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Abstract: Evolutionary multitasking optimization (EMTO) handles multiple tasks simultaneously by 
transferring and sharing valuable knowledge from other relevant tasks. How to effectively identify 
transferred knowledge and reduce negative knowledge transfer are two key issues in EMTO. Many 
existing EMTO algorithms treat the elite solutions in tasks as transferred knowledge between tasks. 
However, these algorithms may not be effective enough when the global optimums of the tasks are far 
apart. In this paper, we study an adaptive evolutionary multitasking optimization algorithm based on 
population distribution information to find valuable transferred knowledge and weaken the negative 
transfer between tasks. In this paper, we first divide each task population into K sub-populations based 
on the fitness values of the individuals, and then the maximum mean discrepancy (MMD) is utilized 
to calculate the distribution difference between each sub-population in the source task and the sub-
population where the best solution of the target task is located. Among the sub-populations of the 
source task, the sub-population with the smallest MMD value is selected, and the individuals in it are 
used as transferred individuals. In this way, the solution chosen for the transfer may be an elite solution 
or some other solution. In addition, an improved randomized interaction probability is also included 
in the proposed algorithm to adjust the intensity of inter-task interactions. The experimental results on 
two multitasking test suites demonstrate that the proposed algorithm achieves high solution accuracy 
and fast convergence for most problems, especially for problems with low relevance. 
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1. Introduction 

Evolutionary multitasking optimization is inspired by the extraordinary talent of people to 
perform multiple tasks simultaneously [1]. In 2016, Gupta et al. [2] introduced the multifactor genetic 
mechanism into evolutionary algorithms and proposed the multifactor evolutionary algorithm (MFEA) 
for the first time, which is considered to be the pioneering work in multitasking evolutionary 
algorithms. Compared with traditional single-task evolutionary algorithms, MFEA shows superiority, 
but MFEA suffers from slow convergence, easy to trap in local optimum local optimality, and negative 
migration. Subsequently, researchers have conducted extensive studies on EMTO and have made some 
progress. Liang et al. [3] introduced hyper-rectangular search and gene mapping strategies into MFEA 
to construct similar gene representation space while expanding the search space to improve transfer 
efficiency and accelerate population convergence. Bali et al. [4] introduced a linear-domain adaptive 
strategy of search space to improve MFEA (LDA-MFEA), which reduces inter-task differences and 
facilitates positive migration between tasks. Ong et al. [5] introduced online parameter learning in 
MFEA to adaptively adjust the strength of transfer knowledge and reduce negative migration. Yang et 
al. [6] used K-means clustering to cluster individuals in a population and selected different random 
interaction probabilities for different categories of variables, improving the efficiency of knowledge 
transfer between tasks. Liaw et al. [7] considered the information exchange between all tasks as a 
symbiotic relationship and proposed a generalized framework, SBO, that is applicable to multitasking 
problems. Feng et al. [8] applied a two-population framework to perform mapping from source domain 
to target domain via a single-layer denoising autoencoder for explicit knowledge transfer among tasks. 
Li et al. [9] developed the multi-population multitasking evolutionary optimization framework 
(MPEF), which introduces a multi-population evolutionary framework into multitasking optimization, 
allowing different optimization tasks to be handled by different evolutionary algorithms. Cai et al. [10] 
adopted a hybrid knowledge transfer strategy to select the corresponding transfer strategy according 
to the correlation between tasks. 

In EMTO, the identification of valuable knowledge between tasks, that is, the selection of transfer 
content, is a factor affecting the performance of the EMTO algorithm. Existing research has shown 
that transferring elite solutions between two relevant tasks may accelerate the convergence of 
algorithms, but if these elites are local optima, they will lead the population to the local optima [11]. 
Therefore, determining the valuable content to transfer between tasks is an important issue. Recently, 
in order to improve the performance of multi-task optimization algorithms, many methods have been 
proposed to identify valuable knowledge between tasks. Gao et al. [12] proposed an EMTO algorithm 
based on semi-supervised learning that identifies individuals containing useful knowledge and selects 
them for transfer between tasks. In [13], the individuals in the source task that are superior to the 
optimal individuals in the target task are chosen to constitute the transferred population. Then, the 
excellent individuals in the transfer population are combined with the target population to construct a 
Gaussian mixture distribution model and generate the offspring according to the mixture model to 
realize the knowledge sharing between tasks. Lin et al. [14] used the neighbors of positive transferred 
individuals obtained during the evolutionary process as the next generation of transfer solutions, 
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achieving automatic identification of valuable transfer solutions during the evolutionary process. Sun 
et al. [15] used solutions in the source task that were similar to non-dominated solutions in the target 
task as transfer solutions. In [16], the authors utilized an incremental naïve Bayes classifiers to 
determine the individuals to transfer. In [17], the authors used anomaly detection to determine the 
individuals to transfer, and identified individuals carrying valuable knowledge, transferring them to 
the target task. Chen et al. [18] introduced the concept of transfer rank to quantify the priority of 
individuals and select transferred content based on the quantified priority. 

Although these algorithms have shown the potential to solve the EMTO problem, their ability to 
find valuable transferred solutions needs to be further improved. The main purpose of EMTO is to 
transfer useful knowledge between tasks to facilitate the convergence of the target task, assuming that 
the co-optimized tasks are related. However, in reality many optimization problems are black-box 
optimizations without prior knowledge of task similarity. Therefore, how to identify and select 
knowledge to transfer between tasks becomes a key factor affecting the performance of EMTO. In 
addition, since evolutionary algorithms are based on populations, which contain rich information about 
data distribution, extracting and utilizing the feedback information of populations in the evolutionary 
process for the design of the EMTO algorithm helps to improve the performance of the algorithm. The 
elite solutions in the population are generally located near the global optimal solution; thus, finding 
solutions with similar distributions to the elites in the target task as the migration content in the resource 
task can accelerate the convergence of the target task. 

In order to achieve more effective and robust knowledge transfer between different optimization 
tasks, this article proposes a single-objective EMTO algorithm based on population distribution. The 
proposed algorithm uses differential algorithm as a task solver, namely, AMTDE-PD. In addition, an 
improved randomized mating probability is also included in the proposed algorithm to adjust the 
intensity of the knowledge transfer. The primary contributions of this article are twofold. 

1) The transfer content selection strategy based on population distribution information is proposed. 
This strategy can adaptively select the knowledge to be transferred between tasks, and the transfer 
solutions may be not only elite solutions but also other solutions. 

2) Design an adaptive interaction probability to adjust the interaction intensity between tasks. The 
method adjusts the interaction probability between tasks based on their evolutionary trends to mitigate 
negative transfer between tasks. 

The rest of this article is organized as follows. Section 2 gives the preliminaries about EMTO, 
and DE algorithm. The implementation details of AMTDE-PD are presented in Section 3. Section 4 
provides and analyzes the experimental results. Section 5 gives the conclusion of this article. 

