MuGWO, WOA, IWHO, PSO, and GARWOA) on ten standard test 
functions, the convergence of GARWOA is verified. On this basis, the effectiveness of GARWOA in 
WSN node deployment is validated through a comparison of network coverage under three 
experimental conditions against MuGWO, WOA, IWHO, and PSO algorithms. 

5.1. Experiments of standard test functions 

The standard functions used for testing are listed in Table 1. Here, 61( ) ~ ( )fx xf  represent 
unimodal functions, which can be used to examine the convergence speed and accuracy of the 
optimization algorithm, whereas 7 10( ) ~ ( )f x xf  represent multimodal functions, which can be used to 
assess the global search capability of the optimization algorithm. The dimensionality of all test 
functions is set to 30, and their optimal values are all 0. 

5.1.1. Settings of experimental parameter 

The population size for all algorithms is set to 100, with a total of 500 iterations, and the shared 
parameters remain consistent. The parameter settings for each algorithm are shown in Table 2. 

5.1.2. Result of standard test functions 

To avoid result bias caused by experimental contingencies, each of the five algorithms was 
independently run 50 times on each test function, and the experimental results were averaged. This 
evaluation method effectively reduces the influence of random factors, enhancing the reliability and 
repeatability of the experimental results. The test results are shown in Table 3. From the results, it 
can be observed that for functions 1( )f x , 2 ( )f x , 7 ( )f x , 9 ( )f x , and 10 ( )f x , GARWOA demonstrates 
the best optimization performance. For functions 3 ( )f x , 4 ( )f x , and 6 ( )f x , IWHO performs the best. 
For function 5 ( )f x , the average of GARWOA outperforms other algorithms. 
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Table 1. Standard functions. 

Function 

name 
Math expression Range Dim 

Optimum 

value 

Sphere Model 2
1

1

( )

n

i

i

f x x



  100,100    30 0 

Schwefel’s 

problem 2.22 
2

1 1
( )

n n

i i
i i

f x x x
 

     10,10    30 0 

Schwefel’s 

problem 1.2 

2

3
1 1

( )
n i

j
i j

f x x
 

 
    

 
 100,100    30 0 

Schwefel’s 

problem 2.21 
 4( ) max ,1i

i
f x x i n    100,100    30 0 

Generalized 

Rosenbrock’s 

Function 

   
1 2 22

5 1
1

( ) 100 1
n

i i i
i

f x x x x





 
     

  
 30,30    30 0 

Step function  26

1

( ) 0.5

n

i

i

f x x



     100,100    30 0 

Quartic 

Function 
4

7
1

( ) random 0,1
n

i
i

f x ix


     1.28,1.28    30 0 
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Rastrigin’s 

Function 

 2
8

1

( ) 10cos 2 10

n

i i

i

f x x x


       5.12,5.12    30 0 

Ackley’s 
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 

2
9

1

1

1
( ) 20exp 0.2

1
exp cos 2 20

n

i

i

n

i

i

f x x
n

x e
n







 
    
  

 
     
 




 32,32    30 0 
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Function 

 

   

    

10 1

1 2 2
1

1

2

1
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i
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n
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
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

 

    




   
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     

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50,50    30 0 
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Table 2. Experimental parameter settings for each algorithm. 

Algorithms Parameters 

MuGWO  mutationDimensions 2 , mutationCount 30 , freedomRate 0.3  
WOA a decreases linearly from 2 to 0 

IWHO  PS 0.1 , PC 0.13 , a  , b  , ( 5 1) / 2    

PSO 1 2 2c c  , max 0.9  , min 0.6  , max 6V   

GARWOA pc 0.999 , pm 0.001 , 1b  , 0.2  , 0.5   

Table 3. Test function experimental results. 

