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Abstract: Background: Aggrephagy is a lysosome-dependent process that degrades misfolded protein 
condensates to maintain cancer cell homeostasis. Despite its importance in cellular protein quality 
control, the role of aggrephagy in glioma remains poorly understood. Objective: To investigate the 
expression of aggrephagy-related genes (ARGs) in glioma and in different cell types of gliomas and 
to develop an ARGs-based prognostic signature to predict the prognosis, tumor microenvironment, 
and immunotherapy response of gliomas. Methods: ARGs were identified by searching the Reactome 
database. We developed the ARGs-based prognostic signature (ARPS) using data from the Cancer 
Genome Atlas (TCGA, n = 669) by Lasso-Cox regression. We validated the robustness of the signature 
in clinical subgroups and CGGA cohorts (n = 970). Gene set enrichment analysis (GSEA) was used to 
identify the pathways enriched in ARPS subgroups. The correlations between ARGs and macrophages 
were also investigated at single cell level. Results: A total of 44 ARGs showed heterogeneous 
expression among different cell types of gliomas. Five ARGs (HSF1, DYNC1H1, DYNLL2, TUBB6, 
TUBA1C) were identified to develop ARPS, an independent prognostic factor. GSEA showed gene 
sets of patients with high-ARPS were mostly enriched in cell cycle, DNA replication, and immune-
related pathways. High-ARPS subgroup had higher immune cell infiltration states, particularly 
macrophages, Treg cells, and neutrophils. APRS had positive association with tumor mutation 
burden (TMB) and immunotherapy response predictors. At the single cell level, we found ARGs 
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correlated with macrophage development and identified ARGs-mediated macrophage subtypes 
with distinct communication characteristics with tumor cells. VIM+ macrophages were identified 
as pro-inflammatory and had higher interactions with malignant cells. Conclusion: We identified 
a novel signature based on ARGs for predicting glioma prognosis, tumor microenvironment, and 
immunotherapy response. We highlight the ARGs-mediated macrophages in glioma exhibit 
classical features. 

Keywords: aggrephagy; glioma; prognostic signature; bioinformatics; tumor microenvironment 
 

1. Introduction  

Glioma is the predominant malignant intracranial neoplasm affecting adults, constituting 
approximately 50% of all brain tumors. Its global incidence ranges from 4.67 to 5.73 per 100,000 
individuals [1,2]. The quality of life and prognosis for patients with high-grade gliomas such as 
glioblastoma (GB) remains poor despite advances in clinical research. GB has a median survival time 
of 14.6 months and a high recurrence rate despite various treatments, including surgery, chemotherapy, 
and radiotherapy [3]. Currently, the treatment choices and prognostic assessment for patients with 
glioma predominantly rely on the WHO grading system and molecular subtypes characterized by IDH 
mutation, 1p19q codeletion, MGMT promoter methylation. Nevertheless, the current markers fail to 
fulfill the demands for guiding personalized therapies and predicting survival outcomes. Consequently, 
the need to identify more accurate and personalized biomarkers is paramount. 

Clearing misfolded proteins and protein aggregates are essential for maintaining cellular 
homeostasis [4]. The formation of protein aggregates caused by misfolded proteins is linked to several 
human diseases, including neurodegenerative diseases, eye lesions, and type II diabetes [5–7]. These 
abnormal protein aggregates can disrupt cellular homeostasis and cause cell death. Eukaryotes 
physically clean protein aggregates through the formation of aggresomes, a process known as 
aggrephagy [8]. The aggresome formation initiates with the ubiquitination of misfolded proteins, 
followed by their transport to the microtubule-organizing center (MTOC) facilitated by dynein motor 
proteins. At the MTOC, the cargo is encapsulated by intermediate filament proteins, resulting in the 
assembly of the aggresome structure. Subsequently, chaperones are recruited to the aggresome, 
facilitating its autophagic clearance [9]. Understanding of aggrephagy has developed over the years. 
Previous studies suggested that aggrephagy was mediated by the interaction between receptor 
molecule p62/SQSTM1 and the Atg8/LC3 family of proteins on the autophagosome membrane, 
forming autophagosome and degraded by fusion with lysosomes [8]. However, Ma et al. found that 
the molecular chaperone protein CCT2 explicitly regulates the clearance of solid aggregates, 
suggesting the existence of intracellular molecular pathways that target the clearance of different types 
of aggregates [10].  

Aggrephagy plays a crucial role in protein quality control (PQC), managing protein synthesis, 
folding, and degradation. Cancer cells, known for their rapid division and high activity, rely on 
aggrephagy to manage proteostatic stress [11]. Aggresomes, a key component in this process, act as a 
last defense in PQC, particularly under overwhelming cellular stress [12,13]. Aggresome formation is 
a noted drug resistance mechanism in overcoming proteotoxic stress caused by proteasome inhibition-
based therapy in various cancers, including multiple myeloma and pancreatic cancer [14,15]. In brain 
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tumors, the presence of aggresomes correlates with tumor malignancy. For instance, Choroid plexus 
tumors (CPTs) with over 25% aggresome-positive cells exhibit higher aggression [16]. Furthermore, 
Laura et al. indicate that AQP4 disaggregation may potentiate the invasiveness potential of gliomas [17]. 
Significant studies have investigated the association between gliomas and autophagy and associated 
prognostic models [18–20]. However, aggrephagy, a specific form of selective autophagy that targets 
the breakdown of misfolded protein aggregates, remains poorly understood in glioma. 

