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Abstract: Medical image segmentation has an important application value in the modern medical 

field, it can help doctors accurately locate and analyze the tissue structure, lesion areas, and organ 

boundaries in the image, which provides key information support for clinical diagnosis and treatment, 

but there are still a large number of problems in the accuracy of the segmentation, so in this paper, we 

propose a medical image segmentation network combining the Hadamard product and dual-scale 

attention gate (DAU-Net). First, the Hadamard product is introduced in the structure of the fifth layer 

of the codec for element-by-element multiplication, which can generate feature representations with 

more representational capabilities. Second, in the jump connection module, we propose a dual scale 

attention gating (DSAG), which can highlight more valuable features and achieve more efficient jump 

connections. Finally, in the decoder feature structure, the final segmentation result is obtained by 

aggregating the feature information provided by each part, and decoding is achieved by up-sampling 

operation. Through experiments on two public datasets, Luna and Isic2017, DAU-Net is able to extract 

feature information more efficiently using different modules and has better segmentation results 

compared to classical segmentation models such as U-Net and U-Net++, and also verifies the 

effectiveness of the model. 

Keywords: medical image segmentation; two-scale attention gates; Hadamard product; fully 

convolutional networks; feature fusion 
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1. Introduction 

Medical image segmentation, as a key task in the field of medical image processing, aims at 

accurately identifying and separating different tissue structures, organs, and lesion regions, etc. from 

medical images. With the continuous development of medical imaging technology, the wide application 

of high-resolution medical images, such as computed tomography (CT) [1,2] and ultrasonography [3], 

provides physicians with certain diagnostic and therapeutic tools. However, medical images often have 

highly complex structures, including organs, blood vessels, tumors, various tissue structures, and lesion 

areas [4–6], and it is a complex and time-consuming task to extract useful information from them and 

perform accurate analysis. Typically, quality and noise issues in medical images may also affect the 

accuracy of the segmentation results, thus requiring higher-level algorithms and networks to capture the 

subtle features of these structures, which makes medical image segmentation even more challenging. To 

cope with these challenges, researchers continue to propose new methods and algorithms. From 

traditional image segmentation algorithms [7–11] to image segmentation models based on 

convolutional neural networks [12–14], many innovative solutions have emerged in the field of medical 

image segmentation, and in particular, the rapid development of deep learning technology has 

revolutionized medical image segmentation. 

The emergence of convolutional neural networks (CNNs) and the introduction of fully 

convolutional networks (FCNs) have enabled image segmentation to no longer rely on traditional 

handcrafted feature engineering [15], but rather to learn and predict from the pixel level end-to-end, 

which greatly improves segmentation accuracy. However, these architectures face an important 

challenge in that critical detail information is often lost in the deep structure of the network. To cope 

with this problem, Ronneberger et al. first proposed the U-Net architecture [16], which employs an 

encoder and decoder design that allows the model to efficiently capture feature information at different 

scales, and introduces intermediate signal hopping connections in the symmetric structure to achieve 

this, which significantly improves performance in medical image segmentation. Inspired by the U-Net 

architecture in subsequent studies, Oktay et al. [17] proposed Attention U-Net, which aims to introduce 

the self-attention mechanism into the U-Net architecture so that the model can focus more on the 

important regions in the image, which helps to better capture the subtle image features and thus 

improves the accuracy and robustness of the segmentation. Zhou et al. [18] proposed the U-Net++ 

structure, the core idea of this method is to construct a pyramidal feature extraction network, which 

significantly improves the performance of the model by introducing a multi-scale feature fusion 

mechanism to reduce the lost semantic information, enabling the model to better understand the 

information in the image. Huang et al. [19] proposed the U-Net3+, which is an extension and 

improvement of the classical U-Net, and designed a full-scale jump-joining method to combine low- 

and high-resolution information at different scales to further improve segmentation performance. He et 

al. [20] proposed ResNet by introducing the residual module, which uses jump connections to simplify 

the training of the deep network and solves the problem of the increase in the number of layers of the 

neural network that leads to difficulty in training. Alom et al. [21] proposed the R2U-Net model by 

combining residual networks, U-Net, and recurrent residual neural networks (RCNN), which 

overcomes the problem of gradient vanishing in deep neural networks and realizes the iterative transfer 

of information while preserving the contextual information and local details, enabling R2U-Net to 

perform multiple loop operations on different scales, which helps to better understand the global context 

of an image. Chen et al. [22] proposed TransUNet, which for the first time is based on the Transformer 

module, allowing the model to automatically capture global information and long-range dependencies 

in an image. In addition, TransUNet introduces jump connectivity and deep feature fusion to preserve 
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local details and contextual information in images. This comprehensive architecture allows TransUNet 

to excel in medical image segmentation, especially for images with complex structures and rich textures. 

