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Abstract: Ride-hailing demand prediction is essential in fundamental research areas such as
optimizing vehicle scheduling, improving service quality, and reducing urban traffic pressure.
Therefore, achieving accurate and timely demand prediction is crucial. To solve the problems of
inaccurate prediction results and difficulty in capturing the influence of external spatiotemporal factors
in demand prediction of previous methods, this paper proposes a demand prediction model named
as the spatiotemporal information enhance graph convolution network. Through correlation analysis,
the model extracts the primary correlation information between external spatiotemporal factors and
demand and encodes them to form feature units of the area. We utilize gated recurrent units and graph
convolutional networks to capture the spatiotemporal dependencies between demand and external
factors, respectively, thereby enhancing the model’s perceptiveness to external spatiotemporal factors.
To verify the model’s validity, we conducted comparative and portability experiments on a relevant
dataset of Chengdu City. The experimental results show that the model’s prediction is better than
the baseline model when incorporating external factors, and the errors are very close under different
experimental areas. This result highlights the importance of external spatiotemporal factors for model
performance enhancement. Also, it demonstrates the robustness of the model in different environments,
providing excellent performance and broad application potential for ride-hailing prediction studies.

Keywords: demand prediction; external spatiotemporal factors; spatiotemporal graph convolutional
networks; spatiotemporal dependence

1. Introduction

With the rapid development of companies such as Didi, Uber, and Grab in the global ride-hailing
service sector, ride-hailing has become one of the primary modes of transportation for people.
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According to statistics, there are currently 322 ride-hailing platform companies in China [1], and the
number of users has reached 472 million [2]. In addition, the number of ride-hailing drivers has
reached a high of 5,976,000 as of July 2023, an increase of 1,376,000 compared to last year [3]. In
July, there were 821 million order information records. These data clearly show that the ride-hailing
industry is in a stage of rapid growth and booming development. However, under the trend of
expanding the ride-hailing market, balancing the distribution of supply and demand is still an urgent
problem for ride-hailing platforms [4–6]. This is mainly in two aspects: From a passenger’s
perspective, due to the uncertainty of passenger travel and the aggregation of passengers, there may be
longer waiting times for vehicles during peak hours or in specific areas. From a driver’s perspective,
drivers often offer services in areas where they believe there is more passenger demand. However, this
can lead to oversupply in some areas and undersupply in others [7]. In the face of numerous driver
and user demands, it has become crucial for ride-hailing platforms to fully utilize their existing
operational data for effective demand forecasting and scheduling. This can enhance service quality,
improve user experience, and increase vehicle utilization [8, 9].

The prediction of ride-hailing demand shares many similarities with traditional taxi and traffic flow
forecasting. Previous research in the field of transportation has laid the foundation for predicting
ride-hailing demand. As early as 1978, Yang et al. [10] considered factors such as the number of taxis,
taxi fares, and disposable income as endogenous variables in their study aimed at improving service
levels. In 1972, Douglas [11] indicated that a reasonable number of taxis and pricing could enhance
the service quality for passengers. With the widespread application of Global Positioning System
(GPS) in taxis, a foundation was laid for research based on GPS data. In 2010, Bazzani et al. [12]
utilized GPS data to analyze complex social systems. Asmundsdottir et al. [13] through the analysis
of taxi GPS data, extracted travel characteristics of taxi passengers. However, predicting the demand
for ride-hailing orders is a complex task. Its complexity is not only dependent on GPS data [14], but is
also influenced by various factors such as time [15, 16], space [17–19], and the environment [20, 21].
This can be regarded as a complex spatiotemporal data prediction problem. Currently, spatiotemporal
data prediction encompasses various aspects such as taxi demand [7], traffic flow [16], shared bicycle
demand [22], etc. These share similarities with ride-hailing demand, demonstrating continuous spatial
distribution and interconnectedness between areas. To address spatial distribution challenges, it is
essential to partition them into grids [23–25] or structures based on road networks [26], thereby
transforming spatial issues into graph model processing. To investigate the impact of region
partitioning methods, Davis et al. [27] analyzed the impact of different spatial partitioning strategies
on taxi demand prediction and proposed an efficient hybrid surface subdivision algorithm. In addition,
external environmental factors such as weather conditions, holidays, and the distribution of Points of
Interest (POI) have a significant impact on the demand for ride-hailing services. For instance, during
rainy or extremely hot weather, individuals may be more inclined to use ride-hailing services, leading
to an increase in demand. Similarly, during holiday periods, people might prefer choosing ride-hailing
as their mode of transportation for travel or social activities, resulting in a potential surge in demand.
Furthermore, individuals tend to seek ride-hailing services more frequently in commercial areas,
tourist attractions, or event centers. Taking into account these factors, a comprehensive analysis of
external spatiotemporal elements enhances our understanding and prediction of fluctuations in
ride-hailing demand. References [7, 24] confirm that studies considering time and weather conditions
are promising. In such a complex and dynamic predictive environment, designing an accurate
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prediction model is crucial for enhancing the quality of ride-hailing services.
Researchers in the field of transportation have already accumulated rich and in-depth achievements,

covering aspects such as traffic flow prediction, taxi order prediction, and ride-hailing order prediction.
We can categorize the research methods into the following three types:

