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Abstract: This article proposes an improved A* algorithm aimed at improving the logistics path 
quality of automated guided vehicles (AGVs) in digital production workshops, solving the problems 
of excessive path turns and long transportation time. The traditional A* algorithm is improved 
internally and externally. In the internal improvement process, we propose an improved node search 
method within the A* algorithm to avoid generating invalid paths; offer a heuristic function which uses 
diagonal distance instead of traditional heuristic functions to reduce the number of turns in the path; 
and add turning weights in the A* algorithm formula, further reducing the number of turns in the path 
and reducing the number of node searches. In the process of external improvement, the output path of 
the internally improved A* algorithm is further optimized externally by the improved forward search 
optimization algorithm and the Bessel curve method, which reduces path length and turns and creates 
a path with fewer turns and a shorter distance. The experimental results demonstrate that the internally 
modified A* algorithm suggested in this research performs better when compared to six conventional 
path planning methods. Based on the internally improved A* algorithm path, the full improved A* 
algorithm reduces the turning angle by approximately 69% and shortens the path by approximately 10%; 
based on the simulation results, the improved A* algorithm in this paper can reduce the running time 
of AGV and improve the logistics efficiency in the workshop. Specifically, the walking time of AGV 
on the improved A* algorithm path is reduced by 12s compared to the traditional A* algorithm. 

Keywords: improved A* algorithm; AGV; path planning; bezier curve; path optimization 
 

1. Introduction  

Sensible logistics are essential for advancing the manufacturing industry in the context of 
intelligent manufacturing. Intelligent logistics achieves process automation and intelligence by fusing 
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cutting-edge technologies like the Internet with intelligent instruments like smart robots, in line with 
the objectives of intelligent manufacturing. Modern technologies like the Internet of Things, cloud 
computing, big data, and artificial intelligence are essential to the smart logistics distribution system. 
In order to ensure seamless job completion and minimize the need for human and material resources, 
they expedite the design of order tasks, material distribution routes, vehicle scheduling, and load 
capacity. This all-encompassing strategy significantly improves production and logistical efficiencies [1]. 
Both software and hardware are needed to construct a smart logistics system. Stackers, different 
conveying equipment, and automated guided vehicles (AGV) are foundational elements. The 
enhancement of intelligent logistics is ensured by the digital workshop control system, path planning, 
navigation algorithm, and optimization algorithm. 

Studies show that throughout the whole product production process, transportation, loading and 
unloading, and other links use three quarters of the time, while production and processing take up one 
quarter. Forklifts and other equipment are used in traditional transportation methods, which are 
dangerous, labor-intensive, and prone to mistakes. Deploying robots or AGVs as a substitute is 
beneficial in places with high labor costs, scarce human resources, or hazardous situations. As a 
component of intelligent logistics, AGV automates and simplifies the logistics transportation process, 
lowering labor costs in warehouses and enhancing operational effectiveness. This is in accordance with 
the trend of building intelligent and automated logistic systems in industrial development. 

AGVs have taken on a variety of complex responsibilities in recent years. The main goal of 
material distribution using AGVs is to minimize human interaction by guaranteeing efficient 
conveyance to the work site. Therefore, solving the AGV path planning problem in the intelligent 
distribution system is necessary to realize intelligent logistics in the digital workshop [2,3]. 

