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Abstract: In this work, we propose a predator-prey system with a Holling type II functional response
and study its dynamics when the prey exhibits vigilance behavior to avoid predation and predators
exhibit cooperative hunting. We provide conditions for existence and the local and global stability of
equilibria. We carry out detailed bifurcation analysis and find the system to experience Hopf, saddle-
node, and transcritical bifurcations. Our results show that increased prey vigilance can stabilize the
system, but when vigilance levels are too high, it causes a decrease in the population density of prey
and leads to extinction. When hunting cooperation is intensive, it can destabilize the system, and can
also induce bi-stability phenomenon. Furthermore, it can reduce the population density of both prey
and predators and also change the stability of a coexistence state. We provide numerical experiments
to validate our theoretical results and discuss ecological implications.
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1. Introduction

Interactions between individuals are a crucial aspect of life history traits for many species [1].
Predator-prey systems have been used to study various ecological population interactions [2–5]. The
effect of the presence of predators does not only directly impact prey through killing and consumption,
but also induces non-lethal effects such as fear. This fear can drive the prey to use tactics to secure
their lives [6]. One such tactic is vigilance. Vigilance is the act of keeping a careful watch in an
environment for any possible harm. Vigilance involves a concerted effort by the prey population to
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actively avoid predation by means of avoiding competition, approaching group cohesion, and detecting
and avoiding predators, [7] thereby reducing predation risks [8]. Vigilance behavior has been observed
in several species, including elk [9], seals [10], and mother cheetahs, who protect their young [11].
When prey live in a group, vigilance behavior is beneficial to them because, while their proximity
to the group increases their conspicuity, their grouping helps reduce predation risks [12]. When prey
adopt anti-predator behavior such as vigilance, their rate of food intake is reduced due to less time spent
foraging [13, 14]. Interestingly, this also affects the food intake rate of predators as prey decrease their
predation risks [15]. In intraguild predation, an intermediate predator can exhibit vigilance behavior to
avoid predation by a top predator. This behavior can lead to a reduced efficiency in hunting for shared
prey species. For example, field experiments conducted by Durant [16] revealed that when cheetahs
listened to the playbacks of lion vocalizations, they were less likely to make a kill or hunt after hearing
the playback. They move just as far from the area of the playback. Mathematical models have been
used to gain insights into the effects of prey vigilance. Kimbrell et al. [17] studied the influence of
vigilance on intraguild populations. Their results showed that when top predators kill intermediate
predators without eating them, it can increase the level of vigilance by the intermediate predator or
influence the vigilance behavior of the shared prey, which may aid in the stability of the ecological
community. Hossain et al. [18] also studied vigilance dynamics in a three-species food chain model.
Their model produced rich dynamics, including a Hopf bifurcation, shrimp-shaped periodic structures,
and multiple coexisting attractors. Their results also suggested that too much vigilance can lead to
species extinction. This is because the prey will starve and/or reproduce less, and hence reduce its
lifetime reproductive fitness [19].

As said earlier, vigilance behavior in prey can impact the food intake rate of predators as a result of
a decrease in prey vulnerability. Therefore, many predators enhance their predation efficiency when
they engage in cooperative hunting. Hunting cooperation is the combined effort of several individuals
to capture and share prey [20]. Many predators, especially carnivores, work together to hunt and to
forage [21]. Carnivores such as lions [22], African wild dogs [23], chimpanzees, [24] and wolves [25]
have been documented to engage in cooperative hunting. Hunting cooperation comes with its benefits.
Included are increased hunting success rates with the number of adults, decreased chasing
distance [23, 26], more effective utilization of food resources [27], high likelihood of capturing large
prey [28], less time finding food [29], and also protection of food (carcasses) from being stolen by
other predators [30]. There are several continuous time models which have studied the impacts of
hunting cooperation among predators. Alves and Hilker [21] found that hunting cooperation can
destabilize the system and lead to a collapse of the predator population. Berec [31] studied hunting
cooperation effects in relation to population oscillations and concluded that the stability of
coexistence states could change due to cooperation. Pal et al. [32] studied a modified Leslie-Gower
predator-prey model with hunting cooperation among predators and fear effect in prey. Their findings
revealed that hunting cooperation can induce both subcritical and supercritical Hopf bifurcations.
Spatially explicit models have also been used to explore hunting cooperation effects. A variety of
spatio-temporal dynamics such as spots, stripe patterns, and mixed patterns (spots and stripes) were
observed for different intensities of the rate of hunting cooperation among predators [33]. The
spatially explicit model in [34] cannot produce Turing patterns when hunting cooperation is absent,
whereas the model with hunting cooperation can. Discrete-time models have also been used to study
cooperative hunting effects in predator-prey relationships. Pal et al. [35] showed that hunting
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cooperation is able to stabilize a chaotic discrete-time system and can induce strong demographic
Allee effects.

