
http://www.aimspress.com/journal/mbe

MBE, 21(2): 2568–2586.
DOI: 10.3934/mbe.2024113
Received: 22 October 2023
Revised: 21 December 2023
Accepted: 29 December 2023
Published: 18 January 2024

Research article

A novel parallel ant colony optimization algorithm for mobile robot path
planning

Jian Si and Xiaoguang Bao*

College of Information Technology, Shanghai Ocean University, Shanghai 201306, China

* Correspondence: Email: xgbao@shou.edu.cn.

Abstract: With the continuous development of mobile robot technology, its application fields are
becoming increasingly widespread, and path planning is one of the most important topics in the field
of mobile robot research. This paper focused on the study of the path planning problem for mobile
robots in a complex environment based on the ant colony optimization (ACO) algorithm. In order
to solve the problems of local optimum, susceptibility to deadlocks, and low search efficiency in the
traditional ACO algorithm, a novel parallel ACO (PACO) algorithm was proposed. The algorithm
constructed a rank-based pheromone updating method to balance exploration space and convergence
speed and introduced a hybrid strategy of continuing to work and killing directly to address the problem
of deadlocks. Furthermore, in order to efficiently realize the path planning in complex environments,
the algorithm first found a better location for decomposing the original problem into two subproblems
and then solved them using a parallel programming method-single program multiple data (SPMD)-
in MATLAB. In different grid map environments, simulation experiments were carried out. The
experimental results showed that on grid maps with scales of 20 × 20, 30 × 30, and 40 × 40 compared
to nonparallel ACO algorithms, the proposed PACO algorithm had less loss of solution accuracy but
reduced the average total time by 50.71, 46.83 and 46.03%, respectively, demonstrating good solution
performance.

Keywords: ant colony optimization; decomposition; parallelism; single program multiple data;
mobile robot; path planning

1. Introduction

Path planning is an important problem in the field of mobile robot research. It can be described as
follows: Given a two-dimensional area filled with obstacles, the objective of the problem is to find a
minimum-length collision-free path from a starting point to a target point. For the problem, there are
many solution methods, such as artificial potential field (APF) method [1, 2], A* algorithm [3, 4],

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2024113

2569

fuzzy logic (FL) [5,6], simulated annealing (SA) [7,8], genetic algorithm (GA) [9,10], particle swarm
optimization (PSO) [11, 12], ant colony optimization (ACO) [13, 14], whale optimization algorithm
(WOA) [15, 16], slime mould algorithm (SMA) [17, 18], moth-flame optimization (MFO) [19, 20],
Harris Hawks optimization (HHO) [21, 22], grey wolf optimization (GWO) [23, 24], and so on.
Researchers are committed to effectively solving the mobile robot path planning by improving the
components of individual algorithms or hybridizing different solution methods. For example, Li et
al. [4] introduced the bidirectional alternating search strategy, improved the heuristic function, and
employed the filtering function and Bézier curves in the A* algorithm to solve the problems of long
calculation time, large turning angles, and unsmoothed path in large task spaces. Shi et al. [8]
introduced the initial path selection method and deletion operation in the SA algorithm to reduce the
computational effort. Zhang et al. [10] combined GA and the firefly algorithm (FA) to address the
problem of FA easily trapping into the local optimal solution. Yuan et al. [12] proposed an improved
PSO algorithm based on differential evolution to overcome the disadvantage of low convergence
accuracy and easy maturity. Dai et al. [16] adopted adaptive technology, set virtual obstacles, and
introduced improved potential field factor in WOA to improve the convergence speed, avoid local
optimal traps, and enhance the dynamic obstacle avoidance ability of mobile robots, respectively.
Zheng et al. [18] utilized a variable neighborhood Lévy flight and an individual rotation perturbation
and variation mechanism in SMA to enhance the local optimization ability and prevent falling into
local optimization. Dai and Wei [20] in MFO introduced the concept of historical best flame average
to jump out of the local optimum and employed the quasi-opposition-based learning to enrich the
population diversity and improve the convergence rate. Cai et al. [22] adopted linear path, local search
update, and nonlinear control strategies to improve the performance of the HHO algorithm. Hou et
al. [24] used improved chaotic tent mapping, the nonlinear convergence factor based on the Gaussian
distribution change curve, and the dynamic proportional weighting strategy to enhance the
performance of the GWO algorithm.

The ACO algorithm [25–27], inspired by the cooperative foraging behavior of ants in nature, is
widely used to solve combinatorial optimization problems (such as disassembly sequence
planning [28], vehicle routing problem [29], traveling salesman problem [30], airport taxiway
planning [31], job shop scheduling [32], feature selection [33], and image segmentation [34]) due to
its advantages of positive feedback, strong robustness, and parallelism. For the path planning of
mobile robots, there are also numerous research results in the literature. Akka and Khabers [35]
introduced a stimulating probability in the state transition rule to choose a safe and accessible grid.
Meanwhile, the authors employed new heuristic information, pheromone updating rule, and a
dynamic evaporation strategy to make the algorithm more competitive. You et al. [36] presented an
improved ant colony system (ACS) algorithm, in which a new heuristic operator in the state transition
rule was adopted to achieve a balance between the population diversity and convergence rate. Here,
ACS is an ACO algorithm and is introduced by Dorigo and Gambardella [37]. Gao [38] proposed an
enhanced heuristic ACO algorithm and utilized four strategies to improve the performance and
efficiency of the algorithm, including local visibility enhancement, new pheromone diffusion,
backtracking mechanism, and path merging. Luo et al. [13] proposed an improved ACO algorithm to
overcome shortcomings of the basic ACO algorithm in terms of initial pheromone, heuristic
information, pheromone update, state transition, and deadlock problem.