AGV path planning has drawn a lot of interest due to its widespread applicability. The Dijkstra 
algorithm, A* algorithm, deep reinforcement learning algorithm, and ant colony algorithm are some 
of the most widely used path planning techniques. Based on the Dijkstra algorithm, Zhou and Huang [4] 
presented an improved method that uses the ant colony optimization strategy to optimize AGV pathways 
in airport situations. This model takes obstacle-filled situations into account. Results from simulations 
demonstrate that the combined algorithm in the airport baggage check-in path planning model 
performs better than three different methods. It is noteworthy that it reduces path lengths by 2.3, 2.64 
and 6.06%. In order to provide collision avoidance when crossing known moving obstacles, He [5] 
and colleagues developed a dynamic search mechanism within the DAA (Dynamic A* Algorithm) that 
takes temporal considerations into account. The results of the simulations show that the DAA star 
algorithm performs better than the dynamic A* algorithm and the conventional A* algorithm in 
complex navigation scenarios. In order to learn the best decisions, Gu [6] and his associates used the 
Munchausen deep Q-learning network (m-DQN) for mobile robot applications. The simulation 
findings highlight how this approach learns more effectively and converges more quickly than DQN, 
Dueling DQN, and m-DQN counterparts, especially in static and dynamic situations. The technique is 
also very good at creating pathways that avoid collisions and go around obstructions. A group of 
researchers led by Miao [7] presented an improved adaptable ant colony algorithm (IaACO). Initially, 
angle guidance and obstacle removal parameters were integrated into the traditional ant colony 
algorithm (ACO) to increase the transmission probability. Second, adaptive pheromone volatilization 
factors and heuristic information adaptive adjustment were included to improve the pheromone update 
algorithms. The results of the experiment show that IaACO allows the robot to achieve global optimal 
pathways, exhibiting excellent planning stability and real-time performance. 
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In digital manufacturing workshops, the higher computer system must quickly determine an 
appropriate path for the AGV in order to guarantee the effectiveness of AGV logistics. Unfortunately, 
the training procedure for algorithms like the ant colony algorithm, DQN, and others takes a long 
time [8–12], which makes it difficult to increase the workshop’s AGV’s logistical efficiency. The 
Dijkstra algorithm wastes time by having to search through an excessive number of nodes in the search 
path. As a result, the A* algorithm is selected as the fundamental algorithm in this article. 

The frequency of AGV starts and pauses, as well as the amount of time they spend navigating 
turns on the path, can both be greatly reduced with a streamlined path. This optimization is essential 
to increasing the overall effectiveness of logistics. Five spiral transition curve templates with 
monotonic (increasing or decreasing) curvature and cubic Bezier curve configurations were presented 
by Bibi et al. [13]. The benefits of cubic Bezier spiral path smoothing technology were illustrated 
through experimental validation. To tackle the issue of excessive nodes and spikes during path design, 
Duraklı [14] presented a novel solution based on Bezier curves. The results of the experiments 
demonstrated the effectiveness of the strategy in determining the best routes between the beginning 
and target points in well-known areas. Global smooth path planning for mobile robots with motion 
constraints was examined by Song [15]. They developed a method that combines spline curves and an 
improved particle swarm optimization technique. The efficiency of this strategy was demonstrated 
decisively by the outcomes of the experiment. 

There are still a number of issues with path smoothing, despite the large amount of research on 
the subject. Interestingly, a great deal of current path smoothing research projects unintentionally 
introduce curvature to the straight regions of the path by applying smoothing algorithms to such 
segments. Once smoothed, this curvature becomes detrimental to the best possible operating of AGVs. 
Therefore, there is a strong need to present a novel method of path smoothing that successfully takes 
care of this issue. 

To sum up, this post will enhance the A* algorithm on the inside as well as the outside. In order 
to increase the efficiency of the A* algorithm, the traditional heuristic function is first replaced with a 
diagonal heuristic function, and the turning cost is increased. Afterwards, redundant turns and path 
optimization at corners are reduced by enhancing the forward search algorithm and the Bezier curve 
method outside of the A* algorithm. 

The main contributions of this paper are as follows:  
1) Enhance the A* algorithm internally. We improve node traversal logic to stop pathways from 

intersecting barriers diagonally, which would produce erroneous paths. The search efficiency of the 
algorithm can be increased by using a diagonal distance heuristic function for 8 neighborhood search 
directions, which can more precisely estimate the expected cost from the current node to the target 
node. We reduce the number of nodes traveled during the path search of the A* algorithm and increase 
search efficiency by adding turning weights to the method’s formula.  