Many researchers have studied the impact of hunting cooperation [21, 31, 32, 35, 36] and vigilance
[17, 18, 37] in predator-prey systems separately. However, their combined effects in predator-prey
dynamics is yet to be studied. The aim of this paper is to explore the dynamics when both vigilance
behavior in prey and hunting cooperation in predators are present. We organize our paper as follows:
We present our proposed modeling framework with its underlying ecological assumptions in Section 2.
Preliminary results on positivity and boundedness of solutions are presented in Section 3. Section 4
is dedicated to finding feasible equilibria and performing stability analysis on our proposed model.
We derive local codimension 1 bifurcation results in Section 5. In Section 6, we provide numerical
experiments to validate our theoretical findings. We study the dynamics of our proposed model when
predators do not hunt cooperatively in Section 7. We conclude the paper with a discussion of our
results and possible future work in Section 8.

2. Model formulation

Here, we consider an unstructured prey and predator population. We let x and y denote the prey and
predator population respectively at any time instant t. We take into account the following assumptions
in our model formulation:

(i) The prey population grows logistically in the absence of predators and vigilance behavior.
(ii) We let the parameter v denote the level of prey vigilance where v ∈ [0, 1]. Also, the lethality of

predation is 1
l when vigilance is absent.

(iii) We suppose that predators cooperate when they hunt the prey.
(iv) We use the Holling type II functional response to describe the relationship between the predator

and its prey.
(v) We assume natural death rates δ for the prey and δ1 for the predator.

The following nonlinear system of ordinary differential equations satisfies our assumptions:

dx
dt
= rx

[
(1 − v) −

x
K

]
− δx −

(q + cy)xy
(1 + x)(l + µv)

,

dy
dt
=
γ(q + cy)xy

(1 + x)(l + µv)
− δ1y,

(2.1)

with positive initial conditions x(0) = x0 and y(0) = y0. We assume all parameters used are positive,
and their descriptions are provided in Table 1.

3. Preliminary results

This section provides basic results on the positivity and boundedness of solutions to system (2.1)
for biological meaningfulness.

3.1. Positivity of solutions

We recap the following result which guarantees the positivity of solutions from [38, 39].
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Lemma 3.1. Consider the following system of ODEs:

dx
dt
= X(x, y) = rx

[
(1 − v) −

x
K

]
− δx −

(q + cy)xy
(1 + x)(l + µv)

,

dy
dt
= Y(x, y) =

γ(q + cy)xy
(1 + x)(l + µv)

− δ1y.

Non-negativity of solutions is preserved with time, that is

x(0), y(0) ≥ 0⇒ (∀t ∈ [0,Tmax), x(t) ≥ 0, y(t) ≥ 0)

if and only if
∀x, y ≥ 0

and thus we have
X(0, y) = 0, Y(x, 0) = 0.

Table 1. Parameters used in model (2.1).

Parameter Description
r prey growth rate
v level of prey vigilance
K prey carrying capacity
δ prey natural death rate
q predator encounter rate
c predator hunting cooperation rate
δ1 predator natural death rate
1
l predation lethality in the absence of prey vigilance
µ effectiveness of vigilance
γ energy gain from predation

3.2. Boundedness of solutions

The boundedness property of solutions to system (2.1) ensures that populations do not grow
unboundedly due to scarce food resources and limited habitat space.

Theorem 3.2. Solutions to system (2.1) are bounded when they initiate from R+2 .

Proof. By considering Lemma 3.1,

dx
dt
≤ rx

[
(1 − v) −

x
K

]
.

Using the comparison principle and simple calculations,

lim sup x(t) ≤ (1 − v) K

as t → ∞.
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Let W(t) = x(t) + 1
γ
y(t). Then, for large t we have

dW
dt
=

dx
dt
+

1
γ

dy
dt

= rx
[
(1 − v) −

x
K

]
− δx −

δ1

γ
y

≤ r(1 − v)x − δx −
δ1

γ
y

≤ r(1 − v)2K − δx −
δ1

γ
y

≤ r(1 − v)2K − ϵ
(
x +

1
γ

y
)

where ϵ = min(δ, δ1).

Therefore,
dW
dt
+ ϵW ≤ r(1 − v)2K.

As t → ∞, lim sup W(t) ≤ r(1−v)2K
ϵ

and hence all solutions starting from R+2 are bounded. □

4. Equilibria and stability analysis

4.1. Equilibria

To obtain the equilibria for system (2.1), we solve X(x, y) = 0 and Y(x, y) = 0 simultaneously. The
system possesses the following non-negative equilibria:

(a) E0 = (0, 0),
(b) E1 = (x∗1, 0) where x∗1 = K

(
1 − v − δr

)
. We note that E1 is feasible when 1 − δr > v.