In the current study, we concentrated on the genes involved in regulating aggrephagy, the 
aggrephagy-related genes (ARGs). We screened out prognostic ARGs to construct an aggrephagy-
related gene prognostic signature (ARPS) and evaluated the reliability of ARPS in 2 independent 
cohorts and characterized the clinical, molecular, and TME profiles. Based on single-cell sequencing 
data derived from 9 GB tumor samples, we investigated the expression landscape of ARGs across 
different cell types and the impact of ARGs on macrophages. We identified multiple aggrephagy 
clusters of tumor-associated macrophages with distinct intercellular communication with malignant 
cells, immune characteristics, and metabolic activities. Based on our integrated single-cell and bulk 
RNA sequencing analysis, our study first demonstrates that ARPS is a promising indicator of prognosis, 
TME characteristics, and immunotherapy response for gliomas. Furthermore, ARGs may direct 
intercellular communication of macrophages with tumor cells to influence glioma progression. 

2. Materials and methods 

2.1. Data collection 

Clinical information and bulk RNA sequencing data were obtained from the Cancer Genome 
Atlas (TCGA; https://portal.gdc.cancer.gov/) database. After excluding patients with missing 
survival data, 669 patients from the TCGA database were enrolled for analysis. Furthermore, 313 
patients (mRNAseq_325 dataset) and 657 patients (mRNAseq_693 dataset) were extracted from the 
Chinese Glioma Genome Atlas (CGGA) database (www.cgga.org.cn/), both of which were validation 
cohorts. Besides, we downloaded the RNA-seq data for 1152 normal brain tissues from the Genotype-
Tissue Expression (GTEx; https://gtexportal.org/home/) database. We processed the RNA-seq data by 
the STAR pipeline and transformed it into transcripts per kilobase million (TPM) value. Each gene’s 
Expression level was log2(TPM+1). Table S1 summarizes the clinicopathological characteristics of 
three cohorts of gliomas. 

2.2. Acquisition and functional enrichment analysis of ARGs 

By searching the Reactome database, we obtained 44 aggrephagy-related genes, namely ARGs 

(IdentifierR-HSA-9646399, Table S2). Interaction networks between 44 ARGs were analyzed with 

geneMANIA (http://www.genemania.org). The Gene Ontology (GO) analyses were conducted for the 

functional annotation of ARGs via the “ClusterProfiler” package [21] of R. 

2.3. Development and validation of the aggrephagy-related gene prognostic signature (ARPS) 

The ARGs in the training cohort were incorporated into the least absolute shrinkage and selection 
operator (LASSO) regression using the R package “glmnet”. The minimum 10-fold cross-validation 
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was used to select the optimal value of λ, and 12 ARGs were identified. Subsequently, the multivariate 
proportional hazards (Cox) regression analysis of these 12 ARGs was performed to construct the ARPS. 
The calculation formula of ARPS is ∑ 𝐸𝑥𝑝𝑖 ∗ 𝑐𝑜𝑒𝑓𝑖  , where xi and Coefi refer to the expression 
level of selected ARGs and the corresponding coefficient during multivariate Cox regression analysis, 
respectively. The median ARPS was taken as the cut-off to stratify different ARPS subgroups. Using 
the R package “survminer”, the Kaplan-Meier curve with log-rank test was plotted to compare overall 
survival (OS) between ARPS subgroups. To assess the predictive capability of the ARPS, we 
performed receiver operating characteristic (ROC) curve analysis utilizing the ‘timeROC’ R package. 
Subsequently, the area under the curve (AUC) value for one year, three years, and five years were 
calculated. Variables with p-values less than 0.1 from the univariate Cox regression analysis were 
included in the multivariate Cox regression analysis to evaluate the independent prognostic value of 
ARPS. The robustness of ARPS was validated in 2 independent cohorts from CGGA cohorts.  

2.4. Construction and validation of a nomogram scoring system 

The independent prognostic clinical characteristics and ARPS were developed using the ‘rms’ 
package to develop a predictive nomogram. In the nomogram, each variable was matched with a score, 
and the total score was obtained by adding the scores across all sample variables. Time-dependent 
ROC curves for 1-, 3-, and 5-year survival were used to assess the nomogram. Calibration plots of the 
nomogram were used to depict the predictive value between the predicted 1-, 3-, and 5-year survival 
events and the virtually observed outcomes. The decision curve analysis (DCA) curves were used to 
compare the predictive accuracy of the nomogram, ARPS, WHO grade, IDH status, and age by the 
‘ggDCA’ package.  

2.5. Comprehensive analysis of molecular and immune characteristics in ARPS subgroups 

We carried out Gene set enrichment analysis (GSEA) to create a series of all genes indicated by 
their association with ARPS. The gene set enrichment analysis (GSEA) method was based on the 
“c2.cp.kegg.v7.4.symbols.gmt” gene sets. Each patient’s immune, stromal, and ESTIMATE scores 
were calculated using the ESTIMATE algorithm with the “Estimate” package [22]. We incorporated 
the expression data of 669 glioma samples to CIBERSORT (https://cibersort.stanford.edu/) and 
iterated 1000 times to estimate the relative proportion of 22 types of immune cells [23]. To mitigate 
the limitations of a single algorithm, we employed the IOBR package [24] in conjunction with a suite 
of algorithms, including TIMER, EPIC, MCPcounter, xCell, and quantiseq, to assess the differences 
in immune infiltration between high and low ARPS groups. 