2) On the output path of the internally improved A* algorithm, we do external optimization. The 
forward search optimization technique is improved and a new algorithm is suggested in this paper. 
This technique can identify important turning points in the path and eliminate unnecessary ones. To 
smooth out important turning points, this article uses an optimization technique based on Bessel curves. 
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2. Problem statement and environmental modeling 

2.1. Problem statement 

A digital manufacturing workshop serves as the path planning algorithm’s application scenario in 
this article. Inside the manufacturing workshop, there are numerous production scenarios, unlike in 
ports, airports, and storage facilities. AGVs can go straight from the conclusion of one task to the 
beginning of the next, eliminating the requirement for them to stop and return to a fixed node while in 
operation. As a result, the AGVs’ starting point and destination in the production workplace are 
dynamic, and they must be able to swiftly plan their route from one task node to the next. 

2.2. Environment 

The manufacturing areas in the workshop have a basic layout, and that is where the impediments 
are positioned. For map modeling, this tutorial opts to utilize the grid map method. The area where an 
AGV may walk is shown by the white area in the grid map (Figure 1), while the area with obstacles is 
represented by the black area. The grid’s numbering is represented by the numbers on the grid, which 
are written as 1,2,3,...,w   from top to bottom and left to right. Arrows in eight directions grant 
authorization to search for paths from those eight directions. Specifically, the positive X-axis direction 
is defined from left to right, and the positive Y-axis direction is specified from bottom to top, starting 
from the bottom left corner of the grid area. Define the grid length as the unit length to establish a two-
dimensional coordinate plane XOY [16]. The following is the correspondence between the grid number 
and coordinates: 

mod( , ) 0.5, 0

0.5, 0

0.5 ( / )

x W N x

x N x

y N ceil W N

  
   
   

                              (1) 

In this formula, ,x y  represents the horizontal and vertical coordinates of the grid map, mod  
is a remainder operation, W  is the number of the grid, N  is the number of rows and columns in the 
grid, and ceil  is the rounding function. 
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Figure 1. Grid map. 
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3. Introduction of A* algorithm 

3.1. A* algorithm 

The A* algorithm [19] constitutes a heuristic search-driven routing algorithm, designed for 
identifying the shortest path between a given starting point and an end point within a graph (or grid) 
structure. This approach employs an evaluation function to assess potential pathways and subsequently 
opts for the most promising route based on the outcome of the evaluation. Equation (2) delineates the 
evaluation function employed by the A* algorithm. 

( ) ( ) ( )f n g n h n                                    (2) 

where ( )f n is the total cost of current node n, ( )g n  is the actual cost from the starting point to node 
n, and ( )h n  is the estimated cost from node n to the end point. 

The algorithm maintains an open list that contains the nodes to be evaluated and a closed list that 
contains the evaluated nodes. The flow chart of the A* algorithm is shown in Figure 2. 

Start

Place the initial starting 
point in the openlist

Is the openlist empty?

Extract the node with the 
lowest cost and place it in 

the closelist

Is the current node the 
end point?

End

Expand the current 
node and add it to the 
openlist if it is not in 

the openlist

No

No

Yes

Yes

 

Figure 2. A* algorithm flow chart. 

At present, the Euclidean distance, Manhattan distance, and Chebyshev distance are commonly 
used in the A* algorithm. The Euclidean distance is expressed as 

2 2( ) ( )o e n e nh x x y y                                 (3) 

The Manhattan distance is expressed as 

m e n e nh x x y y                                   (4) 



2142 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2137–2162. 

The Chebyshev distance is expressed as 

max( , )c e n e nh x x y y                                 (5) 

where ( , )e ex y  is the endpoint coordinate, and ( , )n nx y  is the current node coordinate. 