(c) E2 = (x∗, y∗) where y∗ = 1
c

(
(1+x∗)δ1

Ax∗ − q
)
, A = γ

l+µv , and x∗ is a positive real root of the following
third-order equation

r
K

x∗3 − (r (1 − v) − δ) x∗2 −
δ1

γcA
(Aq − δ1) x∗ +

δ2
1

γcA
= 0. (4.1)

This is obtained by substituting q + cy∗ = δ1(1+x∗)
Ax∗ into the right-hand side of dx

dt . E2 is feasible
when (1+x∗)δ1

Ax∗ > q. Thus, 0 < x∗ < δ1
Aq−δ1

. This implies that Aq − δ1 > 0.

We consider three cases in determining the number of positive real roots to Eq (4.1) using Descartes’
rule of signs. These cases are when

(I) r(1 − v) − δ > 0
(II) r(1 − v) − δ < 0

(III) r(1 − v) − δ = 0.

In each of the cases above, the number of possible non-negative real roots for Eq (4.1) is 2. Therefore,
when x∗ is obtained from Eq (4.1) and substituted into y∗, we may either have two feasible interior
equilibria or one feasible interior equilibrium point.
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Figure 1. Nullcline plots showing various equilibria for system (2.1). Parameters used are
r = 0.5, δ = 0.15, q = 0.15, µ = 0.3, γ = 0.05,K = 10. In (a) and (b), l = 0.8, δ1 = 0.01. In
(c), l = 0.8, δ1 = 0.1, and in (d), (e), and ( f ), l = 0.4, δ1 = 0.01. E2 is a spiral sink in (d). The
red and green colors represent the prey and predator nullclines respectively. The magenta
color denotes a stable limit cycle. The blue color represents the equilibrium points.

4.2. Global stability analysis

Define χ = γr(1−v)2K
ϵ

. Using results from Theorem 3.2, we have y(t) ≤ χ. We state the following
theorem:

Theorem 4.1. The predator-free state E1 is globally stable if 1 < (l+µv)δ1
γx∗1(q+cχ) .

Proof. Suppose that 1 < (l+µv)δ1
γx∗1(q+cχ) and consider the Lyapunov function V(t) = A1

[
x − x∗1 − x∗1ln

(
x
x∗1

)
+

y
γ

]
where A1 is a positive constant to be chosen. Clearly, V = 0 at (x, y) = (x∗1, 0). Also, V > 0 when
(x, y) , (x∗1, 0). Now, evaluating the derivative of V with respect to t yields

V̇ = A1

[(
1 −

x∗1
x

)
ẋ +

1
γ

ẏ
]

= A1

[(
1 −

x∗1
x

) (
rx

[
1 − v −

x
K

]
− δx −

(q + cy)xy
(1 + x)(l + µv)

)
+

1
γ

(
γ(q + cy)xy

(1 + x)(l + µv)
− δ1y

)]
= A1

[
(x − x∗1)

(
r
[
1 − v −

x
K

]
− δ −

(q + cy)y
(1 + x)(l + µv)

)
+

1
γ

(
γ(q + cy)xy

(1 + x)(l + µv)
− δ1y

)]
.
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Figure 2. Simulation showing the global stability of E1 under the stated conditions in
Theorem 4.1 using the following parameters: r = 0.8, v = 0.16, K = 3, δ = 0.05, q =
0.115, c = 0.1, δ1 = 0.45, l = 0.89, µ = 0.88, γ = 0.114. In this case, x∗ = 2.3325.

We substitute r(1 − v) − δ = rx∗1
K and x = x − x∗1 + x∗1. Then,

V̇ = A1

[
(x − x∗1)

(
r
[
1 − v −

x
K

]
− δ −

(q + cy)y
(1 + x)(l + µv)

)
+

1
γ

(
γ(q + cy)xy

(1 + x)(l + µv)
− δ1y

)]
= A1

[
−

r
K

(x − x∗1)2 +
(q + cy)x∗1y

(1 + x)(l + µv)
−

1
γ
δ1y

]
.

Since y(t) ≤ χ,

V̇ ≤ A1

[
−r(x − x∗1)2

K
+

(q + cχ)x∗1y
l + µv

−
1
γ
δ1y

]
.

We choose A1 =
l+µv

x∗1(q+cχ) . Then,

V̇ ≤ y
[
1 −

(l + µv)δ1

γx∗1(q + cχ)

]
< 0.

Since our Lyapunov function satisfies the asymptotic stability theorem [40, 41], then by our theorem,
E1 is globally stable. This completes the proof. □

Theorem 4.2. The extinction state E0 is globally stable if v > 1 − δr .

