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Abstract: In an era where global focus intensifies on sustainable development, in this study, I 

investigate the interplay between rapid urbanization, rural logistics evolution, and carbon dynamics 

in China. We aim to bridge the gap in existing literature by examining the tripartite relationship 

between these areas and their collective impact on sustainable development. I explore the dynamic 

interaction mechanisms between urban construction, rural logistics development, and carbon 

emissions, assessing their joint influence on sustainable development. A detailed analysis of demand 

dynamics and market mechanisms supporting urbanization, rural logistics development, and carbon 

emissions has been initiated, leading to the establishment of a theoretical framework. This 

framework adeptly captures the interdependencies and constraints among these variables, offering a 

mathematical and bioscientific perspective to understand their complex interactions. Furthermore, a 

sophisticated nonlinear model based on key quantitative indicators like urbanization level, rural 

logistics development, and carbon emissions has been incorporated. Considering the multivariate 

nature, uncertainty, and dynamism presented by the nonlinear model, genetic algorithms have been 

employed for the estimation of model parameters. Through rigorous empirical testing using data 

from China spanning the years 1991–2021, I not only validate the effectiveness of the model but also 

accurately the interactions between urbanization processes, rural logistics progression, and carbon 

emissions. The findings demonstrate that urban construction significantly drives rural logistics 

development and uncover a pronounced nonlinear relationship among urbanization, rural logistics 

development (with a significant pull effect of 4.2), and carbon emissions growth. This research 

highlights the subtle balance between rural-urban development and environmental management, 

providing theoretical backing for the creation of sustainable policy frameworks in rural contexts and 

setting a foundation for future research in this domain. 
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1. Introduction 

In the current global scenario, characterized by an intricate interplay between environmental 

and economic challenges [1,2], the phenomenon of climate change stands at the forefront, marked by 

a discernible increase in the frequency of natural disasters and extreme meteorological events [3,4]. 

These phenomena, while exerting significant impacts on both ecological systems and human 

societies, also pose a palpable threat to the stability of the global economic infrastructure [5]. 

Concurrently, the fabric of international relations is increasingly complicated by the variable nature 

of local conflicts and geopolitical tensions [6,7]. This complexity is further compounded by the 

widespread propagation of economic instability, which serves to amplify the uncertainties inherent in 

the global economic system [8]. 

Responding to this complex scenario, the Chinese government has proactively engaged in 

strategic planning to address these dual challenges. Central to this approach is the implementation of 

the Dual Circulation development strategy, complemented by the Dual Carbon objectives, forming the 

cornerstone of China's pursuit of sustainable development [9,10]. The Dual Circulation strategy 

endeavors to establish a harmonious balance between domestic and international economic flows [11], 

while concurrently addressing pressing environmental concerns. The Dual Carbon goals, on the other 

hand, are aimed at achieving carbon neutrality, a critical objective in mitigating the adverse impacts of 

climate change [12]. These strategies collectively embody a holistic approach, seeking not only to 

address environmental issues but also to stimulate economic growth, thereby representing a 

comprehensive response to the multifaceted challenges posed in the modern global context. 

In the context of the strategic framework delineated for addressing contemporary global 

challenges, urbanization emerges as a pivotal element [13–15]. This process plays a dual role: First, 

by refining consumption patterns and advancing the consumption structure, urbanization effectively 

translates the demographic dividend into an expansive domestic market [16]. This transformation is 

instrumental in bolstering the domestic circulation economy. Second, urbanization enhances the 

connectivity between urban centers and international markets [17]. This improvement fosters 

national trade and investment. It also augments the global competitiveness of urban areas [18]. 

Consequently, urbanization acts not merely as a catalyst for domestic economic circulation but also 

synergizes with international economic flows, thus contributing significantly to the integration and 

interconnectedness of the global economy. However, this trajectory of urbanization, particularly in 

the context of China, is accompanied by a spectrum of environmental challenges, with carbon 

emissions being a focal concern. As urbanization intensifies, there is a concomitant increase in both 

energy consumption and carbon emissions [19]. This trend presents a formidable challenge in the 

pursuit of the Dual Carbon objectives, which aim for carbon peak and carbon neutrality. The 

dynamic interplay between urbanization and its environmental impact necessitates a comprehensive 

understanding and innovative approaches to ensure sustainable urban development while aligning 

with the broader goals of environmental conservation and carbon neutrality. 

In the intricate urban-rural economic cycle, rural logistics serve as an indispensable conduit, 

playing a pivotal role in bolstering rural development and bridging the gap between rural economies 
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and urban marketplaces [20]. The advancement of rural logistics is key to enhancing the distribution 

of agricultural produce, which in turn augments the income of farmers and catalyzes economic 

growth within rural domains [21]. This process, integral to the overall socioeconomic framework, 

contributes to the stabilization and prosperity of rural areas. However, the expansion of rural logistics 

systems presents a multifaceted challenge, primarily due to its association with environmental 

concerns, notably carbon emissions. As rural logistics networks grow, there is an observable increase 

in carbon emissions, a phenomenon that directly contradicts the objectives of China’s Dual Carbon 

goals, which encompass both carbon peaking and carbon neutrality [22,23]. This presents a 

significant challenge in balancing the growth and efficiency of rural logistics with the imperative of 

environmental sustainability. 

Therefore, it becomes imperative to dissect and understand the complex and dynamic interplay 

between urbanization, the evolution of rural logistics, and their consequent impact on carbon 

emissions. This understanding is crucial for devising strategies that can harmonize the objectives of 

economic development and environmental sustainability, particularly in the context of achieving the 

Dual Carbon targets. Such an analysis requires an interdisciplinary approach, combining insights 

from mathematical modeling, economic theory, and environmental science to create comprehensive 

solutions that align with the overarching goal of sustainable development. 