3.2. Selection of actual cost function 

Given that this paper designates the AGV’s movement direction on the map as comprising 8 
directions, both straight-line and diagonal motions of the AGV are factored into consideration. 
Specifically, this study presumes the cost of straight-line motion as 1 and the cost of diagonal motion 
as 1.4, expressed mathematically as  

1 11     ,  or  
( )

1.4  , other
n n n nx x y y

g n   
 


                        (6) 

where ( , )n nx y  is the coordinates of the current node and 1 1( , )n nx y   is the coordinates of the child 
nodes of the current node. 

3.3. Selection of estimated cost function 

The estimated cost significantly influences the search direction of the A* algorithm. An accurate 
estimated cost effectively gauges the expense from the present node to the destination, thereby steering 
the A* algorithm toward a correct search direction. The trajectories corresponding to three distinct 
estimated costs are illustrated in Figure 3. 

Euclidean distance Manhattan Distance Chebyshev Distance  

Figure 3. Comparison of paths under different estimation functions. 

The evaluation criteria for the estimated cost function encompass the actual path cost, the count 
of turns, and the number of traversed nodes. As depicted in Figure 1, when employing Euclidean 
distance as the metric, the path’s actual cost totals 30, involving 9 turns and traversing 117 nodes. 
Utilization of the Manhattan distance results in the algorithm primarily navigating through nodes 
during its search. Due to the sparse number of traversed nodes, the path derived from this estimation 
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function might not necessarily represent the optimal trajectory. Specifically, the path under Manhattan 
distance exhibits an actual cost of 31.2, accompanied by 13 turns and 26 traversed nodes. When 
employing Chebyshev distance, the path incurs the highest tally of turns and traversed nodes, at 14 
turns and 172 nodes, with an actual cost of 30. A comprehensive comparison of evaluation metrics 
under the three distinct estimated cost functions is detailed in Table 1. 

Table 1. Comparison of results. 

( )h n  Actual cost Number of turns traversal nodes 

Euclidean distance 30 9 117 

Manhattan distance 31.2 13 26 

Chebyshev distance 30 14 172 

To sum up, this paper selects Euclidean distance as the estimated cost function when improving 
the A* algorithm. 

4. Improvement of the A* algorithm 

4.1. Internal improvement of A* algorithm 

1) Optimize node traversal logic. In the conventional employment of the A* algorithm for path 
planning, the algorithm stores the traversed nodes within a closed list. Within this list, any two nodes 
that share a relationship are regarded as interconnected. However, this approach can lead to an issue 
wherein the final planned path navigates between the vertices of two obstacles, as visually demonstrated 
in Figure 4. Consequently, the planned path might prove impractical for real-world applications. 

 

Figure 4. Schematic diagram of the path passing through the middle of the obstacle. 

To address the aforementioned issues, this study enhances the node traversal logic within the 
traditional A* algorithm. The function Node_traversal()  is constructed. When the A* algorithm is 
traversing the nodes, it judges whether the upper, lower, left, and right adjacent nodes of the visited 
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node ( , )i j  are obstacles. When the upper and right adjacent nodes of the node are obstacles, it skips 
traversing the adjacent node ( 1, 1)i j   in the upper right direction of the node and does not put it 
into the close list, so as to avoid the nodes. This adjustment prevents scenarios where paths 
inadvertently pass through the interstices between two obstacles located at opposing corners, as depicted 
in Figure 5. Under the refined node traversal logic, as the traversal progresses to node (2.5, 1.5), the 
presence of obstacles above and to the right of this node prevents the inclusion of point (3.5, 2.5) in 
the closed list.  

(a) (b)

(2.5,1.5)

(2.5,2.5)

(3.5,1.5)(3.5,1.5)

(2.5,2.5)

(2.5,1.5)

(3.5,2.5)
(3.5,2.5)

 

Figure 5. Schematic diagram of improved node traversal logic. 

The pseudo code of function Node_traversal()  is shown in Algorithm 1. 