2.6. Mutation and immunotherapy response of different ARPS subgroups 

We used ‘Maftools’ R package to determine the different mutation profiles, and tumor mutation 
burden (TMB) of diffent ARPS subgroup patients. compute_gold_standards function of “Estimate 
Systems Immune Response (EaSIeR)” R package [25] was used to compute the different hallmarks of 
immune response. The hallmarks included in our study were Cytolytic activity (CYT) [26], Tertiary 
lymphoid structures signature (TLS) [27], IFNy signature (IFNy) [28], Expanded immune signature 
(Ayers_expIS) [28], T-cell inflamed signature (Tcell_inflamed) [28], Roh immune score (Roh_IS) [29], 
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Davoli immune signature (Davoli_IS) [30], Chemokine signature (chemokines) [31], Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm [32]. The specific information and 
implications of these biomarkers, as well as their association with immunotherapy response, have 
been included in the Table S3. Then, the correlation between ARPS and above response biomarkers 
were analyzed.  

2.7. ScRNA-seq data collection and visualization of TME cell types 

We obtained Single-cell mRNA sequence (scRNA-seq) data from GSE131928 10X 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3828673) [33] dataset. Expression 
values were calculated by RSEM v1.2.3 in paired-end mode using parameters “--estimate-rspd --
paired end -sam -p 6”, from which TPM values for each gene were extracted, as described in the 
study. MAESTRO (Model-based AnalysEs of Single-cell Transcriptome and RegulOme) pipeline 
was adopted to perform quality control, clustering, and cell-type annotation, as described in the 
TISCH database [34]. The Idents and DimPlot functions were applied to annotate and visualize cells 
of major TME cell types or subtypes. 

2.8. Pseudotime trajectory analysis of aggrephagy regulators for macrophages 

We used the “Monocle” R package (Version 2.0) to investigate the relationship between cellular 
pseudotime trajectories of macrophages and ARGs [35]. Highly variable genes were filtered according 
to mean expression ≥ 0.1 and empirical_dispersion ≥ 1*fit_dispersion. Dimensionality reduction was 
performed using the DDRTree method. Next, the ‘plot_pseudotime_heatmap’ function was used to 
visualize a heatmap showing the dynamic expression of ARGs in pseudotime trajectories of 
macrophages in gliomas. 

2.9. Non-negative matrix factorization of aggrephagy regulators in macrophages 

We first performed a dimension reduction analysis for 41 aggrephagy regulators in macrophages 
using the “non-negative matrix factorization algorithm” of the NMF R package (Version 0.20.6) to 
observe the effect of aggrephagy regulator expression on TME cell types. We identified different 
aggrephagy subtypes depending on the scRNA expression matrix. We performed all these steps like 
those in published studies [36,37].  

2.10. Cell-cell communication analysis for aggrephagy subtypes of macrophages 

CellChat contains databases of human and mouse ligand-receptor interactions that can analyze 
the intercellular communication networks of different cell clusters [38]. We first used 
CellChatDB.human to assess the significant signaling inputs and outputs between all NMF 
macrophage cell clusters and malignant cells. Then, we visualize the strength or weakness of the cell-
cell communication network between different macrophage clusters and malignant tumor cells by the 
netVisual_circle function. The AddModuleScore function scored genetic features associated with 
inflammation and M1/M2 polarization. The scMetabolism package was used to quantify the metabolic 
activity of different cell clusters at a single-cell resolution [39]. 
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2.11. Statistical analysis 

We performed comparisons of continuous variables between the two groups using an independent 
t-test. We tested categorical data with the χ2 test. Kaplan-Meier survival analysis with a log-rank test 
was used for univariate survival analysis. Multivariate survival analysis was conducted with the Cox 
regression model. A two-sided P < 0.05 was considered significant. 

3. Results 

3.1. The landscape of aggrephagy-related genes in TME cells in glioma 

First, the GSE131928 10X dataset was used for the exploration of the ARGs landscape. The 
dataset contained 13,558 cells, which were categorized into 26 distinct clusters, and annotated with 
eight cell types, including Astrocyte-like (AC-like), Mesenchymal-like (Mes-like), Neural 
Progenitor Cell-like (NPC-like), Oligodendrocyte Progenitor Cell-like (OPC-like) Malignant cells, 
exhausted CD8+T cells (CD8Tex), Malignant, Monocyte/Macrophage (Mono/Macro), and 
oligodendrocyte from 9 GB patients (Figure 1A,B). Besides, the expressions of 41 ARGs detected in 
the dataset were indeed different among eight cell types in glioblastoma tissue (Figure 1C). GO 
analysis of the 44 ARGs (Figure 1D) showed an enrichment of GO terms indicative of cytoskeleton 
and protein binding such as cytoskeleton-dependent intracellular transport (GO:0030705), microtubule 
(GO:0005874), cytoplasmic dynein complex (GO:0005868), ubiquitin protein ligase binding 
(GO:0031625). Besides, we confirmed that the corresponding ARGs physically interact using the 
protein-protein interaction networks from the GeneMANIA tool (Figure 1E).  