Proof. We provide the proof in the Appendix. □

Remark 1. The conditions stated in Theorems 4.1 and 4.2 are sufficient conditions.

4.3. Local stability analysis

We compute the Jacobian of system (2.1) to aid in the local stability analysis of the feasible
equilibria. The Jacobian is given by

J∗ =

 − y(cy+q)
(x+1)2(l+µv) − δ −

2rx
K + r(1 − v) −

x(2cy+q)
(x+1)(l+µv)

γy(cy+q)
(x+1)2(l+µv) −δ1 +

x(q+2cy)γ
(1+x)(l+vµ)

 .
We state the following:
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Figure 3. Simulation showing the global stability of E0 under the stated conditions in
Theorem 4.2 using the following parameters: r = 0.6, v = 0.3, K = 15, δ = 0.5, q =
0.2003, c = 0.015, δ1 = 0.09, l = 0.897, µ = 0.35, γ = 0.2002.

Theorem 4.3. The predator-free state E1 is locally stable if v < 1 − δr and γKq(r(1−v)−δ)
(l+µv)(K(r(1−v)−δ)+r) < δ1.

Proof. Suppose v < 1 − δr and γKq(r(1−v)−δ)
(l+µv)(K(r(1−v)−δ)+r) < δ1. Evaluating J∗ at E1 gives

J∗E1
=

 r(v − 1) + δ −
Kq(r(v−1)+δ)

(l+µv)(δK+r(K(v−1)−1))

0 γKq(r(1−v)−δ)
(l+µv)(K(r(1−v)−δ)+r) − δ1

 .
Since eigenvalues λ1 = r(v − 1) + δ < 0 and λ2 =

γKq(r(1−v)−δ)
(l+µv)(K(r(1−v)−δ)+r) − δ1 < 0, E1 is locally stable. □

In ecosystems, it is very common to see coexistence of species. Therefore it is important to study
the dynamics pertaining to the stability of the coexistence equilibrium E2 using standard linear stability
analysis. The characteristic equation for J∗E2

is given by

λ2 − tr(J∗E2
)λ + det(J∗E2

) = 0

where

tr(J∗E2
) = r

(
1 − v −

2x∗

K

)
+
δ1 (γqx∗ − δ1(x∗ + 1)(l + µv))

cγ2x∗2(x∗ + 1)
− δ + δ1 −

γqx∗

(x∗ + 1)(l + µv)
(4.2)

and

det(J∗E2
) =

(
−

y∗(cy∗ + q)
(x∗ + 1)2(l + µv)

− δ −
2rx∗

K
+ r(1 − v)

) (
−δ1 +

x∗(q + 2cy∗)γ
(1 + x∗)(l + µv)

)
(4.3)

+
γx∗y∗(2cy∗ + q)(cy∗ + q)

(x∗ + 1)3(l + µv)2 .

Here, tr(J∗E2
) and det(J∗E2

) represent the trace and determinant of J∗ evaluated at E2. The stability
of E2 depends on the signs of tr(J∗E2

) and det(J∗E2
). Through the Routh-Hurwitz criteria, we state the

following theorem in connection to the local stability of E2.

Theorem 4.4. For 0 < x∗ < δ1
Aq−δ1

with Aq − δ1 > 0, the coexistence state E2 is locally stable if
tr(J∗E2

) < 0 and det(J∗E2
) > 0.
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We present numerical results for the findings in Theorem 4.4. We consider the parameters in
Figure 1(d). The coexistence equilibrium is E2(1.06618, 0.515449). Simple calculations show that
1.06618 = x∗ < δ1

Aq−δ1
= 2.609. Evaluating J∗ at E2 yields

J∗E2
=

(
−0.00341475 −0.25115
0.00233986 0.00255749

)
. (4.4)

From Eq (4.4), tr(J∗E2
) = −0.000857263 < 0 and det(J∗E2

) = 0.000578922 > 0. Therefore,
E2(1.06618, 0.515449) is locally stable.

Remark 2. If tr(J∗E2
) ≤ 0 or > 0 and det(J∗E2

) < 0, then E2 is a saddle.

5. Bifurcation analysis

Bifurcation analysis plays an important role in providing insights into the qualitative behavior of
a system when parameters are varied continuously. We focus on the effects of prey vigilance levels
and the rate of hunting cooperation on the dynamics of system (2.1). Therefore, we explore local
codimension 1 bifurcations and find the occurrence of Hopf, saddle-node, and transcritical bifurcations.

Theorem 5.1. Suppose that E2 exists and consider the Jacobian of system (2.1). Then, system (2.1)
experiences a Hopf bifurcation at E2 with respect to the bifurcation parameter c if the following hold:

(i) tr(J∗E2
) = 0,

(ii) det(J∗E2
) > 0,

(iii) d
dc

(
tr(J∗E2

)
)
, 0.