Ruan et al. [23] proposed EGE-UNet, which combines a Hadamard Product Attention Module (GHPA) 

and a Group Aggregation Bridge Module (GAB) in a lightweight manner. GHPA groups input features 

and performs Hadamard Product Attention Mechanism (HPA) on different axes to extract pathology 

information from different perspectives. GAB effectively fuses multi-scale information by grouping 

low-level features, high-level features, and masks generated by the decoder at each stage, while still 

providing high segmentation performance with only 50KB of parameters. Valanarasu et al. [24] 

proposed UNeXt, which inherits the encoder-decoder structure of U-Net and the design of the hopping 

connection, retaining the model advantage of processing local features and global contextual 

information, while one of the key innovations is the introduction of the ability to process multimodal 

image data. UNeXt is able to process information from multiple modalities simultaneously, fusing them 

together so as to fully utilize the complementary information of different modalities and to improve the 

accuracy of segmentation. This cross-modal fusion makes UNeXt suitable for a wider range of medical 

image segmentation tasks, capturing fine structures and textures in medical images, while possessing 

strong generalization ability. Tang et al. [25] proposed CMUNeXt, which is a network that improves on 

the UNeXt model to enable fast and accurate assisted diagnosis in real scene scenarios. CMUNeXt 

utilizes its large kernel and inverted bottleneck design to thoroughly mix long-range spatial and 

positional information to efficiently extract global contextual information, in addition to introducing the 

Skip-Fusion block, which aims to realize smooth jump connections and ensure sufficient feature fusion. 

In addition to this, we found an attention module based dual encoder decoder for colonoscopic polyp 

segmentation network PSNet proposed by Lewis et al. [26]. Specifically, this network consists of a dual 

encoder and decoder, which is composed of a (polyp segmentation)PS encoder, Transformer encoder, 

PS decoder, Enhanced Expansion Transformer decoder, partial decoder, and merge module are 

synthesized. This dual codec structure enables efficient feature extraction and exploitation, plus 

synchronized codec operations help to better capture key features in the image. In addition, PSNet 

utilizes skip connections to preserve feature information at different levels, and attention mechanisms 

are incorporated into almost every level and module of the network to further increase the network’s 

focus on important regions. This helps the network to be able to segment polyps in colonoscopy images 

more accurately. 

In this paper, we propose DAU-Net, a medical image segmentation network that combines the 

Hadamard product and biscale attention gates. At the encoder head, we introduce a stem module to 

extract raw features from the input image. Extracting enough feature information from the beginning 

can compensate to some extent for the spatial information lost during subsequent feature extraction 

operations. In layers 1–4 of the network, we use depth-separable convolution and point-by-point 

convolution to extract spatial and channel information. In the convolution block of layer 5, we apply the 

Hadamard product algorithm to fuse the feature maps of different levels or channels to deal with the 

variation of the image at different scales. In the decoder stage, we propose a combination of Dual Scale 

Attention Gate (DSAG) and up-sampling operations, which is a module mainly composed of 

point-by-point convolution and dilation convolution, where point-by-point convolution is mainly used 

to reduce the dimensionality of the features, and dilation convolution is used to expand the sensory field 

and capture more contextual information so as to better capture the global and local structures in the 

image. In summary, the main contributions of this paper can be summarized as follows: 

1) The DAU-Net model is proposed, which introduces a stem module in the head of the encoder for 

extracting the original features of the image to prevent too much feature information from being lost due 

to the jump connections at the top layer, and applies the Hadamard product operation at the last layer of 
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the codec, which can multiply the feature information of the feature maps element-by-element, thus 

generating feature representations with more characterizing ability, which can help to improve the 

comprehension of the semantic information of the different levels and enhance the accuracy of the 

segmentation; 