 

Continued on next page 
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Figure 1. Overview of aggrephagy-related genes (ARGs) in the scRNA-seq for 
glioblastoma. A. Clusters annotations using the Seurat t-distributed stochastic neighbor 
embedding (t-SNE) plot of 13,558 cells in 9 GB patients. B. t-SNE plot colored by various 
cell clusters. C. heatmap distribution of 44 ARGs in AC-like malignant cells, CD8Tex cells, 
malignant cells, Mes-like malignant cells, monocytes/macrophages, NPC-like malignant 
cells, oligodendrocytes, and OPC-like malignant cells. D. The Gene Ontology (GO) 
analysis for the functional annotation of ARGs via the “ClusterProfiler” package. E. The 
protein-protein interaction networks between ARGs using the GeneMANIA tool. 

3.2. Establishment and validation of a five-gene prognostic signature based on aggrephagy regulators 

Subsequently, we integrated data from the TCGA database and the GTEX database to compare the 
expression profiles of ARGs in glioma and normal brains. As illustrated in Figure 2A, the majority of 
ARGs exhibited upregulated expression in glioma tissues, while a minority of ARGs were found to be 
downregulated. To assess the role of ARGs genes in assessing glioma prognosis, we screened out 12 OS-
related genes (TUBA1C, HSF1, TUBB2A, ARL13B, VIM, TUBA4B, DYNLL2, TUBB6, DYNC1I1, 
TUBB4A, RPS27A, DYNC1H1) using LASSO regression analysis with 10-fold cross-validation 
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under optimal conditions in TCGA-GBMLGG cohort (Figure 2B,C). We then analyzed these 12 genes 
using multivariate Cox regression to identify independent predictors for OS. Consequently, 5 ARGs 
(HSF1, DYNC1H1, DYNLL2, TUBA1C, TUBB6) were independent predictors for OS (p < 0.05). 
Figure S1 reveals the distinct expression patterns of selected ARGs across different cell types, glioma 
tissues, normal brain tissues, and across different grades of glioma, suggesting their potential role in 
glioma progression. Then, an aggrephagy-related gene prognostic signature (ARPS) was constructed 
and calculated as ARPS = ExpressionHSF1*(0.29837)-ExpressionDYNC1H1*(0.45814) + 
ExpressionDNYLL2*(0.68889) + ExpressionTUBA1C*(0.63961) + ExpressionTUBB6*(0.18359). With the 
median ARPS as the cut-off value, we categorized glioma patients into different ARPS-high (n = 335) and 
ARPS-low (n = 334) subgroups. As shown in Figure 2D, the ARPS-high group had more patients with 
dead status. The gene expressions in ARPS significantly differ between high and low-risk groups. The 
time-dependent ROC curves showed the solid ability of ARPS to predict OS (1-year AUC = 0.865, 3-year 
AUC = 0.894, 5-year AUC = 0.840) (Figure 2E). There was a shorter OS in ARPS-high patients (log-
rank p value < 0.05, Figure 2F). We evaluated the prognostic ability of ARPS across different clinical 
subgroups by stratifying patients into high and low-risk groups based on median ARPS, followed by 
Kaplan-Meier analysis (Figure S2). The results indicate that patients with high ARPS exhibit poorer 
prognosis compared to those with low ARPS across different clinical subgroups, except for patients 
with 1p/19q codeletion (HR = 1.76, p = 0.234).  

 

Continued on next page 
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Figure 2. Establishment of the aggrephagy-related genes prognostic signature (ARPS) in 
the TCGA GBMLGG cohort. A. Expression heatmap of ARGs in Glioma Tissues and 
Normal Brain Tissues from TCGA and GTEX Databases. (B, C) The LASSO regression 
was performed with the minimum criteria. D. The distribution plots of ARPS, survival 
status, and expression of 5 selected ARGs. E. Time-dependent ROC curves to predict 
the 1-, 3-, and 5-year survival according to the ARPS. F. Kaplan-Meier analysis of the OS 
between high ARPS and low ARPS groups (HR = 5.43, 95%CI: 4.05–7.28, p < 0.001).  

3.3. External validation of the robustness of the ARPS 

To validate the robustness and accuracy of the ARPS, we calculated ARPS for rach patient in 2 

validation cohorts (CGGA-325 and CGGA-693 cohorts) using the same formula above. In each cohort, 

the patients were divided into a high-ARPS group and a low-ARPS group with the median ARPS as 

the cut-off value. The distribution plot of the ARPS revealed that survival time decreased with an 

increase in ARPS (Figure 3A,D). A significantly shorter OS was observed in ARPS-high patients 

(Figure 3B,E). The ROC curves confirmed the robustness of ARPS to predict OS in both CGGA325(1-

year AUC = 0.724, 3-year AUC = 0.820, 5-year AUC = 0.837) and CGGA-693 cohort (1-year AUC 

= 0.647, 3-year AUC = 0.694, 5-year AUC = 0.708) (Figure 3C,F). Additionally, we conducted a 

comparative analysis of APRS with commonly utilized prognostic factors such as tumor grade, IDH 

status, 1p/19q codeletion, age, and MGMT promoter methylation status in both the training and 

validation cohorts. The concordance (C-index) values of these factors were presented in Table S4. Our 

findings revealed that APRS exhibited high concordance in predicting patient prognosis, indicating its 

potential applicability in clinical settings. 
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3.4. Clinical correlation analysis and nomogram construction 