2. Preliminaries 

2.1. EMTO 

EMTO algorithms use evolutionary algorithms as task solvers to exploit potential synergies or 
complementarities between tasks to simultaneously solve multiple tasks with different search spaces [2]. 
That is to say, the evolutionary multitasking optimization algorithm returns the optimal solutions for 
multiple tasks through one search. Assuming that there are Θ minimization single-objective problems 
to be optimized simultaneously, T  denotes the θth task, X  is the search space corresponding to 
the task T  , and its objective function is F : X → R , R  is the real set, the mathematical 
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representation of the multitasking optimization problem can be described as below: 

𝑥∗, 𝑥∗, ⋯ 𝑥∗ 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹 𝑥 , ⋯ , 𝐹 𝑥  

𝑠. 𝑡.   𝑥 ∈ 𝑋                                     (1) 

where 𝐱∗  is the best solution of 𝑇 . 𝐱  is a feasible solution in the search space 𝑋 . 
During multitasking optimization process, since each optimization task has its own search space, 

the evolutionary multitasking algorithm has to map these tasks corresponding to different search spaces 
to a unified search space before solving these tasks and optimizing them using the corresponding 
evolutionary algorithm. Suppose the dimension of the search space for the 𝜃𝑡ℎ task is denoted as 𝐷 , 
the dimension of the unified search space U  is given as: 𝐷 𝑚𝑎𝑥 𝐷 , 𝐷 , ⋯ , 𝐷 , where U ⊆
0,1  . The solution 𝑥  in task 𝑇  are encoded into the uniform search space by  

𝑢                                           (2) 

where 𝑢  is the 𝑑th dimension of the individual 𝑥  in U. 𝐻  and 𝐿  denote the upper and lower 
bound of 𝑑th dimension of 𝑋 . Conversely, decoding 𝑢  into the original search space via 

𝑥  𝑢 𝐻 𝐿 𝐿                                  (3) 

2.2. Differential evolution algorithm 

The differential evolution (DE) algorithm is one of the most efficient evolutionary algorithms for 
solving continuous optimization problems [19]. In this paper, we use DE as a task solver. DE evolves 
a population by performing a random initialization in the search space and then performing mutation, 
crossover, and selection operations. A mutation strategy is used in the DE algorithm to generate a 
mutation vector for each x   in the population [20]. An advanced mutation strategy in DE is as follows: 

DE/current-to-pbest/1: 𝐯 𝐱 𝐹. 𝐱 𝐱 𝐹. 𝐱 𝐱                  (4) 

where v   is a mutant vector, x   is randomly chosen from the top p%  individuals in the 
population, p ∈ 0,1 . x  is a random solution in the population. x  is randomly chosen from the 
union of the population and its external archive Arc. Arc is used to preserve the solutions that were 
eliminated during the evolutionary process. F is the scaling factor. 

After performing the mutation operation, DE uses the following binomial crossover to generate a 
new trial vector 𝐮  [21]: 

𝐮 ,
𝐯 , , if rand 𝐶𝑅   𝑜𝑟 𝑑 𝑗𝑟𝑎𝑛𝑑
𝐱 , , otherwise                          (5) 

where CR is the crossover factor applied to determine the number of offspring individuals obtaining 
variables from the mutant vector 𝐯 , CR ∈ [0,1], updated with reference to the literature [10]. 𝑟𝑎𝑛𝑑 
is a random number between 0 and 1. 𝑗𝑟𝑎𝑛𝑑 ⊆ [1, D], and D is the dimension of the search space. 

After the crossover operation is executed, the following selection operation is used for the 
minimization problem to generate the next generation of new population individuals [22]: 
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𝐱
𝐮 ,       𝑖𝑓 𝑓 𝐮 𝑓 𝐱
𝐱 ,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                (6) 

where 𝑓 𝐮  and 𝑓 𝐱  denote the objective function value of the trial vector 𝐮  and individual 𝐱 , 
respectively. This operation ensures that the newly generated population is at least not worse than the 
previous generation’s population. 

Due to its simplicity and effectiveness, and the fact that it has been widely used for multitasking 
solving [23–25], AMTDE-PD uses DE as a task solver. 

3. Proposed EMTO algorithm 

In the last few years, EMTO algorithms have been widely used for solving various problems [26], 
vehicle routing problems [27–30], traveling salesman problems [31], path planning problems [32], and 
hyperspectral image classification [33]. However, the common knowledge between different tasks has 
not been fully explored in traditional single-objective EMTO algorithms. In this article, we present a 
single-objective multitasking optimization algorithm based on population distribution to use the 
common knowledge between tasks. In this section, we first give the main framework of AMTDE-PD. 
Next, the transfer content selection strategy and inter-task knowledge transfer strategy are introduced. 
Then, an improved adaptive mating probability strategy is presented. Finally, the improved adaptive 
mating probability strategy is given. 

3.1. Main framework 

The flowchart of AMTDE-PD is illustrated in Figure 3. Algorithm 1 shows the main framework 
of AMTDE-PD. First, a randomly initialized population containing 𝑁 individuals is assigned to each 
task, and all individuals in the population are evaluated on the corresponding task. At the beginning of 
each iteration, the subpopulation division operation is performed on target and resource tasks, 
respectively. Subsequently, the transferred population is constructed based on subpopulation (lines 6 
and 7). Then, 𝑁 offspring were generated for each task using two different methods (lines 8–17). 
At the end of each iteration, the total successful evolution rate 𝑆𝑅  of the target population and the 
center-position distance between the target population and the resource population are calculated 
(lines 18 and 19). Next, the random interaction probability between tasks is updated based on the 
change in the distance of the center location between populations. To adjust the interaction probability 
𝑅𝑀𝑃  of the current task 𝑇 , t ∈ Θ , we first check whether the total evolutionary success rate 𝑆𝑅  
(the number of offspring in the population that are better than their parents/the population size) of the 
population 𝑃  is larger than a pre-specified threshold 𝛿. If 𝑆𝑅 𝛿, it means that the population can 
achieve better evolution using the current RMP, and there is no need to update the RMP; otherwise, if 
𝑆𝑅 𝛿, it means that the RMP between the populations needs to be adjusted. Finally, the optimal 
solutions for all tasks are output. 
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Algorithm 1 Main Framework of AMTDE-PD
Input： N : population size of each task; 

 : number of tasks; 
𝑇 , ⋯ 𝑇 : all tasks; 
K : number of clusters; 
MaxFES : maximum function evaluation; 

0RMP : initial value of interaction probability for each task; 

𝛿: The threshold for interaction probability adjustment; 
𝑞: control parameters; 

Output：the optimal solutions for all tasks 
1 Initialize and evaluate each population 𝑃 𝜃 1,2, ⋯ , Θ ; 
2 FES  = 𝛩 ∗ 𝑁；g = 1 
3 𝐰𝐡𝐢𝐥𝐞  𝐹𝐸𝑆 𝑀𝑎𝑥𝐹𝐸𝑆  𝐝𝐨 
4   Perform subpopulation division operations for target and resource tasks; (see Algorithm 2)
5   The MMD values of the clusters where the optimal solution of the target task is located and all 

the clusters in the source task are calculated using Eq (10)； 
6   Use Eqs (11) and (12) to construct the transferred population;
7    𝐟𝐨𝐫   𝑡 1: Θ     
8     𝐟𝐨𝐫   𝑖 1: 𝑁     
9       𝐢𝐟 𝑟 𝑎𝑛𝑑 𝑅𝑀𝑃     

10         Use Eq (13) to generate the mutant individual 𝐯 ; 
11       𝐞𝐥𝐬𝐞 
12         Use Eq (14) to generate the mutant individual 𝐯 ; 
13       𝐞𝐧𝐝 𝐢𝐟 
14       Perform the crossover operation on 𝐱  and 𝐯  using Eq (5) to produce a trial vector 𝐮

and evaluate 𝐮  on task 𝑇 ;
15       Perform selection operation using Eq (6) to generate the individual of the next generation 

population; 
16     𝐞𝐧𝐝 𝐟𝐨𝐫 
17     Calculate the total successful evolution rate 𝑆𝑅 of the population;  
18     Calculate the center-position distance 𝐷𝑖𝑠𝑡 ,   between target task 𝑇   and source task 

𝑇   according to Eq (7); 
19     𝐢𝐟 𝑆𝑅 𝛿 
20       𝑅𝑀𝑃 𝑔 1 𝑈𝑝𝑑𝑎𝑡𝑒 𝑅𝑀𝑃 𝑔 , 𝐷𝑖𝑠𝑡 , , 𝑞  (see Algorithm 3); 

21     𝐞𝐧𝐝 𝐢𝐟 
22   end for 
23   NFESFES  ; 
24   𝑔 𝑔 1; 
25 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 
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Figure 1. The flowchart of AMTDE-PD. 

