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Abstract: In the drug discovery process, time and costs are the most typical problems resulting from 

the experimental screening of drug-target interactions (DTIs). To address these limitations, many 

computational methods have been developed to achieve more accurate predictions. However, 

identifying DTIs mostly rely on separate learning tasks with drug and target features that neglect 

interaction representation between drugs and target. In addition, the lack of these relationships may 

lead to a greatly impaired performance on the prediction of DTIs. Aiming at capturing comprehensive 

drug-target representations and simplifying the network structure, we propose an integrative approach 

with a convolution broad learning system for the DTI prediction (ConvBLS-DTI) to reduce the impact 

of the data sparsity and incompleteness. First, given the lack of known interactions for the drug and 

target, the weighted K-nearest known neighbors (WKNKN) method was used as a preprocessing 

strategy for unknown drug-target pairs. Second, a neighborhood regularized logistic matrix 

factorization (NRLMF) was applied to extract features of updated drug-target interaction information, 

which focused more on the known interaction pair parties. Then, a broad learning network 

incorporating a convolutional neural network was established to predict DTIs, which can make 

classification more effective using a different perspective. Finally, based on the four benchmark 

datasets in three scenarios, the ConvBLS-DTI’s overall performance out-performed some mainstream 

methods. The test results demonstrate that our model achieves improved prediction effect on the area 

under the receiver operating characteristic curve and the precision-recall curve. 
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1. Introduction 

Drug-target interactions (DTIs) involve the binding of a drug to the relevant site of a target protein 

to trigger a biochemical reaction [1]. The efficacy is related to the biological activity of the protein. 

However, it is complicated for experiments to predict a drug's success and drug discovery is time-

consuming and expensive [2,3], which is estimated to typically take 12–15 years and cost over $100 

million [4]. For these reasons, in the past decades, computer-aided drug design (CADD) has been 

proposed to discriminate new drugs and consists of processes such as virtual screening, molecular 

docking, and QSAR methods [5]. Currently, due to limited ligand data and the limited information on 

the structure of novel target proteins [6], these approaches are inappropriate and inefficient given the 

growth of available biological and chemical data [2]. Recently, with the advent of various deep learning 

methods, a significant future trend in AI-based drug discovery has been identified [7]. It is essential 

for drug discovery to accurately predict the number of DTIs [8]. Therefore, it is urgent to devise richer 

and more compatible computational methods to differentiate between potential DTIs.  

The concept of “guilt-by-association” [9] has been described in DTIs prediction. It is defined that 

if drug A has target proteins, and the action event between drug B is similar to drug A, targets 

interactions are likely to appear, and the reverse is also true. Machine learning methods are used for 

DTIs prediction and can successfully solve the assumption. For instance, Mei et al. [10] proposed 

bipartite local models (BLMs) that considered neighbors’ interaction profiles where neighbor-based 

interaction-profile inferring (NII) can be effective in defining a new candidate problem. Luo et al. [11] 

used an inductive matrix completion method, in which seven kinds of drug/target-related similarities 

were included in an integrated network (e.g., drugs, proteins, diseases, and side-effects). Ezzat et al. [12] 

proposed graph regularized matrix factorization (GRMF) and weighted graph regularized matrix 

factorization (WGRMF) methods that introduced graph regularization into the matrix factorization in 

order to learn manifolds. Moreover, a preprocessing step (WKNKN) has been developed to rescore 

unknown drug-target pairs that were previously regarded as null values. Although these methods have 

been proven to be effective, there are challenges to overcome complex data structures such as 

interaction networks of drugs or targets. Furthermore, the rapid growth of drug/target-related data has 

outpaced their ability to process and analyze information. With the emergence of diverse and enriched 

feature representations, the efficacy of the above methods may limit the exploration of more 

comprehensive topological information and node characteristics between drugs and target proteins. 

Network-based algorithms and feature-based algorithms become famous in the field. Generally, 

identifying DTIs is considered as a binary classification task by extracting features vectors of drugs as 

well as targets. Several number of heterogeneous data have been integrated into a heterogeneous 

network to boost the accuracy of DTIs prediction tasks [13]. The deep belief network (DBN) [14] has 

been proposed to build an end-to-end method for abstracting raw input samples. Moreover, sequence-

based approaches are universal. Different architectures [15–18] have been developed for feature 

extraction of sequence information. DrugVQA [19] employs a bidirectional long-short time memory 

network to tackle the prediction problem. Furthermore, graph-based methods are suitable for the two-

dimensional representation of structural information. Zhao et al. [20] utilized a combination of graph 
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convolutional network (GCN) and deep neural network (DNN) to enhance the identification of DTIs. GNN 

was coupled with CNN, which was designed as drug feature and target feature extraction method [21]. 

