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Abstract: Medical image segmentation has an important application value in the modern medical
field, it can help doctors accurately locate and analyze the tissue structure, lesion areas, and organ
boundaries in the image, which provides key information support for clinical diagnosis and treatment,
but there are still a large number of problems in the accuracy of the segmentation, so in this paper, we
propose a medical image segmentation network combining the Hadamard product and dual-scale
attention gate (DAU-Net). First, the Hadamard product is introduced in the structure of the fifth layer
of the codec for element-by-element multiplication, which can generate feature representations with
more representational capabilities. Second, in the jump connection module, we propose a dual scale
attention gating (DSAG), which can highlight more valuable features and achieve more efficient jump
connections. Finally, in the decoder feature structure, the final segmentation result is obtained by
aggregating the feature information provided by each part, and decoding is achieved by up-sampling
operation. Through experiments on two public datasets, Luna and Isic2017, DAU-Net is able to extract
feature information more efficiently using different modules and has better segmentation results
compared to classical segmentation models such as U-Net and U-Net++, and also verifies the
effectiveness of the model.

Keywords: medical image segmentation; two-scale attention gates; Hadamard product; fully
convolutional networks; feature fusion
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1. Introduction

Medical image segmentation, as a key task in the field of medical image processing, aims at
accurately identifying and separating different tissue structures, organs, and lesion regions, etc. from
medical images. With the continuous development of medical imaging technology, the wide application
of high-resolution medical images, such as computed tomography (CT) [1,2] and ultrasonography [3],
provides physicians with certain diagnostic and therapeutic tools. However, medical images often have
highly complex structures, including organs, blood vessels, tumors, various tissue structures, and lesion
areas [4-6], and it is a complex and time-consuming task to extract useful information from them and
perform accurate analysis. Typically, quality and noise issues in medical images may also affect the
accuracy of the segmentation results, thus requiring higher-level algorithms and networks to capture the
subtle features of these structures, which makes medical image segmentation even more challenging. To
cope with these challenges, researchers continue to propose new methods and algorithms. From
traditional image segmentation algorithms [7-11] to image segmentation models based on
convolutional neural networks [12—14], many innovative solutions have emerged in the field of medical
image segmentation, and in particular, the rapid development of deep learning technology has
revolutionized medical image segmentation.