2) In the decoder stage, we combine the up-sampling operation with the proposed DSAG, which is 

a module that mainly employs point-by-point convolution and dilation convolution composition, and 

then configures the activation function and the batch normalization process to connect these two kinds 

of convolution for feature-feature fusion and information transfer, and then finally screen out the more 

valuable features through a convolution with a voting mechanism, which improves the performance and 

applicability of the model; 

3) Experimental analysis using two different datasets of lung CT images and skin lesion 

segmentation, the experimental results show that the DAU-Net model proposed in this paper is better 

than the previous SOTA segmentation models in terms of Iou and Dice coefficients, and has better 

segmentation performance and higher accuracy. 

The rest of the paper is organized as follows: Section 2 describes the overall architecture of the 

network and the detailed aspects of our proposed method. Section 3 introduces the experimental design 

section and provides experimental results, analyzes the network proposed in this paper in comparison 

with other classical networks, and verifies the usefulness of the key modules proposed in DAU-Net. In 

Section 4, we discuss several state-of-the-art networks that are currently available in the segmentation 

domain based on the attention mechanism and have a lightweight architecture. Finally, the paper is 

summarized in Section 5. 

2. The proposed methods 

 

Figure 1. Structure of the DAU-Net network, where the number of channels C1~C5 of 

the network is set to 32, 64, 128, 256, and 512, respectively. 

The network architecture of our proposed DAU-Net is shown in Figure 1. It has a similar codec 

structure to U-Net, which consists of a total of five layers from top to bottom, and is divided into two 

stages: encoder and decoder with jump connections. In the encoder stage, semantic feature information 
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of medical images is extracted by constructing a convolutional neural network, and the number of 

channels is extended with convolutional blocks. In the decoder stage, the features extracted by 

dual-scale attention gating are fused with the up-sampled features of the decoder to realize the global 

semantic information of the medical image is captured and accurately segmented. 

2.1. Encoder stage 

The encoder has five layers from top to bottom. The first four layers include depth separable 

convolution, point-by-point convolution, GELU activation function, batch normalization, and 

downsampling operations. At the fifth layer, we introduce the Hadamard product algorithm in the 

convolution, and in addition to that, we include a stem block after the input for extracting the original 

features of the input image. In order to avoid the loss of important semantic feature information due to 

inconsistent jump connections at the top layer, we set up two ordinary convolutional blocks consisting 

of a convolutional layer with a convolutional kernel size of 3 × 3, a step size of 1, a padding of 1, a batch 

normalization layer, and a ReLU activation function, respectively. 

In the encoder section, the main components of the convolution block are depth-separable 

convolution and point-by-point convolution. Compared to normal convolution, depth-separable 

convolution effectively reduces memory requirements and reduces the computational effort of 

convolution operations. In the encoder, we use a deep convolution with a larger convolution kernel size 

to extract the global information of each channel and then perform residual concatenation. In order to 

fully fuse the spatial and channel information, we apply two point-by-point convolutions after the deep 

separable convolution. At the same time, we set the hidden dimension between the two point-by-point 

convolution layers to be four times the width of the input dimension, and by extending the hidden 

dimension, we are able to more fully and comprehensively blend the global spatial dimension 

information extracted by the deep convolution. In addition, we process the paradigm layers using the 

GELU activation function and batch normalization after each convolution. The encoder part of the 

convolution block can be defined as 
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where tf denotes the output feature mapping of layer 1 in the stem block, 1 denotes the GELU 

activation function, and BN denotes the batch normalization layer. 

2.2. The Hadamard product 

In deep convolutional neural networks, the Hadamard product can fuse feature maps of different 

levels or channels. By multiplying the corresponding elements of two feature maps A and B with the 

same dimensionality, fusing them element by element can combine the relevant information of the two 

feature maps. We use this algorithm in the fifth layer of the encoder and decoder structure to generate 

feature representations with more representational power. This helps to improve the understanding of 

different levels and semantic information and increase the accuracy of segmentation. The mathematical 
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expression for the Hadamard product operation is 

BAC ⊙           )4(  

where C is a new tensor with the same shape as A and B. Each element of C is the product of the 

elements at the corresponding positions in A and B, i.e., the elements in the i-th row and j-th column of 

C are equal to the product of the elements in the i-th row and j-th column of A and B. 