In the realm of sustainable development, the interplay between urbanization, the evolution of 

rural logistics, and carbon emissions presents a multidimensional and intricate challenge. Historically, 

research in this domain has predominantly concentrated on the binary interactions between these 

elements. Nonetheless, a holistic understanding of their interdependencies and wider implications 

necessitates a thorough examination of several critical aspects: 

1) How does urbanization impact carbon emissions? As the process of urbanization 

advances, do energy consumption and carbon emissions show an increasing trend, 

thereby posing challenges to the achievement of the Dual Carbon goals? 

2) What is the correlation between the development of rural logistics and carbon emissions? 

Does the expansion of rural logistics lead to an increase in carbon emissions, and how 

can carbon neutrality be achieved while developing rural logistics? 

The bondage structure and interactions between urbanization, rural logistics, and carbon 

emissions require more refined analysis in this study to deepen the understanding of these issues, as 

shown in Figure 1. We first construct a binding model based on the developmental demands and 

market laws of urbanization, rural logistics, and carbon emissions; second, we use a nonlinear model 

to capture the dynamic interactions among them. Next, based on empirical data from China from 

1991 to 2021, we estimate parameters using advanced mathematical tools like genetic algorithms, 

ensuring the methodological rigor of the research. Finally, the interaction mechanisms between 

urbanization, rural logistics, and carbon emissions are revealed based on the parameter estimation 

results. The following subsections provide more detailed descriptions of the process. This research 

endeavors to bridge existing knowledge gaps and shed new light on the dynamic interplay between 

urbanization, rural logistics, and carbon emissions. We anticipate that our findings will elucidate the 

underlying mechanisms driving these interactions, thereby providing valuable insights for 

policymakers. 
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Figure 1. The research framework for analyzing the interaction mechanism. 

The paper is structured as follows: Section 3 introduces the binding structure between rural 

logistics development, urbanization, and carbon emissions, and establishes a nonlinear mathematical 

model. Section 4 utilizes empirical data from China to estimate the parameters of the nonlinear 

mathematical model according to the genetic algorithm. Section 5 uses the model parameters to 

validate the theoretical reasoning of the proposed model and presents management implications 

based on the binding structure. Finally, the concluding remarks are presented in Section 6. 

2. Literature review 

The introduction of the concepts of dual carbon goals and the dual economic cycle has elevated 

the level of attention on urban construction, rural logistics, and carbon emissions to a new height. To 

systematically review the existing theoretical research in these three areas, based on the differences in 

the dimensions of the research elements, the content can be categorized into the following two types. 

2.1. Advanced analysis of binary relationships 

2.1.1. Urbanization and logistics development 

The foundational work of Behrends [24], Liu and Su [25], and Pradhan et al. [26] posited logistics 

development as a catalyst for urbanization, a premise further reinforced by Chanieabate et al. [27] 

through their identification of a positive correlation between logistics infrastructure and urbanization. 

Tan et al. [28], however, introduced the concept of a nonlinear relationship, where logistics' impact on 

urbanization varies in accordance with local demographic factors. Liu et al. [29] leveraged panel 

threshold models to uncover substantial interval effects, underscoring the complexity of interactions 
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over mere linear correlations, thus opening avenues for intricate mathematical modeling and analysis in 

this field. 

2.1.2. Urbanization and carbon emissions 

Pioneering research by Liu et al. [30], Lin et al. [31], and Tan et al. [32] positioned urbanization 

as a pivotal driver of carbon emissions, closely linked with environmental degradation [33,34]. Wang 

and Chen [35] illuminated a significant positive correlation between urbanization and carbon 

emissions, particularly in ASEAN countries, with land development playing a more crucial role than 

population growth [36]. The introduction of a U-shaped relationship between urbanization and 

carbon emissions by Shahbaz et al. [37], Wang et al. [38], and Peng et al. [39] suggests diverse 

patterns at different urbanization levels [40], indicating a complex system of variables that can be 

explored through advanced mathematical modeling in biosciences and engineering. 

2.1.3. Rural logistics and carbon emissions 

In exploring rural logistics, Lu and Liu [41] discerned a positive correlation with carbon emissions, 

marked by regional disparities. Zheng et al. [42] attributed high carbon emissions in Jiangsu to a larger 

scale of logistics output in employment, while Zhu et al. [43] emphasized the significant role of 

logistics' energy intensity in regional carbon emissions. The positive correlation between logistics 

performance and carbon emissions highlighted by Karaduman et al. [44], and the substantial 

contribution of road and air transport noted by Zhang et al. [45]. Zhang et al. [46] identified the 

expansion of logistics scale as a primary driver of emission growth, and Zhang and Li [47] revealed 

negative decoupling between logistics development and carbon emissions, all contribute to a nuanced 

understanding that can benefit from mathematical biosciences and engineering methodologies. 

2.2. Integrative tripartite relationship analysis 

This comprehensive synthesis of existing binary relationships among urbanization, rural 

logistics, and carbon emissions delineates a complex and multifaceted interplay between these 

elements. Current research, however, indicates a notable gap in the theoretical exploration of their 

interconnectedness. Liang and Fang [48] scrutinized logistics development and urbanization as 

variables impacting logistics carbon emissions. Liu et al. [49] conducted an analysis from both 

national and regional perspectives, identifying logistics development as a benchmark for increased 

emissions on a national level, and land urbanization as a key regional factor. These studies, 

predominantly focusing on individual impacts, overlook the deeper interactive mechanisms between 

all three components. The mechanism of interplay between rural logistics, urbanization, and carbon 

emissions forms a complex and crucial area in environmental and economic sustainable development 

research. In the context of Dual-Carbon and Dual-Circulation strategies, understanding these 

interactions becomes increasingly crucial, presenting novel research perspectives and challenges for 

sustainable development. This scenario calls for a sophisticated approach in mathematical 

biosciences and engineering to model these complex relationships and contribute significantly to the 

field of sustainable development. 
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3. Research methodology 

3.1. Theoretical analysis 

The interaction between rural logistics, urbanization, and carbon emissions forms a complex 

socio-economic environmental system. At a micro level of analysis, urbanization construction, 

accompanied by the aggregation of population and industries, optimizes spatial structure, enhances 

regional production capacity, and also stimulates a rise in the demand for rural logistics services. 