LASSO has been employed by You et al. [22] as a feature procession. Thafar et al. [23] constructed 

the DTi2Vec model including graph embedding which capture relationships between drugs and targets 

and then these features are fed into the ensemble classifier for prediction analyses. Huang et al. 

designed a molecular sub-structure representation and used massive unlabeled biomedical data through 

an augment transformer [24]. Peng et al. [25] introduced CNN to identify DTIs and trained the 

denoising autoencoder (DAE) as a feature selector. Although these methods can effectively predict 

DTIs, the problem of parameter count and computation amount need to be given more attention. 

The broad learning system (BLS) [26] is characterized by a relatively simple neural network 

architecture comprising only three layers of neurons. Inspired by the concept of the random vector 

functional-link neural network (RVFLNN) [27,28], its training procedure is facilitated through pseudo-

inverse calculations. Due to its training procedure and flat structure, BLS has the advantages of fast 

computing speed and few training parameters. Therefore, BLS has been widely applied to various 

disciplines including medicine [29]. For instance, Fan et al. [30] proposed a stacked ensemble classifier 

build by BLS for the prediction of interactions between lncRNA and proteins. Zheng et al. [31] 

designed a modified BLS-based model to predict miRNA-disease associations using sequence 

similarities of microRNA (miRNAs). The above applications of BLS in this area have been proven to 

be useful. However, there is a lack of related research for DTIs based on BLS. Additionally, since 

labeled data volumes are always sparse and insufficient, prediction modeling is to performance is 

inadequate. By fusing information from multiple aspects to overcome the limitations, the above 

methods can improve the performance, indicating that these combined models could solve the 

challenge of interaction matrix sparsity.  

In this study, we developed a novel model called ConvBLS-DTI to predict DTIs. Compared with 

the previous DTI predictive methods, ConvBLS-DTI integrates matrix factorization with the broad 

learning system, yielding reliable DTI prediction results. The task of DTI prediction is formulated as 

a binary classification problem to determine whether a drug-target pair is a DTI. The major 

contributions of this paper are as follows: 

1) We address the challenges of data sparsity and incompleteness by employing a WKNKN 

algorithm as a pre-processing step, which help to mitigate the adverse effects of a large number missing 

interaction value. 

2) We propose a matrix factorization technique used on the interaction matrix to generate two 

latent feature matrices for drugs and targets, thereby enabling the learning of low-dimensional vector 

representations of features. 

3) Based on the CNN algorithm, ConvBLS-DTI can handle the DTIs prediction, taking the 

extracted drug-target pairs feature vectors as inputs. 

2. Methods 

2.1. Overall framework  

The architecture of the proposed ConvBLS-DTI method is depicted in Figure 1. It is primarily 

composed of three sessions: First, we utilized the WKNKN algorithm to alleviate the sparsity of the 

DTI matrix, thus enhancing the input information complement of the model and improving its 
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predictive performance. After construction of the DTI matrix, matrix factorization is used to 

decompose DTI matrix into two feature matrices of low ranks which obtains vector representation of 

the drug features and target features. Then, the drug feature vectors combine with the target feature 

vectors together to get the final feature vectors. Finally, ConvBLS is built for classification. A CNN is 

leveraged to enhance the nodes’ representation, followed by a broad learning module, which further 

enable satisfactory results in effective identification of DTIs. 

 

Figure 1. Overview of the ConvBLS-DTI predictive workflow.  

2.2. WKNKN data processing method 

We initially reconstruct the interaction matrix using the computational preprocessing technique, 

which can effectively complement the interaction matrix for the identification of DTIs and improve 

the known DTI samples. As shown on the left side of step A in Figure 1, the green circles, the red 

triangles, and the blue lines separately denote drugs, targets and the known interaction. 𝑫 = {𝑑𝑖}𝑖=1
𝑛𝑑  

and 𝑻 = {𝑡𝑗}
𝑗=1

𝑛𝑡
 are separately described as each node for drugs and targets, where 𝑛𝑑 is the number 

of drugs and 𝑛𝑡  is the number of targets. The associations between 𝑛𝑑  drugs and 𝑛𝑡  targets are 