3.2. Transferred content selection strategy 

Transferring the elite solution in a task as a transfer solution between tasks is effective if the co-
optimized task pairs are correlated. However, there is no a priori knowledge of inter-task correlation. 
Therefore, this method of choosing what to transfer will result in a negative transfer if task pairs are 
irrelevant or of low relevance. An elite solution in one task may be inferior in another. Herein, a transfer 
content selection strategy based on population distribution information is proposed to select 
appropriate transferred content between tasks. First, each task population was divided into K sub-
populations based on the fitness values of the individuals. Second, the Maximum Mean Discrepancy 
(MMD) is used to select the most similar clustering from the source task to the clustering of the optimal 
solution of the target task as the transferred knowledge between tasks. The steps are as follows: 
1) Division of subpopulations 

Individuals in each task population are first sorted in ascending order of fitness, and then 
individuals are categorized into advantaged, intermediate, and disadvantaged solutions a based on their 
fitness values. Then, the task population is categorized into three sub-populations: superior, 
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intermediate, and inferior. The pseudocode for  the  subpopulation division process is presented in 
Algorithm 2. 

Algorithm 2 Subpopulation division process 
Input：Task populations 𝑃 , ⋯ , 𝑃 ; Number of subpopulation:𝐾; Task population size:𝑝𝑜𝑝  
Output: 𝐾 subpopulation 
1  Individuals in the population were sorted in ascending order of fitness values; 
2  Calculate grouping factors 𝜆 𝑝𝑜𝑝 𝐾⁄ ; 
3  Calculate the size of each subpopulation based on the grouping factor; 
4  Task population is divided into K subpopulations according to the size of the subpopulation; 

2) Calculate the MMD value between each cluster in the source task and the cluster where the 
optimal solution of the target task lies 
MMD is a method to determine whether two data distributions are similar by measuring the 

distance between the two distributions in the reproducing kernel Hilbert space (RKHS) [34]. In [35], 
MMD is used to select one of the source domains that is most similar to the target domain for inter-
task knowledge transfer and has achieved significant success. Inspired by this, we utilize MMD to 
compute the distance of the clusters and get the similarity between clusters based on the MMD value. 
When calculating the MMD value, the two high-dimensional distributions are mapped to the RKHS, 
then the distribution difference is calculated. A smaller MMD value shows that the two distributions 
are less different, that is, the search preferences of the two clusters are more similar. Suppose the 
dataset 𝐗 𝑥 , … , 𝑥   and 𝐘 𝑦 , … , 𝑦   obey the distributions P  and Q , respectively. ℱ  is a 
class of functions 𝑓: χ → R that maps the original search space χ to the set R of real numbers. Let 
RKHS be denoted as ℋ, 𝜑: χ → ℋ denotes a mapping from χ to ℋ. The following is the inner 
product representation of 𝑓 𝑥 . 

𝑓 𝑥 〈𝑓, 𝜑 𝑥 〉ℋ                                 (8) 

The MMD values of P and Q in RKHS are calculated as follows: 

𝑀𝑀𝐷 ℱ, 𝑃, 𝑄 𝑠𝑢𝑝
‖ ‖ℋ

  𝐸 𝑓 𝑥 𝐸 𝑓 𝑦 ∑ 𝜑 𝑥 ∑ 𝜑 𝑦          (9) 

At each generation, the MMD value between two cluster distributions is calculated as follows： 

𝑀𝑀𝐷 𝐶𝐾 , 𝐶𝐾 ∑ 𝜑 𝑐𝑘 ∑ 𝜑 𝑐𝑘 , 𝑒 1,2,3                (10) 

where 𝐶𝐾  is a subpopulation in the source task population, 𝐶𝐾  is the subpopulation where the 
optimal solution in the target task lies 𝑐𝑘 ∈ 𝐶𝐾 , 𝑐𝑘 ∈ 𝐶𝐾 . The process of calculating the MMD 

value is shown in Figure 2. 
As can be seen from Figure 2, the MMD values between 𝐶𝐾  and all subpopulations in the 

resource task are calculated, and the subpopulation in the resource task corresponding to the minimum 
MMD value is selected as the migration population. 
1) Calculate the index of the cluster 𝐶𝐾  corresponding to the smallest MMD value 

𝑖𝑑𝑥 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑀𝑀𝐷 𝐶𝐾 , 𝐶𝐾                           (11) 
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2) Transferred content selection 
Individuals in the clusters indexed as 𝑖𝑑𝑥 in the source task are used as transferred content 

in the transfer population 𝑇𝑃. 

𝑇𝑃 ← 𝐶𝐾                                         (12) 

 

Figure 2. The process of calculating the MMD value between 𝐶𝐾  and 𝐶𝐾 . 

3.3. Inter-task knowledge transfer strategy 

Suppose there is a multitasking optimization problem containing Θ  tasks. During the 
evolutionary process, if the Random Mating Probability (RMP) between tasks satisfies the condition 
𝑟𝑎𝑛𝑑 RMP  𝜃 1,2, … . , Θ  , then inter-task evolution is performed. Otherwise, intra-task self-
evolution is executed. AMTDE-PD uses the DE algorithm as the task solver and designs the transfer 
strategy based on the mutation strategy in the DE algorithm. In this paper, we propose a mutation 
strategy /DE rand to pbest    that considers both exploration and exploitation. In AMTDE-PD, the 
transfer strategy is designed according to /DE rand to pbest  . Let 𝑇  be the target task, the inter-task 

transfer strategy is designed based on the following: 

𝐯 𝐱 𝐹. 𝐱 𝐱 𝐹. 𝐱 𝐱                        (13) 

where 𝐯   is the mutant individual corresponding to the current individual 𝐱   in the target task; 
𝐱 ,  𝐱 ,and 𝐱  are three mutually exclusive individuals randomly selected from the transfer 
population 𝑇𝑃. 𝐱  is the individual with the top 100 ∗ 𝑝，𝑝 ∈ 0,1  fitness values in the target 

task. F is the scale factor and is updated with reference to [20]. 
When the condition 𝑟𝑎𝑛𝑑 RMP  is not satisfied, AMTDE-PD performs intra-task self-

evolution using the mutation strategy / /1DE current to pbest   and binomial crossover, specifically 

as follows:  

( ) ( )t t t t t t
i i pbest i r1 r2- -v x x x x x= + ⋅ + ⋅ F F

                         (14) 

where 𝐱  is randomly selected from the target task. t
r2x  is randomly selected from the union of the 

target population and its external archive.  
At each generation, AMTDE-PD first judges the condition 𝑟𝑎𝑛𝑑 𝑅𝑀𝑃 is satisfied and then 

decides whether to perform inter-task evolution or intra-task self-evolution. 

3.4. Adaptive mating probability strategy 

In the EMTO algorithm, multiple tasks corresponding to different search spaces are mapped to a 
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unified search space. In the early stages of evolution, solutions from different tasks are randomly 
distributed in a unified search space. As evolution progresses, related tasks move closer together while 
unrelated tasks move further apart. Figure 3 illustrates this situation. 

 

(a)                       (b)                        (c) 

Figure 3. (a) Population distribution of tasks in the initial phase (b) Evolutionary trends of 
similar tasks and (c) Evolutionary trends of dissimilar tasks. 

In the evolutionary multitasking optimization algorithm, RMP is used to control the interaction 
intensity between tasks. In existing studies, RMP is usually adjusted adaptively based on the 
improvement rate of fitness values during the evolution process. This method can promote the 
interaction between tasks with similar fitness landscapes and mitigate the impact of negative transfer 
between tasks with dissimilar fitness landscapes. However, when jointly optimizing two unrelated 
tasks, this approach can lead to negative transfer. As evolution progresses, the search domains of two 
unrelated tasks gradually overlap less and eventually become completely non-overlapping, as depicted 
in Figure 3(c). In this case, knowledge transfer between tasks becomes ineffective and consumes a 
large number of computational resources. 