In addition to the above studies in which ants deposit pheromones on arcs, there is also the work

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2570

of placing pheromones on nodes (see Deng [39]). Furthermore, there are also many scholars who
combine the ACO algorithm with other methods to solve the path planning problem. For example, in
Liu et al. [40], Dai et al. [41], Zhang et al. [42], and Li et al. [43], the ACO algorithm was combined
with the APF method and geometric local optimization, A* heuristic method, PSO algorithm, and
artificial bee colony algorithm, respectively.

In order to improve the global search ability and solution efficiency for the mobile robot path
planning in complex environments, a novel parallel ant colony optimization (PACO) algorithm is
proposed in this paper. The improvement and innovation of the algorithm includes the following three
aspects. First, a new rank-based pheromone updating method in which the first ten short paths are
rewarded and the last ten poor paths are punished is constructed to balance the search space
exploration and faster convergence speed. Second, a hybrid strategy of continuing working and killing
directly is introduced to address the deadlock problem. In the early iterations, ants in a deadlock state
are allowed to continue searching to enrich the diversity of solutions, while in the later iterations the
ants are directly killed to improve convergence speed of the algorithm. Third, the strategies of
decomposition and parallelism are designed to achieve rapid problem solving. The algorithm first
finds a better location based on the pheromone concentration to split the original problem into two
subproblems, and then solves them using a parallel programming method-single program multiple
data (SPMD)-in MATLAB. Simulation experiments were conducted in different grid map
environments. The results verify the validity and superiority of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 describes the environmental model
for the path planning of mobile robots. Traditional and parallel ACO algorithms are presented in
Sections 3 and 4, respectively. Simulation experiments of different scales are carried out in Section 5.
Finally, conclusions and further work are given in Section 6.

2. Environmental model

A two-dimensional grid map model is used to represent the working environment of the robot. In
a grid map, all grids are numbered sequentially from left to right and from top to bottom. Meanwhile,
the grids are divided into two colors: white and black. The white grids, in which the robot can move,
are called feasible, while the black grids, which represent obstacles, are called infeasible. Figure 1
shows an example of a grid map.

In order to facilitate the implementation of the algorithm, 0 and 1 are used to represent feasible and
infeasible grids, respectively. Furthermore, the conversion from the grid numbers to two-dimensional
coordinates is given by Formula (2.1).


x =

mod(n,N) − 0.5, if mod(n,N) , 0
N − 0.5, otherwise

y = N + 0.5 − ceil
(

n
N

) (2.1)

Here, n is the grid number, N is the number of columns in the grid map, mod denotes the remainder
function, and ceil denotes the rounding function toward positive infinity.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2571

Figure 1. Grid map.

3. Traditional ACO algorithm

The ACO algorithm is a metaheuristic that simulates the foraging behavior of natural ants. During
the process of searching for food source, the ants release pheromones as a communication medium
to guide other members of the colony. In the ACO algorithm, the ants probabilistically construct
solutions to a problem based on pheromones and heuristic information. After finding solutions, the
ants will leave a certain amount of pheromones on the solutions.

Figure 2. Feasible movements for next grid of robot.

In a grid map environment, each ant can move in no more than 8 directions. As shown in Figure 2,
the ant k located at grid i can only choose the next moving position from 6 adjacent grids due to
two obstacle grids. The state transition probability from grid i to the next grid j is calculated by
Formula (3.1).

Pk
i j(t) =


ταi j(t)η

β
i j(t)∑

s∈Nk (i) τ
α
is(t)η

β
is(t)
, j ∈ Nk(i)

0, otherwise
(3.1)

Here, τi j(t) denotes the pheromone value of the edge (i, j) at time t, ηi j(t) represents the heuristic
information value given by Formula (3.2) where di j is the distance between grids i and j, α is the
pheromone intensity factor, β is the expected heuristic factor, and Nk(i) is the set of grids that are

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2572

feasible and have not been visited by ant k.

ηi j(t) =
1

di j
(3.2)

After all the ants complete a search, the pheromone values of the edges in feasible paths will be
updated according to Formula (3.3).

τi j(t + 1) = (1 − ρ)τi j(t) +
m∑

k=1

∆τk
i j(t) (3.3)

Here, ρ represents the pheromone evaporation rate, m is the number of ants, and ∆τk
i j(t) is the amount

of pheromone left by ant k on the edge (i, j), which is typically given by Formula (3.4).

∆τk
i j(t) =

{ Q
Lk
, if ant k passes through edge (i, j)

0, otherwise
(3.4)

Here, Q is a constant and Lk is the total length of the path of ant k.

4. Parallel ACO algorithm

In large-scale maps, as the number of grids increases, the solving efficiency of the traditional ACO
algorithm decreases sharply. In order to solve this problem, decomposition and parallelism strategies
are proposed. Before presenting these two strategies, based on the results of existing literature, we
provide two small modifications in pheromone updating and deadlock handling to optimize the
corresponding components of the algorithm.

4.1. Pheromone updating rule

For the pheromone updating, Bullnheimer et al. [44] proposed a rank-based method. The paths are
first sorted according to their length, then some of the paths that rank higher are used. In addition,
compared to Formula (3.4), the authors introduced a weight that is proportional to the rank of the path.
On the other hand, Luo et al. [13] introduced a penalty mechanism for the iteration-worst solution.