The emergence of convolutional neural networks (CNNs) and the introduction of fully
convolutional networks (FCNs) have enabled image segmentation to no longer rely on traditional
handcrafted feature engineering [15], but rather to learn and predict from the pixel level end-to-end,
which greatly improves segmentation accuracy. However, these architectures face an important
challenge in that critical detail information is often lost in the deep structure of the network. To cope
with this problem, Ronneberger et al. first proposed the U-Net architecture [16], which employs an
encoder and decoder design that allows the model to efficiently capture feature information at different
scales, and introduces intermediate signal hopping connections in the symmetric structure to achieve
this, which significantly improves performance in medical image segmentation. Inspired by the U-Net
architecture in subsequent studies, Oktay et al. [17] proposed Attention U-Net, which aims to introduce
the self-attention mechanism into the U-Net architecture so that the model can focus more on the
important regions in the image, which helps to better capture the subtle image features and thus
improves the accuracy and robustness of the segmentation. Zhou et al. [18] proposed the U-Net++
structure, the core idea of this method is to construct a pyramidal feature extraction network, which
significantly improves the performance of the model by introducing a multi-scale feature fusion
mechanism to reduce the lost semantic information, enabling the model to better understand the
information in the image. Huang et al. [19] proposed the U-Net3+, which is an extension and
improvement of the classical U-Net, and designed a full-scale jump-joining method to combine low-
and high-resolution information at different scales to further improve segmentation performance. He et
al. [20] proposed ResNet by introducing the residual module, which uses jump connections to simplify
the training of the deep network and solves the problem of the increase in the number of layers of the
neural network that leads to difficulty in training. Alom et al. [21] proposed the R2U-Net model by
combining residual networks, U-Net, and recurrent residual neural networks (RCNN), which
overcomes the problem of gradient vanishing in deep neural networks and realizes the iterative transfer
of information while preserving the contextual information and local details, enabling R2U-Net to
perform multiple loop operations on different scales, which helps to better understand the global context
of an image. Chen et al. [22] proposed TransUNet, which for the first time is based on the Transformer
module, allowing the model to automatically capture global information and long-range dependencies
in an image. In addition, TransUNet introduces jump connectivity and deep feature fusion to preserve
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local details and contextual information in images. This comprehensive architecture allows TransUNet
to excel in medical image segmentation, especially for images with complex structures and rich textures.
Ruan et al. [23] proposed EGE-UNet, which combines a Hadamard Product Attention Module (GHPA)
and a Group Aggregation Bridge Module (GAB) in a lightweight manner. GHPA groups input features
and performs Hadamard Product Attention Mechanism (HPA) on different axes to extract pathology
information from different perspectives. GAB effectively fuses multi-scale information by grouping
low-level features, high-level features, and masks generated by the decoder at each stage, while still
providing high segmentation performance with only 50KB of parameters. Valanarasu et al. [24]
proposed UNeXt, which inherits the encoder-decoder structure of U-Net and the design of the hopping
connection, retaining the model advantage of processing local features and global contextual
information, while one of the key innovations is the introduction of the ability to process multimodal
image data. UNeXt is able to process information from multiple modalities simultaneously, fusing them
together so as to fully utilize the complementary information of different modalities and to improve the
accuracy of segmentation. This cross-modal fusion makes UNeXt suitable for a wider range of medical
image segmentation tasks, capturing fine structures and textures in medical images, while possessing
strong generalization ability. Tang et al. [25] proposed CMUNeXt, which is a network that improves on
the UNeXt model to enable fast and accurate assisted diagnosis in real scene scenarios. CMUNeXt
utilizes its large kernel and inverted bottleneck design to thoroughly mix long-range spatial and
positional information to efficiently extract global contextual information, in addition to introducing the
Skip-Fusion block, which aims to realize smooth jump connections and ensure sufficient feature fusion.
In addition to this, we found an attention module based dual encoder decoder for colonoscopic polyp
segmentation network PSNet proposed by Lewis et al. [26]. Specifically, this network consists of a dual
encoder and decoder, which is composed of a (polyp segmentation)PS encoder, Transformer encoder,
PS decoder, Enhanced Expansion Transformer decoder, partial decoder, and merge module are
synthesized. This dual codec structure enables efficient feature extraction and exploitation, plus
synchronized codec operations help to better capture key features in the image. In addition, PSNet
utilizes skip connections to preserve feature information at different levels, and attention mechanisms
are incorporated into almost every level and module of the network to further increase the network’s
focus on important regions. This helps the network to be able to segment polyps in colonoscopy images
more accurately.

In this paper, we propose DAU-Net, a medical image segmentation network that combines the
Hadamard product and biscale attention gates. At the encoder head, we introduce a stem module to
extract raw features from the input image. Extracting enough feature information from the beginning
can compensate to some extent for the spatial information lost during subsequent feature extraction
operations. In layers 1-4 of the network, we use depth-separable convolution and point-by-point
convolution to extract spatial and channel information. In the convolution block of layer 5, we apply the
Hadamard product algorithm to fuse the feature maps of different levels or channels to deal with the
variation of the image at different scales. In the decoder stage, we propose a combination of Dual Scale
Attention Gate (DSAG) and up-sampling operations, which is a module mainly composed of
point-by-point convolution and dilation convolution, where point-by-point convolution is mainly used
to reduce the dimensionality of the features, and dilation convolution is used to expand the sensory field
and capture more contextual information so as to better capture the global and local structures in the
image. In summary, the main contributions of this paper can be summarized as follows:

1) The DAU-Net model is proposed, which introduces a stem module in the head of the encoder for
extracting the original features of the image to prevent too much feature information from being lost due
to the jJump connections at the top layer, and applies the Hadamard product operation at the last layer of
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the codec, which can multiply the feature information of the feature maps element-by-element, thus
generating feature representations with more characterizing ability, which can help to improve the
comprehension of the semantic information of the different levels and enhance the accuracy of the
segmentation;

2) In the decoder stage, we combine the up-sampling operation with the proposed DSAG, which is
a module that mainly employs point-by-point convolution and dilation convolution composition, and
then configures the activation function and the batch normalization process to connect these two kinds
of convolution for feature-feature fusion and information transfer, and then finally screen out the more
valuable features through a convolution with a voting mechanism, which improves the performance and
applicability of the model;

3) Experimental analysis using two different datasets of lung CT images and skin lesion
segmentation, the experimental results show that the DAU-Net model proposed in this paper is better
than the previous SOTA segmentation models in terms of lou and Dice coefficients, and has better
segmentation performance and higher accuracy.