To investigate the impact of ARPS on clinical characteristics, we explored the correlation 
between ARPS and clinical features (age, gender, tumor grade, IDH status, 1p/19q codeletion status, 
and primary therapy outcome) in TCGA-GBMLGG cohort. We observed significantly higher ARPS 
in grade 4, IDH WT, 1p/19q non-codeletion, age > 60, and patients with poorer therapy outcomes 
(Figure 4A–F). The Figure S3 illustrates the relationship between ARPS and other clinical features, 
highlighting its potential to provide distinct classification perspectives for glioma patients. Besides, 
we performed univariate and multivariate Cox regression analysis, which confirmed ARPS as an 
independent prognostic factor after adjusting for other clinicopathological characteristics (HR = 1.552, 
95%: 1.246–1.932, P < 0.001, Table 1). To provide a more accurate assessment of patient prognosis 
by incorporating clinical information and the ARPS, we incorporated the ARPS and independent 
clinicopathological parameters (Age, WHO grade, IDH status) to establish a nomogram predicting 
the 1-, 3-, 5-year OS (Figure 4G). The ROC curves confirmed the excellent capability of a nomogram 
to predict OS. In the training cohort, the nomogram’s 1-, 3-, and 5-year AUC values were 0.888, 0.930, 
and 0.883, respectively (Figure 4H). The calibration plot illustrated that the nomogram achieved good 
consistency between the predicted and observed OS outcomes (Figure 4I). The DCA curves illustrated 
that the nomogram had the highest net benefits in predicting patient OS (Figure 4J–L). The evaluation 
of the proportional hazards assumption for the nomogram yielded a p-value greater than 0.05, 
indicating the nomogram’s validity for prognostic predictions. 

Table1. Univariate and Multivariate analysis of ARPS in TCGA GBMLGG cohort. 

Characteristics 
Univariate analysis Multivariate analysis 

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value 

ARPS 2.718 (2.428–3.043) <0.001 1.552 (1.246–1.932) <0.001 

WHO grade     

G2 Reference    

G3 2.999 (2.007–4.480) <0.001 1.823 (1.157–2.874) 0.010 

G4 18.615 (12.460–27.812) <0.001 2.504 (1.359–4.615) 0.003 

IDH status     

WT Reference    

Mut 0.117 (0.090–0.152) <0.001 0.346 (0.218–0.551) <0.001 

1p/19q codeletion     

codel Reference    

non-codel 4.428 (2.885–6.799) <0.001 1.246 (0.731–2.125) 0.419 

Gender     

Female Reference    

Male 1.262 (0.988–1.610) 0.062 1.044 (0.788–1.383) 0.764 

Age     

<=60 Reference    

>60 4.668 (3.598–6.056) <0.001 1.481 (1.081–2.030) 0.015 
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Figure 3. Validation of the ARPS in two independent cohorts. A, D. The distribution plots 
of ARPS, survival status, and expression of 5 selected ARGs in CGGA325 and CGGA693 
cohorts. B, E. Kaplan-Meier curves of ARPS subgroups in CGGA325 and CGGA693 
cohorts. C, F. ROC curves for predicting 1-, 3-, and 5-year OS in CGGA325 and CGGA693 
cohorts. OS, overall survival; ROC, receiver operating characteristic. 
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Figure 4. Clinical correlation analysis of ARPS and construction of a nomogram. A–F. 
ARPS in different clinical features: age, sex, primary therapy outcome, IDH status, 1p/19q 
codeletion, and WHO grade (*p < 0.05, **p < 0.01, ***p < 0.001, ns No significance) G. 
Nomogram for predicting the 1-, 3-, 5-year OS of glioma patients in TCGA cohort. H. 
ROC curves of the nomogram for predicting the 1-, 3-, and 5-year ROC curves in the 
TCGA cohort. I. Calibration curve of the nomogram. J–L. DCA curves showed the net 
benefits of the nomogram, ARPS, WHO grade, age, and IDH status in predicting 1-, 3-, 
and 5-year OS. 
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3.5. GSEA analysis and TME characteristics of different ARPS subgroups 

To elucidate the potential mechanism of the excellent predictive capability of ARPS, we further 
investigated biological pathways related to ARPS (Figure 5A,B). The gene set enrichment analysis 
(GSEA) revealed that the gene sets of patients with high ARPS scores were enriched in DNA replication, 
cell cycle, mismatch repair, and antigen processing and presentation (p < 0.05, FDR < 0.025). Using the 
ESTIMATE algorithm, we found that patients with high ARPS scores had higher immune scores, 
stromal scores, ESTIMATE scores, and lower tumor purity (Figure 5C–F). It indicated that ARPS 
positively correlated with immune cell infiltration. We then used the CIBERSORT algorithm to assess 
the infiltration level of various immune cells for glioma patients. Correlation analysis showed that the 
ARPS was positively related to infiltration of macrophages (M0, M2, M1), neutrophils, regulatory T 
cells (Tregs), T cells gamma delta, and resting NK cells but was negatively associated with monocytes, 
CD4 naïve T cells, activated NK cells, eosinophils, and activated mast cells (Figure 5G). Similarly, we 
found high ARPS patients had a higher fraction of macrophages (M0, M2, M1), neutrophils, Tregs, T 
cells gamma delta, plasma cells, B cells naïve, T cells CD4 memory resting but a lower fraction of 
eosinophils, mast cells, monocytes, CD4 naïve T cells, activated NK cells, eosinophils, and activated 
mast cells (Figure 5H). Furthermore, we utilized various immune infiltration algorithms, including 
TIMER, EPIC, MCPcounter, xCell, and quantiseq, to validate our findings (Figure S4). We observed 
that the high ARPS group exhibited an overall increase in immune infiltration, with a consistent 
augmentation of macrophages across multiple algorithms. 