This growth in demand promotes the expansion of the rural logistics network, but it may also lead to 

reduced transportation efficiency and increased transportation costs. Additionally, urbanization might 

cause seasonal or cyclical fluctuations in the demand for rural logistics, adding complexity to 

logistics management. Due to the highly dispersed nature of rural logistics demand, it plays a key 

role in connecting rural areas with cities during the urbanization process. 

As rural logistics develop, they address the issue of uneven infrastructure, enhance the 

efficiency of resource distribution between urban and rural areas, reduce logistics costs, and 

accelerate the penetration speed of agricultural products into cities and industrial goods into rural 

areas. This promotes the economic integration of urban and rural areas, advances the market 

integration of rural and urban areas, strengthens the market involvement of rural products, fosters the 

market expansion of products and services in urbanized areas, and narrows the social development 

gap between urban and rural areas, thus driving rapid urbanization. However, if rural logistics are not 

effective, it will inevitably hinder the economic development and market expansion of urbanized 

areas, affect the adjustment of rural industrial structure, fail to achieve effective aggregation of 

resources, manpower, and financial power, and delay the process of urbanization. Additionally, 

insufficient effectiveness of rural logistics will also inevitably lead to a large amount of unnecessary 

carbon emissions, increasing environmental constraints, and thereby restricting the development of 

rural logistics and urbanization. 

At the macro level, urbanization construction triggers the aggregation of industries and 

resources, increasing societal consumption demand. This increase in demand directly impacts the 

development of rural logistics. Rural logistics provide logistic services for the needs of rural areas, 

and carbon emissions are a negative externality resulting from urbanization construction and the 

development of rural logistics. Due to insufficient development of rural logistics, the regional 

adaptability of rural logistics is reduced, limiting infrastructure construction, delaying the application 

and innovation of new logistics technologies, and weakening the spillover effects on economic, 

social, and spatial aspects of urbanization construction. 

Moreover, weakened levels of urbanization construction fail to provide sufficient spillover 

effects for rural logistics, indirectly slowing down the development process of rural logistics, 

affecting the perfection of the rural logistics market mechanism, and failing to realize the spillover 

effects of rural logistics on urbanization construction. Both urbanization construction and the 

development of rural logistics rely on energy, leading to a large amount of carbon emissions. 

Excessive carbon emissions inevitably trigger environmental constraints, directly affecting resource 

allocation and environmental constraints. The aforementioned analysis reveals the cyclical feedback 

among rural logistics, urbanization, and carbon emissions. Urbanization drives the development of 

rural logistics, while effective rural logistics can support a more efficient urbanization process. 

Furthermore, increased carbon emissions may lead to changes in environmental policies, which in 
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turn can affect the development modes of urbanization and rural logistics. Therefore, utilizing pattern 

recognition modeling methods to fundamentally grasp the structure between these three aspects, 

focusing on spillover effects, logistics effectiveness, and environmental constraints is crucial. 

Despite the intricate and nonlinear interdependence between urbanization construction, rural 

logistics development, and carbon emissions, an analysis can be conducted from a goal-oriented 

perspective by considering their respective overarching objectives: the sustainable development of 

rural logistics, the improvement of urbanization quality, and carbon emission reduction. Taking into 

account the characteristics exhibited by each entity, such as the spillover effects of urbanization 

construction, the logistics efficiency of rural logistics, and the environmental constraints posed by 

carbon emissions, a framework depicting their interconnections can be constructed through the 

application of pattern recognition modeling methods. The specific configuration of this interrelated 

framework is illustrated in Figure 2. 
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Figure 2. Three-body bondage structure of urbanization construction, rural logistics and 

carbon emission. 

The entities involved in urbanization construction, rural logistics development, and carbon 

emissions are driven by their individual objectives, necessitating them to make decisions that are 

relatively independent but contextually dependent. However, as integral components of the rural 

system, these entities are subject to inevitable influences from other entities. This bottom-up 

influence engenders a dynamic interplay among urbanization construction, rural logistics 

development, and carbon emissions, leading to their mutual permeation, interdependence, and 

reciprocal constraints. In order to further explore the intricate relationship among urbanization 

construction, rural logistics development, and carbon emissions, this study draws upon the 

theoretical framework of the Ternary Paradox. It distills the three nonlinear relationships of 

urbanization construction, rural logistics development, and carbon emissions into a coordination 

relationship between overall objectives and entity characteristics. As depicted in Figure 2, there 

exists a bondage relationship among urbanization construction, rural logistics development, and 

carbon emissions. The realization of the overall objectives of any two factors necessitates the 

coordination of the entity characteristics of the remaining factor. Furthermore, the interaction 

between any two factors exerts an impact on the third factor. 

In a more nuanced perspective, urbanization construction exerts its influence on rural logistics 

development through the mechanism of spillover effects. However, it is important to note that the 

interplay between urbanization construction and rural logistics is not unilateral, as environmental 
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constraints also exert their impact on both processes. Similarly, the development of rural logistics is 

contingent upon its ability to synchronize with urbanization construction by enhancing logistics 

efficiency. Nevertheless, this synergy is subject to the constraints imposed by the environment. 