The rest of the paper is organized as follows: Section 2 describes the overall architecture of the
network and the detailed aspects of our proposed method. Section 3 introduces the experimental design
section and provides experimental results, analyzes the network proposed in this paper in comparison
with other classical networks, and verifies the usefulness of the key modules proposed in DAU-Net. In
Section 4, we discuss several state-of-the-art networks that are currently available in the segmentation
domain based on the attention mechanism and have a lightweight architecture. Finally, the paper is
summarized in Section 5.

2. The proposed methods

Skip Connections @ m output

@ Max-Pooling
HW_ ’ ’
Exﬁxm H UpSampling + Conv3x3 +

BN + RelLU

Skip Connections

T @ Dual scale attention gating

P Addtion

Figure 1. Structure of the DAU-Net network, where the number of channels C1~C5 of
the network is set to 32, 64, 128, 256, and 512, respectively.

The network architecture of our proposed DAU-Net is shown in Figure 1. It has a similar codec
structure to U-Net, which consists of a total of five layers from top to bottom, and is divided into two
stages: encoder and decoder with jump connections. In the encoder stage, semantic feature information
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of medical images is extracted by constructing a convolutional neural network, and the number of
channels is extended with convolutional blocks. In the decoder stage, the features extracted by
dual-scale attention gating are fused with the up-sampled features of the decoder to realize the global
semantic information of the medical image is captured and accurately segmented.

2.1. Encoder stage

The encoder has five layers from top to bottom. The first four layers include depth separable
convolution, point-by-point convolution, GELU activation function, batch normalization, and
downsampling operations. At the fifth layer, we introduce the Hadamard product algorithm in the
convolution, and in addition to that, we include a stem block after the input for extracting the original
features of the input image. In order to avoid the loss of important semantic feature information due to
inconsistent jump connections at the top layer, we set up two ordinary convolutional blocks consisting
of a convolutional layer with a convolutional kernel size of 3 %3, a step size of 1, a padding of 1, a batch
normalization layer, and a ReL U activation function, respectively.

In the encoder section, the main components of the convolution block are depth-separable
convolution and point-by-point convolution. Compared to normal convolution, depth-separable
convolution effectively reduces memory requirements and reduces the computational effort of
convolution operations. In the encoder, we use a deep convolution with a larger convolution kernel size
to extract the global information of each channel and then perform residual concatenation. In order to
fully fuse the spatial and channel information, we apply two point-by-point convolutions after the deep
separable convolution. At the same time, we set the hidden dimension between the two point-by-point
convolution layers to be four times the width of the input dimension, and by extending the hidden
dimension, we are able to more fully and comprehensively blend the global spatial dimension
information extracted by the deep convolution. In addition, we process the paradigm layers using the
GELU activation function and batch normalization after each convolution. The encoder part of the
convolution block can be defined as

f. = BN (c,{DepthwiseConv(f,_)}) + f,, 1)
f, = BN (o, {PointwiseConv(f,)}) (2)
f, = BN (o, {PointwiseConv( f, )}) ©)

where f, denotes the output feature mapping of layer 1 in the stem block, o, denotes the GELU
activation function, and BN denotes the batch normalization layer.

2.2. The Hadamard product

In deep convolutional neural networks, the Hadamard product can fuse feature maps of different
levels or channels. By multiplying the corresponding elements of two feature maps A and B with the
same dimensionality, fusing them element by element can combine the relevant information of the two
feature maps. We use this algorithm in the fifth layer of the encoder and decoder structure to generate
feature representations with more representational power. This helps to improve the understanding of
different levels and semantic information and increase the accuracy of segmentation. The mathematical
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expression for the Hadamard product operation is
C=A0B (4)

where C is a new tensor with the same shape as A and B. Each element of C is the product of the
elements at the corresponding positions in A and B, i.e., the elements in the i-th row and j-th column of
C are equal to the product of the elements in the i-th row and j-th column of A and B.