Function Criteria IWHO WOA MuGWO PSO GARWOA 

1( )f x  

Mean 6.37 × 10−49 1.30 × 10−71 1.53 × 10−37 1.09 1.67 × 10−111 

Std 3.90 × 10−48 8.22 × 10−71 2.09 × 10−37 0.549 1.02 × 10−110 

Mid 4.99 × 10−53 2.58 × 10−76 1.07 × 10−37 0.940 1.35 × 10−114 

Max 1.46 × 10−47 2.85 × 10−71 1.44 × 10−36 2.54 3.26 × 10−110 

Min 8.33 × 10−58 3.42 × 10−81 2.27 × 10−39 0.210 9.34 × 10−119 

2 ( )f x  

Mean 1.95 × 10−28 7.57 × 10−42 5.71 × 10−22 2.67 2.20 × 10−60 

Std 5.91 × 10−28 2.40 × 10−42 4.37 × 10−22 0.688 5.45 × 10−60 

Mid 1.77 × 10−29 3.92 × 10−43 5.20 × 10−22 2.53 2.84 × 10−61 

Max 2.55 × 10−27 1.48 × 10−40 2.35 × 10−21 4.16 1.62 × 10−58 

Min 1.30 × 10−32 3.83 × 10−46 1.40 × 10−22 1.10 4.60 × 10−64 

3( )f x  

Mean 3.27 × 10−25 1.76 × 104 8.06 × 10−11 82.0 3.51 × 10−4 

Std 1.41 × 10−24 8.60 × 103 2.02 × 10−10 27.0 7.55 × 10−4 

Mid 3.00 × 10−29 1.77 × 104 1.91 × 10−11 81.4 1.88 × 10−5 

Max 2.26 × 10−24 4.03 × 104 1.22 × 10−9 1.43 × 102 3.00 × 10−3 

Min 5.61 × 10−34 4.68 × 103 1.66 × 10−14 27.4 6.33 × 10−8 

4 ( )f x  

Mean 1.47 × 10−18 7.72 3.07 × 10−9 1.54 2.63 × 10−9 

Std 3.68 × 10−18 17.3 4.48 × 10−9 0.229 1.86 × 10−8 

Mid 1.57 × 10−19 1.00 × 10−2 1.36 × 10−9 1.50 3.96 × 10−9 

Max 1.74 × 10−16 81.5 1.10 × 10−8 1.95 2.38 × 10−8 

Min 5.04 × 10−22 1.01 × 10−11 1.41 × 10−10 1.11 4.83 × 10−10 

5 ( )f x  

Mean 24.6 22.7 26.5 5.67 × 102 5.82 

Std 1.20 10.2 0.844 5.39 × 102 9.43 

Mid 24.6 27.6 26.2 3.98 × 102 5.96 × 10−4 

Max 96.3 27.8 28.5 9.91 × 102 22.1 

Min 23.1 7.00 × 10−2 25.2 1.42 × 102 9.07 × 10−5 

6 ( )f x  

Mean 1.31 × 10−11 1.74 × 10−2 0.326 1.07 2.61 × 10−7 

Std 3.18 × 10−11 6.98 × 10−3 0.255 0.440 9.52 × 10−8 

Mid 4.12 × 10−12 2.00 × 10−2 0.250 0.890 2.26 × 10−7 

Max 4.27 × 10−10 3.00 × 10−2 1.01 2.72 7.93 × 10−7 

Min 1.66 × 10−13 1.00 × 10−2 2.64 × 10−5 0.320 8.86 × 10−8 

     Continued on next page 
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Function Criteria IWHO WOA MuGWO PSO GARWOA 