Furthermore, the growth of carbon emissions plays a pivotal role in shaping the trajectory of 

urbanization construction and the sustainable development of rural logistics by means of 

environmental constraints. It is through the harmonization of logistics efficiency and environmental 

constraints that the level of urbanization construction can be elevated. The bondage relationship is 

manifested in the mutual constraints that exist among urbanization construction, rural logistics 

development, and carbon emissions, which impede the simultaneous attainment of their respective 

optimal objectives. It requires a process of negotiation and compromise among these three entities to 

find a balance and reconcile their divergent goals. Both urbanization construction and rural logistics 

development are constrained by environmental factors. The synergy between rural logistics 

development and carbon emissions growth is facilitated through spillover effects, while the 

mitigation of the impact of urbanization construction on carbon emissions growth necessitates the 

adjustment of logistics effectiveness. The relationship between urbanization construction, rural 

logistics development, and carbon emissions constitutes a complex network of constraints. This 

interplay can be comprehended by considering the spatial and temporal dimensions. From a spatial 

perspective, the effects between urbanization construction and rural logistics development can be 

examined within different spatial contexts but at the same point in time, encompassing various 

aspects such as positive or negative effects and causal relationships. Moreover, in the same spatial 

context but at different points in time, the non-linear and bifurcating relationship between the level of 

urbanization construction and carbon emissions can be explored. This nuanced understanding 

facilitates a deeper analysis of the intricate dynamics among these three components in the context of 

their spatial and temporal dimensions. 

3.2. Research on nonlinear models based on the framework 

Urbanization construction, rural logistics development, and carbon emissions serve as central 

components in the study and implementation of China’s carbon peak. These factors are pivotal for 

analyzing the dynamics of rural low-carbon development. In light of the proposed structural 

framework, it is imperative to construct a clear nonlinear model to comprehensively investigate the 

intricate interdependencies among these variables. Genetic algorithms are employed to identify the 

binding parameters of the nonlinear model, aiming to depict the strength of the constraints between 

urbanization construction, rural logistics development, and carbon emissions. 

3.2.1. Construction of a nonlinear model 

To quantitatively depict the bondage structure among urbanization construction, rural logistics 

development, and carbon emissions, a unified mathematical formulation is employed to represent 

their interdependencies. 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑡) (1) 

In this context, 𝑥1 denotes the magnitude of rural logistics development, 𝑥2 represents the 

level of urbanization construction, 𝑥3 signifies the quantity of carbon emissions, 𝑡 denotes time, 
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and 𝑓 symbolizes the structural function that characterizes the interrelationships among these three 

variables. 

From the analysis of the above structural constraints, it can be seen that the relationships 

between rural logistics, urbanization, and carbon emissions exhibit characteristics of cyclical 

feedback, dynamic changes, and complexity. Linear models are no longer sufficient to fully reveal 

the complex mechanisms of action. Nonlinear models, on the other hand, are a type of mathematical 

model that can more realistically reflect the complex relationships in the real world. This is 

particularly true in the analysis of the relationships among rural logistics, urbanization, and carbon 

emissions, where nonlinear models can reveal the complex and dynamic interactions among these 

factors. Therefore, this study utilizes the time-varying characteristics of differential equations to 

construct a data-driven nonlinear model based on differential formulas. As shown in Eq (2). 

{
 
 

 
 
𝑑𝑥1

𝑑𝑡
= ∑ 𝑎1,𝑖𝑥𝑖 + ∑ ∑ 𝑏1,𝑖,𝑗𝑥𝑖𝑥𝑗 + 𝑐1

3
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3
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3
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𝑗=1

3
𝑖=1

3
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𝑑𝑥3

𝑑𝑡
= ∑ 𝑎3,𝑖𝑥𝑖 + ∑ ∑ 𝑏3,𝑖,𝑗𝑥𝑖𝑥𝑗 + 𝑐3

3
𝑗=1

3
𝑖=1

3
𝑖=1

 (2) 

In the given context, the coefficients 𝑎1,𝑖, 𝑎2,𝑖, 𝑎3,𝑖, 𝑏1,𝑖,𝑗, 𝑏2,𝑖,𝑗, 𝑏3,𝑖,𝑗, and 𝑐𝑖 represent the 

influences and interactions between these variables. Specifically, coefficient 𝑎1,𝑖 quantifies the effects 

of rural logistics scale, urbanization construction level, and carbon emissions on the development of 

rural logistics. Coefficient 𝑎2,𝑖  characterizes the impacts of rural logistics development scale, 

urbanization construction level, and carbon emissions on urbanization construction. Coefficient 𝑎3,𝑖 

captures the influence of rural logistics development scale, urbanization construction level, and carbon 

emissions growth on changes in carbon emissions. Coefficient 𝑏1,𝑖,𝑗 describes the interaction among 

these variables and its impact on the scale of rural logistics development. Coefficient 𝑏2,𝑖,𝑗 represents 

the interaction among these variables and its effect on the level of urbanization construction. 

Coefficient 𝑏3,𝑖,𝑗  quantifies the interaction among these variables and its influence on carbon 

emissions. Last, coefficient 𝑐𝑖 represents the constant term. 

The representation of the nonlinear model, as outlined in your description and depicted in the 

image, integrates both linear and nonlinear relationships between urbanization, rural logistics, and 

carbon emissions. The model takes into account the direct linear relations of each variable as well as 

the nonlinear interactions and cumulative effects, which are critical for a comprehensive 

understanding of these complex dynamics. 