Inspired by the above two approaches, we introduce a rank-based pheromone updating method, in
which the first ten good and last ten poor paths are used. At the same time, in order to balance the
exploration space and convergence speed, we gradually utilize the information of these paths. More
specifically, the new pheromone updating strategy is designed as follows: When 1 ≤ t ≤ 10%T , each
of the first ten good paths is rewarded whereas the worst path is punished; when 10%T < t ≤ 20%T ,
each of the first nine short paths is rewarded whereas each of the last two poor paths is punished; and
so on. Here, t is the iteration counter and T is the maximum number of iterations. The values of the
reward and punishment are calculated by Formula (4.1). Here, the meanings of ceil and Lk can be
found in Formulas (2.1) and (3.4), respectively.

From the proposed pheromone updating strategy, it can be seen that: In the early iterations, more
good paths are appropriately rewarded and fewer poor paths are punished, which helps the algorithm to
explore extensively; in the later iterations, fewer short paths are greatly rewarded and more long paths
are punished, which helps to improve the convergence speed of the algorithm.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2573

∆τk
i j(t) =



ceil(t
10%T) ∗ Q

Lk
, if ant k is rewarded and passes through edge (i, j)

−
Q
Lk
, if ant k is punished and passes through edge (i, j)

and 1 ≤ t ≤ 50%T
−0.2 ∗ Q

Lk
, if ant k is punished and passes through edge (i, j)

and 50%T < t ≤ T
0, otherwise

(4.1)

τi j(t + 1) =

 (1 − λ)ceil
(

MLost (i, j)
3

)
∗ τi j(t), if edge (i, j) is in the last two steps

τi j(t), otherwise
(4.2)

4.2. Deadlock handling strategy

Due to the presence of obstacles and the use of a taboo list, ants may fall into a state of no road to
go, known as a deadlock. As shown in Figure 3, when an ant in grid S passes through T and enters D,
it is trapped in a deadlock state because the eight adjacent grids are either obstacles or belong to the
taboo list.

Figure 3. Status of deadlock.

For the deadlock problem, Wang and Yu [45] proposed a strategy called early death, in which ants
trapped in a deadlock state are directly killed without any other actions. Qu et al. [46] presented a
one-step backtracking method where ants are allowed to return one step and continue searching for a
path, and the edge corresponding to this step is punished. Luo et al. [13] gave a compromise strategy, in
which ants in a deadlock state are killed and the edges corresponding to the last two steps are punished
according to Formula (4.2). Here, 0 < λ < 1 is a penalty factor, MLost(i, j) is the number of ants
entering the same deadlock position, and the meaning of ceil can be found in Formula (2.1).

From Luo et al.’s method, it can be seen that the punishment not only alerts subsequent ants, but also
adjusts its intensity based on the number of lost ants. However, killing these ants without continuing
to work reduces the possibility of discovering feasible paths, leading to a decrease in the diversity of

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2574

solutions. On the other hand, the subsequent search will also increase a certain amount of computation.
In this paper, we follow Luo et al.’s method with minor change to balance extensive exploration and
fast convergence. More specifically, the “continuing to work” strategy is adopted in the early iterations,
while the “killing directly” strategy is used in the remaining iterations. The boundary between the
two strategies varies with the scale of grid map, which will be specifically presented in the following
experiments.

4.3. Decomposition and parallelism strategies

In order to efficiently complete the path planning in complex environments, a strategy of
decomposing the original problem into two subproblems is proposed. The key to the strategy is the
selection of a boundary line, such that the two subproblems obtained are as balanced as possible.
Because any feasible path must pass through the middle row (column) between the rows (columns)
corresponding to the starting and target points, which divides the grid map into approximately equal
two parts, we choose it as the boundary line. Meanwhile, without loss of generality, suppose that the
difference between the starting and target rows is not less than that between the columns. The middle
row is selected as the boundary line in the following discussion.

Consider which grid in the middle row to use as an auxiliary point for partitioning the problem.
Pheromone concentration is the key information for determining the importance of edges. Therefore, a
method for selecting the auxiliary point can be carried out as follows: First, for each grid in the middle
row, calculate the sum of the pheromone concentrations of the edges associated with it and choose
the grid with the highest value. The second strategy is to directly count the number of feasible paths
passing through each grid and select the grid with the maximum number as the auxiliary point. Due
to the significant correlation between the two methods, the latter is adopted in this paper for ease of
calculation. For determining the auxiliary point, a preprocessing stage, i.e. the first T0 iterations of the
algorithm, is executed. Here, T0 is a parameter whose value will be given in the following text.

Now present the parallelism strategy of the algorithm. The proposed algorithm in this paper adopts
the parallelism strategy in both stages. The first is in the preprocessing stage: In order to reduce the
execution time of the algorithm and address the limitations of unidirectional search, two problems, one
is from the starting point to the target point while the other is in opposite, are addressed in parallel,
with each being executed T0 iterations. The second is in the remaining stage: Two subproblems, one
is from the starting point to the auxiliary point while the other is from the auxiliary point to the target
point, are dealt with simultaneously. The MATLAB Parallel Computing Toolbox is an effective tool for
developing a parallel program in a multiprocessor environment in which SPMD is one of the most used
methods (see Cao et al. [47]). In our algorithm, the SPMD is used to implement parallel computing.