In this convolution block, given an input x and a randomly initialized learnable tensor p, bilinear 

interpolation is used to adjust the size of p to match the size of x. Then, we use a depth-separable 

convolution on p, followed by a hadamard product operation between x and p to obtain the output. 

Subsequently, after our proposed biscale attention gate, the robustness of the model is improved by 

subjecting images from different scales or resolutions to hadamard product operations, which helps to 

deal with the variation of objects in the image at different scales. 

2.3. Dual scale attention gating 

The decoder stage also consists of a total of five layers from top to bottom. Each layer consists of a 

jump connection module and an upsampling block, connected in the middle by the dual-scale attention 

gate(DSAG) proposed in this paper, as shown in Figure 2. In the DSAG, in order to adaptively select 

semantic features with different resolutions, we use a point-by-point convolution and a dilation 

convolution to extract semantic features with different receptive fields. Among them, the point-by-point 

convolution is mainly used to reduce the dimensionality of the features, and the dilation convolution is 

used to expand the receptive field and capture more contextual information. Each convolution is 

equipped with a GELU function and a batch normalization layer for feature fusion and information 

transfer, and these two convolutions are connected to generate feature maps of the same size. 

Subsequently, the output feature maps are then connected and the most valuable features are selected 

by a convolutional block with a voting mechanism, and finally a Sigmoid activation function is 

connected to control the output between 0–1. The module can be defined as 

)}})({{

)}},(t{{(

2

2

fnvDilationCoBN

fwiseConvPoinBNConcatfConcat





      

)5(
 

ffVoteConvff Concatm  ))((3        
)6(  

where Concatf denotes connecting the features, mf comes from the output features of the DSAG, f

represents the encoded features, and 2 and 3 denote the GELU and Sigmoid activations, respectively. 

 

Figure 2. Dual scale attention gating. 
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2.4. Decoder stages with skip-connections 

The decoder part is also composed of five layers from bottom to top, each layer including a 

skip-connection and an upsampling module. Most of the traditional skip-connections use ordinary 

convolution operations for feature fusion. In our encoder part, we set up a Group convolution with a 

Group of 2 to extract the features obtained from the skip-connections and up-sampling operations one 

by one, respectively, and the convolution kernel size of this convolution is set to be 3 × 3, with a step 

size of 1 and a padding of 1. In order to merge the extracted features enough to be fused, we merge two 

inverse point-by-point convolutions after the Group convolution, which adaptively assigns the features 

before fusion to the Group convolution and does a large amount of feature fusion. Each convolution is 

followed by a GELU activation function and a BatchNorm layer as defined below: 
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Ultimately, '

xf denotes the output fused feature map in the decoder, while f and f denote the 

features obtained by the jump-join and up-sampling operations, respectively. The purpose of this series 

of operations is to fuse the extracted features in order to produce a feature representation with rich 

information that facilitates better performance of the model in the task. 

3. Experiments and result analysis 

3.1. Experiment environment and parameter configuration 

The programming language used in this experiment is Python 3.8, and the deep learning 

framework is Pytorch 1.7, CUDA version 11.1. The processor is the Intel(R) Xeon(R) Platinum 8255C, 

the graphics card is the NVIDIA RTX 2080Ti discrete graphics card, and 40G of RAM, there is the 

training and testing are carried out on a Linux operating system. In the training process, we use the 

binary cross-entropy loss BceLoss, the batch size is set to 4, and the number of epochs is set to 200 

times during network training. 

3.2. Datasets 

In order to verify the effectiveness of the model, this paper uses 2 different types of public datasets 

in the medical field. The datasets are medical image segmentation tasks in different modalities, which 

are lung segmentation and skin lesion segmentation in CT images. The lung segmentation dataset Luna 

dataset in CT images is from the Kaggle Lung Nodule Analysis Competition in 2017. In the Luna 

dataset for lung data, a total of 267 images were included, of which 213 images were used as the 

training set, 54 images were used as the test set, and the validation set was the same as the test set. The 

skin lesion segmentation dataset isic2017 is provided by the International Skin Imaging Collaboration 

(ISIC). The ISIC 2017 dataset has three sets: the training set (2000 images), the validation set (150 
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images), and the test set (600 images), with a total of 2750 images. Ground truth values for the mask 

images in these datasets were generated using various techniques. All data were reviewed and 

organized by practicing dermatologists with expertise in dermoscopy, which is accurate and reliable. 