represented by an interaction matrix 𝒀 ∈ {0,1} , in which 𝑌𝑖𝑗 = 1  indicates a known interaction 

between drug 𝑑𝑖 and target 𝑡𝑗, and 𝑌𝑖𝑗 = 0 otherwise. In addition, the similarity matrix of both drugs 

and targets is represented as 𝑺𝑫 ∈ 𝑹𝑛𝑑×𝑛𝑑 and 𝑺𝑻 ∈ 𝑹𝑛𝑡×𝑛𝑡.  
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Numerous unknown interactions can significantly impact the evaluation outcome of the model 

and introduce prediction bias. In DTIs prediction, weighted k-nearest neighbors (k-NN) has been 

employed to leverage similarity measures to promote further prediction performance. Weighted k-NN 

considers both neighbor similarity and distances, incorporating distance weights to calculate likelihood 

values of unconfirmed drug-target interactions. Specifically, given a drug-target pair, the algorithm 

first identifies the k-NN and assigns weights to each neighbor based on their similarity and distance. 

Weight involved in WKNKN [12] is computed by Gaussian weighting method. The calculated 

weighted likelihood values can be used to predict the likelihood of unknown DTIs within the matrix. 

Here, the specific operation is achieved through the following three steps:  

𝑌𝑑(𝑑) =
1

𝑀𝑑
∑ 𝜔𝑑𝑖

Κ
𝑖=1 Y(𝑑𝑖)                                                  (2.1) 

where 𝑌𝑑(𝑑) denotes the likelihood score of interaction for drug 𝑑𝑖. 𝑀𝑑 is defined as a normalization 

term, 𝜔 coefficient represents the weights of the Κ nearest known neighbors of drug 𝑑𝑖. Similarly, the 

same terms are computed to estimate the interaction likelihood score of the target 𝑡𝑗: 

𝑌𝑡(𝑡) =
1

𝑀𝑡
∑ 𝜔𝑡𝑗

Κ
𝑖=1 Y(𝑡𝑗)                                                   (2.2) 

where 𝑌𝑡(𝑡) denotes the likelihood score of interaction for target 𝑡𝑗. 𝑀𝑡 is the normalization term and 

𝜔 coefficient represents the weights of the Κ nearest known neighbors of target 𝑡𝑗. Finally, the derived 

formula is as follows: 

𝑌𝑊𝐾𝑁𝐾𝑁 = max (
𝑌𝑑+𝑌𝑡

2
, 𝒀)                                                (2.3) 

Therefore, if 𝑌𝑖𝑗 is 0, 𝑌𝑊𝐾𝑁𝐾𝑁 replaces it with an average of the weighted interaction likelihood 

value. For the matrix representation, 0 and 1 denote the absence and presence of interactions between 

drugs and targets, respectively. Likelihood serves as a measure of the possibility of interaction between 

a drug and a target, typically ranging from 0 to 1. Higher likelihood values indicate a higher likelihood 

of interaction, while lower likelihood values suggest a lower likelihood.  

2.3. NRLMF feature extraction method 

Considering that most studies mainly concentrate on extracting features from drugs and targets 

individually and less on the relationships of the DTI, neighbor regularization logistic matrix 

factorization (NRLMF) [32] is used to represent drugs and targets in the right part of step B. NRLMF 

is an unsupervised learning strategy that mainly infers unknowns through known interactions and their 

similarities, so no negative samples are required. The valid connections are denoted as the modified 

interaction matrix made of known and unknown interactions. As shown in Figure 1, the DTI 

probabilities can be defined as a logistic function: 

𝑃𝑖,𝑗 =
exp(𝑢𝑖𝑣𝑗

T)

1+exp(𝑢𝑖𝑣𝑗
T)

                                                       (2.4) 

where each term 𝑢𝑖 ∈ 𝑹1×𝑟 is denoted as the r-dimensional potential representation of each drug 𝑑𝑖. 

Similarly, each term 𝑣𝑗 ∈ 𝑹1×𝑟 represents the r-dimensional potential representation of each target 𝑡𝑗. 
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In this way, the potential feature vectors for all drugs and all targets can be summarized as 𝑼 =

(𝑢1
T, … , 𝑢𝑛𝑑

T ) and 𝑽 = (𝑣1
T, … , 𝑣𝑛𝑡

T ), where T refers to the transpose of the matrix.  