7 ( )f x  

Mean 4.57 × 10−4 4.79 × 10−4 7.49 × 10−4 8.12 6.46 × 10−6 

Std 2.84 × 10−4 5.83 × 10−4 4.19 × 10−4 5.94 8.89 × 10−6 

Mid 5.04 × 10−4 3.50 × 10−4 7.44 × 10−4 5.58 3.32 × 10−6 

Max 1.96 × 10−3 3.47 × 10−3 1.68 × 10−3 38.8 6.24 × 10−5 

Min 8.94 × 10−5 4.38 × 10−5 2.56 × 10−4 1.09 2.92 × 10−7 

8 ( )f x  

Mean −2.90 × 102 −2.90 × 102 −2.50 × 102 −1.49 × 102 −2.90 × 102 

Std 1.24 × 10−8 0.00 27.8 27.8 2.93 × 10−14 

Mid −2.90 × 102 −2.90 × 102 −2.52 × 102 −1.48 × 102 −2.90 × 102 

Max −2.90 × 102 −2.90 × 102 −1.89 × 102 −99.1 −2.90 × 102 

Min −2.90 × 102 −2.90 × 102 −2.90 × 102 −2.10 × 102 −2.90 × 102 

9 ( )f x  

Mean 1.17 × 10−15 4.37 × 10−15 3.50 × 10−14 1.96 1.87 × 10−16 

Std 9.74 × 10−16 2.54 × 10−15 4.54 × 10−15 0.504 2.42 × 10−17 

Mid 8.88 × 10−16 4.44 × 10−15 3.29 × 10−14 1.83 4.44 × 10−15 

Max 4.44 × 10−15 7.99 × 10−15 4.00 × 10−14 2.64 7.99 × 10−15 

Min 8.88 × 10−16 8.88 × 10−16 2.93 × 10−14 0.810 8.88 × 10−16 

10( )f x  

Mean 8.29 × 10−3 1.32 × 10−3 2.99 × 10−2 1.57 × 10−2 3.92 × 10−8 

Std 4.61 × 10−2 5.33 × 10−4 1.62 × 10−2 2.29 × 10−2 1.23 × 10−8 

Mid 3.93 × 10−14 0.00 2.00 × 10−2 1.00 × 10−2 4.09 × 10−8 

Max 0.100 0.00 3.52 0.130 7.46 × 10−8 

Min 1.43 × 10−15 5.58 × 10−4 1.00 × 10−2 0.00 1.03 × 10−8 

 
(a) f1(x)  (b) f2(x)  (c) f4(x) 

 
(d) f5(x)  (e) f7(x)  (f) f9(x) 

Figure 8. Comparison of partial convergence curves. 
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To further verify the convergence of GARWOA, it is necessary to compare the iterative 
convergence curves of the test functions for the five algorithms. Some of the convergence curves are 
shown in Figure 8. It can be observed that GARWOA exhibits superior convergence performance 
compared to other algorithms. The results indicate that GARWOA possesses good practicality, fast 
convergence, and excellent optimization capabilities. 

5.2. Experiments of network coverage simulation 

To validate the WSN coverage optimization performance of the GARWOA algorithm, it is 
compared with the WOA, PSO, IWHO, and MuGWO algorithms in three experimental scenarios. 
This includes analyzing coverage ratio, convergence curves, and network coverage graphs. 

5.2.1. Settings of simulation parameter 

In Experiment 1, the area is relatively small with a lower number of nodes, which can simulate 
densely populated urban areas or small-scale monitoring tasks. In Experiment 2, the area is larger 
with a higher number of nodes, representing scenarios such as urban broadcast communication, 
environmental monitoring, or monitoring of large farms in the agricultural sector. In Experiment 3, 
the area is even larger, but with a relatively lower number of nodes, which may involve applications 
like remote environmental monitoring or field ecology research. The parameter settings [32] for 
these three experimental scenarios can be found in Table 4. 

Table 4. Network coverage experiment parameter settings. 

Parameters Experiment 1 Value  Experiment 2 Value Experiment 3 Value 

Area size S 50 m × 50 m 100 m × 100 m 200 m × 200 m 

Number of nodes N 40 80 50 

The perceptual radius Rp 5 m 7.5 m 20 m 

The communication radius Rc 10 m 15 m 40 m 

5.2.2. Coverage experiment results analysis 

To validate the performance of GARWOA in optimizing coverage within WSN, three 
experiments were conducted by simulating different scenarios and adjusting various parameters. To 
demonstrate the effectiveness of the GARWOA algorithm, it was compared with four other 
algorithms. To avoid result bias caused by experimental contingencies, each of the five algorithms 
was independently run 30 times on each experiment, and the experimental results were averaged.  

The objective function is ratio of coverage as shown in Eq (4). Table 5 shows the experimental 
results. It can be seen from Table 5 that GARWOA outperforms other algorithms in all three 
experiments in terms of indicators. 

The comparison of coverage maps for the three experimental scenarios can be seen in Figure 9–11. 
By comparing the coverage maps of various algorithms, it can be observed that GARWOA performs 
better in all three experimental environments. It provides superior coverage in the monitoring area, 
with a more even distribution of nodes and fewer redundant nodes. It proves to be adaptable to 
different environments, demonstrating excellent applicability. 
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Table 5. Network coverage experiment results. 