4.4. Parallel ACO procedure

The specific steps of the parallel ACO algorithm proposed in this paper are presented as follows:

Step 1. Import a two-dimensional grid environment. Set the starting and target points as Nstart and
Ntarget, respectively.

Step 2. Initialize the parameters. The ant number m, maximum iteration number T , preprocessing
iteration number T0, pheromone intensity Q, pheromone heuristic factor α, expected heuristic
factor β, and deadlock penalty factor λ are initialized.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2575

Step 3. Execute the preprocessing stage. Activate two CPU cores and address the problems from Nstart

to Ntarget and from Ntarget to Nstart, respectively, using the proposed new relevant strategies. Set
the auxiliary grid obtained and the time spent as Nauxiliary and t1, respectively.

Step 4. Execute the formal stage. Activate two CPU cores again and deal with the subproblems from
Nstart to Nauxiliary and from Nauxiliary to Ntarget, respectively, using the proposed new relevant
strategies. Set the obtained subpaths as Path1 and Path2, respectively. Meanwhile, set the time
spent as t2.

Step 5. Output the final path Path by connecting Path1 and Path2 and obtain the algorithm’s total
running time ttotal = t1 + t2.

Figure 4. Flowchart of the proposed parallel ACO algorithm.

The flowchart of the proposed parallel ACO algorithm is shown in Figure 4. Now, we analyze the
time complexity of the algorithm. Because the search time of each ant in each iteration is at most

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2576

O(N2), the overall complexity of nonparallel ACO algorithms is O(N2 ∗ m ∗ T). However, due to the
use of the decomposition and parallelism strategies, the total time consumption of the proposed parallel
ACO algorithm is the sum of O(N2 ∗ m ∗ T0) in the preprocessing stage and O((N

2)2 ∗ m ∗ (T − T0)) in
the formal stage, which is O(N2 ∗ m ∗ (T

4 +
3T0

4)).

5. Experimental results

In order to verify the effectiveness of the proposed parallel ACO algorithm for solving the path
planning problem, simulation experiments of different scales were executed and compared with other
ACO algorithms. The simulation environment is as follows: Windows10 64 bit; processor Intel (R)
Core (TM) i5-8500; main frequency 3.00 GHz; memory 8 GB; simulation software MATLAB R2020a.
By using the empirical and experimental method, a better parameter combination was determined. The
values of these parameters are shown in Table 1.

Table 1. Values of the main parameters in the proposed algorithm.

T T0 M Q α β λ

50 3 50 1 1.0 7.0 0.2

Next, in Section 5.1 we present two comparative experiments to verify the effectiveness of the
proposed pheromone updating rule and deadlock handling strategy, respectively. The effectiveness
of decomposition and parallelism strategies, as well as the comparison of PACO’s performance with
other algorithms, are presented in Section 5.2. In each comparative experiment, we used grid maps of
three scales: 20 × 20, 30 × 30, and 40 × 40, all from Dai et al. [41]. Here, the boundaries between
the “continuing to work” and “killing directly” strategies are 60, 70, and 80% of the total iteration
number, respectively. Furthermore, in order to evaluate the stability of the algorithm, for each grid
map with fixed start and target points as input, the algorithm was independently executed 10 times and
the average and best results were used for comparison.

5.1. Effectiveness of pheromone updating rule and deadlock handling strategy

We first verify the effectiveness of the proposed pheromone updating rule. Due to the impact of
deadlock handling strategy on the pheromone update method, we consider them as a whole and then
validate their effectiveness. Since our method is based on that in Luo et al. [13], the combination of
the two strategies proposed in this paper is compared with Luo et al.’s for the optimal path length. The
results on three scale maps are shown in Figure 5, in which the solid lines marked by a blue triangle and
red star represent the results obtained by ours and Luo et al.’s strategies, respectively. From Figure 6,
it can be observed that: Our results are better than Luo et al.’s both in terms of convergence speed and
solution accuracy, indicating the effectiveness of the combination of the two strategies proposed in this
paper.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2577

(a) 20 × 20 (b) 30 × 30

(c) 40 × 40

Figure 5. Comparisons of the optimal path length between ours and Luo et al.’s strategies.

We now present a validation of the effectiveness of the proposed deadlock handling strategy.
Because our method for dealing with the deadlock problem is based on that in Luo et al. [13], two
strategies are compared for the number of lost ants. The results on three scale maps are shown in
Figure 6, in which the solid lines marked by a blue triangle and red star represent the results obtained
by ours and Luo et al.’s strategy, respectively. From Figure 6, it can be observed that: On the whole,
the curve of the lost ant number using the method proposed in this paper is located below Luo et al.’s,
which means that our strategy yields fewer lost ants, especially in the early iterations. Since the
smaller the number of lost ants, the more the diversity of solution and the greater the probability of
finding a better feasible path, indicating that the proposed method is effective.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2578

(a) 20 × 20 (b) 30 × 30

(c) 40 × 40

Figure 6. Comparisons of the number of lost ants between ours and Luo et al.’s strategy.