Prediction models based on statistical methods. Ride-hailing demand prediction is similar to
other transportation prediction and can be viewed as a time series prediction problem [28].
Representative models in this field of application include the historical average model (HA) [29], the
differential autoregressive moving average model (ARIMA) [30], and its variants. Williams et al. [31]
proposed and demonstrated in 2003 that the Seasonal Autoregressive Integrated Moving Average
(SARIMA) model is capable of capturing the seasonality in time series data.
Moreira-Matias et al. [32] validated the feasibility of the ARIMA model in predicting taxi passenger
demand using GPS trajectory data from Porto. Singh et al. [33] demonstrated the superiority of the
ARIMA model by predicting the performance of virtual machines. However, these traditional models
impose strict linear assumptions, insufficiently consider spatiotemporal correlations and the influence
of external factors, and are incapable of handling nonlinear features. Therefore, their predictive
performance is suboptimal when influenced by external factors.

Prediction models based on traditional machine learning. In recent years, machine learning
methods have gradually become the primary methods for demand prediction [34–36], and they can
achieve higher prediction accuracy and more sophisticated data modeling. For example, Yang and
Gonzales [37] mined the factors of taxi demand from the number of cab users and socio-economic
and employment data in New York. They used a multiple linear regression model to analyze
passenger flow prediction in a particular area and verified its validity. Jiang et al. [38] proposed a
least-squares support vector machine (LS-SVM) based method for ride-hailing short-term prediction
and demonstrated its excellent performance. Peñalvo et al. [39] proposed a machine learning
framework for predicting the fluctuation of stock prices. Lippi et al. [40] constructed a Support Vector
Regression (SVR) model with seasonal identification capability to extract the seasonality of traffic
flow. Castro-Neto et al. [41] proposed the Online-SVR (OL-SVR) prediction model, considering both
typical and atypical conditions, thereby enhancing predictive capabilities under atypical conditions.
However, when machine learning is utilized for complex data prediction, challenges such as poor
predictive accuracy and overfitting may arise, representing limitations inherent in machine learning.

Deep learning-based prediction modeling. With the rapid development of deep learning methods
in various fields such as computer vision [42, 43], natural language processing [44], and
recommendation systems [45], the application scope continues to expand. Traffic prediction [46,47] is
a crucial domain where deep learning methods excel in capturing the nonlinearity and dynamic trends
of data for modeling [48–50]. Demand prediction for ride-hailing is a typical time-series prediction
problem. In the early stages, researchers commonly utilized Recurrent Neural Networks (RNN) for
time-series data prediction. However, RNN faces challenges such as vanishing and exploding
gradients, limiting its ability to capture long-term dependencies. Conversely, variants of RNN, such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), demonstrate certain advantages
in capturing temporal dependencies and are frequently utilized for extracting time-dependent features
in time-series prediction data [15, 16]. Dogan [51] demonstrated that expanding the dataset of traffic
flow can enhance the predictive performance of LSTMs. Kouziokas [52] optimized unidirectional
LSTM and proposed Bidirectional LSTM (Bi-LSTM) to improve prediction accuracy. Dai et al. [53]
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proved in their research on traffic flow prediction that GRU outperforms LSTM in terms of
performance. Additionally, spatial relationships are also a crucial factor that needs to be fully
considered in this research field, contributing to extracting the spatial variations of transportation
systems. Huang et al. [54] utilized a Convolutional Neural Network (CNN) model for regional
partitioning to predict the demand for ride-hailing trips. However, CNN, when dealing with regional
connectivity graphs, represents the regional network in the form of a two-dimensional image, limiting
its applicability in non-Euclidean topology regional networks. Therefore, in recent years, many
researchers have addressed the limitations of regional topology structures by employing Graph
Convolutional Networks (GCNs) for processing [18]. Compared to CNNs, GCNs are better suited for
capturing the spatial dependencies of regional networks [55]. Hence, Geng et al. [56] in their study of
non-Euclidean regional structures, utilized GCN as a graph convolutional module and proposed the
Spatiotemporal Multi-Graph Convolutional Network (ST-MGCN) model for demand prediction.

To better adapt to various complex environments and fully leverage the advantages of different
algorithms in extracting spatiotemporal correlations, researchers are gradually and widely applying
composite models [46, 57, 58]. In 2009, Tsai et al. [59] demonstrated the superiority of composite
models through Parallel Ensemble Neural Networks (PENN). Li and Zhu [60] enhanced traffic flow
prediction performance by integrating graph modules and gated convolutional modules. Ke et al. [8],
considering the temporal, spatial, and exogenous dependencies of ride-hailing demand, proposed a
Fusion Convolutional Long Short-Term Memory Network (FCL-Net) by combining Cov-LSTM,
LSTM, and CNN, showing strong adaptability in predictions. In 2018, Li et al. [47] proposed a model
called the Diffusion Convolutional Recurrent Neural Network (DCRNN) to address the complex
spatial characteristics of road networks and the non-linear temporal dynamics of road condition
changes. The model utilizes bidirectional random walks in the graph structure to capture spatial
dependencies and employs a predetermined sampling encoder-decoder architecture to capture
temporal dependencies. Zhao et al. [61] introduced a Time Graph Convolutional Network (T-GCN)
model, which combines GCN with GRU. This model takes advantage of GCN for spatial information
extraction and GRU for capturing dynamic temporal relationships to predict traffic flow, producing
predictions close to real dataset values.