In view of this, we adjust the RMP between tasks based on the evolutionary trend of populations 
during the evolution process. If two task populations evolve in the same direction, the intensity of 
knowledge transfer between tasks is enhanced to accelerate convergence. Otherwise, the intensity of 
knowledge transfer between tasks is weakened to avoid negative transfer. The direction of change in 
the population center position can reflect the evolutionary trend of the population, so the evolutionary 
trend between tasks is estimated by comparing distances between tasks’ population centers in current 
and previous generations. Let the center positions of the target task and source task be denoted as 𝑋  
and 𝑋  , respectively. In generation g , the distance of the center positions between the target and 
source tasks is calculated as: 

𝐷𝑖𝑠𝑡 , 𝑔 𝑋 𝑋                                 (15) 

The calculation method for the center position of the population is as follows: 

𝑋 ∑ 𝑥                                      (16) 

where 𝑁 is the size of the population and 𝑥  is the individuals in the population. 
If 𝐷𝑖𝑠𝑡 , 𝑔 𝐷𝑖𝑠𝑡 , 𝑔 1 , it means that the populations of the two tasks are moving away 
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from each other, the evolutionary tendency between the tasks is opposite, and decreasing RMP reduces 
the interaction strength between the tasks. If 𝐷𝑖𝑠𝑡 , 𝑔 𝐷𝑖𝑠𝑡 , 𝑔 1  , it means that the 
populations of the two tasks are approaching each other, and the evolutionary tendency between the 
tasks is the same, so increase the RMP to improve the interaction strength between the tasks. However, 
when RMP is greater than or equal to 1, the evolution between tasks will occupy all computational 
resources, and intra-task self-evolution will not be able to proceed, which is detrimental to the 
evolution of the population. Therefore, when [RMP]_t is greater than or equal to 1, it should be set 
back to 0.5 to ensure a balance between inter-task evolution and intra-task self-evolution. The pseudo-
code of the update of RMP is shown in Algorithm 3. 

Algorithm 3 Update of RMP 
Input: Inter-task mating probability for generation 𝑅𝑀𝑃 𝑔  ; Distance between population 

center positions 𝐷𝑖𝑠𝑡 , ; Control parameters 𝑞. 
Output: 𝑅𝑀𝑃 𝑔 1  
1 if 𝐷𝑖𝑠𝑡 , 𝑔 𝐷𝑖𝑠𝑡 , 𝑔 1  
2   𝑅𝑀𝑃 𝑔 1 𝑅𝑀𝑃 𝑔 /𝑞; 
3   𝐢𝐟 𝑅𝑀𝑃 𝑔 1 1 
4     𝑅𝑀𝑃 𝑔 1 0.5; 
5   end if 
6   𝐞𝐥𝐬𝐞 
7     𝑅𝑀𝑃 𝑔 1 𝑅𝑀𝑃 𝑔 ∗ 𝑞； 
8 𝐞𝐧𝐝 𝐢𝐟 

4. Experiment and analysis 

4.1. Test problems and compared algorithms 

To evaluate the search efficiency of AMTDE-PD, we compare it with other advanced EMTO 
algorithms on two single-object multitasking test suites. The first test suite CEC2019-SOMTP [36] is 
the single-objective multitasking standard test set, which comprises nine single-objective MTO 
problems, each consisting of two minimization tasks. According to the intersection of the global 
optimum of the optimization task these problems can be classified into three categories: Complete 
Intersection (CI), Partial Intersection (PI), and No intersection (NI). In addition, Spearman’s 
correlation coefficient (SRCC) was used to assess the similarity between the fitness landscapes of two 
tasks. According to the results of SRCC, these problems can be further characterized into three 
categories: High Similarity (HS), Medium Similarity (MS), and Low Similarity (LS). The second test 
suite is the single-objective multi-task complex test set WCCI2020-SOCTP1 contains ten complex 
single-objective MFO problems. Different from the CEC2019-SOMTP, the task functions composing 
the complex test set are obtained by rotating and shifting four hybrid functions and seven multi-mode 
functions in the CEC2014 test suite to varying degrees, which makes them more difficult to solve. 

To assess the effectiveness of the algorithm, we compare AMTDE-PD with nine advanced EMTO 
algorithms on the CEC2019-SOMTP, including four classical algorithms using EA as solver: MFEA [2], 
GMFEA [37], MTGA [38], SBO [7], and LDA-MFEA [4]; three high-performance algorithms using 

 
1http://www.bdsc.site/websites/MTO/index.html 
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DE as solvers: MFDE [39], MFMP [9], and MPEFMTO [40]; and one algorithm that uses both DE 
and EA as task solvers: EMT-EAE [8]. Another reason for choosing these algorithms is that these 
algorithms use elite-based solutions, and randomized solutions, respectively, as transferred content. 
To further validate the superiority of the AMTDE-PD algorithm in solving complex optimization 
problems, the AMTDE-PD algorithm is compared with MFEA, MFDE, MFMP, and MPEFMTO on 
the CEC2019-SOMTP test suite. 

4.2. Parameter settings and performance metrics 

To ensure an unbiased comparison, the maximum function evaluation of each algorithm was set 
to 100,000, and each algorithm was run independently 20 times on each test problem. All other 
parameters in the comparison algorithms obey their original paper. The parameters of AMTDE-PD on 
the two test suites are set as follows: the population size of each task N = 100, the number of clusters 
K = 3, the RMP update threshold 𝛿 0.5, the control parameter 𝑞 0.9, the initial values of both F 
and CR are set to 0.5. 

Synergy performance metrics proposed in the literature [38] are used in this experiment to verify 
the comprehensive performance of an algorithm on multiple tasks in a multitasking environment. Let 
the test case contain  minimization tasks. The optimal solution obtained by the lth execution of an 
algorithm on the task 𝑇 , 𝜃 ∈ 1,2, ⋯ , Θ  is denoted as 𝑓 , . Let each algorithm be executed R times, 
then the performance metric of the ith algorithm is defined as follows: 

𝑆𝑐𝑜𝑟𝑒 ∑ ∑ ,                                  (17) 

where 𝜇  and 𝜎  are the mean and variance of 𝑓 ,  obtained by all algorithms running R times on 
task 𝑇 , respectively. 

For the minimization problem, the smaller Score value of the algorithm indicates the better overall 
performance of the corresponding EMTO algorithm on the multitasking problem. 

4.3. Results on CEC2019-SOMTP 

The AMTDE-PD algorithm and the nine comparison algorithms are executed independently 20 
times on the CEC2019-SOMTP, and the mean and standard deviation of the optimal function values 
achieved from the solution are shown in Table 1. The results of the Wilcoxon rank sum test at the 
significance level α = 0.05 are given in the last row of Table 1, and the symbols “+”, “-” and “≈” 
indicate that the comparison algorithms’ performance is better than, worse than, and approximate to 
the AMTDE-PD algorithm. To further minimize statistical comparison errors, Friedman’s test is used 
to examine the difference between AMTDE-PD and the other comparison algorithms. The average 
rank is recorded as the comparison results, and a smaller one indicates better performance. The results 
of Friedman’s test at the 0.05 significance level are given in Table 2, and the best results are shown in 
bold. Furthermore, this section uses the algorithm’s performance metric Score as an assessment of the 
algorithm’s performance, which reflects the algorithm’s comprehensive performance on a problem. 
The values of the performance metric Score for the AMTDE-PD algorithm and the other compared 
algorithms are given in Table 3. 
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Table 1. Experimental results of AMTDE-PD algorithm and other nine comparison algorithms on CEC2019-SOMTP test suite. 