5.2. Effectiveness of decomposition and parallelism strategies as well as comparison of performance
between PACO and other algorithms

In order to verify the effectiveness of decomposition and parallelism strategies as well as the
performance of the PACO algorithm, we compared the PACO algorithm with nonparallel
ACO (NPACO) algorithm, Dai et al.’s ACO algorithm in [41], and the traditional ACO algorithm,
respectively. Here, NPACO compared to PACO has the same components, except for not using
decomposition and parallelism strategies. In the following three subsections, we conduct comparative
analysis on the three maps of different scales.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2579

5.2.1. In 20 × 20 map environment

The first comparative experiment was conducted on a 20 × 20 grid map, where the starting and
target points of the path planning problem are (0.5, 19.5) and (19.5, 0.5), respectively. The auxiliary
point obtained by executing the preprocessing stage of the proposed PACO algorithm in this paper is
(8.5, 10.5). The experimental results are as follows:

From Table 2, it can be observed that the average total time for PACO and NPACO is 1.6300 and
3.3070, respectively. The former is reduced by 50.71% compared to the latter, which means that
the decomposition and parallelism strategies of PACO are effective. Meanwhile, for the shortest and
average path lengths, the results of PACO are not inferior to those of NPACO, Dai et al.’s ACO [41],
and traditional ACO. This indicates that PACO not only has a shorter running time, but also ensures
better solution accuracy, further verifying its effectiveness.

Table 2. Experimental results on 20 × 20 map.

Evaluation Criteria PACO ACO in [41] Traditional
ACO

NPACO

Average total time /s 1.6300 4.89 9.22 3.3070
Shortest path length /m 29.2132 29.2133 37.4143 29.2132
Average path length /m 29.2132 29.3807 38.6335 29.2132

(a) Convergence curve (b) Optimal path trajectory

Figure 7. Convergence curves and optimal path trajectories of the four algorithms on 20 ×
20 map.

From Figure 7(a), it can be seen that in the early iterations, the result of PACO is also better than that
of NPACO, indicating the effectiveness of the proposed strategies in this paper. Furthermore, optimal
path trajectories are shown in Figure 7(b), where the solid lines with blue and orange circles, yellow
solid line, black dashed line, and solid lines with purple circles represent the results obtained by PACO,

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2580

Dai et al.’s ACO [41], NPACO, and traditional ACO, respectively. Meanwhile, the grid marked with a
pentagram represents the auxiliary point in PACO.

5.2.2. In 30 × 30 map environment

The second comparative experiment was on a 30 × 30 grid map with the starting and target points
(0.5, 8.5) and (25.5, 28.5). The auxiliary point obtained by PACO is (20.5, 18.5). The experimental
results are as follows:

From Table 3, it can be observed that the average total time for PACO and NPACO is 7.2252 and
13.5880, respectively. The former is reduced by 46.83% compared to the latter, which again shows
that the decomposition and parallelism strategies of PACO are effective. For the shortest path length,
the result of traditional ACO is the worst, while the results of the other three algorithms are almost
equal. For the average path length, the best and worst results are 37.3848 of NPACO and 38.6325 of
traditional ACO, respectively; compared to the best result, the path length of PACO is increased by
1.42%. Combining the three indicators, it can be concluded that although PACO loses a small amount
of solution accuracy, it significantly reduces the running time, proving its effectiveness.

Table 3. Experimental results on 30 × 30 map.

Evaluation Criteria PACO ACO in [41] Traditional
ACO

NPACO

Average total time /s 7.2252 17.97 26.92 13.5880
Shortest path length /m 37.3848 37.3849 38.2133 37.3848
Average path length /m 37.9173 38.1262 38.6325 37.3848

(a) Convergence curve (b) Optimal path trajectory

Figure 8. Convergence curves and optimal path trajectories of the four algorithms on 30 ×
30 map.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2581

Figure 8(a) indicates the effectiveness of the PACO algorithm on the 30 × 30 map. Moreover,
optimal path trajectories are shown in Figure 8(b), with the same line type representation as that on the
20 × 20 map environment.

5.2.3. In 40 × 40 map environment

The third comparative experiment was on a 40 × 40 grid map with the starting and target points
(5.5, 34.5) and (28.5, 5.5). The auxiliary point obtained by PACO is (11.5, 20.5). The experimental
results are as follows:

From Table 4, it can be observed that the average total time for PACO and NPACO is 22.8895 and
42.4130, respectively. The former is reduced by 46.03% compared to the latter. For the shortest path
length, the results of the other three algorithms are almost equal, except for traditional ACO which has
not obtained a feasible solution. For the average path length, apart from traditional ACO, the best and
worst results of the other three algorithms are 51.7023 of NPACO and 52.5414 of PACO, respectively.
Based on these three indicators, the effectiveness of PACO is once again demonstrated.

Table 4. Experimental results on 40 × 40 map.

Evaluation criteria PACO ACO in [41] Traditional
ACO

NPACO

Average total time /s 22.8895 88.20 - 42.4130
Shortest path length /m 51.1127 51.1128 - 51.1127
Average path length /m 52.5414 51.8471 - 51.7023

(a) Convergence curve (b) Optimal path trajectory

Figure 9. Convergence curves and optimal path trajectories of the four algorithms on 40 ×
40 map.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

2582

Figure 9(a) indicates the effectiveness of the PACO algorithm on the 40 × 40 map. Again, optimal
path trajectories are shown in Figure 9(b), with the same line type representation as that on the 20 ×
20 map environment.

In summary, as the scale of grid maps enlarges, the running time of nonparallel ACO algorithms
significantly increases. In particular, on the 40 × 40 grid map, the traditional ACO algorithm is no
longer able to obtain effective paths. However, the parallel ACO algorithm proposed in this paper not
only has a significantly smaller running time, but also has little loss of solution accuracy, demonstrating
good solution performance.