According to the above analysis, despite the current capability of many studies in extracting
spatiotemporal relationships for traffic prediction, there is still a deficiency in capturing the impact of
external spatiotemporal factors. On one hand, a majority of studies either neglect external
spatiotemporal factors or insufficiently extract key information during the extraction process. On the
other hand, the use of a single model is often susceptible to the influence of data complexity, resulting
in suboptimal predictive accuracy. To address these issues, this study proposes a Spatiotemporal
Information-Enhanced Graph Convolutional Network model (EST-GCN) that effectively tackles both
of these challenges. Our main contributions to the work are as follows:

(1) The paper introduces an innovative model for predicting ride-hailing demand, named
EST-GCN. It utilizes correlation analysis to extract essential information from external factors and
integrates it with a spatiotemporal graph convolutional model. This is designed to accurately capture
the spatiotemporal features of ride-hailing demand and the influence of external
spatiotemporal factors.

(2) The EST-GCN model can adapt to the effects of weather conditions, date attributes, and the
distribution of POIs, enabling more accurate prediction of ride-hailing demand in
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different environments.
(3) We evaluated the model using actual operational data, and the experimental results show that

the EST-GCN model outperforms the baseline method in prediction and has vital portability.

2. Problem definition and analysis

2.1. Problem definition

Definition 1: Spatial Gridding
Based on the latitude and longitude of the city, the size and shape of each hexagon are determined

to partition the entire area. As illustrated in Figure 1, the city is partitioned into a spatial hexagonal
grid of P × Q specifications, with each spatial grid referring to an area S i j(i ∈ 1...P, j ∈ 1...Q).

Figure 1. Spatial division of the city into hexagonal grids.

Definition 2: Demand Characterization Matrix X
The demand for ride-hailing refers to the users’ need for ride-hailing services during a specific

period, typically measured using the number of orders placed. In this paper, xt represents the demand
of the tth moment.

Definition 3:Areas Network G
We approximate the spatial grid as a transportation network and utilize the graph structure G =

(V, E) to represent the connectivity between different areas network. V = (v1, v2, ..., vn) denotes the set
of spatial area grids, n the number of grids, E = (e1, e2, ..., em) the set of edges denoting the connectivity
between two areas, and m the number of edges. Then, the adjacency matrix A is used to represent the
connectivity of the areas network.

Definition 4: External attribute matrix H
We form factors such as time periodicity, POIs, weather, and date attributes into a feature matrix

H = h1, h2, ..., hc, where c is the category number of external spatiotemporal factors. The time-varying
information for the class j of factors is represented as H j = j1, j2, ..., jt, while for factors that do not
vary with time, jt remains a fixed value.
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2.2. Demand prediction

Ride-hailing demand prediction is a spatiotemporal data prediction problem that varies continuously
over time in different areas. This type of problem requires extractive modeling of temporal and spatial
relationships [26, 62]. Figure 2 illustrates the spatiotemporal correlation of ride-hailing demands. In
the spatial dimension Figure 2(a), the neighborhoods of different areas form a network graph, and each
vertex state of the graph represents the ride-hailing demand of the area, and in the temporal dimension
Figure 2(b), the ride-hailing of the different areas is constantly changing with time. In conclusion, the
correlation of ride-hailing demands shows strong dynamics in both spatial and temporal dimensions.

(a) Characteristics of ride-hailing demand in the spatial
dimension.

(b) Characteristics of ride-hailing demand in the temporal
dimension.

Figure 2. Spatial and temporal variation of ride-hailing demand.

Building upon the exploration of spatiotemporal features, this paper further incorporates external
spatiotemporal factors into the model, thereby enhancing the model’s ability to perceive the impact of
external factors.

To summarize, the ride-hailing demand prediction problem can be understood as predicting the most
probable demand result in the following T time steps given the topological network G, the demand
feature matrix X, and the external attribute matrix H, combined with the given n historical demand
measurement values. The mapping relationship for this problem can be defined and represented as

f (Xt−n:t|H,G)→ X(t+1):(t+T ) (2.1)

2.3. External spatial and temporal factors

To comprehensively account for the external spatiotemporal factors affecting ride-hailing demand,
we divide these into two main categories: dynamic factors that change over time, and static factors that
do not change with short-term fluctuations in time.

(1) Static Factors
Static factors impact demand that does not change over a short-term time horizon. For example, POI

distribution information and date attributes do not vary from area to area over short time scales. Still,
the characteristics they imply have the potential to be able to influence the movement and aggregation
of people within an area. As shown in Figure 3, we can observe a difference in the number of POIs
and demand between Area 1 and Area 2. In Area 1, the number of POIs is higher, and the order is
higher during the time of day when the activity occurs. Within a week, the demand on weekends is
significantly higher than on weekdays. These analyses indicate that the distribution of POI and date
attributes has an impact on ride-hailing demand.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2542–2567.