Experiment Criteria IWHO WOA MuGWO PSO GARWOA 

Experiment 1 

Mean 0.8743 0.7628 0.9246 0.8931 0.9573 

Std 0.0173 0.0134 0.0071 0.0137 0.0051 

Mid 0.8875 0.7664 0.9235 0.8929 0.9564 

Max 0.9208 0.7966 0.9369 0.9196 0.9658 

Min 0.8504 0.7520 0.9093 0.8574 0.9450 

Experiment 2 

Mean 0.8970 0.8159 0.9583 0.8589 0.9815 

Std 0.0106 0.0108 0.0054 0.0398 0.0048 

Mid 0.9062 0.8391 0.9572 0.8838 0.9749 

Max 0.9231 0.8726 0.9663 0.9231 0.9837 

Min 0.8831 0.8069 0.9481 0.8017 0.9666 

Experiment 3 

Mean 0.9539 0.8838 0.9847 0.8860 0.9934 

Std 0.0095 0.0192 0.0021 0.0592 0.0012 

Mid 0.9641 0.8721 0.9840 0.9198 0.9964 

Max 0.9699 0.9177 0.9888 0.9743 0.9968 

Min 0.9466 0.8581 0.9819 0.8280 0.9914 

         
(a) Initial deployment (b) WOA optimization (c) PSO optimization 

         
  (d) MuGWO optimization (e) IWHO optimization (f) GARWOA optimization 

Figure 9.  Coverage optimization comparison chart (experiment 1). 
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(a) Initial deployment (b) WOA optimization (c) PSO optimization 

         
  (d) MuGWO optimization (e) IWHO optimization (f) GARWOA optimization 

Figure 10.  Coverage optimization comparison chart (experiment 2). 

         
(a) Initial deployment (b) WOA optimization (c) PSO optimization 

         
  (d) MuGWO optimization (e) IWHO optimization (f) GARWOA optimization 

Figure 11.  Coverage optimization comparison chart (experiment 3). 

In each of the three experimental environments, all algorithms underwent 300 iterations, and 
their convergence curves are depicted in Figure 12. Notably, GARWOA exhibited superior 
optimization capabilities compared to the other four algorithms. While the other four algorithms 
tended to converge after 100 iterations and struggled to escape local optima, GARWOA continued to 
refine its search for a better optimum. 
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(a) Experiment 1 (b) Experiment 2 (c) Experiment 3 

Figure 12.  Algorithm coverage optimization convergence curves. 

Furthermore, the coverage results for all algorithms in the three experimental environments 
are presented in Figure 13. The results indicate that GARWOA ultimately outperforms the other 
four algorithms in terms of coverage. In Experiment 1, the coverage ratio reached 95.73%, 
representing a 3.27% improvement over the best-performing MuGWO algorithm and a 19.45% 
improvement over the least effective WOA algorithm. In Experiment 2, the coverage ratio was 
98.15%, indicating a 2.32% improvement over MuGWO and a 16.56% improvement over WOA. In 
Experiment 3, the coverage ratio reached 99.34%, signifying a 0.87% improvement over MuGWO 
and a 10.96% improvement over WOA. Therefore, GARWOA exhibits excellent performance in 
optimizing WSN coverage. 

 

Figure 13. Comparison of coverage in different experiments with various algorithms. 

6. Discussion and conclusions 

This paper investigates the problem of WSN coverage optimization. The basic WOA is 
improved by initializing the population using SPM chaotic mapping, which ensures a more uniform 
distribution in the search space. The addition of the Levy flight mechanism helps to prevent the 
algorithm from getting stuck in local optima and avoids premature convergence. Furthermore, a non-
linear factor is introduced to balance the algorithm’s search and exploitation capabilities. By 
combining the improved WOA with the GA, a WSN coverage optimization algorithm named 
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GARWOA is designed. Through experimental simulations and analysis, the convergence 
performance and stability of the GARWOA algorithm are compared with other relevant algorithms, 
demonstrating its excellent optimization performance. Comparisons with other relevant algorithms 
also prove that it can effectively improve network coverage, exhibiting favorable optimization 
capabilities. 

In the next stage of work, the integration of artificial intelligence with WSN will be considered, 
incorporating intelligent sensor and node technologies to enable autonomous learning of nodes and 
adaptation to environmental changes. This will elevate the level of intelligence of the nodes, leading 
to more intelligent data processing and decision-making.  
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