In this convolution block, given an input x and a randomly initialized learnable tensor p, bilinear
interpolation is used to adjust the size of p to match the size of x. Then, we use a depth-separable
convolution on p, followed by a hadamard product operation between x and p to obtain the output.
Subsequently, after our proposed biscale attention gate, the robustness of the model is improved by
subjecting images from different scales or resolutions to hadamard product operations, which helps to
deal with the variation of objects in the image at different scales.

2.3. Dual scale attention gating

The decoder stage also consists of a total of five layers from top to bottom. Each layer consists of a
jump connection module and an upsampling block, connected in the middle by the dual-scale attention
gate(DSAG) proposed in this paper, as shown in Figure 2. In the DSAG, in order to adaptively select
semantic features with different resolutions, we use a point-by-point convolution and a dilation
convolution to extract semantic features with different receptive fields. Among them, the point-by-point
convolution is mainly used to reduce the dimensionality of the features, and the dilation convolution is
used to expand the receptive field and capture more contextual information. Each convolution is
equipped with a GELU function and a batch normalization layer for feature fusion and information
transfer, and these two convolutions are connected to generate feature maps of the same size.
Subsequently, the output feature maps are then connected and the most valuable features are selected
by a convolutional block with a voting mechanism, and finally a Sigmoid activation function is
connected to control the output between 0-1. The module can be defined as

feoncar = CONCat(BN{o,{PointwiseConv( f)}}, (5)
BN{o,{DilationConv(f)}})
f, = f x oy (VOteConv( fepne)) + (6)

where f., ... denotes connecting the features, f, comes from the output features of the DSAG, f
represents the encoded features, and o, and o, denote the GELU and Sigmoid activations, respectively.

Concatenation

1
1
1 .
1 v
{ HxWxC s iamai
] %\ =r > VoteConv +——>{ Sigmoid 9—)
T ilati HxWxC
T DilationConv |—)| GELU |—>| BatchNorm | : Wae
1 Hx\WxC 1
\ e i J

Figure 2. Dual scale attention gating.
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2.4. Decoder stages with skip-connections

The decoder part is also composed of five layers from bottom to top, each layer including a
skip-connection and an upsampling module. Most of the traditional skip-connections use ordinary
convolution operations for feature fusion. In our encoder part, we set up a Group convolution with a
Group of 2 to extract the features obtained from the skip-connections and up-sampling operations one
by one, respectively, and the convolution kernel size of this convolution is set to be 3 %<3, with a step
size of 1 and a padding of 1. In order to merge the extracted features enough to be fused, we merge two
inverse point-by-point convolutions after the Group convolution, which adaptively assigns the features
before fusion to the Group convolution and does a large amount of feature fusion. Each convolution is
followed by a GELU activation function and a BatchNorm layer as defined below:

f, = Concat(BN{OridinaryConv(f,)},
BN{OridinaryConv(f,)})

(7)
f, = BN (o, {PointwiseConv(f )}) 8)
f. = BN (o, {PointwiseConv( f,)}) )

Ultimately, f, denotes the output fused feature map in the decoder, while f, and f, denote the

features obtained by the jump-join and up-sampling operations, respectively. The purpose of this series
of operations is to fuse the extracted features in order to produce a feature representation with rich
information that facilitates better performance of the model in the task.

3. Experiments and result analysis
3.1. Experiment environment and parameter configuration

The programming language used in this experiment is Python 3.8, and the deep learning
framework is Pytorch 1.7, CUDA version 11.1. The processor is the Intel(R) Xeon(R) Platinum 8255C,
the graphics card is the NVIDIA RTX 2080Ti discrete graphics card, and 40G of RAM, there is the
training and testing are carried out on a Linux operating system. In the training process, we use the
binary cross-entropy loss Bceloss, the batch size is set to 4, and the number of epochs is set to 200
times during network training.