2548

Figure 3. Static attribute impacts.

(2) Dynamic Factors
Dynamic factors change over time and can impact ride-hailing demand. For example, weather

conditions can significantly affect travel, which directly affects the demand for ride-hailing. Figure 4
shows the variation of ride-hailing demand in the same area under different weather conditions.
Specifically, during the rainy period, the demand surges and deviates far from the order quantity
during regular hours. The analysis shows that weather has an enormous impact on
ride-hailing demand.

Figure 4. Dynamic attribute impact.

3. Methods

3.1. Framework

This method integrates the features of ride-hailing demand in the area with external factor features.
It employs correlation analysis to extract the main features, utilizes a GRU layer to capture temporal
features, and incorporates a GCN layer to extract spatial features, enhancing the accuracy of
ride-hailing predictions. We present the framework of our work in Figure 5, comprising four main
components: data preprocessing, integration of external attributes, modeling spatiotemporal
dependencies, and prediction.
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Figure 5. EST-GCN modeling framework. The P module is used for correlation extraction,
and the C module is used for combining all the data.

In the data preprocessing phase, we conducted cleaning and feature engineering on the original
dataset. For the extraction of spatiotemporal features, we employed the Pearson correlation coefficient
to analyze the correlation. Features with correlations greater than the threshold α were selected for
model training. Subsequently, we performed encoding and fusion processing on the selected external
features and the ride-hailing demand data.

To effectively model spatiotemporal dependencies, we have chosen a combination of GRU and
GCN models. These two models are used to extract the temporal and spatial features of ride-hailing
demand data, enhancing the overall prediction accuracy. The GRU model is responsible for capturing
temporal changes, while the GCN model focuses on modeling the spatial relationships between
different locations in the transportation network. Through this combination, we expect to
comprehensively consider spatiotemporal factors and improve the accurate prediction of
ride-hailing demand.

3.2. Spatio-temporal factor feature extraction and enhance methods

This study conducts experiments by analyzing the correlation between external factors and short-
term demand for ride-hailing. It extracts highly correlated attributes to mitigate the impact of the
specificity of numerical values on experimental results.

(1) Feature extraction
We use the Pearson correlation coefficient to characterize the strength of linear correlation, denoted

as r, between two attributes. We calculate the value of r using Eq (3.1) and select features with an r
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value greater than the threshold α for experimentation.

r =
∑n

i=1 (xi − x̄) (yi − ȳ)√∑n
i=1 (xi − x̄)2

√∑n
i=1 (yi − ȳ)2

(3.1)

where x̄ and ȳ are the means of the samples within the two feature sets, respectively, and r takes the
value [−1, 1].

Given that strongly correlated features typically yield more information about the relationships
between data, the selection of such features can provide data with higher information content, thereby
enhancing the reliability and predictive capability of experiments.

(2) Static factors extraction and enhance
Since the values of the static factors do not change over time, we use correlation analysis to extract

the p static factors that are different in time but have a strong correlation to form the matrix S .
Specifically, the matrix after fusing the static factors at time t is

Ct
s =
[
Xt, S
]
,Ct

s ∈ Rn×(p+l) (3.2)

(3) Dynamic factors extraction and enhance
Considering that the dynamics factors will be affected with time, we use the method of correlation

analysis to extract m + 1 time slices with strong correlation from the continuous time series, i.e., we
select Dt−m,t

w =
[
Dt−m

w ,D
t−m−1
w , . . . ,Dt

w

]
as the dynamic factors Dw for each submatrix.

Finally, through the incorporation of relevant attribute enhancement units, we create an
enhancement matrix containing all external spatiotemporal factors and demand characteristic
information at time t. This enhancement matrix minimizes the loss of feature information during
model training, thereby enhancing the model’s perceptiveness to various factors.

Ct =
[
Xt, S ,Dt−m,t

1 ,Dt−m,t
2 , . . . ,Dt−m,t

w

]
(3.3)

where Ct ∈ Rn×(p+l+w×(m+1)).

3.3. Spatial dependency modeling

The demand for ride-hailing orders exhibits connectivity and fluidity between neighboring areas,
resulting in mutual influence. In the transportation field, GCN is currently widely used [18], which can
handle non-Euclidean spatial data and is very suitable for transportation data analysis and prediction
tasks [9]. Therefore, we utilize GCNs to model the spatial relationships between different areas in the
transportation network. Through graph convolution, GCNs can learn the connectivity patterns between
different areas and the impact of external spatial factors, thereby enhancing model understanding and
prediction of spatial features. The GCN model can be represented as

Ol+1 = σ(D̃−
1
2 ÃD̃−

1
2 O(l)W (l)) (3.4)

where σ is the activation function, Ã the adjacency matrix, D̃ the corresponding degree matrix, W l the
weight matrix of the lth convolutional layer, and O(l) the convolutional output of the lth layer. The
architecture of the GCN model is shown in Figure 6.
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Figure 6. GCN model architecture.