The image data split for the training set, validation set, and test set is shown in Table 1. 

Table 1. Split segmentation of image data for training set, validation set, and test set. 

Dataset Train Valid Test Total 

Luna 213 - 54 267 

Isic2017 2000 150 600 2750 

3.3. Evaluation index 

The evaluation indexes in this paper mainly consist of the intersection and merger ratio (Iou), Dice 

similarity coefficient, Hd (Hausdorff distance, Hd) coefficient, and cross entropy loss function (Binary 

Cross Entropy Loss, BCELoss) to comprehensively evaluate the performances of different models. At 

the same time, we also include the processing time of each network and the number of learnable 

parameters to show the performance of each network comprehensively.  

The Iou and the Dice coefficient are evaluation metrics commonly used in medical image 

segmentation, which take into account the degree of spatial overlap between model prediction and 

actual annotation, and are more suitable for facing pixel-level matching in segmentation tasks. In this 

paper, Iou denotes the degree of area similarity between the segmented object and the original object, 

and Dice coefficient measures the two ensemble similarity metrics, both taking values in the range of [0, 

1]. In Eqs (10) and (11), A is the prediction result and B is the real labeling value; the larger the value of 

the indicator, the higher the similarity with the actual results, the better the segmentation results. 

Hd is a measure that describes the degree of similarity between the two sets of point sets, which 

indicates that the segmentation results and the labeling results of the two sets of point sets between the 

shortest distance of the maximum value measure the maximum degree of mismatch between the two. In 

Eq (12), h(A,B) and h(B,A) are the one-way Hausdorff distance from set A to set B and from set B to set 

A, respectively. h(A,B) first ranks the distance between each point ai in the set of points A to point bj in 

set B which is closest to this point, and finally takes the maximum value of this distance as h(A,B); the 

smaller the value means the closer the segmentation result and the labeling result. BCELoss has good 

effect on the multiclassification image segmentation problem. In Eq (13), N is the total number of 

medical image samples, yi is the category to which the ith sample belongs, and pi is the predicted value 

of the ith sample, and the smaller the value of loss means the closer the model segmentation result and 

the real labeling result. 
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and ba is the one-way Hausdorff 

distance between set A and set B, and ab is the one-way Hausdorff distance between set B and set 

A.
 

3.4. Experimental results and analysis 

To verify the performance advantages of the medical image segmentation model proposed in this 

paper, we compare it with several other classical medical image segmentation models, including U-Net, 

U-Net++, Attention U-Net, Ce-Net, UNeXt, and CMUNeXt. Table 2 provides the performance 

comparison of the different models on the Luna for Liver Images and Isic for Skin Damage2017 

performance comparison on the dataset. 

Table 2. Comparison of experimental data from different methods on the Luna and Isic2017 datasets. 

Networks 

Para

ms 

(M) 

Luna Isic2017 

Iou↑ Dice↑ hd↓ Loss↓ Time Iou↑ Dice↑ hd↓ Loss↓ Time 

U-Net 34.52 92.89 95.96 6.294 1.359 12.69 79.29 83.95 6.709 2.944 37.34 

U-Net++ 26.90 93.38 96.24 6.258 0.935 11.84 80.31 87.49 4.705 3.274 36.68 

Attention-UNet 34.87 93.67 96.75 6.208 1.283 12.47 81.72 88.99 5.746 2.744 37.49 

Ce-Net 18.63 93.64 96.72 6.209 0.531 11.08 81.05 88.63 5.708 1.835 32.25 

UNeXt 1.47 94.26 96.80 6.132 0.801 9.65 82.66 88.85 4.733 1.767 27.21 

CMUNeXt 3.14 94.91 97.03 6.178 0.822 10.71 83.05 89.01 4.686 1.046 28.09 

DAU-Net 3.50 95.46 97.36 5.874 0.463 10.28 83.36 89.22 4.657 0.730 29.42 

*Note: Time is the network processing time in h, Params(M) is the number of learnable parameters of the network. 