3.2.2. Parameter estimation for the nonlinear model 

Urbanization construction, rural logistics development, and carbon emissions serve as central 

components in the study and implementation of China’s carbon peak. These factors are pivotal for 

analyzing the dynamics of rural low-carbon development. In light of the proposed structural 

framework, it is imperative to construct a clear nonlinear model to comprehensively investigate the 

intricate interdependencies among these variables. Genetic algorithms are employed to identify the 

binding parameters of the nonlinear model, aiming to depict the strength of the constraints between 

urbanization construction, rural logistics development, and carbon emissions. 
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Figure 3. Flowchart of genetic algorithm. 

All the procedures for the GA have been implemented following [50,51]. The genetic algorithm 

is embedded within the optimization session for nonlinear model parameter estimation introduced in 

Section 3.2.1. This session is fed by supported by empirical data on urbanization, rural logistics, and 

carbon emissions in China, covering the period from 1991 to 2021. The learning session finds the 

best fitting values for the coefficients of the nonlinear model by minimizing the error between the 

model's estimated outputs for urbanization, rural logistics, and carbon emissions and the actual data. 

Using these automated procedures for tuning the coefficients of the nonlinear model, shown in 

Figure 3, a significant improvement in the accuracy of the parameters 𝑎, estimated by the nonlinear 
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model, is expected. 

In the proposed genetic algorithm, a sample (or individual) 𝑥𝑖,𝑗 of the population is a vector 

whose elements (or genes) are the unknown coefficients to be inserted into the coefficients of the 

nonlinear model. Where the index 𝑖 represents the sample of the population (individual) in each 𝑗 
iteration (or generation). The proposed genetic algorithm selects the individual 𝑥𝑖,𝑗 with the best 

combination of genes through the procedure that is described step by step below. 

1) Initialization. In the initial function, the number 𝑛 of individuals of the population to 

observe is defined. At the initial step, the set of genes for the m individuals 𝑥𝑖, within 

very wide predefined domains. 

[

𝑥1,1
⋮
𝑥𝑛,1

] = [
𝑎1,1
1 , 𝑎1,1

2 , 𝑎1,1
3 , 𝑎1,1

11 , 𝑎1,1
12 , 𝑎1,1

13 , 𝑎1,1
22 , 𝑎1,1

23 , 𝑎1,1
33 , 𝑎1

⋮
𝑎𝑛,1
1 , 𝑎𝑛,1

2 , 𝑎𝑛,1
3 , 𝑎𝑛,1

11 , 𝑎𝑛,1
12 , 𝑎𝑛,1

13 , 𝑎𝑛,1
22 , 𝑎𝑛,1

23 , 𝑎𝑛,1
33 , 𝑎𝑛

] (3) 

2) Fitness. For each individual 𝑖: 1 → 𝑛, the corresponding set of genes, indicated in the rows 

of Eq (3), are used as coefficients of the nonlinear model presented in Section 3.2.1. For 

each set of genes, during the evolution of the corresponding nonlinear model parameter 

estimation algorithm, Eq (4) for 𝑖 = 1 is continuously updated. The Eq (4) represents the 

error between the actual and estimated output values of rural logistics, urbanization, and 

carbon emissions from the nonlinear model at each computational step 𝑘. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝜃𝑖
𝑘) =

1

√
1

𝑛
∑(𝑥𝑎𝑐𝑡𝑢𝑎𝑙−𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) 

2 
2

 (4) 

This choice of Eq (4) is crucial for obtaining the correct results of the optimization process. 

After applying the nonlinear model to the available measured data, by using the 𝑛 sets of genes as 

coefficients of the nonlinear model, an initial vector containing the results of the fitness function is 

obtained. 

3) Selection. With the selection function, the process enters in an iterative cycle, where each 

𝑗 cycle represents a new generation of individuals. In this function, the two individuals 

having the lowest fitness value are selected from the current population 𝑥𝑗 , 𝑖 and 

defined as original individuals. To prevent premature convergence, the identifier is set to 

𝑖 ≠ 𝑗. 

4) Crossover & Mutation. Cross the selected individuals with a probability of 0.8 to 

generate sub-individuals. Mutation operations are performed with a probability of 0.005 

in the newly generated sub-individuals to introduce new genetic variations. Once the new 

vector of sub-individuals is obtained, a sequence of the nonlinear model elaborations is 

performed. Each nonlinear model elaboration uses the new coefficients given by the 

sub-genes and by using the same reference measured cell quantities. During the evolution 

of each nonlinear model, the new fitness values for the children are calculated using the 

same fitness function introduced in Eq (4). 

5) Population Update. The next generation of the population 𝑘 + 1  consists of a 

combination of original individuals and sub-individuals, where worse original individuals 

are replaced by sub-individuals. In this way, the maximum amount is always 𝑛. The 

resulting fitness functions of the new population are simply obtained by merging the 
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corresponding fitness functions of selected original individuals and sub-individuals. The 

fitness vector is used at the next iteration 𝑘 +  1 for the selection step, which selects the 

two parents of the new generation. 

The genetic algorithm iterates generation after generation, continuously evolving until it reaches 

the predefined maximum number of iterations (𝑘 ≤ 1000) or the fitness level meets a set threshold 

(𝜀 < 10−3). The iteration process stops upon satisfying one of these termination criteria, and specific 

results are then outputted. The algorithm selects the best-performing individual from the final 

generation as the optimal solution. 

4. Empirical testing and result analysis 

In this section, the time series data from 1991 to 2021 is utilized as the sample data to estimate 

the bondage parameters between urbanization, rural logistics development, and carbon emissions. 

The genetic algorithm is employed for this purpose in order to verify the rationality of the binding 

framework and the correctness of the nonlinear model. 