In this study, we will use a 2-layer GCN model for training. The model can be represented as

f (X|H,G) = σ(ÂReLu(ÂXW0)W1) (3.5)

where Â = D̃−
1
2 ÃD̃−

1
2 .

3.4. Time-dependent modeling

Time dependency is also a vital issue in the prediction of demand. Currently, RNNs are a widely
used method for processing time series data. However, during the backpropagation process, issues
such as gradient vanishing or exploding can be encountered [63]. LSTM [64] and GRU [65] are two
variants of RNNs, and they solve this problem nicely by introducing gating mechanisms. GRU replaces
the forgetting gate and the input gate with an update gate on top of LSTM, which results in a smaller
number of parameters and lower computational complexity, thus improving the training speed of GRU.
So, we choose the GRU model to obtain the time dependence of the demand.

As shown in Figure 7, GRU consists of a combination of a reset gate and an update gate: rt denotes
the reset gate, which determines how the candidate’s hidden state at the current time step selectively
ignores the information of the previous time step; ut denotes the update gate, which controls the degree
of updating of the hidden state in the previous time step at the current time step; respective ct denotes
the candidate hidden state of the current time step, which contains the intermediate state between the
current input and the information of the previous time step; σ and tanh refer to the sigmoid and tanh
activation functions; Ct denotes the characteristic information of the demand at the moment of t; and
ht is the output state of the moment of t.

In the ride-hailing demand prediction model, GRU effectively captures the temporal dependencies
in the time series data, such as hourly, daily, and weekly patterns, through its gating mechanism. This
capability enables the model to capture the dynamic relationship between demand and external factors
during training.
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Figure 7. GRU model structure.

3.5. EST-GCN

This section introduces the formation process of the EST-GCN unit.

As shown in Figure 8, taking the input at time t as an example, we represent the attributes related
to dynamic factors as a continuum Dt−m, ...,Dt−1,Dt, which includes time periodicity and weather
conditions. Meanwhile, p attributes related to the target variable are extracted from static factors,
denoted as s1, ..., sp−1, sp. These static factors include POI information and date attributes.
Subsequently, one-hot encoding is applied to these attribute values, transforming descriptive variables
into continuous variable values, thereby reducing training errors.

Integrate external attributes with the continuously relevant historical demand quantities
Xt−m, ..., Xt−2, Xt−1, Xt required at time t to obtain the related attribute enhancement unit Ct, and
subsequently, we incrementally input the fused feature unit into the GRU to capture the temporal
dependencies of ride-hailing demand features. The output of the GRU further serves as the input for
the GCN, utilizing graph convolution operations to learn the spatial correlations of ride-hailing
demand across different areas. The objective of this process is to systematically capture
spatiotemporal features through the training of GRU and GCN. Ultimately, we attain accurate
prediction results, integrating considerations of ride-hailing demand features in both temporal and
spatial dimensions.

Figure 8. Architecture of the EST-GCN unit.
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The specific calculation process is shown below.

ut = σ(Wu[Ct, ht−1] + bu) (3.6)
rt = σ(Wr[Ct, ht−1] + br) (3.7)
ct = tanh(Wc[Ct, (rt ∗ ht−1)] + bc) (3.8)
ht = ut ∗ ht−1 + (1 − ut) ∗ ct (3.9)
x̂t = gc[A,Yt] (3.10)

where gc denotes the graph convolution process, and W and b represent the weights and biases in the
training process, respectively.

3.6. Loss function

During the training process, the goal is to minimize the error between the actual regional demand
and the prediction. We add the L2 regularization to adjust the loss function, which helps to avoid the
overfitting problem. The loss function of the model can be expressed as

Loss = ||Xt − X̂t|| + λ

n∑
i=1

(Xt − X̂t)2 (3.11)

where Xt is the actual demand, X̂t is the prediction demand, and λ is the hyperparameter.

4. Experiment

4.1. Data description

To validate the effectiveness of the EST-GCN model, we opted for a real dataset from Chengdu’s
ride-hailing operations. This dataset covers two complete temporal cycles extensively and features
detailed field content, making it well-suited for experimentation.

• MeiC Taxi: This dataset contains information on ride-hailing in Chengdu from June 3rd to June
17th, 2023, covering two weeks, to mine the impact of cyclicality on future demand. We count
demand at five-minute intervals, i.e., we record demand every five minutes, totaling 730,000
pieces of total demand data.
• Areas: Each hexagonal area of the division is 0.7373 square kilometers. The 169 crucial areas

within the Chengdu city bypass are selected, and each area is regarded as a vertex of the graph,
constituting a adjacency matrix.
• Weather: This data was obtained from the Weather Query API

(https://lbs.amap.com/api/webservice/guide/api/weatherinfo/), which obtains real-time weather
conditions in the study areas every five minutes. The weather data contains weather conditions
from June 3rd to June 17th, 2023.
• POIs: This dataset is the POI distribution information within the selected study area obtained

through the API (https://lbs.amap.com/api/webservice/guide/api/search). When selecting POIs,
we chose six indicators based on travel demand and study purpose: life, healthcare, tourism,
transportation, residential, and companies and enterprises.
• Time Attribute: This dataset contains weekday, non-workday, and holiday attributes from June