From the experimental results in Table 2, it can be seen that the DAU-Net model proposed in this 

paper has better results in the four metrics of Iou, Dice, Hd, and loss on the Luna and Isic2017 datasets 

compared to the other models. However, in terms of network learnable parameters, the UNeXt network 

has fewer parameters and therefore has a shorter runtime. In the base network U-Net, the convolution 

operation used is a local operation, which does not have a larger sensory field and cannot fully tap into 

enough contextual information, so there is a loss of semantic information, and in the subsequent 

improvement of the network, the effect has increased significantly. In contrast, our model shows better 

performance in the Luna dataset. DAU-Net improves the Iou and Dice by 0.5 and 0.33%, respectively, 

compared to the CMUNeXt network, while reducing the loss by 0.359. For the Isic2017 dataset, our 

proposed model also has a better performance, but since the Isic2017 dataset is large, the running time 

is relatively long. Figure 3 shows some segmentation results. 
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(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Figure 3. Segmentation results of different models on Luna and Isic2017 datasets, where 

(a) original graph; (b) Ground Truth; (c) U-Net; (d) U-Net++; (e) Attention-UNet; (f) 

Ce-Net; (g) UNeXt; (h) CMUNeXt; (i)DAU-Net. 

3.5. Ablation experiments 

Table 3. Results of ablation experiments. 

Model Iou↑ Dice↑ hd↓ Loss↓ 

U-Net 0.9289 0.9596 6.2947 1.3591 

U-Net+stem 0.9357 0.9643 6.2140 1.3095 

U-Net+hp 0.9346 0.9625 6.2142 1.3142 

U-Net+DSAG 0.9399 0.9683 6.0479 1.2947 

U-Net+hp+DSAG 0.9468 0.9698 6.1943 1.0439 

U-Net+stem+DSAG 0.9519 0.9716 5.9837 0.8046 

U-Net+stem+hp+DSAG 0.9546 0.9736 5.8735 0.4634 

*Note: stem denotes encoder head module; hp denotes The Hadamard product; DSAG denotes Dual Scale Attention 

Gate. 

In order to verify the validity of multiple modules of the experimental model in this paper, ablation 
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experiments are conducted on the stem, the Hadamard product, and dual-scale attention gate modules 

based on the U-Net network. The ablation experiments are conducted on the Luna dataset and the 

results are shown in Table 3. 

From the data of the ablation experiments, it can be seen that when only stem and hp are added to 

the U-Net network, the performance of the network is only improved in a relatively small way, which is 

due to the fact that the extracted feature information is not fully utilized in the enhancement of the 

network's feature extraction, and so the performance of the network is not particularly improved. When 

the DSAG module is added, the network enhances the extracted information with features while 

expanding the sensory field to filter out the more valuable features, and it can be seen that the model 

improves by 1.1% in Iou value compared to the U-Net, indicating that the module plays a certain 

positive influence in the network. When all the modules are added together, stem reduces the loss of 

input image feature information, and hp generates feature representations with more representational 

ability, which is used to improve the understanding of different levels and semantic information, and 

finally, when going through DSAG, features are fused with contextual information from different scales, 

and the performance of the attention mechanism is exerted to enhance the target features after enough 

features are extracted, and from the experimental result From the experimental results, the Iou and Dice 

coefficients are improved by 2.57 and 1.4%, respectively, compared to U-Net network, which shows 

the better segmentation effect and better performance of our proposed model. 

4. Discussion 

In order to validate the performance of our proposed network, we have extensively studied the 

existing SOTA methods. At the same time we also scrutinized the PSNet network, which we know from 

the literature [26] is based on a dual-encoder-decoder architecture where the attention mechanism is 

incorporated into almost every module and level of the network through skip connections between the 

PS codecs, which allows the network to better capture the important features in the image. The 

difference with the model proposed in this paper is that DAU-Net utilizes a dual-scale attention gate, 

which improves the attention to global and local structures through a combination of point-by-point 

convolution and dilation convolution. From the experimental results, although the model shows better 

performance, it needs further enhancement and improvement in terms of edges and boundaries of the 

image, whereas PSNet uses the Transformer decoder as well as skipping the attention mechanism in the 

connections to enhance the attention to the critical regions. The model mainly focuses on the task of 

deep polyp segmentation of colonoscopy images, which is capable of identifying the location of polyps 

at the pixel level and distinguishing them from healthy tissues, and is suitable for the field of endoscopy. 