6. Conclusions

This paper proposed a parallel ACO algorithm for the path planning problem of mobile robots. A
rank-based pheromone updating method was introduced to balance exploration space and convergence
speed, while a hybrid approach of continuing searching and killing directly was constructed to deal
with the deadlock problem. In order to quickly implement the path planning in complex environments,
the decomposition and parallelism strategies were designed. Simulation experiments showed that the
effectiveness of the proposed algorithm was verified. Because the PACO algorithm can greatly reduce
computation time with smaller loss of solution accuracy, applying it to relevant practices can save
computational resources and provide fast and better decision-making solutions for managers. For
future research, one is to design a better decomposition method to split the original problem into two
or more subproblems, so that they can be solved in parallel as evenly as possible. The other is to study
the path planning problem in dynamic environments.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under grant number
11701363.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robot. Res.,
5 (1986), 90–98. https://doi.org/10.1177/027836498600500106

2. X. Li, L. Wang, Y. An, Q. Huang, Y. Cui, H. Hu, Dynamic path planning of mobile
robots using adaptive dynamic programming, Expert Syst. Appl., 235 (2023), 121112.
https://doi.org/10.1016/j.eswa.2023.121112

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

http://dx.doi.org/https://doi.org/10.1177/027836498600500106
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.121112

2583

3. F. Duchon, A. Babinec, M. Kajan, P. Beno, M. Florek, T. Fico, et al., Path planning
with modified A star algorithm for a mobile robot, Proc. Eng., 96 (2014), 59–69.
https://doi.org/10.1016/j.proeng.2014.12.098

4. C. Li, X. Huang, J. Ding, K. Song, S. Lu, Global path planning based on a bidirectional
alternating search A* algorithm for mobile robots, Comput. Ind. Eng., 168 (2022), 108123.
https://doi.org/10.1016/j.cie.2022.108123

5. M. Shayestegan, M. H. Marhaban, Mobile robot safe navigation in unknown
environment, in Proceedings of the 2012 IEEE International Conference on Control
System, Computing and Engineering (ICCSCE 2012), Penang, Malaysia, (2012), 44–49.
https://doi.org/10.1109/ICCSCE.2012.6487113

6. J. Wang, Z. Xu, X. Zheng, Z. Liu, A fuzzy logic path planning algorithm based on
geometric landmarks and kinetic constraints, Inf. Technol. Control, 51 (2022), 499–514.
https://doi.org/10.5755/j01.itc.51.3.30016

7. H. Miao, Y. Tian, Dynamic robot path planning using an enhanced simulated annealing approach,
Appl. Math. Comput., 222 (2013), 420–437. https://doi.org/10.1016/j.amc.2013.07.022

8. K. Shi, Z. Wu, B. Jiang, H. R. Karimi, Dynamic path planning of mobile robot based on
improved simulated annealing algorithm, J. Frankl. Inst. Eng. Appl. Math., 360 (2023), 4378–
4398. https://doi.org/10.1016/j.jfranklin.2023.01.033

9. A. Tuncer, M. Yildirim, Dynamic path planning of mobile robots with
improved genetic algorithm, Comput. Electr. Eng., 38 (2012), 1564–1572.
https://doi.org/10.1016/j.compeleceng.2012.06.016

10. T. Zhang, G. Xu, X. Zhan, T. Han, A new hybrid algorithm for path planning of mobile robot, J.
Supercomput., 78 (2022), 4158–4181. https://doi.org/10.1007/s11227-021-04031-9

11. B. Song, Z. Wang, L. Zou, On global smooth path planning for mobile robots
using a novel multimodal delayed PSO algorithm, Cogn. Comput., 9 (2017), 5–17.
https://doi.org/10.1007/s12559-016-9442-4

12. Q. Yuan, R. Sun, X. Du, Path planning of mobile robots based on an improved particle swarm
optimization algorithm, Processes, 11 (2023), 26. https://doi.org/10.3390/pr11010026

13. Q. Luo, H. Wang, Y. Zheng, J. He, Research on path planning of mobile robot
based on improved ant colony algorithm, Neural Comput. Appl., 32 (2020), 1555–1566.
https://doi.org/10.1007/s00521-019-04172-2

14. Y. Shi, H. Zhang, Z. Li, K. Hao, Y. Liu, L. Zhao, Path planning for mobile robots in complex
environments based on improved ant colony algorithm, Math. Biosci. Eng., 20 (2023), 15568–
15602. https://doi.org/10.3934/mbe.2023695

15. Z. Jin, G. Luo, R. Wen, J. Huang, WOA-AGA algorithm design for robot path planning, Int. J.
Comput. Commun. Control, 18 (2023), 5518. https://doi.org/10.15837/ijccc.2023.5.5518

16. Y. Dai, J. Yu, C. Zhang, B. Zhan, X. Zheng, A novel whale optimization algorithm
of path planning strategy for mobile robots, Appl. Intell., 53 (2023), 10843–10857.
https://doi.org/10.1007/s10489-022-04030-0

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

http://dx.doi.org/https://doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/https://doi.org/10.1016/j.cie.2022.108123
http://dx.doi.org/https://doi.org/10.1109/ICCSCE.2012.6487113
http://dx.doi.org/https://doi.org/10.5755/j01.itc.51.3.30016
http://dx.doi.org/https://doi.org/10.1016/j.amc.2013.07.022
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2023.01.033
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2012.06.016
http://dx.doi.org/https://doi.org/10.1007/s11227-021-04031-9
http://dx.doi.org/https://doi.org/10.1007/s12559-016-9442-4
http://dx.doi.org/https://doi.org/10.3390/pr11010026
http://dx.doi.org/https://doi.org/10.1007/s00521-019-04172-2
http://dx.doi.org/https://doi.org/10.3934/mbe.2023695
http://dx.doi.org/https://doi.org/10.15837/ijccc.2023.5.5518
http://dx.doi.org/https://doi.org/10.1007/s10489-022-04030-0