3rd to June 17th, 2023, in Chengdu.
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4.2. Experimental setting and baseline model

In this paper, we compare the proposed EST-GCN with the widely used temporal prediction baseline
models:

• HA [29]: Predicting future demand based on the average demand from a past period;
• Autoregressive Integral Moving Average Model (ARIMA) [66]: Analyzing trends, seasonality,

and randomness in demand data to predict future demand;
• SVR [67]: Mapping input demand features to continuous output values;
• GCN [18]: Learning graph network information through convolution operations to

predict demand;
• Gated Recycling Unit Model (GRU) [16]: Predicting demand by learning the temporal

dependencies of demand using temporal convolution;
• Spatio-Temporal Graph Convolutional Model (ST-GCN) [61]: An extension to GCN, specialized

for processing graph data with a temporal dimension;
• Spatio-Temporal Attention Network (ST-GAT) [46]: Combines graph neural networks and

attention mechanisms for learning representations and relationships of nodes in spatiotemporal
graph data.
• Coupled Layer-wise Graph Convolution (CCRNN) [68]: A GCN with a layered

coupling mechanism.

We trained using the same hyperparameters in the original paper for the above baseline model.

4.3. Evaluation criteria

To validate the EST-GCN model’s capability in perceiving external spatiotemporal factors, we have
selected the following four criteria for evaluation:

1. Root Mean Squared Error (RMSE). To measure the deviation between the predicted demand
values and the actual values; a smaller value indicates higher accuracy.

RMS E =

√√
1

T N

T∑
t=1

N∑
i=1

(xt
i − x̂t

i)
2

(4.1)

2. Mean Absolute Error (MAE). Calculate the mean of the absolute error between the predicted
demand values and the actual values; a smaller value indicates higher accuracy.

MAE =
1

T N

T∑
t=1

N∑
i=1

|xt
i − x̂t

i| (4.2)

3. Coefficient of Determination (R2). The model’s explanatory power regarding the variability of
actual values, with a range from 0 to 1; a value closer to 1 indicates a better model fit.

R2 = 1 −

T∑
t=1

N∑
i=1

(xt
i − x̂t

i)
2

T∑
t=1

N∑
i=1

(xt
i − x̄)2

(4.3)
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4. Explained variance score (var). To measure the average deviation squared between the actual data
and its mean; a larger value indicates a higher degree of data dispersion.

var =
1
N

N∑
i=1

(xt
i − x̄t

i)
2 (4.4)

where xt
i and x̂t

i denote the tth time period real demand and prediction demand in the ith area.

4.4. Parameter setting

During the model training, the EST-GCN model requires setting parameters, including the training
set ratio, learning rate, number of training epochs, and batch size. In the spatiotemporal dependency
extraction stage, we construct a stacked pattern with two layers of GRU and GCN. The GRU model is
configured with 32 hidden states, and the GCN model is configured with 64 hidden units. We perform
grid search to select the optimal parameters.

In our experiments, to assess the impact of the number of training sessions on the model’s
performance, the results of each training session are recorded, as shown in the training results in
Figure 9, where the horizontal axis represents the number of training sessions. The vertical axis
represents the changes of different metrics. Figure 9(a) shows the trend of RMSE and MAE as the
number of training times increases. Figure 9(b) shows the variation of R2 and Var for different
training times. The prediction results are better when the training number is set to 70.

(a) Trend of RMSE and MAE with training iterations. (b) Trend of R2 and Var with training iterations.

Figure 9. Trends in indicators at different training epochs.

5. Results

5.1. Prediction performance comparison

This experiment tested the performance of EST-GCN with other baseline methods in 15, 30, and
45-minute prediction tasks, and the performance comparison is shown in Table 1, where * denotes
a negative number, which indicates that the model is less effective in prediction. It can be seen that
our EST-GCN model outperforms other baseline models in the prediction performance of almost all
evaluation indicators, demonstrating the effectiveness of external factors in predicting ride-hailing.
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Table 1. Comparison of performance under different prediction time frames.

Model T(15 min/30 min/45 min)
RMSE MAE R2 Var

HA 9.44 5.76 0.65 0.65
SVR 7.88/9.12/11.32 4.54/5.66/6.94 0.81/0.81/0.80 0.81/0.81/0.80
ARIMA 8.77/9.71/10.56 6.39/6.82/7.02 ∗ 0.0012/0.0035/0.0033
GRU 6.35/6.52/6.87 4.12/4.43/4.75 0.83/0.81/0.80 0.83/0.81/0.80
GCN 7.32/7.65/8.56 5.22/5.68/6.33 0.65/0.65/0.65 0.65/0.65/0.65
ST-GCN 6.15/6.29/6.55 3.85/3.90/4.01 0.85/0.84/0.83 0.85/0.84/0.83
ST-GAT 6.09/6.21/6.52 3.78/3.89/3.96 0.86/0.84/0.83 0.86/0.84/0.83
CCRNN 6.01/6.15/6.50 3.75/3.85/3.95 0.86/0.84/0.83 0.86/0.84/0.83
EST-GCN 5.93/6.10/6.39 3.72/3.81/3.93 0.86/0.84/0.83 0.86/0.84/0.83