PSNet outperforms the current state-of-the-art results by comparing the existing five publicly available 

polyp datasets in an extensive study with performances of 0.863 and 0.797 in terms of mDice and mIoU, 

respectively. These two approaches, although different in their target domains, do share a common 

focus on key issues in image segmentation, which also inspires us to continue our research on image 

segmentation problems in the future. 

A series of networks with superior performance have also emerged in the field of damage 

segmentation, including but not limited to AttentionU-net, CrackSegNet, Deeplab V3+, FPHBN, and 

U-Net. Among them, AttentionU-net, DeeplabV3+ and U-Net are the comparative experimental 

models in this paper. DeeplabV3+ [27] is a deep learning model for semantic image segmentation with 

a DCNN with null convolution and then a spatial pyramid pooling module with null convolution as its 



2764 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2753–2767. 

main body, mainly to introduce multiscale information to enable the model to capture context from a 

variety of sensory fields. CrackSegNet [28] is a concrete crack segmentation network based on 

convolutional neural networks, which includes a backbone network, spatial pyramid pooling, and jump 

connection module, etc. FPHBN [29] is also a deep learning-based road crack detection method, which 

mainly integrates contextual information into low-level features in a feature pyramid fashion for crack 

detection. Although CrackSegNet and FPHBN are used for automatic crack segmentation tasks, there 

are some similarities with medical image segmentation in their network structures and feature 

extraction strategies. We can gain insight into their generalization and flexibility in different domains 

and consider whether they can also be useful in medical image segmentation tasks. 

At the same time, we strongly agree that advanced networks based on attention modules have 

developed lightweight architectures with state-of-the-art performance. For example, [30] presents a 

network used to train an internal damage segmentation network (IDSNet). The network focuses on 

active thermography and uses an attention-based generative adversarial network (AGAN) to generate 

synthetic images. IDSNet exhibits a very high real-time processing capability, and its lightweight 

architecture results in a total number of learnable parameters of only 0.085 M. The network achieves 

significant performance gains on the internal damage segmentation task. [31] proposes a novel 

Semantic Translator Representation Network (STRNet) focusing on real-time crack segmentation at the 

pixel level. The network mainly consists of a squeezing and excitation attention-based encoder and an 

attention-based multi-head attention decoder, and the network achieves efficient and accurate crack 

segmentation while maintaining a fast processing speed. In addition, the network achieves the fastest 

processing speed of 49.2 frames per second by using a combination of techniques such as lightweight 

structures and optimized loss functions in its design, and STRNet shows the best performance in the 

evaluation metrics compared to other state-of-the-art networks. The discussion and study of these 

lightweight architecture networks with state-of-the-art performance also gives us important ideas for 

our subsequent research work. 

In our future research, we will compare in detail the similarities and differences between our work 

and these state-of-the-art models; especially in terms of lightweight architecture, performance effects, 

and applicable scenarios. We will endeavor to ensure a thorough discussion of these related works in 

order to design networks with better performance. 

5. Conclusions 

In this paper, we propose the DSAG module to combine point-by-point convolution and dilation 

convolution to increase the receptive field without enlarging the feature dimensions, so that it captures 

more contextual information and realizes the fusion of feature mapping to improve the representational 

ability of the features. In addition, stem block and Hadamard product algorithms are introduced in the 

codec section in combination with convolution to avoid losing more feature information and at the same 

time generating more representational feature representations, which helps to deal with image 

variations at different scales. Based on this, we propose DAU-Net and show through experiments that 

our model can efficiently extract feature information, more accurately localize and segment the 

structure and lesion regions in medical images, showing better performance, and also can be applied to 

different scenarios. However, despite the success of our model, from the results, there is still room for 

improvement in edge and boundary detection; especially for some subtle structures in the edge region 

of the image, the model is fuzzy or inaccurate when performing segmentation. Therefore, in the 
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subsequent research, we will further optimize the DAU-Net model for edges and boundaries at different 

scales, so as to make it have a certain degree of continuity and stability, and to prevent the occurrence of 

broken or unnatural boundaries in the segmentation results. Eventually, the optimization will make it 

adaptable to more medical segmentation tasks. 
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