2584

17. G. Hu, B. Du, G. Wei, HG-SMA: hierarchical guided slime mould algorithm for smooth path
planning, Artif. Intell. Rev., 56 (2023), 9267–9327. https://doi.org/10.1007/s10462-023-10398-3

18. L. Zheng, Y. Tian, H. Wang, C. Hong, B. Li, Path planning of autonomous mobile
robots based on an improved slime mould algorithm, Drones Basel, 7 (2023), 257.
https://doi.org/10.3390/drones7040257

19. M. Abdel-Basset, K. A. Eldrandaly, L. A. Shawky, M. Elhoseny, N. M. AbdelAziz,
Hybrid computational intelligence algorithm for autonomous handling of COVID-
19 pandemic emergency in smart cities, Sust. Cities Soc., 76 (2022), 103430.
https://doi.org/10.1016/j.scs.2021.103430

20. X. Dai, Y. Wei, Application of improved moth-flame optimization
algorithm for robot path planning, IEEE Access, 9 (2021), 105914–105925.
https://doi.org/10.1109/ACCESS.2021.3100628

21. C. Li, Q. Si, J. Zhao, P. Qin, A robot path planning method using improved harris hawks
optimization algorithm, Meas. Control, (2023). https://doi.org/10.1177/00202940231204424

22. C. Cai, C. Jia, Y. Nie, J. Zhang, L. Li, A path planning method using modified
harris hawks optimization algorithm for mobile robots, PeerJ Comput. Sci., 9 (2023).
https://doi.org/10.7717/peerj-cs.1473

23. R. Kumar, L. Singh, R. Tiwari, Path planning for the autonomous robots using modified grey wolf
optimization approach, J. Intell. Fuzzy Syst., 40 (2021), 9453–9470. https://doi.org/10.3233/JIFS-
201926

24. Y. Hou, H. Gao, Z. Wang, C. Du, Improved grey wolf optimization algorithm and application,
Sensors, 22 (2022), 3810. https://doi.org/10.3390/s22103810

25. M. Dorigo, G. Di Caro, The ant colony optimization meta-heuristic, in New Ideas in
Optimization, McGraw Hill, London, (1999), 11–32.

26. M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms for discrete optimization, Artif. Life,
5 (1999), 137–172. https://doi.org/10.1162/106454699568728

27. M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, Cambridge, 2004.
https://doi.org/10.1109/MCI.2006.329691

28. H. Tseng, C. Chang, S. Lee, Y. Huang, Hybrid bidirectional ant colony optimization (hybrid
BACO): An algorithm for disassembly sequence planning, Eng. Appl. Artif. Intell., 83 (2019),
45–56. https://doi.org/10.1016/j.engappai.2019.04.015

29. Y. Wang, L. Wang, G. Chen, Z. Cai, Y. Zhou, L. Xing, An improved ant colony optimization
algorithm to the periodic vehicle routing problem with time window and service choice, Swarm
Evol. Comput., 55 (2020), 100675. https://doi.org/10.1016/j.swevo.2020.100675

30. W. Gao, Modified ant colony optimization with improved tour construction and pheromone
updating strategies for traveling salesman problem, Soft Comput., 25 (2021), 3263–3289.
https://doi.org/10.1007/s00500-020-05376-8

31. W. Deng, L. Zhang, X. Zhou, Y. Zhou, Y. Sun, W. Zhu, et al., Multi-strategy particle swarm
and ant colony hybrid optimization for airport taxiway planning problem, Inf. Sci., 612 (2022),
576–593. https://doi.org/10.1016/j.ins.2022.08.115

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

http://dx.doi.org/https://doi.org/10.1007/s10462-023-10398-3
http://dx.doi.org/https://doi.org/10.3390/drones7040257
http://dx.doi.org/https://doi.org/10.1016/j.scs.2021.103430
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3100628
http://dx.doi.org/https://doi.org/10.1177/00202940231204424
http://dx.doi.org/https://doi.org/10.7717/peerj-cs.1473
http://dx.doi.org/https://doi.org/10.3233/JIFS-201926
http://dx.doi.org/https://doi.org/10.3233/JIFS-201926
http://dx.doi.org/https://doi.org/10.3390/s22103810
http://dx.doi.org/https://doi.org/10.1162/106454699568728
http://dx.doi.org/https://doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2019.04.015
http://dx.doi.org/https://doi.org/10.1016/j.swevo.2020.100675
http://dx.doi.org/https://doi.org/10.1007/s00500-020-05376-8
http://dx.doi.org/https://doi.org/10.1016/j.ins.2022.08.115

2585

32. D. B. M. M. Fontes, S. M. Homayouni, J. F. Gonçalves, A hybrid particle swarm optimization
and simulated annealing algorithm for the job shop scheduling problem with transport resources,
Eur. J. Oper. Res., 306 (2023), 1140–1157. https://doi.org/10.1016/j.ejor.2022.09.006