3.2. Datasets

In order to verify the effectiveness of the model, this paper uses 2 different types of public datasets
in the medical field. The datasets are medical image segmentation tasks in different modalities, which
are lung segmentation and skin lesion segmentation in CT images. The lung segmentation dataset Luna
dataset in CT images is from the Kaggle Lung Nodule Analysis Competition in 2017. In the Luna
dataset for lung data, a total of 267 images were included, of which 213 images were used as the
training set, 54 images were used as the test set, and the validation set was the same as the test set. The
skin lesion segmentation dataset isic2017 is provided by the International Skin Imaging Collaboration
(ISIC). The ISIC 2017 dataset has three sets: the training set (2000 images), the validation set (150
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images), and the test set (600 images), with a total of 2750 images. Ground truth values for the mask
images in these datasets were generated using various techniques. All data were reviewed and
organized by practicing dermatologists with expertise in dermoscopy, which is accurate and reliable.
The image data split for the training set, validation set, and test set is shown in Table 1.

Table 1. Split segmentation of image data for training set, validation set, and test set.

Dataset Train Valid Test Total
Luna 213 - 54 267
Isic2017 2000 150 600 2750

3.3. Evaluation index

The evaluation indexes in this paper mainly consist of the intersection and merger ratio (lou), Dice
similarity coefficient, Hd (Hausdorff distance, Hd) coefficient, and cross entropy loss function (Binary
Cross Entropy Loss, BCELoss) to comprehensively evaluate the performances of different models. At
the same time, we also include the processing time of each network and the number of learnable
parameters to show the performance of each network comprehensively.

The lou and the Dice coefficient are evaluation metrics commonly used in medical image
segmentation, which take into account the degree of spatial overlap between model prediction and
actual annotation, and are more suitable for facing pixel-level matching in segmentation tasks. In this
paper, lou denotes the degree of area similarity between the segmented object and the original object,
and Dice coefficient measures the two ensemble similarity metrics, both taking values in the range of [0,
1]. In Egs (10) and (11), A is the prediction result and B is the real labeling value; the larger the value of
the indicator, the higher the similarity with the actual results, the better the segmentation results.

Hd is a measure that describes the degree of similarity between the two sets of point sets, which
indicates that the segmentation results and the labeling results of the two sets of point sets between the
shortest distance of the maximum value measure the maximum degree of mismatch between the two. In
Eq (12), h(A,B) and h(B,A) are the one-way Hausdorff distance from set A to set B and from set B to set
A, respectively. h(A,B) first ranks the distance between each point a; in the set of points A to point bj in
set B which is closest to this point, and finally takes the maximum value of this distance as h(A,B); the
smaller the value means the closer the segmentation result and the labeling result. BCELoss has good
effect on the multiclassification image segmentation problem. In Eq (13), N is the total number of
medical image samples, y; is the category to which the ith sample belongs, and p; is the predicted value
of the ith sample, and the smaller the value of loss means the closer the model segmentation result and
the real labeling result.

ANnB
|0U(A, B) = m (10)
. 2|AnB
Dice = 1D
[A+[B]
H (A, B) =max(h(A, B),h(B, A)) 12)
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BCELoss=— =3[y, l0g(p) +(1-¥,)log(1- ] 13

1 h(B, A) = max{min

beB ~acA

where h(A, B) = max{min la—b b—al}and |a—b] is the one-way Hausdorff

distance between set A and set B, and |jo—al| is the one-way Hausdorff distance between set B and set

A.
3.4. Experimental results and analysis

To verify the performance advantages of the medical image segmentation model proposed in this
paper, we compare it with several other classical medical image segmentation models, including U-Net,
U-Net++, Attention U-Net, Ce-Net, UNeXt, and CMUNeXt. Table 2 provides the performance
comparison of the different models on the Luna for Liver Images and Isic for Skin Damage2017
performance comparison on the dataset.

Table 2. Comparison of experimental data from different methods on the Luna and Isic2017 datasets.

Para Luna Isic2017

Networks ms Iout  Dicet hd| Loss|] Time TIout Dicet hd] Loss| Time
(M)

U-Net 3452 9289 9596 6.294 1359 1269 79.29 8395 6.709 2944 3734

U-Net++ 2690 9338 9624 6.258 0.935 11.84 8031 8749 4705 3.274 36.68
Attention-UNet  34.87 93.67 96.75 6.208 1.283 1247 8172 8899 5746 2744 37.49
Ce-Net 18.63 93.64 96.72 6.209 0.531 11.08 81.05 88.63 5708 1.835 3225
UNeXt 147 9426 9680 6.132 0.801 9.65 8266 88.85 4.733 1767 2721
CMUNeXt 314 9491 9703 6.178 0.822 10.71 83.05 89.01 4.686 1.046 28.09
DAU-Net 350 9546 97.36 5.874 0463 1028 8336 89.22 4.657 0.730 29.42

*Note: Time is the network processing time in h, Params(M) is the number of learnable parameters of the network.