4.1. Indicator selection and data sources 

4.1.1. Indicator selection 

The quantification of qualitative indicators in a scientific and rational manner is crucial for the 

validation of the structure and models of rural logistics development, urbanization, and carbon 

emissions. The principles of completeness and high frequency of usage were followed in the 

selection of indicators to maximize the reflection of the integrity and accuracy of the chosen 

quantitative indicators, as well as the representativeness and availability of the sample data [52,53]. 

𝑥1  adopts the quantified indicator of rural logistics scale value, which reflects the overall 

development scale of rural logistics, as well as the ability to reduce logistics costs and promote the 

sustainable development of logistics [54]. 𝑥2 uses the quantified indicators of urbanization level, 

which are important measures for assessing China's economic development and industrialization [55]. 

It is a comprehensive reflection of regional social productivity development, technological progress, 

and industrial structure adjustment. It reflects the scale and achievements of urban construction over 

a certain period. This indicator is a composite index that can be measured by both urbanization rate 

and per capita gross domestic product. 𝑥3 adopts the quantified indicator of carbon emissions from 

rural logistics as a measure [56]. This indicator represents the absolute amount of carbon emissions 

generated by rural logistics over a certain period, providing an overall reflection of carbon reduction 

levels in rural logistics. 

4.1.2. Data sources 

The data for rural logistics scale output, urbanization level, and rural logistics carbon emissions 

are sourced from the website of the National Bureau of Statistics of China, the China Urbanization 

Rate Survey Report, the China Energy Statistical Yearbook, and the China Rural Yearbook. The 

sample period is set from 1991 to 2021 in ordered to ensure data completeness. 
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4.2. Parameter estimation results 

By employing a randomness test method, 80% of the sample data was randomly selected for 

estimating the model parameters, while the remaining 20% of the sample data was used for 

validating the estimated parameter values. This approach ensures the robustness and reliability of the 

parameter estimation process using a representative portion of the data for estimation and an 

independent portion for testing the estimated values. Based on the genetic algorithm flowchart in 

Figure 3, the algorithm code was implemented using Matlab R2017b. 

The genetic algorithm in this study was configured with a population size of 200 and a total of 

1500 iterations. To enhance the clarity of the model structure and concentrate the parameters, a 

reduction was made in the number of components from 13 to 10 in the nonlinear model. This 

reduction aimed at eliminating redundant pairwise interactions that could potentially introduce 

duplicated influences. The estimated values of the nonlinear model parameters for the three groups 

were obtained through calculations, and the specific values are shown in Table 1. 

Table 1. Estimated values of model parameters. 

Param  11a  12a  13a  111b  112b  113b  122b  123b
 133b

 1c
 

1x  
Set1 –0.2629 0.854 –0.259 –0.912 5.052 –2.631 –3.06 0.63 0 –0.008 

Set2 3.517 1.078 –4.36 –7.406 –4.220 4.433 0.785 2.938 –2.609 –0.034 

Set3 0.070 0.236 –0.179 –2.583 1.681 1.257 –0.540 1.224 –0.810 0.054 

Param  21a  22a  23a  211b  212b  213b  222b  223b
 233b

 2c
 

2x
 

Set1 0.1564 0.344 –0.340 –0.562 4.317 –3.613 –2.511 1.124 0 0.001 

Set2 –0.062  –1.284  1.327  0.075  0.000  0.000  9.077  –16.495  7.353  0.042  

Set3 –0.185  –1.020  1.355  0.676  0.000  0.000  6.050  –11.615  4.757  0.031  

Param  31a
 32a

 33a
 311b

 312b
 313b

 322b
 323b

 333b
 3c

 

3x
 

Set1 –0.107 0.276 0.145 0.603 0.743 –1.206 –1.241 0.421 0 –0.006 

Set2 0.136  –0.640  0.617  –0.124  0.000  3.175  4.739  –7.895  0.000  0.020  

Set3 0.145  –0.634  0.606  –0.134  0.000  0.000  4.653  –7.624  2.995  0.019  

4.2.1. Validity test of parameters 

To validate the effectiveness of the model parameter values, a sample analysis of the 

mathematical model is performed. The three sets of parameters are individually applied to the model 

to obtain calculated values, which are then compared with the actual values of the sample data. 

Figure 4 represents a comparison between the sample values and calculated values of model 

parameter 𝑥1. In the Figure 4, curve 1 represents the sample curve of parameter 𝑥1, curve 2 

represents the calculated curve of parameter 𝑥1 for the first set, curve 3 represents the calculated 

curve of parameter 𝑥1 for the second set, and curve 4 represents the calculated curve of parameter 

𝑥1 for the third set. Based on the analysis of Figure 4, it can be observed that curve 2 and curve 4 

have a similar magnitude of fluctuations, and both curves show a consistent overall trend without 

major variations. Curve 2 and curve 4 deviate significantly from the sample curve, and they do not 

align well with the observed trend of rural logistics development. This indicates that the first and 

third sets do not meet the requirements of parameter validity testing. Curve 3 and the sample curve 

exhibit a similar development trend, both experiencing significant fluctuations in the later stages of 
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the sample period. This aligns well with the actual trend of rural logistics development, indicating 

that curve 3 satisfies the requirement of parameter validity testing. Therefore, the data from the 

second set can be considered as an alternative option for the model parameter 𝑥1. 
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Figure 4. A comparison between the sample values and calculated values of rural logistics. 