33. T. T. Erguzel, C. Tas, M. Cebi, A wrapper-based approach for feature selection and classification
of major depressive disorder-bipolar disorders, Comput. Biol. Med., 64 (2015), 127–137.
https://doi.org/10.1016/j.compbiomed.2015.06.021

34. A. Qi, D. Zhao, F. Yu, A. A. Heidari, Z. Wu, Z. Cai, et al., Directional mutation and crossover
boosted ant colony optimization with application to COVID-19 X-ray image segmentation,
Comput. Biol. Med., 148 (2022), 105810. https://doi.org/10.1016/j.compbiomed.2022.105810

35. K. Akka, F. Khaber, Mobile robot path planning using an improved ant colony optimization, Int.
J. Adv. Robot. Syst., 15 (2018), 1729881418774673. https://doi.org/10.1177/1729881418774673

36. X. You, S. Liu, C. Zhang, An improved ant colony system algorithm for robot
path planning and performance analysis, Int. J. Robot. Autom., 33 (2018), 527–533.
https://doi.org/10.2316/Journal.206.2018.5.206-0071

37. M. Dorigo, L. M. Gambardella, Ant colony system: a cooperative learning approach
to the traveling salesman problem, IEEE Trans. Evol. Comput., 1 (1997), 53–66.
https://doi.org/10.1109/4235.585892

38. W. Gao, Q. Tang, B. Ye, Y. Yang, J. Yao, An enhanced heuristic ant colony
optimization for mobile robot path planning, Soft Comput., 24 (2020), 6139–6150.
https://doi.org/10.1007/s00500-020-04749-3

39. X. Deng, L. Zhang, L. Luo, An improved ant colony optimization applied in robot path planning
problem, J. Comput., 8 (2013), 585–593. https://doi.org/10.4304/jcp.8.3.585-593

40. J. Liu, J. Yang, H. Liu, X. Tian, M. Gao, An improved ant colony algorithm for robot path
planning, Soft Comput., 21 (2017), 5829–5839. https://doi.org/10.1007/s00500-016-2161-7

41. X. Dai, S. Long, Z. Zhang, D. Gong, Mobile robot path planning based on ant
colony algorithm with A* heuristic method, Front. Neurorobotics, 13 (2019), 15.
https://doi.org/10.3389/fnbot.2019.00015

42. Z. Zhang, J. Lu, Z. Xu, T. Xu, Mobile robot path planning based on hybrid ant colony
optimization, J. Intell. Fuzzy Syst., 45 (2023), 2611–2623. https://doi.org/10.3233/JIFS-231280

43. G. Li, C. Liu, L. Wu, W. Xiao, A mixing algorithm of ACO and ABC for
solving path planning of mobile robot, Appl. Soft. Comput., 148 (2023), 110868.
https://doi.org/10.1016/j.asoc.2023.110868

44. B. Bullnheimer, R. F. Hartl, C. Strauss, A new rank based version of the ant system – A
computational study, Central Eur. J. Oper. Res. Econ., 7 (1999), 25–38.

45. D. Wang, H. Yu, Path planning of mobile robot in dynamic environments, in Proceedings of the
2011 2nd International Conference on Intelligent Control and Information Processing (ICICIP
2011), (2011), 691–696. https://doi.org/10.1109/ICICIP.2011.6008338

46. H. Qu, L. Huang, X. Ke, Research of improved ant colony based robot path planning
under dynamic environment, J. Univ. Electron. Sci. Technol. China, 44 (2015), 260–265.
https://doi.org/10.3969/j.issn.1001-0548.2015.02.017

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

http://dx.doi.org/https://doi.org/10.1016/j.ejor.2022.09.006
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2015.06.021
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2022.105810
http://dx.doi.org/https://doi.org/10.1177/1729881418774673
http://dx.doi.org/https://doi.org/10.2316/Journal.206.2018.5.206-0071
http://dx.doi.org/https://doi.org/10.1109/4235.585892
http://dx.doi.org/https://doi.org/10.1007/s00500-020-04749-3
http://dx.doi.org/https://doi.org/10.4304/jcp.8.3.585-593
http://dx.doi.org/https://doi.org/10.1007/s00500-016-2161-7
http://dx.doi.org/https://doi.org/10.3389/fnbot.2019.00015
http://dx.doi.org/https://doi.org/10.3233/JIFS-231280
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2023.110868
http://dx.doi.org/https://doi.org/10.1109/ICICIP.2011.6008338
http://dx.doi.org/https://doi.org/10.3969/j.issn.1001-0548.2015.02.017

2586

47. J. Cao, S. Fan, X. Yang, Spmd performance analysis with parallel computing of Matlab, in
Proceedings of the 2012 Fifth International Conference on Intelligent Networks and Intelligent
Systems (ICINIS 2012), (2012), 80–83. https://doi.org/10.1109/ICINIS.2012.31

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2568–2586.

http://dx.doi.org/https://doi.org/10.1109/ICINIS.2012.31
http://creativecommons.org/licenses/by/4.0

	Introduction
	Environmental model
	Traditional ACO algorithm
	 Parallel ACO algorithm
	Pheromone updating rule
	Deadlock handling strategy
	Decomposition and parallelism strategies
	Parallel ACO procedure

	Experimental results
	Effectiveness of pheromone updating rule and deadlock handling strategy
	Effectiveness of decomposition and parallelism strategies as well as comparison of performance between PACO and other algorithms
	In 20 20 map environment
	In 30 30 map environment
	In 40 40 map environment

	Conclusions