From the experimental results in Table 2, it can be seen that the DAU-Net model proposed in this
paper has better results in the four metrics of lou, Dice, Hd, and loss on the Luna and Isic2017 datasets
compared to the other models. However, in terms of network learnable parameters, the UNeXt network
has fewer parameters and therefore has a shorter runtime. In the base network U-Net, the convolution
operation used is a local operation, which does not have a larger sensory field and cannot fully tap into
enough contextual information, so there is a loss of semantic information, and in the subsequent
improvement of the network, the effect has increased significantly. In contrast, our model shows better
performance in the Luna dataset. DAU-Net improves the lou and Dice by 0.5 and 0.33%, respectively,
compared to the CMUNeXt network, while reducing the loss by 0.359. For the Isic2017 dataset, our
proposed model also has a better performance, but since the Isic2017 dataset is large, the running time
is relatively long. Figure 3 shows some segmentation results.
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Figure 3. Segmentation results of different models on Luna and 1sic2017 datasets, where
(a) original graph; (b) Ground Truth; (c) U-Net; (d) U-Net++; (e) Attention-UNet; (f)
Ce-Net; (g) UNeXt; (h) CMUNeXt; (i)DAU-Net.

3.5. Ablation experiments

Table 3. Results of ablation experiments.

Model Tou? Dicet hd| Loss]

U-Net 0.9289 0.9596 6.2947 1.3591
U-Net+stem 0.9357 0.9643 6.2140 1.3095
U-Net+hp 0.9346 0.9625 6.2142 1.3142
U-Net+DSAG 0.9399 0.9683 6.0479 1.2947
U-Net+hp+DSAG 0.9468 0.9698 6.1943 1.0439
U-Net+stem+DSAG 0.9519 0.9716 5.9837 0.8046
U-Net+stem+hp+DSAG 0.9546 0.9736 5.8735 0.4634

*Note: stem denotes encoder head module; hp denotes The Hadamard product; DSAG denotes Dual Scale Attention
Gate.
In order to verify the validity of multiple modules of the experimental model in this paper, ablation
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experiments are conducted on the stem, the Hadamard product, and dual-scale attention gate modules
based on the U-Net network. The ablation experiments are conducted on the Luna dataset and the
results are shown in Table 3.

From the data of the ablation experiments, it can be seen that when only stem and hp are added to
the U-Net network, the performance of the network is only improved in a relatively small way, which is
due to the fact that the extracted feature information is not fully utilized in the enhancement of the
network's feature extraction, and so the performance of the network is not particularly improved. When
the DSAG module is added, the network enhances the extracted information with features while
expanding the sensory field to filter out the more valuable features, and it can be seen that the model
improves by 1.1% in lou value compared to the U-Net, indicating that the module plays a certain
positive influence in the network. When all the modules are added together, stem reduces the loss of
input image feature information, and hp generates feature representations with more representational
ability, which is used to improve the understanding of different levels and semantic information, and
finally, when going through DSAG, features are fused with contextual information from different scales,
and the performance of the attention mechanism is exerted to enhance the target features after enough
features are extracted, and from the experimental result From the experimental results, the lou and Dice
coefficients are improved by 2.57 and 1.4%, respectively, compared to U-Net network, which shows
the better segmentation effect and better performance of our proposed model.

4. Discussion

In order to validate the performance of our proposed network, we have extensively studied the
existing SOTA methods. At the same time we also scrutinized the PSNet network, which we know from
the literature [26] is based on a dual-encoder-decoder architecture where the attention mechanism is
incorporated into almost every module and level of the network through skip connections between the
PS codecs, which allows the network to better capture the important features in the image. The
difference with the model proposed in this paper is that DAU-Net utilizes a dual-scale attention gate,
which improves the attention to global and local structures through a combination of point-by-point
convolution and dilation convolution. From the experimental results, although the model shows better
performance, it needs further enhancement and improvement in terms of edges and boundaries of the
image, whereas PSNet uses the Transformer decoder as well as skipping the attention mechanism in the
connections to enhance the attention to the critical regions. The model mainly focuses on the task of
deep polyp segmentation of colonoscopy images, which is capable of identifying the location of polyps
at the pixel level and distinguishing them from healthy tissues, and is suitable for the field of endoscopy.
PSNet outperforms the current state-of-the-art results by comparing the existing five publicly available
polyp datasets in an extensive study with performances of 0.863 and 0.797 in terms of mDice and mloU,
respectively. These two approaches, although different in their target domains, do share a common
focus on key issues in image segmentation, which also inspires us to continue our research on image
segmentation problems in the future.