Proof. Simple calculations show that tr(J∗E2
) = 0 when

c = c∗ =
δ1K(l + µv) (γqx∗ − δ1(x∗ + 1)(l + µv))

γ2x∗2 (K(l(x∗ + 1)(δ + r(v − 1)) + γqx∗ + µv(x∗ + 1)(δ + r(v − 1))) − p1)
(5.1)

where p1 = δ1K(x∗ + 1)(l + µv) + 2rx∗(x∗ + 1)(l + µv). The Jacobian evaluated at E2 with c = c∗ is

J∗E2
=

 γqx∗

(x∗+1)(l+µv) − δ1
qx∗

(x∗+1)(l+µv) −
2δ1
γ

γ
(
r(1 − v − 2x∗

K ) − δ + δ1 −
γqx∗

(x∗+1)(l+µv)

)
δ1 −

γqx∗

(x∗+1)(l+µv)

 . (5.2)

Now, det(J∗E2
) = p2

K(x∗+1)(l+µv) where

p2 = δ1 (−K(2l(x∗ + 1)(δ + r(v − 1)) + γqx∗ + 2µv(x∗ + 1)(δ + r(v − 1))) + p3) + p4

with p3 = δ1K(x∗+1)(l+µv)−4rx∗(x∗+1)(l+µv) and p4 = γqx∗(K(δ+r(v−1))+2rx∗), respectively. We
let p2 > 0. We proceed to validate the transversality condition of the Hopf bifurcation theorem [42,43]
by letting ω1 = −

2r
K −

γ

(l+µv)(x∗+1)2 −
δ1q(2x∗+1)
γc∗(x∗(x∗+1))2 +

2δ21(l+µv)
γ2c∗x∗3 and ω2 =

δ21(l+µv)

(γc∗x∗)2 −
δ1q

γc∗2 x∗(x∗+1) , and ensuring that

d
dc

(tr(J∗E2
))|c=c∗ = ω1

dx∗

dc
+ ω2 , 0. (5.3)

Hence, system (2.1) undergoes a Hopf bifurcation around E2 with respect to the bifurcation
parameter c. □
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For system (2.1) to experience a saddle-node bifurcation around E2 for the parameter c, it is required
that det(J∗) = 0. To obtain this, we give an implicit expression for c as c = c∗ = δ21K(l+µv)

γ2 x∗2 (K(δ+r(v−1))+2rx∗)
since E2(x∗, y∗) depends on c. We state the following theorem accordingly:

Theorem 5.2. Suppose that E2 exists. Then, system (2.1) experiences a saddle-node bifurcation around
the coexistence equilibrium E2 at c = c∗ when tr(J∗) < 0 and det(J∗) = 0 are satisfied by system
parameters.

Proof. Let c = c∗ = δ21K(l+µv)

γ2 x∗2 (K(δ+r(v−1))+2rx∗)
and (K(δ+r(v−1))+2rx∗)(γqx∗−2δ1(x∗+1)(l+µv))

δ1K(x∗+1)(l+µv) < γqx∗

(x∗+1)(l+µv) − δ1. We use
Sotomayor’s theorem [43] to show that system (2.1) experiences a saddle-node bifurcation at c = c∗. At
c = c∗, we can have det(J∗) = 0 and tr(J∗) < 0 when (K(δ+r(v−1))+2rx∗)(γqx∗−2δ1(x∗+1)(l+µv))

δ1K(x∗+1)(l+µv) < γqx∗

(x∗+1)(l+µv) − δ1.
This shows that J∗ admits a zero eigenvalue. Define G = (g1, g2)T and H = (h1, h2)T to be the nonzero
eigenvectors of J∗ and J∗T corresponding to the zero eigenvalue, respectively. Then,

G =
(
−

δ1K
γ(K(δ+r(v−1))+2rx∗) , 1

)T
and H =

(
γ(γqx∗−δ1(x∗+1)(l+µv))
γqx∗−2δ1(x∗+1)(l+µv) , 1

)T
.

Furthermore, let Z = (z1, z2)T where

z1 = rx
[
(1 − v) −

x
K

]
− δx −

(q + cy)xy
(1 + x)(l + µv)

,

z2 =
γ(q + cy)xy

(1 + x)(l + µv)
− δ1y.

(5.4)

Now,

HT Zc(E2, c∗) =
(
γ (γqx∗ − δ1(x∗ + 1)(l + µv))
γqx∗ − 2δ1(x∗ + 1)(l + µv)

, 1
)  −x∗y∗

2

(1 + x∗)(l + µv)
,

γx∗y∗
2

(1 + x∗)(l + µv)

T

=
γx∗y∗

2

(1 + x∗)(l + µv)

(
1 − γqx∗ + δ1(x∗ + 1)(l + µv)
γqx∗ − 2δ1(x∗ + 1)(l + µv)

)
, 0

provided 1 − γqx∗ + δ1(x∗ + 1)(l + µv) , 0 and γqx∗ − 2δ1(x∗ + 1)(l + µv) , 0. Furthermore,

HT [D2Z(E2, c∗)(G,G)] , 0.