Figure 5 is a comparison analysis between the sample values and calculated values of the model 

parameter 𝑥2. In the Figure 5, curve 1 represents the sample curve of parameter x2, curve 2 

represents the calculated curve of parameter 𝑥2 for the first set, curve 3 represents the calculated 

curve of parameter 𝑥2 for the second set, and curve 4 represents the actual curve of parameter 𝑥2 

for the third set. From Figure 5, it can be observed that curve 1 exhibits a similar development trend 

to curve 3 and curve 4. Throughout the entire sample period from 1991 to 2022, there are two peaks 

in urbanization development, indicating a significant non-linearity. This pattern aligns well with the 

trend of urbanization in China. Curve 2 exhibits relatively stable fluctuations and shows significant 

differences compared to the sample curve. This indicates that the first set of data does not meet the 

requirement of parameter validity testing. Therefore, the second and the third sets of data can be 

considered as alternative options for the model parameter 𝑥2. 
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Figure 5. A comparison between the sample values and calculated values of urbanization 

construction. 

Figure 6 is a comparison analysis between the sample values and calculated values of the model 
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parameter 𝑥3. In the Figure 6, curve 1 represents the sample curve of parameter x3, curve 2 

represents the calculated curve of parameter 𝑥3 for the first set, curve 3 represents the calculated 

curve of parameter 𝑥3 for the second set, and curve 4 represents the actual curve of parameter 𝑥3 

for the third set. From Figure 6, it can be observed that all four curves exhibit significant 

non-linearity in their fluctuations. However, curve 2 and curve 4 share a similar fluctuation pattern 

with minor variations. Interestingly, they display opposite trends compared to the sample curve. This 

deviation from the sample curve indicates that curve 2 does not meet the requirement of parameter 

validity testing for the model parameter 𝑥3. Curve 1 and curve 3 exhibit a similar development trend, 

indicating that the second set of the calculated values can be considered as an alternative option for 

the model parameter 𝑥3. 
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Figure 6. A comparison between the sample values and calculated values of carbon emissions. 

4.2.2. Determination of optimal parameters 

To enhance the goodness of fit in parameter estimation, an analysis of the errors between the 

calculated values and the sample values is conducted for further optimization. Initially, the mean 

square errors (MSE) of the calculated values are compared with the MSE of the sample values for 

each of the three groups. The group with a higher MSE for the sample values compared to the 

calculated values is excluded. Next, the remaining two groups of calculated values are compared, 

and the group with the lower MSE is chosen as the optimal solution for parameter estimation. 

Table 2. Error results for model parameters. 

Parameters 

First set (MSE) Second set(MSE) Third set(MSE) 

Calculated 

values 

Sample 

values 

Calculated 

values 

Sample 

values 

Calculated 

values 

Sample 

values 

𝑥1 0.244 0.235 0.189 0.209 0.080 0.070 

𝑥2 0.251 0.102 0.214 0.245 0.036 –0.06 

𝑥3 0.178 0.103 0.289 0.378 0.154 0.102 

Table 2 presents the three sets of error results for the parameters of the nonlinear model. From 

Table 2, it is observed that the mean square errors (MSE) of the first set of calculated values in the 

nonlinear model are greater than the MSE of the sample values. The MSE of the second set of 

calculated values in the nonlinear model is smaller than the MSE of the sample values. The MSE of 
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the third set of calculated values in the nonlinear model shows both positive and negative deviations 

from the MSE of the sample values. 

Therefore, the second set of calculated values in the nonlinear model is selected as the optimal 

solution for parameter estimation. The results of the parameter estimation for the nonlinear model are 

presented in Table 3. 

Table 3. The parameter estimates for the nonlinear model. 

𝑎11 𝑎12 𝑎13 𝑏111 𝑏112 𝑏113 𝑏122 𝑏123 𝑏133 𝑐1 

3.517 1.078 –4.36 –0.741 4.220 –4.433 0.785 2.938 –2.609 –0.034 

𝑎21 𝑎22 𝑎23 𝑏211 𝑏212 𝑏213 𝑏222 𝑏223 𝑏233 𝑐2 

0.063  –1.284  –1.327  0.075  0.001  –0.001  9.077  –1.645  7.353  0.042  

𝑎31 𝑎32 𝑎33 𝑏311 𝑏312 𝑏313 𝑏322 𝑏323 𝑏333 𝑐3 

0.136  0.640  –0.617  0.124  1.25  3.175  4.739  –7.895  0.618 0.20  

5. Discussion 

5.1. The analysis of the model parameters 

From Table 3, it can be observed that the numerical values of parameters 𝑎12 is 1.078 and the 

numerical values of parameters 𝑎21 is 0.063. The values indicate that rural logistics development 

and urbanization are interdependent, exhibiting a significant positive correlation. Moreover, the 

value of parameter of 𝑎12 further directly indicates that urbanization has a greater driving effect on 

rural logistics development. The numerical values of parameters 𝑎13 is –4.36, and the numerical 

values of parameters 𝑎23 is –1.327. These numerical values indicate that carbon emissions have 

constraint effects on rural logistics development and urbanization, but there are differences in the 

constraint effects between the two. It can be inferred that during the process of evolutionary 

development, rural logistics development, urbanization, and carbon emissions all exhibit 

accumulated cyclic effects from Table 3. 

Coefficient 𝑏111 indicates the presence of an accumulated cyclic negative effect on rural 

logistics development, with its effect being –0.741. Therefore, rural logistics development should be 

adapted to local conditions. On the other hand, coefficients 𝑏222  and 𝑏333  suggest that both 

urbanization and carbon emissions show accumulated cyclic positive effects, with effects of 9.077 

and 0.618, respectively. Thus, under the context of a dual carbon strategy, it is crucial to properly 

coordinate urbanization and carbon emissions. 