A series of networks with superior performance have also emerged in the field of damage
segmentation, including but not limited to AttentionU-net, CrackSegNet, Deeplab 3+, FPHBN, and
U-Net. Among them, AttentionU-net, DeeplabV3+ and U-Net are the comparative experimental
models in this paper. DeeplabV3+ [27] is a deep learning model for semantic image segmentation with
a DCNN with null convolution and then a spatial pyramid pooling module with null convolution as its
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main body, mainly to introduce multiscale information to enable the model to capture context from a
variety of sensory fields. CrackSegNet [28] is a concrete crack segmentation network based on
convolutional neural networks, which includes a backbone network, spatial pyramid pooling, and jump
connection module, etc. FPHBN [29] is also a deep learning-based road crack detection method, which
mainly integrates contextual information into low-level features in a feature pyramid fashion for crack
detection. Although CrackSegNet and FPHBN are used for automatic crack segmentation tasks, there
are some similarities with medical image segmentation in their network structures and feature
extraction strategies. We can gain insight into their generalization and flexibility in different domains
and consider whether they can also be useful in medical image segmentation tasks.

At the same time, we strongly agree that advanced networks based on attention modules have
developed lightweight architectures with state-of-the-art performance. For example, [30] presents a
network used to train an internal damage segmentation network (IDSNet). The network focuses on
active thermography and uses an attention-based generative adversarial network (AGAN) to generate
synthetic images. IDSNet exhibits a very high real-time processing capability, and its lightweight
architecture results in a total number of learnable parameters of only 0.085 M. The network achieves
significant performance gains on the internal damage segmentation task. [31] proposes a novel
Semantic Translator Representation Network (STRNet) focusing on real-time crack segmentation at the
pixel level. The network mainly consists of a squeezing and excitation attention-based encoder and an
attention-based multi-head attention decoder, and the network achieves efficient and accurate crack
segmentation while maintaining a fast processing speed. In addition, the network achieves the fastest
processing speed of 49.2 frames per second by using a combination of techniques such as lightweight
structures and optimized loss functions in its design, and STRNet shows the best performance in the
evaluation metrics compared to other state-of-the-art networks. The discussion and study of these
lightweight architecture networks with state-of-the-art performance also gives us important ideas for
our subsequent research work.

In our future research, we will compare in detail the similarities and differences between our work
and these state-of-the-art models; especially in terms of lightweight architecture, performance effects,
and applicable scenarios. We will endeavor to ensure a thorough discussion of these related works in
order to design networks with better performance.

5. Conclusions

In this paper, we propose the DSAG module to combine point-by-point convolution and dilation
convolution to increase the receptive field without enlarging the feature dimensions, so that it captures
more contextual information and realizes the fusion of feature mapping to improve the representational
ability of the features. In addition, stem block and Hadamard product algorithms are introduced in the
codec section in combination with convolution to avoid losing more feature information and at the same
time generating more representational feature representations, which helps to deal with image
variations at different scales. Based on this, we propose DAU-Net and show through experiments that
our model can efficiently extract feature information, more accurately localize and segment the
structure and lesion regions in medical images, showing better performance, and also can be applied to
different scenarios. However, despite the success of our model, from the results, there is still room for
improvement in edge and boundary detection; especially for some subtle structures in the edge region
of the image, the model is fuzzy or inaccurate when performing segmentation. Therefore, in the
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subsequent research, we will further optimize the DAU-Net model for edges and boundaries at different
scales, so as to make it have a certain degree of continuity and stability, and to prevent the occurrence of
broken or unnatural boundaries in the segmentation results. Eventually, the optimization will make it
adaptable to more medical segmentation tasks.
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