(1) Excellent Prediction Performance. Methods based on deep learning neural networks have
achieved remarkable predictive accuracy by modeling spatiotemporal features. In comparison to HA,
SVR, and ARIMA models, the EST-GCN model consistently exhibits the best RMSE performance
across different time horizons, reducing RMSE errors by 37.2, 24.7, and 32.4%, respectively.
Compared to GRU and GCN models, the EST-GCN model, leveraging the strengths of both, reduces
RMSE errors by 6.6 and 19%, respectively. While ensemble models like ST-GCN, ST-GAT, and
CCRNN demonstrate exceptional performance in transportation domain predictions, they do not
account for the influence of external spatiotemporal factors. EST-GCN, by integrating features of
external spatiotemporal factors, reduces RMSE errors by 3.5, 2.6, and 1.3%, respectively, compared
to the ensemble models.

(2) Effective External Spatiotemporal Factors. To validate the impact of external spatiotemporal
factors on ride-hailing demand, we compared the EST-GCN model with the ST-GAT and CCRNN
models. As shown in Figure 10, taking a 15-minute ridesharing demand prediction as an example,
compared to models that do not consider external spatiotemporal factors, the RMSE errors were
reduced by 2.6 and 1.3%, respectively.

(3) Predictive Capability across Different Time Horizons. For various prediction ranges (15
minutes, 30 minutes, and 45 minutes), EST-GCN demonstrates superior performance. In the
15-minute prediction range, the EST-GCN model reduces RMSE errors by 2.6 and 1.3% compared to
the ST-GAT and CCRNN models, respectively. Within the 30-minute prediction range, the EST-GCN
model exhibits RMSE errors 1.7 and 1.0% lower than those of the ST-GAT and CCRNN models,
respectively. In the 45-minute prediction range, the EST-GCN model achieves RMSE errors 2.0
and 1.6% lower than those of the ST-GAT and CCRNN models, respectively.

These results have had a significant impact on the application of EST-GCN in predicting
ride-hailing demand. First, EST-GCN demonstrates outstanding predictive performance across
different time horizons, indicating its reliability in addressing short-term and long-term demand
variations. This provides ride-hailing platforms with more flexible and accurate demand predictions,
contributing to the optimization of resource allocation and improvement of service efficiency. Second,
EST-GCN, by effectively capturing external spatiotemporal factors, better adapts to the complex
changes in ride-hailing demand. This underscores the model’s sensitivity to environmental and
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external factors, enabling it to maintain robustness when dealing with dynamic urban changes and
special events. This is crucial for ride-hailing platforms to offer reliable services in complex
urban environments.

(a) Comparing RMSE metrics. (b) Comparing MAE metrics.

Figure 10. Comparing metrics of different models across various prediction ranges.

5.2. Ablation experiments

In this experiment, to verify the degree of influence of external correlation factors in ride-hailing
demand prediction, an ablation experiment is set up to compare the interpretation. The external
spatiotemporal factors in the experiment include weather condition information, relevant POI
information, and date attribute information. The experimental results are shown in Table 2.

Table 2. Results of ablation experiments.

Model Attributes RMSE MAE R2 Var

EST-GCN

Weather 5.96 3.74 0.85 0.85
POIs 5.99 3.77 0.84 0.84
Date 6.02 3.79 0.84 0.84
Weather+POIs 5.94 3.73 0.85 0.85
Weather+Date 5.94 3.73 0.85 0.85
POIs+Date 5.96 3.74 0.85 0.85
Weather+POIs+Date 5.93 3.72 0.86 0.86

STGCN None 6.15 3.85 0.85 0.85

The experimental comparison shows that the model works best when introducing a single factor
with weather condition information, indicating that weather conditions affect demand more than date
attributes and POIs. In addition, when multiple external factors are introduced, the model’s
performance is better than the performance of the model when only a single external factor is
introduced. Specifically, with the addition of single-factor information, the RMSE errors of the
EST-GCN model are reduced by 3.0, 2.6, and 2.1%, respectively, compared to the ST-GCN model.
Considering multiple external factor information, including weather conditions with POI information
(Weather+POIs), weather with date attributes (Weather+Date), POI information with date attributes
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(POIs+Date), and weather conditions with POI information and date attributes
(Weather+POIs+Date), the EST-GCN model reduced the RMSE error by 3.4, 3.4, 3.0, and 3.5%,
respectively, compared to the ST-GCN model.

In summary, the experimental results show that external spatiotemporal factors are effective in
improving the accuracy of the demand prediction task. Both a single factor and a combination of
factors can significantly improve the performance of prediction models.

5.3. Portability experiments

In this study, we conducted portability experiments on the EST-GCN model to verify its
generalization ability. We chose four different geographic regions, as shown in Figure 11, with (a)–(d)
as the experimental areas. These experiments aimed to evaluate the prediction ability of the EST-GCN
model in new and unseen geographic areas.

Figure 11. Schematic diagram of the distribution of the experimental area.