Based on parameters derived from the nonlinear model, the evolutionary process of rural logistics 

development is analyzed. The numerical value of parameter 𝑏112 is 4.22, and the coefficient indicates 

that the interaction between rural logistics development and urbanization effectively promotes rural 

logistics development. The numerical value of parameter 𝑏113 is –4.433, and it demonstrates that the 

interaction between rural logistics development and carbon emissions constrains rural logistics 

development. The numerical value of parameter 𝑏123 is 2.938, indicating that the current interaction 

between urbanization and carbon emissions effectively drives rural logistics development, consistent 

with the rapid development of rural logistics in reality. Based on parameters derived from the nonlinear 

model, the evolutionary process of urbanization construction is analyzed. The numerical value of 

parameter 𝑏213 is −0.001, it demonstrates that the interaction between rural logistics and carbon 
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emissions has a negative effect on urbanization. The numerical value of parameter 𝑏212 is 0.001, and 

the coefficient suggests that the interaction between urbanization and rural logistics development has a 

positive effect on urbanization. The numerical value of parameter 𝑏223 is 1.645, and the parameter 

illustrates that the interaction between urbanization and carbon emissions hinders the progress of 

urbanization, with a bondage effect of 1.645. 

Based on parameters derived from the nonlinear model, the evolutionary process of carbon 

emissions is analyzed. The numerical value of parameter 𝑏312 is 1.25, the coefficient indicates that the 

interaction between urbanization and rural logistics promotes an increase in carbon emissions. The 

numerical value of parameter 𝑏313 is 3.175, and the coefficient indicates that the interaction between 

rural logistics development and carbon emissions promotes carbon emission growth. Parameter 𝑏323 

shows that the interaction between urbanization and carbon emissions has a negative effect on carbon 

emissions, with an effect of –7.895. From the perspective of pairwise interactions, urbanization and 

carbon emissions have a more significant driving effect compared to rural logistics development, 

which is generally consistent with the actual situation. The nonlinear effects of the interaction between 

urbanization and rural logistics development have a more pronounced impact on promoting rural 

logistics development. The nonlinear effects of the interaction between urbanization and carbon 

emissions exert a significant inhibitory effect on carbon emission growth. 

In conclusion, rural logistics development, urbanization, and carbon emission growth are all 

subject to both linear and nonlinear influences, validating the deductive logic within the bondage 

structure among the three factors as outlined in Section 3.1. The constructed nonlinear model has 

been used to verify the rationality of the bondage structure between rural logistics development, 

urbanization, and carbon emissions. 

5.2. Managerial implications 

Based on the above research findings, we offer the following management policy 

recommendations for the implementation of the two major strategies and sustainable rural 

development. 

Promoting the Green Logistics System in Rural Areas: Due to the constraining effect of 

carbon emissions on rural logistics and urbanization, it's crucial to advance sustainable development 

in rural logistics comprehensively. This involves re-planning and optimizing the rural logistics 

network to reduce transportation distances and times, thereby lowering energy use and carbon 

emissions. Introducing smart logistics systems can enhance efficiency and minimize unnecessary 

transport. Utilizing efficient logistics management software to optimize cargo loading and delivery 

routes is also key. Additionally, formulating policies that encourage the development of green 

logistics is essential, as it guides and promotes the widespread adoption of green logistics practices. 

Implement Sustainable Urbanization Strategies: The dynamic nature of the relationship 

between rural logistics, urbanization, and carbon emissions necessitates continuous monitoring. 

Developing a circular economy model, promoting green building standards, and the use of 

energy-efficient building materials, as well as vigorously advancing the digital transformation of 

urbanization management, are key steps. Governments and organizations should adopt adaptive 

management strategies that integrate new data and insights in real time, allowing for the ongoing 

optimization of policies and practices. 
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Foster International Cooperation and Technological Exchange: Promote transnational carbon 

trading and the development of carbon markets, encourage international collaboration in low-carbon 

technology research and development, and share resources and outcomes. Strengthen the 

coordination and cooperation of international environmental protection policies, provide technical 

support and financial aid, and assist underdeveloped regions in building low-carbon infrastructure. 

6. Conclusions 

In this article, I delve into the intricate dynamics among urban development, advancement of 

rural logistics, and carbon emissions, forming an integrated structural framework to encapsulate 

these elements and employing a nonlinear model for analysis. This framework is substantiated with 

empirical data spanning from 1991 to 2019 in China. Key observations reveal a mutual dependency 

between rural logistics and urban development, both exhibiting a direct and positive correlation with 

the escalation of carbon emissions. Notably, urban development exerts a more pronounced impetus 

on rural logistics, whereas carbon emissions impose a regulatory effect on both domains. 

Furthermore, the interplay between urban development and carbon emissions significantly mitigates 

the increase of carbon emissions, while the interaction between the progression of rural logistics and 

carbon emissions curtails the expansion of rural logistics. 

Therefore, two main research contributions are provided by this study. First, a bondage structure 

framework of urbanization, rural logistics and carbon emissions is established, which provides an 

analysis framework for the internal correlation analysis of urbanization, rural logistics and carbon 

emissions. Second, a new bondage model of low-carbon rural logistics, rural economy and carbon 

emissions is proposed, which effectively corrects the one-sided cognition of the 

―economy-social-ecological‖ synergy of the existing models, breaks the black box of the interaction 

between rural logistics, urbanization and carbon emissions, and provides theoretical support for the 

―dilemma‖ paradox of decoupling rural economic development and environmental protection. 

Although the investigation yields valuable insights into the nexus of rural economics and 

ecological sustainability, it is not without its limitations. A primary constraint is the exclusive 

reliance on Chinese data from 1991 to 2019. Future studies should aim to incorporate a more 

expansive and diverse collection of international data, thereby broadening the research's scope and 

relevance. Additionally, forthcoming in-depth analyses should integrate a broader spectrum of 

potential determinants, including policy frameworks and technological advancements. Such an 

approach would pave the way for a more holistic examination, significantly elevating both the 

scientific rigor and practical applicability of the findings. 
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