3.6. Mutation and immunotherapy response of different ARPS subgroups 

To get further insight into the immunologic nature of ARPS-defined groups, we compared and 
found significant different genetic mutation profiles (Figure 6A,B). The top 10 genes that exhibited 
the most significant differences were IDH1, EGFR, PTEN, CIC, ATRX, RB1, NF1, KEL, TTN, and 
AHNAK2. Patients with high-ARPS had markedly higher frequencies of EGFR, PTEN, RB1, NF1, 
KEL, TTN, AHNAK2 mutation compared to ARPS-low patients. However, the exact opposite was 
observed regarding the mutation levels of IDH1, ATRX, CIC (Figure 6C). Then, we further explored 
potency of ARPS to be a biomarker of immunotherapy benefits. First, we found significantly higher 
TMB in ARPS-high patients (Figure 6D,E). Besides, as shown in Figure 6F–G, there was significant 
correlation between ARPS and known predictive hallmarks of immune response. Among them, ARPS 
demonstrated a positive correlation with most predictive signatures, except for the chemokine 
signature. Considering the association between higher ARPS scores and increased tumor mutational 
burden (TMB), as well as its relevance to predictive signatures, it is postulated that patients with high 
ARPS scores may have enhanced responsiveness to immunotherapy. 
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Figure 5. Molecular characteristic and immune cell infiltration in high and low ARPS 
subgroups. A. Gene set enriched in the ARPS-high subgroup (p < 0.05, FDR < 0.25). B. 
Gene set enriched in the ARPS-low subgroup (p < 0.05, FDR < 0.25). C–F. Differences 
among stromal score, immune score, ESTIMATE score, and tumor purity, respectively. G. 
Correlation between ARPS and infiltration level of immune cells. H. The fractions of 
different immune cells between high- and low-ARPS groups. (*p < 0.05, **p < 0.01, ***p 
< 0.001, ns Not significant). 
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Figure 6. Mutation profiles and immunotherapy response of different ARPS subgroups. 
A, B. The mutation profile in ARPS-low and ARPS-high subgroups, respectively. C. The 
top 10 genes with the most significant mutation differences between ARPS subgroups. D. 
Spearman correlation analysis of the ARPS and TMB. D. TMB in different ARPS 
subgroups. E. Correlation between ARPS and known predictive signatures of immune 
response including Cytolytic activity (CYT), Tertiary lymphoid structures signature (TLS), 
IFNy signature (IFNy), Expanded immune signature (Ayers_expIS), T-cell inflamed 
signature (Tcell_inflamed), Roh immune score (Roh_IS), Davoli immune signature 
(Davoli_IS), Chemokine signature (chemokines), and Tumor Immune Dysfunction and 
Exclusion (TIDE). F. The Normalized values of different signatures in ARPS-high and 
ARPS-low groups. (*p < 0.05, **p < 0.01, ***p < 0.001, ns Not significant). 
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3.7. ARGs-mediated macrophages resemble classical features 

 

Figure 7. ARGs-mediated macrophages resemble classical features. A. Pseudotime 
trajectory analysis revealed that the aggrephagy regulators played a critical role in the 
trajectory process of macrophages. B,C. NMF clustering of macrophages by ARGs. D. 
Cell-Cell communications between major aggrephagy-related macrophage cells and 
malignant cells by Cell Chat analysis. E. Outgoing and incoming signaling patterns in 
different macrophage clusters by cell chat analysis. F–G. t-SNE plots and module scores 
of gene signatures related to inflammation and M1/M2 polarization of different 
macrophage clusters. (M1up1: M1 upregulated; M1dn2: M1 downregulated) H. Metabolic 
activity of different macrophage clusters using the ‘scMetabolism’ package. 
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As seen in Figure 5G, the ARPS had the highest correlation coefficients with the infiltration 
fraction of macrophages. As the most abundant immune cells in glioma TME, we further explore the 
effect of aggrephagy-related genes on tumor-associated macrophages using scRNA-seq data. 
Pseudotime trajectory analysis demonstrated that the aggrephagy regulators were critical in the trajectory 
process of macrophages (Figure 7A). We obtained six main aggrephagy clusters for 3679 macrophages 
by NMF clustering, including five clusters with the expression of aggrephagy regulators 
(TUBB4B+ Mac, n  =  1172; PARK7 + Mac, n  =  549; VIM + Mac, n  =  301; TUBA1A+ Mac, n  =  560; 
DYNLL1+Mac, n = 332) and one cluster consisting of 765 macrophages exhibited a notable low 
expression of aggrephagy regulators (defined as Non-Aggre mac), shown in Figure 7B,C. The CellChat 
analysis revealed different ligand-receptor links between these aggrephagy-related macrophage 
clusters and malignant cells. VIM+ mac had the highest number of interactions with malignant cells 
and incoming signals among them. In contrast, the Non-Aggre mac showed the lowest interactions 
with malignant cells (Figure 7D). Similary, Figure 7E illustrated the key incoming and outgoing signals 
for different cell types and their coordination with each other, as well as certain signaling pathways to 
drive communication. We found higher coordination in TUBA1A+ Mac, TUBB4B1+ Mac, VIM+ Mac 
with malignant cells than the Non-Aggre Mac. Furthermore, using the AddModuleScore function of 
Seurat for different clusters, we found that VIM+ mac was significantly related to the proinflammatory 
phenotype of macrophages (M1 upregulated) than Non-Aggre Macrophages (Figure 7F–G). Last, we 
assessed the metabolic activity of these six clusters using the ‘scMetabolism’ package. As shown in 
Figure 7H, VIM+Mac, TUBB4B+Mac, and TUBA1A+Mac had higher metabolic activity than Non-
Aggre macrophages (Figure 7H). The study design is summarized in Figure 8. 