The neighborhood regularization method proposes to add the nearest neighbors of drugs and 

targets to further increase information diversity and enable higher accuracy without overfitting. The 

neighborhood regularization is achieved by: 

𝛼

2
∑ ∑ 𝑺𝑷𝑖𝜇‖𝑢𝑖 − 𝑢𝑗‖

f

2𝑛𝑑
𝑗

𝑛𝑑
𝑖                                                                   (2.5) 

𝛼

2
∑ ∑ 𝑺𝑸𝜗𝑗‖𝑣𝑖 − 𝑣𝑗‖

f

2𝑛𝑡
𝑗

𝑛𝑡
𝑖                                                                    (2.6) 

where 𝛼 is the Laplace regularization parameter, and ‖∙‖f is the Frobenius norm of the matrix, and the 

parameters 𝑺𝑷 and 𝑺𝑸 represent neighbors similarity measure matrix are given by: 

𝑺𝑷𝑖𝜇 = 𝑺𝑫𝑖𝜇  if 𝑑𝜇 ∈  𝑊𝑑(𝑑𝑖) else 𝑺𝑷𝑖𝜇 = 0                                                  (2.7) 

 𝑺𝑸𝜗𝑗 = 𝑺𝑻𝜗𝑗  if 𝑡𝜗 ∈  𝑊𝑡(𝑡𝑗) else 𝑺𝑸𝜗𝑗 = 0                                                    (2.8) 

where 𝑺𝑫 and 𝑺𝑻 denote as similarity matrix, and 𝑊𝑑(𝑑𝑖) is defined as the nearest neighbors of a node 

𝑑𝑖, and 𝑊𝑡(𝑡𝑗) is defined as the nearest neighbors of a node 𝑡𝑗. 

The matrix factorization (MF) method decomposes the interaction matrix into two low-rank 

matrices. The MF is formulated as a feature extraction task to obtain the description of the drugs and 

their targets as features. The feature matrix is obtained by maximizing the objective function via the 

posterior probability distribution: 

 𝑚𝑎𝑥
𝑼,𝑽

𝑃(𝑼, 𝑽|𝒀, 𝜎𝑑
2, 𝜎𝑡

2)                                                                    (2.9) 

where 𝒀 denotes the interaction matrix, 𝜎𝑑
2 and 𝜎𝑡

2 are parameters that control the variance of Gaussian 
distribution of drug set and target set. 

Thus, drugs and targets can be denoted as two r-dimensional feature representations. As illustrated 

in Figure 2, the drug feature is 𝑼 − 𝑫 = [𝐷𝐹1, 𝐷𝐹2, . . . , 𝐷𝐹𝑟] , and the target feature is 𝑽 − 𝑻 =

[𝑇𝐹1, 𝑇𝐹2, . . . , 𝑇𝐹𝑟]. Then, the drug feature vectors and target feature vectors are merged and assigned 

the label based on the interaction matrix 𝒀. To ensure the quality of the model, the number of negative 

samples is equal to positive number in each dataset. Negative samples are randomly generated based 

on the interaction matrix 𝒀 . The pairwise drug–target feature vector is used as input to the neural 

network, which can be expressed as 𝑭𝑽= [𝐷𝐹1, 𝐷𝐹2, . . . , 𝐷𝐹𝑟 , 𝑇𝐹1, 𝑇𝐹2, . . . , 𝑇𝐹𝑟]. 

 

Figure 2. Construction of potential feature vectors for a drug-target pair. 
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2.4. ConvBLS prediction method 

After concatenating the features of drugs and targets, in order to achieve better performance and 

train more effectively, the ConvBLS model is used as a classification method to determine the 

predictions of the DTIs. As shown in Figure 3, we developed a broad learning system that combined 

convolutional neural network to extract high-quality drug and target representations for better 

prediction. 

 

Figure 3. ConvBLS network structure. 

ConvBLS mostly includes two parts: The 1D-CNN module and enhancement nodes. CNN block 

is used to learn a representative features of targets and drugs. The input data of 1D-CNN is a one-

dimensional feature vectors, and the convolution kernel is also in one-dimensional form. The 

enhancement layer is responsible for further feature extracting. The detailed network structure is shown 

in Figure 3. This section completes the classification task with ConvBLS. 