Problem Task MFEA MFDE GMFEA LDA-MFEA SBO MTGA EMT-EAE MPEF MPEFMTO AMTDE-PD 
CI+HS T1 3.74E-01- 

(6.64E-02) 
8.94E-04- 
(2.70E-03)

1.05E+00- 
(1.59E-02)

3.38E-01- 
(7.60E-02)

9.35E-01- 
(5.64E-02)

1.24E-02- 
(8.83E-03)

7.05E-01- 
(8.22E-02)

1.93E-08- 
(1.55E-08)

2.58E-09- 
(2.54E-09)

4.7968e-12 
(7.64E-12) 

T2 1.98E+02- 
(5.16E+01) 

1.89E+00- 
(5.65E+00)

3.68E+02- 
(2.57E+01)

1.53E+02- 
(3.19E+01)

3.09E+02- 
(2.94E+01)

5.06E+01- 
(1.64E+01)

3.72E+02- 
(6.23E+01)

4.93E-05- 
(4.25E-05)

6.82E-06- 
(6.54E-06)

7.00E-09 
(1.03E-08) 

CI+MS T1 4.72E+00- 
(5.49E-01) 

4.45E-02- 
(1.96E-01)

7.15E+00- 
(6.92E-01)

3.15E+00- 
(4.27E-01)

4.72E+00- 
(2.90E-01)

1.20E+00- 
(8.22E-01)

3.97E+00- 
(2.64E-01)

4.40E-06- 
(5.17E-06)

2.72E-07- 
(1.33E-07)

8.55E-09 
(1.03E-08) 

T2 2.12E+02- 
(6.29E+01) 

1.50E-01- 
(6.67E-01)

4.69E+02- 
(6.56E+01)

1.69E+02- 
(3.10E+01)

3.24E+02- 
(3.90E+01)

5.18E+01- 
(1.84E+01)

3.48E+02- 
(3.78E+01)

3.12E-08- 
(6.43E-08)

5.75E-11- 
(5.31E-11)

1.91E-14 
(5.50E-14) 

CI+LS T1 2.02E+01+ 
(6.46E-02) 

2.12E+01- 
(3.10E-02)

2.02E+01+ 
(4.03E-02)

2.10E+01+ 
(2.07E-01)

2.11E+01 
(2.43E-01)

2.02E+01+ 
(3.51E-01)

2.12E+01- 
(3.79E-02)

2.12E+01- 
(7.51E-02)

2.12E+01- 
(7.26E-02)

2.11E+01 
(7.46E-02) 

T2 3.71E+03+ 
(4.93E+02) 

1.11E+04- 
(1.62E+03)

6.62E+03- 
(6.30E+02)

4.28E+03+ 
(5.11E+02)

4.56E+03+ 
(7.23E+02)

3.41E+03+ 
(5.99E+02)

4.49E+03+ 
(5.60E+02)

5.96E+03- 
(4.11E+02)

5.82E+03- 
(4.37E+02)

5.60E+03 
(4.27E+02) 

PI+HS T1 5.81E+02- 
(1.17E+02) 

8.27E+01- 
(1.67E+01)

9.09E+02- 
(1.33E+02)

3.17E+02- 
(4.88E+01)

4.26E+02- 
(6.73E+01)

5.40E+01+ 
(1.91E+01)

3.93E+02- 
(5.11E+01)

2.65E+02+ 
(1.91E+01)

2.60E+02+ 
(1.83E+01)

2.66E+02 
(2.12E+01) 

T2 8.82E+00- 
(2.06E+00) 

2.30E-05- 
(2.14E-05)

2.31E+02- 
(5.15E+01)

1.19E+01- 
(2.63E+00)

1.03E+02- 
(2.32E+01)

1.17E-08- 
(3.24E-08)

5.63E+01- 
(1.48E+01)

1.67E-09- 
(2.31E-09)

4.64E-10- 
(2.98E-10)

1.90E-13 
(1.34E-13) 

PI+MS T1 3.53E+00- 
(5.04E-01) 

1.03E-01- 
(4.50E-01)

7.99E+00- 
(8.12E-01)

2.84E+00- 
(4.63E-01)

5.04E+00- 
(3.06E-01)

1.51E-01- 
(4.67E-01)

3.96E+00- 
(4.23E-01)

6.79E-05- 
(5.94E-05)

2.02E-05- 
(1.67E-05)

1.36E-07 
(2.19E-07) 

T2 6.38E+02- 
(1.96E+02) 

7.22E+01- 
(2.26E+01)

1.15E+05- 
(4.88E+04)

5.31E+02- 
(1.81E+02)

1.42E+04- 
(4.53E+03)

2.34E+02- 
(4.00E+02)

4.57E+03- 
(2.64E+03)

8.17E+01- 
(9.07E+00)

7.70E+01- 
(1.81E+01)

6.47E+01 
(6.47E+01) 

PI+LS T1 2.00E+01- 
(1.15E-01) 

7.80E-01- 
(7.39E-01)

1.84E+01- 
(4.78E+00)

3.18E+00- 
(4.19E-01)

5.43E+00 
(9.38E-01)

1.73E+00- 
(6.82E-01)

3.94E+00- 
(4.98E-01)

1.51E-05- 
(2.78E-05)

1.32E-06- 
(3.66E-06)

3.82E-07 
(5.23E-07) 

T2 2.11E+01- 
(3.29E+00) 

1.12E-01- 
(2.73E-01)

2.01E+01- 
(5.58E+00)

3.15E+00- 
(8.29E-01)

5.75E+00- 
(1.35E+00)

2.64E+00- 
(2.37E+00)

7.39E+00- 
(3.45E+00)

7.32E-04- 
(7.20E-04)

2.58E-04- 
(3.22E-04)

1.59E-04 
(1.15E-04) 

NI+HS T1 7.49E+02- 
(2.68E+02) 

9.53E+01- 
(6.81E+01)

5.15E+04- 
(1.99E+04)

8.04E+02- 
(3.93E+02)

1.40E+04- 
(5.39E+03)

1.12E+02- 
(1.09E+02)

6.18E+03- 
(3.61E+03)

4.34E+01- 
(1.09E+00)

4.28E+01- 
(5.16E-01)

4.22E+01 
(8.87E-01) 

T2 2.60E+02- 
(4.39E+01) 

3.03E+01- 
(1.34E+01)

5.00E+02- 
(6.73E+01)

2.08E+02- 
(6.78E+01)

3.66E+02- 
(3.09E+01)

5.96E+01- 
(1.94E+01)

3.70E+02- 
(6.80E+01)

5.62E-04- 
(1.16E-03)

1.51E-06- 
(4.24E-06)

5.31E-07 
(1.04E-06) 

NI+MS T1 4.09E-01- 
(6.63E-02) 

2.65E-03- 
(4.18E-03)

1.05E+00- 
(1.81E-02)

3.92E-01- 
(6.61E-02)

9.24E-01- 
(5.20E-02)

6.27E-03- 
(9.74E-03)

8.06E-01- 
(8.76E-02)

3.14E-07- 
(1.73E-07)

3.17E-08- 
(5.41E-08)

5.25E-09 
(5.25E-09) 

T2 2.58E+01- 
(3.05E+00) 

3.21E+00- 
(1.65E+00)

2.88E+00- 
(2.56E+00)

1.41E+01- 
(2.14E+00)

2.33E+01- 
(5.19E+00)

8.41E+00- 
(6.83E+00)

2.34E+01- 
(5.02E+00)

1.33E+00- 
(7.63E-01)

9.63E-01+ 
(6.23E-01)

1.12E+00 
(5.42E-01) 

NI+LS T1 6.06E+02- 
(9.99E+01) 

1.01E+02+ 
(2.38E+01)

8.71E+02- 
(1.81E+02)

3.20E+02+ 
(4.73E+01)

4.27E+02- 
(5.47E+01)

1.69E+02+ 
(6.90E+01)

4.38E+02- 
(8.68E+01)

2.75E+02- 
(1.99E+01)

2.65E+02- 
(1.65E+01)

2.59E+02 
(1.96E+01) 

T2 3.62E+03- 
(4.60E+02) 

4.07E+03- 
(6.99E+02)

6.65E+03- 
(6.71E+02)

4.14E+03- 
(5.23E+02)

4.31E+03- 
(5.90E+02)

2.89E+03- 
(6.43E+02)

4.52E+03- 
(5.55E+02)

5.98E+03- 
(6.43E+02)

6.07E+03- 
(3.37E+02)

1.99E+03 
(5.38E+02) 

+//- 2/0/16 1/0/17 1/0/17 3/0/15 1/1/16 4/0/14 1/0/17 1/0/17 2/0/16
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In Table 1, AMTDE-PD significantly outperforms the other nine compared algorithms in terms 
of average objective values on 13 out of the 18 test tasks of the CEC2019-SOMTP. According to the 
numbers of “+//-” in Table1, we can see that AMTDE-PD better than MFEA, MFDE, GMFEA, 
LDA-MFEA, SBO, MTGA, EMT-EAE, MPEF, and MPEFMTO on the CEC2019-SOMTP test suite 
is 16, 17, 17, 15, 16, 14, 17, 17, and 16, respectively. It can be concluded that the AMTDE-PD 
algorithm outperforms other algorithms on the CEC2019-SOMTP benchmark based on the accuracy 
of the solution and the stability of the algorithm. 