 

Figure 8. The flow diagram of this study. 
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4. Discussion 

Despite accumulating evidence highlighting the potential involvement of aggrephagy in 
neurodegenerative disorders, further investigation regarding its role in glioma remains limited. The 
relationship between aggrephagy and prognosis and glioma tumor microenvironment remain largely 
unknown. In the current study, we identified 44 aggrephagy-related genes (ARGs). These genes have 
different expression patterns across different cell types of gliomas. Next, we screened out 5 ARGs to 
construct the prognostic signature, ARPS. The robustness and accuracy of ARPS in predicting prognosis 
were validated in 2 independent cohorts, with worse survival in the ARPS-high group and better survival 
in the ARPS-low group. Univariate and multivariate Cox regression analysis proved that ARPS was an 
independent prognostic factor for OS. Additionally, the ARPS outperforms several published autophagy-
related gene prognostic models in assessing the prognosis of glioma patients [19,20]. These results 
confirmed that ARPS has stable power of prognosis and would be widely applicable to glioma patients 
with different clinicopathological characteristics.  

The ARPS comprised 5 ARGs, which were HSF1, DYNC1H1, DYNLL2, TUBB6, and TUBA1C. 
Upon accumulation of protein aggregates, HSF1 facilitates casein kinase 1-mediated phosphorylation 
of p62, whereas inhibition of HSF1 impairs protein aggregate-induced autophagosome formation [40]. 
HSF1 is often constitutively active in cancer cells. Its downstream target, inducible heat shock 
protein 70 (Hsp70), has exhibited tumor-specific localization to lysosomes and promotes autophagy [41]. 
In glioma, HSF1 was found to be upregulated and play a significant role in driving the constitutive 
overexpression of BAG3 and regulating the expression of FoxM1 [42,43]. Targeting HSF1 has shown 
promise in enhancing apoptotic processes, inhibiting the migratory and invasive capabilities of glioma 
cells, and suppressing tumor growth in murine models [42,43]. The microtubule motor protein encoded 
by DYNC1H1 is involved in many cellular processes, such as mitosis and intracellular transport [44]. 
DYNC1H1 mutations have been implicated in nervous system diseases and pancreatic cancer [45], 
and these mutations are consistent with a high immune activity of tumor mutation load in various 
cancer types [46]. DYNLL2 gene, also known as Dynein Light Chain LC8-Type 2, is a protein-coding 
gene that plays a crucial role in various cellular processes. It is primarily associated with short-rib 
thoracic dysplasia 11 (SRTD11) and Bardet-Biedl syndrome (BBS) [47]. Jiang found that DYNLL2 
played an oncogenic role and indicated a poor prognosis in osteosarcoma [47]. Besides, DYNLL2 
exhibits a significant negative correlation with the levels of macrophage M0 infiltration [47]. Tubulin 
beta 6 class V (TUBB6) was recognized as a potential mutation hot spot in human colorectal cancers 
accompanied by microsatellite instability and served as a biomarker for predicting GC peritoneal 
metastasis [48,49]. In glioma, TUBB6’s expression aligns with higher tumor grades and poorer 
prognoses and is intimately related to M0 macrophage infiltration [50]. TUBA1C is a type of α-tubulin 
associated with microtubules participating in cellular mitosis and division progress. Studies suggested 
that the expression of TUBA1C predicts poor prognoses of multiple cancers, including hepatocellular 
carcinoma, lung adenocarcinoma, breast cancer, and osteosarcoma [51–54]. Similarly, Zhu et al. found 
that TUBA1C showed high expression in LGG and is related to a poor prognosis [55]. TUBA1C co-
expressed with immune-related genes and checkpoints, and its expression positively correlates with 
the infiltration of B cells, CD8+ T cells, CD4+ T cells, and macrophages [55]. In summary, the 
dysregulation of these proteins can contribute to glioma development by affecting various cellular 
processes, including stress response, microtubule dynamics, and immune cell interactions within the 
tumor microenvironment. Further research in this area is ongoing to better understand their roles and 
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potential as therapeutic targets in glioma. 
To obtain further biological insight into different ARPS subgroups, we performed GSEA and 