Given the lack of learning ability of the original feature mapping, the CNN block is selected for 

sequence data of drug-target features. It contains multiple groups of feature mapping nodes composed 

of a 1D-CNN layer and a max pooling layer. To solve complex tasks, learning models increasingly go 

deeply. The multiscale random convolution feature is expanded to improve robustness. The detailed 

computational procedure is as follows: 

First, the drug–target predictive model ConvBLS is constructed based on previous obtained 

feature data FV. The input is connected to the mapping matrix by applying 1-D convolution kernels to 

generate the corresponding feature representation. All the random items can act as the convolution 

kernel so that we can achieve the output:  

𝑭𝑪 = 𝜑(𝐶𝑜𝑛𝑣(𝑿, 𝐾𝐶))                                                                  (2.10) 

where 𝑿  is the input feature vectors, 𝐾𝐶  is the convolution kernel, 𝐶𝑜𝑛𝑣(. )  is denoted as the 

convolution function, and 𝜑(. ) is the activation function. The descriptor of the mapping feature is 

called 𝑭𝑪. Then, the down-sampling method is used to allow the feature to be robust: 

𝑭𝑷 = 𝑚𝑎𝑥_𝑝𝑜𝑜𝑙(𝑭𝑪)                                                              (2.11) 
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where 𝑭𝑷 is the result after max pooling function. Next, an enhancement layer is built. Using random 

weights and nonlinear transformation, the enhancement nodes are obtained: 

𝐸𝑗 = 𝜓 (𝑭𝑷𝑊𝑒𝑗
+ 𝑏𝑒𝑗

) 𝑗 = 1,2, … , 𝑛                                                          (2.12) 

where 𝜓(. )  is the activation function, weights and bias represented as 𝑊𝑒𝑗
  and 𝑏𝑒𝑗

 , which are 

randomly initialized, and 𝑛 is the group number of enhanced nodes. All of the enhancement nodes can 

be represented as 𝑬𝒏 ≡ [𝐸1, 𝐸2, … 𝐸𝑛]. Finally, the improved feature layer and enhancement layer are 

concatenated into one matrix as a single neural network. Hence, featurization constitutes the outputs 

of weight of the BLS, based on 𝒀 = 𝑯𝑾𝒅𝒕. 

𝑾𝒅𝒕 = 𝑯+𝒀 = [𝑭𝑷|𝑬𝒏]+𝒀                                                              (2.13) 

The ridge regression approximation algorithm [33] is utilized to determine the [𝑭𝑷|𝑬𝒏]+: 

[𝑭𝑷|𝑬𝒏]+ = 𝑙𝑖𝑚
𝜆⟶0

(𝜆𝜤 + [𝑭𝑷|𝑬𝒏][𝑭𝑷|𝑬𝒏]T)
−1

[𝑭𝑷|𝑬𝒏]T                                                (2.14) 

3. Materials 

Here, we describe the dataset used in this paper and provide the experiment setup and evaluation 

metrics for comparing model performance in subsequent experiments. 

3.1. Dataset description 

In this study, two benchmark datasets are used for evaluating our proposed model: the 

Yamanishi’s dataset and Luo’s dataset. The first one is the gold benchmark dataset created by 

Yamanishi et al. [34]. It is classified into four categories based on the target protein class, namely: (i) 

enzyme (E), (ii) ion channel (IC), (iii) G protein-coupled receptor (GPCR), and (iv) nuclear receptor 

(NR). Since the discovery of the interactions in these datasets 14 years ago, we implemented the 

completed version of the original golden standard datasets collected by Liu et al. [35]. The new datasets 

added information on the KEGG pathways [36], DrugBank [37], and ChEMBL [38] databases. The 

second one was developed by Luo et al. [11], consisting of four categories of nodes (drugs, proteins, 

diseases, and side-effects) and six types of connections (drug-target interaction, drug-drug interactions, 

protein-protein interactions, drug-disease associations, protein-disease associations, and drug-side-

effect associations). Table 1 lists the detailed statistical entries of the complete datasets included in our 

analysis. Sparsity represents the proportion of known DTI numbers in all possible DTI combinations. 

Table 1. Summary of the four benchmark datasets. 

Dataset Drugs Targets Interactions Sparsity 

NR 54 26 166 0.118 

GPCR 223 95 1096 0.052 

IC 210 204 2331 0.054 

E 445 664 4256 0.014 

Luo 708 1512 1923 0.002 
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3.2. Experimental setup 

Table 2 lists the parameter settings in the experiments depending on datasets. The best parameters 

of ConvBLS-DTI were selected by performing a grid search. Some key parameters were set as follows: 

The number of the nearest known neighbors K is set to 5 for NR and 7 for others; the feature dimension 

r is set to 50 for a relatively small dataset NR, and 100 was an appropriate setting for GPCR, IC, and 

E datasets. The convolution kernel size is taken from {3–9}. The Tanh function was chosen as the 

activation function for every layer. A number of experiments are performed to determine the optimal 

classification parameters of BLS. Specifically, the shrinkage scale (sc) of the enhancement nodes plays 

a central role in this experiment. The parameters of all baseline methods were set based on the 

suggestions from the respective studies available in the literature.  