Therefore, by Sotomayor’s theorem, system (2.1) experiences a saddle-node bifurcation at c = c∗

around E2, which concludes the proof. □

Similarly we can give an implicit expression for v = v∗ =
γqx∗
δ1(x+1)−l

µ
or v = v∗ = cγ2 x∗2(K(r−δ)−2rx∗)+δ21Kl

K(cγ2rx∗2−δ21µ)
to ensure that det(J∗) = 0 since E2(x∗, y∗) depends on v. The conditions under which tr(J∗) < 0 can
easily be found. Next, we state the following theorem:

Theorem 5.3. Suppose that E2 exists. Then, system (2.1) experiences a saddle-node bifurcation around
the coexistence equilibrium E2 at v = v∗ when tr(J∗) < 0 and det(J∗) = 0 are satisfied by system
parameters.

Proof. The proof is similar to Theorem 5.2 and is therefore omitted. □

Theorem 5.4. Suppose that E1 exists. Then, system (2.1) experiences a transcritical bifurcation around
the predator-free state E1 when the level of vigilance is v = v∗ = 1 − δr .
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Proof. Suppose v = v∗ = 1 − δr . An evaluation of the Jacobian matrix for system (2.1) at E1 with v∗ is

J∗E1
=

(
0 0
0 −δ1

)
. (5.5)

The eigenvalues of the Jacobian matrix in Eq (5.5) are λ1 = 0 and λ2 = −δ1. Next, we represent
the eigenvectors corresponding to the zero eigenvalue of the matrices J∗E1

and J∗TE1
respectively by

L = (l1, l2)T and M = (m1,m2)T . Simple calculations show that L = (1, 0)T and M = (1, 0)T . Now,
let Z = (z1, z2)T as defined in Eq (5.4). We proceed to validate the transversality conditions using
Sotomayor’s theorem [43]. Now,

MT Zv(E1, v∗) = (1, 0) (0, 0)T = 0.

Also,

MT [DZv (E1, v∗) L] =
(

1 0
) ( −r 0

0 0

) (
l1

l2

)
= −r , 0

and

MT
[
D2Z (E1, v∗) (L, L)

]
, 0.

Therefore, by the Sotomayor’s theorem, system (2.1) experiences a transcritical bifurcation at some
v = v∗ around E1. □

(a) (b)

Figure 4. One parameter bifurcation diagram showing how parameters v and c affect the
population dynamics. Hopf and saddle-node bifurcations are observed in both diagrams. A
transcritical bifurcation is also observed in (a). The blue color indicates a stable equilibrium
point, and red an unstable equilibrium. The parameters used in (a) are r = 0.5, c = 0.001,K =
50, δ = 0.01, q = 0.21, l = 0.3, µ = 0.35, γ = 0.195, δ1 = 0.09. The parameters used in (b)
are r = 0.5, v = 0.2,K = 50, δ = 0.01, q = 0.5, l = 0.3, µ = 0.35, γ = 0.02, δ1 = 0.03.
TC=Transcritical point, SN=Saddle-Node point, H=Hopf point, and BP=Branch Point
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6. Numerical experiments

In this section, we provide numerical simulations which support our theoretical results using the
Python programming language, Wolfram Mathematica 13.0, MATLAB version R2019a, and
MATCONT [44]. We show the existence of biologically feasible equilibria when the nullclines for the
prey and predator populations intersect for certain parameter choices for system (2.1). See Figure 1.
We provide experiments in Figures 2 and 3 respectively to validate sufficient conditions for global
stability results for the predator-free and extinction states. Applications of these results in this section
are discussed in Section 8. We show local codimension one bifurcations for the level of vigilance
parameter v and hunting cooperation parameter c.

Figure 4(a) shows the existence of Hopf, saddle-node, and transcritical bifurcations when v is
varied for certain parameter choices. When the vigilance level v is increased, the coexistence state
gains stability at the critical threshold v∗ = 0.386322 around E2 = (14.448794, 4.769456), and the
disappearance of oscillatory dynamics is observed. We used MATCONT to compute the Lyapunov
coefficient. This value is given by σ1 = −8.447014e−4, and thus the bifurcation is supercritical. A
slight increase in v causes the system to experience a saddle-node bifurcation at v∗ = 0.405605. At
this level, two coexistence equilibria (a saddle and a node) collide and disappear. This bifurcation
occurs around E2 = (23.146242, 2.795123). A transcritical bifurcation occurs when the stable
coexistence equilibrium E2 collides and interchanges its stability property with the unstable predator
free state E1. Hence E2 becomes unstable and E1 gains stability. Here, this bifurcation is observed at
vigilance level v∗ = 0.399556 around E1 = (29.022207, 0). Similar bifurcations are seen in
Figure 4(b).