found that the gene sets of ARPS-high patients mostly enriched in the cell cycle, DNA replication, and 
immune-related pathways. Thus, we further used different algorithms to understand the landscape of 
the glioma TME in two ARPS subgroups. By the Estimate algorithm, we found higher immune, 
stromal, and ESTIMATE scores and lower tumor purity in APRS high subgroup. Besides, the 
composition of immune cells varies significantly between the two subgroups. Specifically, the 
proportions of macrophages (including M0, M1, and M2), Treg cells, and neutrophils were higher, 
while the proportion of activated NK cells and monocytes was lower in the ARPS-high subgroup. In 
most tumors, including breast, bladder, and ovarian cancers, M2 macrophage cell levels have been 
proven to be associated with chronic inflammation, mediate an immunosuppressive phenotype, and 
poor prognosis [56–58]. In contrast, elevated levels of M1 macrophages are associated with acute 
inflammation and favor an excellent prognosis [56–58]. In the present study, the proportion of M1 and 
M2 macrophages increased in the ARPS-high subgroup, with higher elevation of M2 macrophages. 
Besides, it is worth noted that parameters such as IFN-y signature and cytotoxic activity were found 
to be higher in high ARPS subgroup, which may be signs of immune activation. It is important to 
highlight that these scores are calculated based on gene expression levels, there may be compensatory 
upregulation of genes associated with immune activation as ARPS increases. However, integrating the 
results obtained from both bulk RNA-seq and single-cell RNA-seq analyses, we consistently observed 
a prevalent proportion of tumor-associated macrophages in the immune microenvironment of glioma, 
with M2 macrophages being the predominant subtype. Therefore, we concluded that the ARPS-high 
subgroup exhibited a higher degree of immunosuppression. 

Furthermore, our study investigated the relationship between ARPS and the immunologic nature 
of glioma patients and their genetic mutation profiles. The study found that patients with high ARPS 
had significantly different genetic mutation profiles compared to those with low ARPS. We observed 
higher frequencies of specific mutations (EGFR, PTEN, RB1, NF1, KEL, TTN, and AHNAK2) and 
lower mutations (IDH1, ATRX, and CIC) in the ARPS-high group. Besides, we found that patients 
with high ARPS had significantly higher TMB (tumor mutational burden), a known predictor of 
immunotherapy response [59]. Additionally, the research revealed a noteworthy association between 
ARPS (the specific factor being studied) and several predictive indicators of the immune response, 
such as Cytolytic activity (CYT), Tertiary lymphoid structures signature (TLS), IFNy signature (IFNy). 
These findings suggest that ARPS may be a potential biomarker for predicting the treatment response 
of ICB in glioma patients. However, when interpreting these results, it is important to acknowledge 
that the efficacy of immunotherapy in glioblastoma remains uncertain, and there is a lack of a definitive 
indicator that predicts the response to immunotherapy. Although the indicators used in this study have 
shown effectiveness in other tumor types, including tumor mutation burden, tumor lymphocyte 
infiltration, and Tumor Immune Dysfunction and Exclusion (TIDE) score, further validation is 
required to assess their predictive value in immunotherapy response specifically for glioblastoma. 

The rapid development of single-cell sequencing provides new perspectives to investigate the 
relationship between genes of interest and the tumor microenvironment, as well as identifying new cell 
clusters [60–62]. Our study found that the expression of ARGs was highly heterogeneous in different 
cell types. Through NMF clustering, we found that ARGs-mediated macrophage subtypes exhibited 
different communication characteristics with tumor cells. Notably, the VIM+ Mac subtype showed M1 
characteristics compared to macrophages with low VIM expression. It exhibited significant activation 



2426 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2407–2431. 

of metabolism-related pathways such as steroid biosynthesis, oxidative phosphorylation, and inositol 
phosphate metabolism. A previous study revealed that vimentin had abundant expression in activated 
macrophages and foam cells. The vimentin had a potent suppressive effect on oxidative stress, and 
Vim-/- mice showed increased vascular inflammation, with increased expression of CD36 on 
macrophages [63]. Similarly, Markovitz et al. found that macrophages secreted vimentin in response 
to proinflammatory signaling pathways and were probably involved in immune function [64]. The 
above findings revealed the existence of VIM+ macrophages in GB, which have higher interactions 
with malignant cells and exhibit proinflammatory characteristics.  

Our study has several limitations that cannot be ignored. First, the selected aggrephagy-related 
genes may not represent the complete aggrephagy-related gene landscape. The impact of these genes 
on the pathological process of glioma through aggrephagy remains elusive and warrants further 
experimental verification. Second, the prognostic signature ARPS was developed and validated in 
publicly available databases and required confirmation through prospective clinical research. The low 
depth of single-cell RNA sequencing and limited sample sizes may result in lower expression levels 
of certain aggrephagy regulators in glioblastoma, leading to increased zero observations and potential 
biases in the clustering methodology. Additionally, the conclusions drawn from this study would 
benefit from validation in a larger cohort of GB patients using single-cell RNA sequencing. Moreover, 
it should be noted that the ICB response indicators employed in this study have primarily been 
validated in specific cancer types such as melanoma and non-small cell lung cancer (NSCLC). 
Therefore, further investigation is necessary to establish the association between ARPS and the 
potential benefits of ICB therapy in glioma. Nonetheless, integrating bulk RNA sequencing and single-
cell RNA sequencing provides a practical approach to understanding the role of aggrephagy regulators 
in glioma and the tumor microenvironment. 
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