From Table 2, it can be seen that AMTDE-PD obtains the best ranks on both Task T1 and Task 
T2 in all test problems compared to MFEA, MFDE, GMFEA, LDA-MFEA, SBO, MTGA, EMT-EAE, 
MFMP, and MPEFMTO. That is to say, AMTDE-PD has the best overall performance on Task T1 and 
Task T2 for all the test problems. Moreover, the P-value values of AMTDE-PD on Task T1 and Task 
T2 are both 0, which indicates that the performance of the AMTDE-PD algorithm is significantly 
different from the other compared algorithms, and the AMTDE-PD algorithm outperforms the other 
compared algorithms in a statistically significant way. 

Table 2. Friedman test results of AMTDE-PD and nine comparison algorithms on 
CEC2019-SOMTP. 

 Task1 Task2 

Algorithm Average rank Algorithm Average rank 
1 AMTDE-PD 2.17 AMTDE-PD 1.67 
2 MPEFMTO 3.06 MPEFMTO 3.33 
3 MTGA 3.89 MTGA 4.22 
4 MPEF 3.94 MPEF 4.22 
5 MFDE 3.94 MFDE 4.67 
6 LDA-MFEA 5.89 LDA-MFEA 5.78 
7 MFEA 7.28 MFEA 6.56 
8 EMT-EAE 7.72 EMT-EAE 8.00 
9 SBO 8.11 SBO 7.56 
10 GMFEA 9.00 GMFEA 9.00 
statistic 51.451  46.406  
P-value 0.000  0.000  

Table 3 shows that the AMTDE-PD achieved the best Score values on six of the nine test 
problems. For the complete intersection (CI) problem AMTDE-PD took the best performance scores 
on medium to high similarity problems and performed worse than algorithms (MFEA, GMFEA, LDA-
MFEA, SBO, MTGA, EMT-EAE) using chromosome crossover for gene transfer on low similarity 
problems, but better than algorithms (MFDE, MFMP, MPEFMTO) using the mutation mechanism of 
DE for inter-task knowledge transfer. For the PI problem, AMTDE-PD obtains better Score values 
than the other compared algorithms on the low and medium similarity problems (PI+MS, PI+LS), and 
slightly worse than MTGA and MPEFMTO on the high similarity problem (PI+HS) problem. For the 
NI problem, AMTDE-PD obtains the best Score values on both the high similarity and the low 
similarity problems (NI+HS, NI+LS) achieves the best Score values and only slightly underperforms 
the MPEFMTO algorithm on the medium similarity problem (NI+MS). In conclusion, the proposed 
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algorithm obtains good Score values on nine benchmark problems, and the overall performance 
outperforms other algorithms. This is because when the global optimum of a co-optimization task 
varies greatly, using either the elite solution or a randomly selected solution as the migrated knowledge 
between tasks may be less effective. On the contrary, AMTDE-PD uses a transfer content selection 
strategy based on population information, which is useful when the global optimums of the tasks differ 
greatly. Therefore, AMTDE-PD achieves better results on most PI and NI problems. 

Table 3. Score values of AMTDE-PD and nine comparison algorithms on CEC2019-SOMTP. 

Problem AMTDE-PD MFEA MFDE GMFEA LDA-MFEA SBO MTGA EMT-EAE MFMP MPEFMTO 

CI+HS -17.242573 4.096979 -17.101201  30.988655 0.392154 24.409735 -13.758544 22.699937 -17.242569 -17.242572 

CI+MS -18.444439 11.652982 -18.268405  35.157126 3.248721 17.936475 -10.789895 16.396293 -18.444422 -18.444438 

CI+LS 5.920443 -23.359814 31.359196  -8.055326  -2.654138 0.696335 -22.288089 2.720678 8.073585 7.587131 

PI+HS -9.000528 4.797912 -16.276617  46.481302 -5.309010 11.321329 -17.440352 3.606440 -8.975350 -9.205126 

PI+MS -12.279223 0.540779 -11.871226  48.059094 -1.920223 10.299737 -11.619883 3.340061 -12.274124 -12.274992 

PI+LS -14.112506 37.378323 -12.989220  33.089194 -6.151046 -0.104017 -8.738217 -0.148317 -14.111795 -14.112398 

NI+HS -14.054337 0.197694 -12.396925  43.392954 -2.450153 14.897147 -10.800141 9.320940 -14.053334 -14.053844 

NI+MS -18.423680 11.916704 -16.592061  29.504499 1.720064 21.714273 -12.197161 19.171619 -18.256331 -18.557927 

NI+LS -20.483169 5.271598 -14.224810  35.217437 -4.210461 1.822962 -18.571801 3.434995 5.706511 6.036738 

 

 

Continued on next page 
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Figure 4. Average convergence curves obtained by AMTDE-PD and compared algorithms 
On CEC2019-SOMTP. 
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To analyze the convergence behavior of AMTDE-PD and the comparison algorithms more 
intuitively, their convergence curves are given in Figure 4. In Figure 4, the convergence speed of 
AMTDE-PD is faster than that of other algorithms on most problems in CEC2019-SOMTP. However, 
it is slower than the algorithm for gene transfer with chromosome crossover on the CI+LS problem 
and slightly slower than MFDE on the NI+LS task 1 (Rastrigin function). Rastrigin function has 
multiple local maxima and minima, which tends to make the algorithm fall into a local optimum. 
MFDE generates offspring by randomly combining parents, which can obtain widely distributed 
solutions and escape from the local optimum. Therefore, MFDE can get better performance on the 
Rastrigin function. 

In summary, the AMTDE-PD algorithm has better solution accuracy and faster convergence 
speed than other algorithms, can solve the single-objective MFO problem effectively and demonstrates 
a more competitive and comprehensive performance than other EMTO algorithms. 

In order to evaluate the convergence of the algorithms more fairly, the maximum number of 
function evaluations of all the algorithms was increased to 200,000 times for the experiments, and 
the convergence curves of AMTDE-PD and its comparison algorithms are shown in Figure 5. From 
Figure 5, we can see that with sufficient function evaluation times, AMDE has competitiveness in 
terms of convergence speed. 

 

 

Continued on next page 
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Figure 5. Average convergence curves obtained by AMTDE-PD and compared algorithms 
On CEC2019-SOMTP for maximum function evaluation as 200,000. 

4.4. Results on complex single-objective multitasking optimization problems 

Compare AMTDE-PD with two classical evolutionary multitasking optimization algorithms, 
MFEA and MFDE, and two recent high-performance evolutionary multitasking optimization 
algorithms, MPEF, and MPEFMTO, on WCCI2020-SOCTP. The reason for choosing these 
comparison algorithms is that these algorithms use different transfer content selection strategies. 
Among them, MFEA and MFDE use the randomized solutions in the task as the transfer content. 
MPEF uses the difference vector of the randomized solutions in the task and the elite solutions as the 
transfer content. The transfer content in MPEFMTO is the dominant solution, the inferior solution and 
the difference vector of the randomized solutions in the task. The average objective function values 
obtained from 20 independent runs of each algorithm on each task and the standard deviation were 
recorded as results. The results are shown in Table 4, and the results of the Wilcoxon rank sum test 
with a significance level α = 0.05 are given in the last row. The synergy performance metric Score is 
also utilized to verify the comprehensive performance of each algorithm on each problem containing 
two complex tasks. The values of the performance metric Score for the AMTDE-PD, MFEA, MPDE, 
MFMP, and MPEFMTO are given in Table 5. 