We select a dataset and parameters consistent with the model training. To ensure portability, we
apply a transfer learning strategy by training the model in one area and then transferring it to another.
This facilitates the model in converging more rapidly in the new area. In the model design, we also
incorporate data standardization and adaptive adjacency matrix to enhance its adaptability to diverse
environments and datasets.

The prediction result indicators are shown in Table 3. According to the data in the table, we can
notice that the prediction errors of the EST-GCN model are very similar in the four experimental
areas. The result proves that the EST-GCN model has a strong generalization ability in dealing with
the spatially heterogeneous features of ride-hailing demand, which implies good adaptability and
transferability in different areas.

Table 3. Prediction results for different experimental regions.

Experimental area RMSE MAE
Original study area (a) 5.9312 3.7235
Experimental area (b) 5.9335 3.7240
Experimental area (c) 5.9302 3.7231
Experimental area (d) 5.9289 3.7203
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5.4. EST-GCN interpretation

(1) Prediction capacity analysis.
To comprehensively evaluate the model’s prediction ability, we choose the commercial areas in

Chengdu City where the dataset is concentrated in human flow and visualize the actual demand values
of the test set with the prediction results of the EST-GCN model. The results of the demand prediction
for the next 15, 30, and 45 minutes are shown in Figure 12.

Figure 12. Visualization results over a range of prediction for different time limits.

The above graph shows the prediction results from June 15th, 2023 to June 17th, 2023. From the
visualization results, we can draw the following conclusions:

1. For different prediction ranges, we find that the predictions of the EST-GCN model are
consistent with the overall trend of the actual values, but the predictions are poor at the local
extremes. This phenomenon is hypothesized to be due to the presence of unexpected events and the
randomness of crowd movement, in addition to the external correlates considered in this study, which
lead to unpredictable fluctuations in demand.

2. Short-term prediction is closer to the actual value. Because the EST-GCN model is more likely
to capture short-term trends, as the prediction range increases the influence of external relevant factors
may become complex and unstable, leading to relatively poorer prediction of the model in long-term
prediction.

(2) Effect of external spatial and temporal factors. To deeply analyze the effect of external
spatiotemporal factors, we chose data from the commercial area with the concentrated human flow
in the ride-hailing dataset of Chengdu City to conduct the ablation experiment. The dataset contains
information on different date attributes and weather conditions. We worked on demand prediction for
different experimental conditions and visualized the prediction results as shown below Figures 13–15:
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(a) No attribute (b) Add date attribute

(c) Add POIs (d) Add weather

Figure 13. Comparison of Prediction with and without External Factors.

Figure 14. Comparison between predictions incorporating different external information.

Figure 15. Comparison of prediction residuals in different prediction environments.
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1. The external dynamic-related factor (weather) significantly improves the prediction effect of ride-
hailing prediction at the peak and turning point. Especially in the early morning of June 17th, under
heavy rainy weather conditions, the prediction effect of adding the weather condition information is
shown in Figure 15, and its prediction value is closer to the actual value compared to adding the
information of other factors.

2. External static factors, including date attributes and POI information, contribute significantly to
the prediction accuracy of ride-hailing. In particular, the effect of date attributes is more significant
during the transition between weekdays and days off.

3. The EST-GCN model can capture the various factors affecting ride-hailing more comprehensively
by adding multiple external factors, including weather conditions, POI information, and date attributes,
making the prediction model more flexible and adaptive, thus achieving better performance in the
prediction task.

4. In different environments, the model’s performance may excessively rely on external factors,
potentially leading to a decrease in prediction accuracy in certain scenarios. For example, if the model
relies heavily on POI information (such as popular events at specific locations), its predictive capability
may be compromised in unconventional circumstances.

6. Conclusions

To address the problem that traditional ride-hailing prediction models do not comprehensively
consider external spatiotemporal factors, we introduce the EST-GCN model for modeling the
dependence of external spatiotemporal factors in ride-hailing prediction. We coded demand in each
area with relevant external spatial and temporal factors to form area characterization units.
Combining GCN and GRU models, spatiotemporal information is extracted from the feature units in
different areas to explore the potential relationship between external spatiotemporal factors and
demand. We conducted experiments on the Chengdu City operations dataset. The experimental
results show that the spatiotemporal graph convolution model incorporating external factors can better
adapt to changes in the external environment, and the overall prediction effect is better than that of the
advanced baseline method, which proves the importance of external spatiotemporal factors in
ride-hailing prediction. The model is essential for improving urban transportation systems’ efficiency
and intelligent scheduling. By accurately predicting ride-hailing demand and integrating external
spatiotemporal factors, the model can assist ride-hailing companies in optimizing vehicle scheduling,
improving operational efficiency, and reducing passenger wait times. Additionally, the model’s
insights into spatiotemporal dependencies can promote more effective urban traffic management,
potentially reducing congestion and enhancing city resource allocation.

As future work, our planned research includes (1) considering using more external spatiotemporal
information data to evaluate the model, (2) optimizing rules for dividing areas, and (3) applying this
model to other cities to validate its applicability and effectiveness in different urban environments,
thereby expanding the model’s scope of application.
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