Table 2. Hyper-parameters in the experiments. 

Parameter Value 

K K ∈ {1,2,3,5,7,9} 

r r ∈ {50,100} 

sc 2 

filter size 4 

number of filters 5 

enhancement nodes n ∈ [100,1000] 

3.3. Cross-validation strategy and assessment metrics 

For the cross-validation experiments, there are three different experimental settings for 

comparison, depending on whether the drug and target involved in the test pair are training entities:  

1) CVd: Predicts the interactions between testing drugs and training targets; 

2) CVt: Predicts the interactions between training drugs and testing targets; 

3) CVdt: Predicts the interactions between testing drugs and testing targets. 

The 10-fold cross-validation is one of the most widely available methods. All models were trained 

and tested using 10-fold cross-validation. In this study, the final results are given with the area under 

the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPR) 

to judge the prediction performance. They are widely used in this field [39,40]. Since there are few 

true DTIs, AUPR is a more precise quality indicator than AUC because it punished those in which lots 

of false positive examples were found from the top-ranked prediction score [41], so we consider it as 

an evaluation sign. In addition, the Sen score was another metric used in this study. The average values 

are used for the results of each dataset. 

4. Results 

Experiments were run under the environment of Windows 10 Professional Edition and i5-7200H 

CPU. Our aim of this study was to construct an efficient computation method with excellent 

performance for DTI prediction. Therefore, we first observe the performance of two BLS-based 

models from different perspectives on the four datasets. Then, we compared the prediction results of 

our model with representative methods under three settings: NRLMF [32], DTINet [11], WKNNIR [42], 
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DTi2Vec [43], ADA-GRMFC [44], and BLS-DTI. Finally, the optimal of core parameter in the 

experiment was reported. 

4.1. Comparisons of BLS-based methods 

We first compared our model with the BLS-DTI. Tables 3 and 4 list the AUC and AUPR results 

on the prediction tasks. As shown in Table 3, our model is found to outperform BLS-DTI in the AUC 

and AUPR. It highlights the importance of the feature extraction ability in the BLS. The enhancement 

layer is included in the two networks. We considered the prediction performance of BLS is insufficient 

for DTI prediction tasks due to the lack of the ability to obtain deep features. ConvBLS-DTI provides 

the better performance in terms of CNN method. Specifically, ConvBLS-DTI exhibits higher results 

than BLS-DTI for the E dataset, providing 0.22 higher AUC score, an improvement of 28%, with a 

0.152 greater AUPR value, an improvement of 19%. The same positive results are also found in the 

other three datasets, which indicates that the performance of the model ConvBLS-DTI is improved 

when the CNN method is added to the BLS network. 

Table 3. AUC and AUPR of BLS-DTI and ConvBLS-DTI. 

Method E IC GPCR NR 

AUC AUPR AUC AUPR AUC AUPR AUC AUPR 

BLS-DTI 0.789 0.814 0.907 0.916 0.854 0.863 0.854 0.863 

ConvBLS-DTI 0.969 0.962 0.971 0.967 0.968 0.961 0.968 0.961 

For a more comprehensive evaluation, the following Table 4 shows the addition AUC and AUPR 

scores of each experimental setting on four datasets. Similarly, ConvBLS-DTI obtain higher 

performance in all scenarios, outperforming the other method BLS-DTI. Compared with NR and 

GPCR datasets, IC and E datasets contribute to higher AUC and AUPR scores, with AUPR values of 

0.947 and 0.961, respectively. The possible reason is that the number of DTIs in the NR and GPCR 

categories is smaller than the other categories, especially for NR with only 166 drug-target pairs. 

Table 4. Performances on three prediction experimental settings. 