System (2.1) experiences saddle-node and Hopf bifurcations for the hunting cooperation parameter
c. See Figure 4(b). The saddle-node bifurcation occurs at c∗ = 0.032175 around
E2 = (22.139420, 2.488556). The Hopf bifurcation is seen to occur at c∗ = 0.033090 around
E2 = (19.226665, 2.534502), and the calculated Lyapunov coefficient is σ2 = −1.758377e−3. The
Hopf bifurcation is supercritical.

7. Case where there is no hunting cooperation (c = 0)

We study a special case where predators do not cooperate when hunting. Thus, system (2.1) reduces
to

dx
dt
= rx

[
(1 − v) −

x
K

]
− δx −

qxy
(1 + x)(l + µv)

dy
dt
=

γqxy
(1 + x)(l + µv)

− δ1y.
(7.1)

7.1. Equilibria

The feasible equilibria for system (7.1) are

(a) E′0 = (0, 0),
(b) E′1 =

(
K

(
1 − v − δr

)
, 0

)
. E′1 is feasible when 1 − δr > v.

(c) E′2 =
(
δ1(l+µv)
γq−δ1(l+µv) ,

γ(l+µv)(δ1(l+µv)(δK+r(K(v−1)−1))−γKq(δ+r(v−1)))
K(γq−δ1(l+µv))2

)
.
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Figure 5. Nullcline plots showing various equilibria for system (7.1). Parameters used are
r = 0.5, δ1 = 0.01, δ = 0.15, q = 0.15, µ = 0.3, γ = 0.05,K = 10. In (a) and (b), l = 0.8, and
in (c) and (d), l = 0.4. In each of the plots c = 0. The red and green colors represent the prey
and predator nullclines, respectively. The blue color represents the equilibrium points, and
the magenta is a stable limit cycle.

E′2 exists when γq > δ1(l + µv) and δ1(l + µv)(δK + r(K(v − 1) − 1)) > γKq(δ + r(v − 1)).
We state the following theorem pertaining to the global stability of the unique coexistence

equilibrium E′2. From E′2, we let y∗ = γ(l+µv)(δ1(l+µv)(δK+r(K(v−1)−1))−γKq(δ+r(v−1)))
K(γq−δ1(l+µv))2 .

Theorem 7.1. The coexistence state E′2 is globally stable if y∗ < r(l+µv)
Kq .

Proof. Suppose that y∗ < r(l+µv)
Kq , and consider the Lyapunov function V(t) = A

[
x − x∗ − x∗ln

(
x
x∗

)]
+

B
γ

[
y − y∗ − y∗ln

(
y
y∗

)]
where A, B are positive constants to be determined. Clearly, V = 0 at (x, y) =

(x∗, y∗). Also, V > 0 when (x, y) , (x∗, y∗). Now, evaluating the derivative of V with respect to t yields

V̇ = A
[(

1 −
x∗

x

)
ẋ
]
+

B
γ

(
1 −

y∗

y

)
ẏ

= A
[(

1 −
x∗

x

) (
rx

(
1 − v −

x
K

)
− δx −

qxy
(1 + x)(l + µv)

)]
+

B
γ

(
1 −

y∗

y

) (
γqxy

(1 + x)(l + µv)
− δ1y

)
= A

[
(x − x∗)

(
r
(
1 − v −

x
K

)
− δ −

qy
(1 + x)(l + µv)

)]
+

B
γ

(y − y∗)
[

γqx
(1 + x)(l + µv)

− δ1

]
.
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Using the results r(1 − v) − δ = rx∗
K +

qy∗

(1+x)(l+µv) and γqx∗

(1+x∗)(l+µv) = δ1, we have

V̇ = A(x − x∗)
[
rx∗

K
−

rx
K
+

qy∗

(1 + x∗)(l + µv)
−

qy
(1 + x)(l + µv)

]
+

B
γ

[
(y − y∗)

(
γqx

(1 + x)(l + µv)
−

γqx∗

(1 + x∗)(l + µv)

)]
= A

[
−

r
K

(x − x∗)2
+ (x − x∗)

(
qy∗

(1 + x∗)(l + µv)
−

qy
(1 + x)(l + µv)

)]
+ B

[
q (y − y∗)

l + µv

(
x

1 + x
−

x∗

1 + x∗

)]
= A

[
−

r
K

(x − x∗)2 +
q

l + µv
(x − x∗)

(
y∗

1 + x∗
−

y
1 + x

)]
+ B

[
q

l + µv
(y − y∗)(x − x∗)
(1 + x)(1 + x∗)

]
= A

[
−

r
K

(x − x∗)2 +
q

l + µv
(x − x∗)

(
y∗(x − x∗) − (1 + x∗)(y − y∗)

(1 + x)(1 + x∗)

)]
+ B

[
q

l + µv
(y − y∗)(x − x∗)
(1 + x)(1 + x∗)

]
.