As can be seen in Table 4, AMTDE-PD outperforms MFEA, MFDE, MPEF, and MPEFMTO in 
the CCI2020-SOCTP test suite on 17, 18, and 12 tasks, respectively. However, MFEA, MFDE, MPEF, 
and MPEFMTO approximate AMTDE-PD on 0, 2, 5, and 6 tasks, respectively. In addition, the synergy 
performance metric scores of the algorithms in Table 5 show that the overall performance of AMTDE-
PD is superior to that of MFEA, MFDE, MPEF and MPEFMTO on 8, 10, 6, and 6 problems, 
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respectively. The above statistical results show that AMTDE-PD can effectively deal with complex 
multitasking optimization problems. 

Table 4. Experimental results of AMTDE-PD algorithm and other nine comparison 
algorithms on WCCI2020-SOCTP test suite. 

Problem Task MFEA MFDE MPEF MPEFMTO AMTDE-PD 

P1 Task1 6.4841E+02 

(4.8164e+00)- 

6.0408E+02 

(2.5657e+00)-

6.0084E+02 

(5.6434E-01)-

6.0076E+02 

(4.4438E-01)- 

6.0059E+02 

(3.8116e-01)
Task2 6.4832E+02 

(4.7256e+00)- 

6.0442E+02 

(2.5177e+00)-

6.0101E+02 

(5.6434E-01)-

6.0094E+02 

(5.2927E-01)- 

6.0067E+02 

(3.1623e-01)

P2 Task1 7.0107E+02 

(2.5362e-02)- 

7.0000E+02 

(7.0583e-05)

7.0000E+02 

(7.0972E-06)

7.0000E+02 

(1.6550E-03) 

7.0000E+02 

(1.6538e-03)

Task2 7.0107E+02 

(1.4481e-02)- 

7.0000E+02 

(3.8944e-03)

7.0000E+02 

(1.7538E-06)

7.0000E+02 

(2.3784E-03) 

7.0000E+02 

(2.2084e-03)

P3 Task1 3.0247E+06 

(1.6196e+06)- 

6.3359E+06 

(2.0626e+06)-

8.9800E+03 

(4.3220E+03)+

1.3640E+04 

(1.6415E+04)+ 

2.1596E+04 

(3.9472e+04)

Task2 2.9191E+06 

(1.2221e+06)- 

6.4765E+06 

(2.9946e+06)-

9.4501E+03 

(3.5152E+03)-

1.0963E+04 

(6.9444E+03)- 

9.1345E+03 

(2.8387e+03)

P4 Task1 1.3006E+03 

(8.7430e-02)- 

1.3006E+03 

(8.0022e-02)-

1.3004E+03 

(4.4541E-02)

1.3004E+03 

(3.6728E-02) 

1.3004E+03 

(4.8408e-02)

Task2 1.3005E+03 

(6.5949e-02)- 

1.3005E+03 

(7.0733e-02)-

1.3003E+03 

(5.1003E-02)

1.3003E+03 

(4.2129E-02) 

1.3003E+03 

(4.5993e-02)

P5 Task1 1.5611E+03 

(1.3037e+01)- 

1.5330E+03 

(2.0512e+00)-

1.5222E+03 

(1.8118E+00)+

1.5225E+03 

(1.8091E+00)+ 

1.5226E+03 

(1.8020E+00)

Task2 1.5523E+03 

(1.2078e+01)- 

1.5339E+03 

(1.7193e+00)-

1.5237E+03 

(1.8002E+00)

1.5235E+03 

(1.4926E+00)+ 

1.5237E+03 

(1.6514E+00)

P6 Task1 1.8249E+06 

(7.9999e+05)- 

2.5073E+06 

(1.1612e+06)-

1.6597E+04 

(2.7983E+04)+

1.2602E+04 

(7.2662E+03)+ 

3.1416E+04 

(8.6112E+04)

Task2 1.8805E+06 

(8.9531e+05)- 

1.9593E+06 

(7.6951e+05)-

1.0719E+04 

(8.4671E+03)-

9.6431E+03 

(4.8180E+03)- 

8.6457E+03 

(1.5279E+03)

P7 Task1 3.3196E+03 

(3.5229e+02)- 

3.8522E+03 

(1.7922e+02)-

2.5376E+03 

(1.1344E+02)-

2.5312E+03 

(1.0284E+02)- 

2.5238E+03 

(1.1907E+02)

Task2 3.3172E+03 

(3.1922e+02)- 

3.9439E+03 

(1.9536e+02)-

2.6351E+03 

(1.1284E+02)-

2.6156E+03 

(1.5219E+02)+ 

2.6235e+03 

(1.1527e+02)

P8 Task1 5.2024E+02 

(7.6601e-02)+ 

5.2120E+02 

(3.9190e-02)-

5.2119E+02 

(5.1409E-02)-

5.2118E+02 

(4.4255E-02) 

5.2118E+02 

(6.1730E-02)

Task2 5.2029E+02 

(7.9562e-02)+ 

5.2121E+02 

(3.5954e-02)-

5.2121E+02 

(3.0681E-02)-

5.2119E+02 

(4.1841E-02)- 

5.2118E+02 

(4.0389E-02)

P9 Task1 8.2322E+03 

(1.2798e+03)+ 

1.4742E+04 

(4.0996e+02)-

1.1287E+04 

(4.1119E+02)-

1.1396E+04 

(5.0014E+02)- 

1.1261E+04 

(4.6353e+02)

Task2 1.6217E+03 

(5.4480e-01)- 

1.6227E+03 

(1.8758e-01)-

1.6215E+03 

(3.5049E-01)-

1.6214E+03 

(3.8833E-01) 

1.6214e+03 

(4.2650e-01)

P10 Task1 3.2613E+04 

(1.5889e+04)- 

2.7934E+04 

(1.0828e+04)-

2.4966E+03 

(1.2714E+03)-

2.2924E+03 

(2.5205E+02)- 

2.2409E+03 

(4.0205E+01)

Task2 3.0951E+06 

(2.7513e+06)- 

2.3497E+06 

(8.6756e+05)-

5.0067E+04 

(1.2795E+05)-

1.7257E+04 

(1.4961E+04)+ 

1.7769E+04 

(407316E+04)

+//- 3/0/17 0/2/18 3/5/12 6/6/8  



2451 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2432–2457. 

Table 5. The Score values of performance metrics for AMTDE-PD, MFEA, MPDE, 
MFMP and MPEFMTO. 

Problem AMTDE-PD MFEA MFDE MPEF MPEFMTO 

P1 -9.91003 35.63654 -6.45095 -9.61851 -9.65704 

P2 -8.94667 35.77683 -8.92343 -8.9653 -8.94144 

P3 -12.9939 9.08291 29.5785 -12.95587 -12.93474 

P4 -11.70563 16.20448 22.44774 -13.16699 -13.7796 

P5 -11.99945 32.42007 4.20295 -12.21723 -12.40634 

P6 -13.7214 17.81398 23.55646 -13.7802 -13.86884 

P7 -13.33472 10.20006 29.38105 -13.03279 -13.2136 

P8 8.31523 -35.60554 9.60732 9.2293 8.4537 

P9 -4.06042 -13.22761 28.56233 -5.82066 -5.45363 

P10 -13.6617 21.68881 19.39499193 -13.17343 -13.65862 

4.5. Effects of the transfer strategy 

To analyze the effectiveness of the inter-task transfer strategy used in AMTDE-PD, we define 
three variants of AMTDE-PD. One is No-AMTDE-PD with no inter-task knowledge transfer, another 
is Rand-AMTDE-PD with randomized solutions transfer between tasks, and another is Elist-AMTDE-
PD with elite solutions transfer between tasks. AMTDE-PD is compared with these three variants on 
CEC2019-SOMTP, with each variant running 20 independent runs. The comparison results are shown 
in Table 6. In Table 6, it is clear that Rand-AMTDE-PD, Elist-AMTDE-PD, and AMTDE-PD 
outperform No-AMTDE-PD on most of the tasks, which indicates that inter-task knowledge transfer 
can facilitate co-optimization of tasks. Among them, Elist-AMTDE-PD performs better than No-
AMTDE-PD on high and medium similarity problems and worse than No-AMTDE-PD on some low 
similarity problems. This is because if the tasks have high similarity, transferring the elite solutions 
between the tasks can effectively improve the co-optimization of the tasks. On the contrary, if the tasks 
are not similar or have low similarity, negative transfer will occur, thus affecting the performance of 
the algorithm. Rand-AMTDE-PD outperforms No-AMTDE-PD on 13 tasks and underperforms No-
AMTDE-PD on 5. The above phenomenon is attributed to the random selection of what to transfer 
between tasks, which maintains population diversity to some extent due to the random nature of the 
transfer, but is not conducive to the full utilization of useful information between tasks. AMTDE-
PD outperforms No-AMTDE-PD, Elist-AMTDE-PD, and Rand-AMTDE-PD on 15, 16, and 14 tasks 
out of the 18 tasks, respectively. The results show that the transfer strategy based on population 
distribution information proposed by us can effectively promote collaborative optimization but 
cannot completely avoid negative transfer between tasks, especially for problems with no 
intersection and low similarity. 
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Table 6. Comparison of solution accuracy of AMTDE-PD with Rand-AMTDE-PD, Elist-
AMTDE-PD and No-AMTDE-PD. 