Dataset Method 
CVd CVt CVdt 

AUC AUPR SEN AUC AUPR SEN AUC AUPR SEN 

NR 

BLS-DTI 0.8882 0.8753 0.8510 0.8048 0.7942 0.8088 0.9274 0.9182 0.9403 

ConvBLS-

DTI 
0.9509 0.9531 0.9186 0.9693 0.9688 0.9313 0.9545 0.95099 0.9153 

IC 

BLS-DTI 0.8830 0.8723 0.6141 0.9572 0.9547 0.7505 0.6981 0.6461 0.9160 

ConvBLS-

DTI 
0.9747 0.9770 0.9496 0.9719 0.9732 0.9390 0.9541 0.9654 0.9377 

GPCR 

BLS-DTI 0.9077 0.8950 0.6758 0.9134 0.8980 0.6570 0.7262 0.6837 0.8750 

ConvBLS-

DTI 
0.9557 0.9632 0.9317 0.9242 0.9460 0.9277 0.8926 0.9170 0.9000 

E 

BLS-DTI 0.8553 0.8182 0.7191 0.8689 0.8527 0.6807 0.8874 0.8675 0.6444 

ConvBLS-

DTI 
0.9614 0.9677 0.9314 0.9588 0.9691 0.9413 0.9643 0.9681 0.9330 
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The green part is the best performance in comparison models. 

4.2. Comparisons with representative models 

In this section, under the same datasets, evaluation metrics and experimental scenarios (CVd, CVt, 

and CVdt), six advanced methods, including NRLMF, DTINet, WKNNIR, DTi2Vec, ADA-GRMFC, 

and BLS-DTI, are involved into the performance comparison. Tables 5 and 6 show the AUC and AUPR 

of the methods participating in the CVd  and CVt  settings. In general, based on the main evaluation 

metrics, our method has overall better performance than the other methods under different scenarios. 

For CVd, ConvBLS-DTI shows a high performance in all datasets. For CVt, minimal difference is found 

in the AUC score obtained using IC and GPCR datasets, but the AUPR result achieved by our method 

increases by 2.05%, 4.41%, 3.6%, 5.54%, and 6.12% on NR, GPCR, IC, E, and Luo datasets, 

respectively, compared with that of the second-best model. In particular, ConvBLS-DTI performs 

better than BLS-DTI. In the results of predicting novel drugs and known targets, ConvBLS-DTI is 

better than other methods.  In the experiment scenario of CVd, ConvBLS-DTI achieves AUPR values 

of 0.917, 0.968, 0.972, 0.958, and 0.972 on NR, IC, GPCR, E, and Luo datasets, respectively. In the 

experiment scenario of CVt, the AUPR values of ConvBLS-DTI are 0.846, 0.950, 0.946, 0.952, and 

0.954 on NR, IC, GPCR, E, and Luo datasets, respectively. Overall, it can be concluded that the 

proposed ConvBLS-DTI is superior to all the compared methods and proves that broad learning system 

can also be a rational tool to help for predicting DTIs. 

Table 5. AUC with different methods on all datasets in CVd and CVt. 

Setting Dataset NRLMF DTINet WKNNIR DTi2Vec ADA-

GRMFC 

BLS-

DTI 

ConvBLS-

DTI 

CVd NR 0.842 0.701 0.817 0.917 0.866 0.856 0.937 

IC 0.904 0.842 0.929 0.897 0.802 0.861 0.968 

GPCR 0.831 0.752 0.834 0.955 0.827 0.886 0.973 

E 0.857 0.769 0.86 0.846 0.841 0.891 0.958 

Luo 0.92 0.881 0.902 0.861 0.859 0.901 0.979 

CVt NR 0.813 0.756 0.82 0.654 0.814 0.833 0.865 

IC 0.938 0.879 0.949 0.908 0.938 0.802 0.947 

GPCR 0.958 0.907 0.956 0.866 0.896 0.897 0.951 

E 0.943 0.841 0.927 0.853 0.939 0.862 0.960 

Luo 0.835 0.838 0.851 0.911 0.952 0.753 0.969 

Indicated in blue is the best result in each category compared with other models. 
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Table 6. AUPR with different methods on all datasets in CVd and CVt. 