V̇ ≤ A
[
−

r
K

(x − x∗)2 +
qy∗

1 + µv
(x − x∗)2 −

q
l + µv

(x − x∗)(y − y∗)
(1 + x)

]
+ B

[
q

l + µv
(y − y∗)(x − x∗)
(1 + x)(1 + x∗)

]
.

Here, we choose A = 1
1+x∗ and B = 1. Thus,

V̇ ≤ (x − x∗)2
(

qy∗

(l + µv)(1 + x∗)
−

r
K(1 + x∗)

)
≤

(x − x∗)2

1 + x∗

(
qy∗

l + µv
−

r
K

)
< 0.

Here also, the Lyapunov function satisfies the asymptotic stability theorem [40, 41], and by our
theorem, E′2 is globally stable. This completes the proof. □

We omit the local stability analysis of all the equilibria for system (7.1) as well as global stability
results for the extinction state and the predator-free state for brevity.

8. Discussion and conclusions

In ecosystems, many species exhibit anti-predator behaviors such as vigilance to mitigate threats and
predation risks. When prey populations are vigilant, it makes predators spend more time and energy
in capturing them. In order to capture prey efficiently, predators cooperate during their hunt. In this
work, we explore the impacts of prey vigilance and hunting cooperation in a predator-prey system. Our
results show that, for certain parameter choices, an increase in the level of vigilance can stabilize the
system via a Hopf bifurcation for a fixed hunting cooperation rate. However, for a fixed prey vigilance
level, an increase in the rate of hunting cooperation can cause the system to destabilize. See Figures 1
and 4. We also observed from Figure 4(a) that too much vigilance by prey can have a negative effect,
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causing the extinction of the population due to a continuous decrease in population density. This
is because they trade-off between foraging and staying alert. This will cause starvation and reduce
lifetime reproductive fitness [19]. For example, the Nubian Ibex is now known to be vulnerable to
extinction [45] and is very vigilant when obstructed between their safety region and food patch [46].
Other bifurcation results such as saddle-node and transcritical bifurcations were observed. We obtained
sufficient conditions for the global stability of the predator-free state and the extinction state with
rigorous proofs. Refer to Theorems 4.2 and 4.1. The transcritical and global stability results will
provide ecosystem managers with information on how best to provide structures and develop strategies
in conserving endangered species and thus promote their persistence. Furthermore, our results show
that hunting cooperation can change the stability of a coexistence state. Refer to Figure 1(d) and (e).
This supports the results obtained by Berec in [31]. Our proposed system exhibited rich dynamical
behavior including bi-stability between a stable limit cycle and the predator-free equilibrium. See
Figure 1(b). Prey and predator populations will go between oscillatory populations and stable levels. In
this case, prey vigilance levels and cooperative hunting play a role in maintaining ecosystem stability.
Therefore, the sensitivity to initial conditions will play a significant role in determining whether the
two species will continue to coexist or the predator population will die out. We also found that hunting
cooperation when intensified can cause a decrease in the population densities of both prey and predators
when vigilance levels are fixed. See Figure 1(d)–( f ). When prey are at low densities and predators hunt
cooperatively, it can lead to a reduction in the growth rate of the predator population and hence induce
an Allee effect. It will be interesting to study an extension of our temporal model by incorporating
Allee effects into both prey and predator populations. A study of such a mechanism will be useful in
biocontrol and species conservation programs. We will extend our temporal model to include spatial
effects to explore the possible occurrence of Turing patterns which provide insights on how hunting
cooperation and prey vigilance contribute to the patchy spread of species in space.
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Appendix

We provide the proof for Theorem 4.2.

Proof. Suppose that v > 1 − δr , and consider the Lyapunov function V(t) = γx(t) + y(t). Clearly, V = 0
at (x, y) = (0, 0). Also, V > 0 when (x, y) , (0, 0). Now, evaluating the derivative of V with respect to t
yields

V̇ = γ
[
rx

(
1 − v −

x
K

)
− δx −

(q + cy)xy
(1 + x)(l + µv)

]
+
γ(q + cy)xy

(1 + x)(l + µv)
− δ1y

≤ γx(r(1 − v) − δ) −
γrx2

K
− δ1y

≤ γx(r(1 − v) − δ)
< 0.

□
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