Problem Task No-AMTDE-PD Rand-AMTDE-PD Elist-AMTDE-PD AMTDE-PD 

CI+HS T1 1.43E-09 6.55E-09 3.34E-10 4.80E-12 

T2 2.50E+02 1.99E-05 5.73E-06 7.00E-09 

CI+MS T1 3.27E-07 1.57E-08 5.08E-07 8.55E-09 

T2 2.50E+02 1.41E-13 2.90E-10 1.91E-14 

CI+LS T1 2.11E+01 2.12E+01 2.12E+01 2.11E+01 

T2 4.94E+03 5.61E+03 6.31E+03 5.60E+03 

PI+HS T1 2.68E+02 2.67E+02 2.48E+02 2.66E+02 

T2 2.04E-09 1.92E-13 1.21E-13 1.90E-13 

PI+MS T1 2.90E-07 8.17E-08 2.09E-01 1.36E-07 

T2 4.87E+01 4.90E+01 4.86E+01 6.47E+01 

PI+LS T1 5.36E-07 2.85E-07 1.30E-06 3.82E-07 

T2 1.43E-03 2.42E-04 4.49E-04 1.59E-04 

NI+HS T1 4.79E+01 4.23E+01 4.30E+01 4.22E+01 

T2 2.53E+02 1.12E-03 5.85E-01 5.31E-07 

NI+MS T1 3.09E-05 6.41E-07 6.18E-09 5.25E-09 

T2 1.15E+00 7.44E-01 5.56E+00 1.12E+00 

NI+LS T1 2.39E+02 2.61E+02 2.67E+02 2.59E+02 

T2 5.23E+03 1.77E+03 8.29E+03 1.99E+03 

4.6. Sensitivity analysis of the parameters 

In AMTDE-PD, there are two main control parameters 𝛿 and 𝑞, which 𝛿 controls the update 
condition of the RMP and 𝑞  are used to adjust the value of the RMP. To analyze the effect of 
parameter 𝑞  on the AMTDE-PD algorithm, we compare the comprehensive performance of 
AMTDE-PD with different values of parameter 𝑞 on all problems. In this experiment, set 𝑞 0.4,
𝑞 0.5, 𝑞 0.6, 𝑞 0.7, 𝑞 0.8, 𝑞 0.9. The results of Friedman’s test with different parameter 
settings are shown in Table 7. It can be seen from Table 7 that the parameter 𝑞 has no significant 
effect on the performance of AMTDE-PD when all tasks are considered. However, from the average 
rank, AMTDE-PD has the best rank on T2 and has the second rank on T1 for the case of q = 0.9. So, 
in this paper, we recommend q = 0.9. 

To analyze the influence of parameter 𝛿 on the performance of AMTDE-PD, we compared the 
performance of AMTDE-PD with different values of δ on all the problems in the single-target classic 
test set. The Friedman test for the comparison results is shown in Table 8. As shown in Table 8, the P-
values for tasks T1 and T2 on all test problems are 0.216 and 0.463, respectively, both of which are 
greater than the significance level of 0.05, indicating that the value of 𝛿 has no significant impact on 
the performance of the algorithm AMTDE-PD. However, from the average ranking, δ = 0.6 achieved 
the best ranking on task T1, followed by δ = 0.5. The best ranking was obtained with δ = 0.5 on task T2, 
followed by δ = 0.3, δ = 0.6, δ = 0.4, and δ = 0.2. Through the above analysis, δ = 0.5 is recommended. 



2453 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2432–2457. 

Table 7. Friedman test results of AMTDE-PD with different parameter settings. 

Table 8. Friedman test results of AMTDE-PD with different 𝛿 values. 

 T1 T2 

 Parameter Rank Parameter Rank 
 𝛿 0.2 3.78 𝛿 0.2 3.44 
 𝛿 0.3 3.28 𝛿 0.3 2.83 
 𝛿 0.4 2.94 𝛿 0.4 3.39 
 𝛿 0.5 2.83 𝛿 0.5 2.22 
 𝛿 0.6 2.17 𝛿 0.6 3.11 
statistic 5.272  statistic 3.598 
P value 0.216  P value 0.463 

4.7. Sensitivity analysis of the mating probability 

To validate the effectiveness of the population similarity-based RMP in AMTDE-PD, we 
compare the proposed similarity-based RMP (SIM-RMP) with the pre-improvement RMP on CI+HS, 
PI+MS, NI+LS, CI+LS, PI+LS, and NI+ML problems are compared. The comparison results are 
shown in Figure 6, from which we can see that SIM-RMP has larger values for the CI+HS problem 
and smaller values for the PIMS and NI+LS problems. 

That is to say, the values of the proposed SIM-RMP on different problems change significantly 
as the evolutionary algebra advances, while the RMP values before the improvement change 
insignificantly but oscillate significantly. This is because the improvement rate of the solution is 
constantly changing during the evolutionary process, especially for problems with many local optimal 
solutions, the improvement rate of the solution changes more frequently during the evolutionary 
process. Thus, adjusting the RMP based only on the improvement rate of the solution during the 
evolutionary process makes it take values that oscillate sharply. In addition, it can also be seen from 
Figure 6 that the SIM-RMP proposed in this paper has a larger value in the CI+LS problem, while the 
RMP before improvement has a smaller value. Therefore, the proposed SIM-RMP can effectively 
capture the correlation between two tasks, which in turn can effectively control the intensity of inter-
task interactions, increase the efficiency of inter-task knowledge transfer, and enhance the performance 
of the algorithm. 

 Task1 Task2 

 Parameter Rank Parameter Rank 
 q = 0.9 3.11 q = 0.9 2.67 
 q = 0.8 2.67 q = 0.8 3.67 
 q = 0.7 3.78 q = 0.7 3.00 
 q = 0.6 4.33 q = 0.6 2.78 
 q = 0.5 3.89 q = 0.5 4.76 
 q = 0.4 3.22 q = 0.4 4.22 
statistic 5  statistic 5 
P value 0.448  P value 0.122 
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Figure 6. Comparison of random interaction probability before and after improvement. 

5. Conclusions and future work 

In order to make full use of the valuable information between tasks and reduce the negative 
transfer, we propose an adaptive multitasking differential optimization algorithm based on population 
distribution information (AMTDE-PD). Specifically, first, the differences in task population 
distribution are utilized to determine the valuable information transferred between tasks. Next, using 
population distribution information to evaluate the evolutionary trend between tasks and adjusting the 
interaction probability between tasks based on the evolutionary trend, the adaptive adjustment of 
interaction intensity is achieved to reduce negative transfer between tasks. Then, DE algorithm is used 
as the task solver to solve the related tasks. The AMTDE-PD algorithm proposed in this paper and 
other mainstream evolutionary multitasking optimization algorithms are experimented on CEC2019-
SOMTP and WCCI2020-SOCTP, respectively, and the experimental results show that the proposed 
AMTDE-PD algorithm is able to solve different types of multitasking optimization problems 
effectively and has high robustness. 
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