Setting Dataset NRLMF DTINet WKNNIR DTi2Vec ADA-

GRMFC 

BLS-

DTI 

ConvBLS-

DTI 

CVd NR 0.532 0.346 0.571 0.912 0.607 0.857 0.917 

IC 0.514 0.47 0.529 0.911 0.39 0.882 0.968 

GPCR 0.486 0.373 0.502 0.953 0.384 0.885 0.972 

E 0.371 0.215 0.423 0.863 0.426 0.834 0.958 

Luo 0.476 0.299 0.492 0.945 0.721 0.906 0.972 

CVt NR 0.522 0.435 0.63 0.639 0.466 0.829 0.846 

IC 0.735 0.526 0.781 0.917 0.824 0.842 0.950 

GPCR 0.803 0.574 0.858 0.875 0.631 0.906 0.946 

E 0.724 0.379 0.719 0.876 0.825 0.902 0.952 

Luo 0.303 0.138 0.571 0.899 0.878 0.804 0.954 

Indicated in blue is the best result for each category comparing all other models. 

In particular, the ConvBLS-DTI has satisfactory performance under the CVdt setting. The AUC 

and AUPR histograms for the different algorithms are shown in Figures 4 and 5, respectively. The 

results are entirely consistent across all datasets given in the CVdt  (specifically in terms of AUPR 

metric). For CVdt, the AUC and AUPR values of ConvBLS-DTI are higher than other methods on all 

datasets, although DTi2Vec is very competitive compared with ConvBLS-DTI. Overall, our method 

improves the AUPR more than the AUC.  

 

Figure 4. Comparison results of the AUC metric for the CVdt. 
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Figure 5. Comparison results of metric AUPR under the CVdt. 

4.3. Ablation experiment  

To measure the impact of the WKNKN method on ConvBLS-DTI, ablation experiments were 

conducted by removing the WKNKN method under three different CV strategies using the Luo et al. 

dataset. The variant of ConvBLS-DTI without the WKNKN method is denoted as ConvBLS-DTI 

(without WKNKN). Performance comparisons between ConvBLS-DTI and the variant in terms of 

AUC and AUPR are presented in Tables 7 and 8, respectively. The findings in Tables 7 and 8 suggest 

that the utilization of the WKNKN method contributes to improve the performance of ConvBLS-DTI.  

Table 7. Ablation results in terms of AUC on the Luo et al. dataset under three different CVs. 

Model CVd CVt CVdt 

ConvBLS-DTI 0.9785 0.9691 0.9590 

ConvBLS-DTI (without WKNKN) 0.9758 0.9613 0.9516 

Table 8. Ablation results in terms of AUPR on the Luo et al. dataset under three different CVs. 

Model CVd CVt CVdt 

ConvBLS-DTI 0.9718 0.9535 0.9522 

ConvBLS-DTI (without WKNKN) 0.9636 0.9463 0.9478 

4.4. Optimization of model parameters 

In this study, the datasets IC and GPCR were applied to test the influence of the convolution 

kernel size. As illustrated in Figure 6, by varying the size of the convolutional kernel (3, 4, 5, 6, 7, 8, 

and 9), the AUPR value of the ConvBLS-DTI method progressively improved with an increase in 

kernel size and reached its optimal performance when kernel size was set to 5. Subsequently, the 

performance showed a decline. A kernel size set to 5 achieved good results. 
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Figure 6. Comparison results of metric AUPR under the CVdt. 

5. Conclusions 

In this paper, we aimed to solve the problem of sparsity and incompletion of the drug interaction 

data. A new framework called ConvBLS-DTI was proposed to predict DTIs by applying an advanced 

fusion of BLS approach. Our method integrates WKNKN, MF, and BLS to improve the DTI prediction 

results. The method takes advantage of matrix factorization for the latent low-dimensional feature 

representation and predicts DTIs based on the broad learning architecture. Moreover, the WKNKN 

algorithm was used as a preprocessing step to increase the availability of relevant information for a 

large number of missing correlations. Compared with the BLS-DTI, our model achieved AUC and 

AUPR values of 0.971 and 0.967, respectively, for the IC dataset under tenfold-cross-validation 

experiments. These findings illustrate that the combination of CNN and BLS could improve the 

prediction performance for DTIs. Additionally, compared with other previous methods，the best AUC 

and AUPR values of the proposed method were 0.9643 and 0.9681 for the E dataset and CVdt setting, 

respectively. The results show that our model acquires improved prediction effect on AUC and AUPR 

using extensive experimental verification.  

In future studies, greater emphasis will be placed on optimizing the BLS structure to enhance the 

feature extraction ability. In fact, the results of the present prediction model can be heavily influenced 

by the mapping algorithms and the effectiveness of the dataset. Therefore, our models might be further 

developed using other deep-learning models to increase the identifying power. Overall, with the 

availability of more data and the development of new approaches, it is expected that more applications 

of our model can be achieved. 
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