Algorithm 1 
1. Direction = [(0, 1), (0, -1), (1, 0), (-1, 0)] 
2. Current = (i,j) 
3. For each direction in Direction do 
4.   Neighbor = Current + each direction 
5.   If up_ Neighbor = obstacle and right_ Neighbor = obstacle do 
6.       Pass 
7.   If up_ Neighbor = obstacle and left_ Neighbor = obstacle do 
8.       Pass 
9.   If down_ Neighbor = obstacle and right_ Neighbor = obstacle do 
10.      Pass 
11.  If down_ Neighbor = obstacle and left_ Neighbor = obstacle do 
12.      Pass 
13. End 

In the pseudo code, the initial line defines the four cardinal directions: up, down, left, and right. 
The second line designates the presently traversed node, referred to as “current”. Subsequently, lines 3 
and 4 establish a loop to sequentially access the four adjacent nodes to the current node through the 
iterative process. Lines 5 and 6 are formulated to avoid traversing the upper-right node if both the 
upper and right sides of the current node are obstructed. Similarly, lines 7 and 8 are designed to bypass 
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traversal of the upper-left node in scenarios where the upper and left sides of the current node are 
obstructed. Analogously, lines 9 and 10, as well as lines 11 and 12, serve to prevent traversal of the 
lower-right and lower-left nodes, respectively, under conditions where the corresponding sides of the 
current node are occupied by obstacles. 

The improved A* algorithm successfully mitigates the challenge of navigating through the 
vertices within obstacles, thereby enabling the A* algorithm to formulate a more rational path. The 
operational outcome of the improved A* approach is visually illustrated in Figure 6. Notably, as 
demonstrated in the figure, when the node’s traversal reaches the coordinates (10.5, 11.5), the search 
does not encompass a node located at (11.5, 12.5). 

 

Figure 6. Algorithm running results of improved node traversal logic. 

2) Replacing the conventional cost estimation function. While the A* algorithm utilizing 
Euclidean distance can find the shortest path with fewer traversed nodes, it might result in a higher 
number of turns within the path, as illustrated in Figure 7. 

Obstacle block Path × Visited nodes

 

Figure 7. Path under euclidean distance. 
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Under such circumstances, the smooth operation of the AGV would be compromised. Therefore, 
this study replaces the Euclidean distance with diagonal distance in order to achieve a more accurate 
representation of the cost estimation function from the current point to the destination. This 
enhancement better guides the A* algorithm in finding the optimal path. The formula for diagonal 
distance is as follows: 

( ) min( , )d n e n eh n x x y y   , 

( )s n e n eh n x x y y    , 

1 2( ) ( 2 )total d s dh n D h D h h      , 

(7)

Among these, dh   represents the cost in the diagonal direction, sh   represents the cost in the 
straight line direction, ( , )n nx y  represents the current node coordinate, ( , )e ex y  represents the target 
node coordinate, totalh  represents the diagonal distance calculation formula, and 1D  , 2D  represent 
parameters, where 1D  is 1 and 2D  is 1.4. 

Upon employing diagonal distance, the planned path effectively reduces the count of redundant 
turns and the number of traversed nodes, as depicted in Figure 8. 

Obstacle block Path × Visited nodes

 

Figure 8. Paths under diagonal distance. 

3) Increase the cost of turning. The conventional A* algorithm predominantly employs length as 
the primary criterion, prioritizing the attainment of the shortest overall distance as the optimal path. 
However, an exclusive focus on minimizing length may result in frequent turns by the AGV during its 
movement. In practical scenarios, the act of acceleration and deceleration during turning substantially 
escalates the time expense, rendering it considerably higher than that incurred during linear motion. 
This divergence in time costs undermines overall efficiency and hampers the attainment of a smooth 
path. To address this concern, this paper introduces an enhancement to the calculation formula of the 
conventional A* algorithm. This enhancement entails the incorporation of a turning cost into the 
original calculation formula. By introducing this turning cost, the aim is to curtail the frequency of 
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turns within the path, thereby fostering a more streamlined trajectory. 
When accounting for the turning cost, it becomes imperative to initially assess the occurrence of 

a turn. In this investigation, the analysis employs the three-point collinear method for turn detection. 
This method involves utilizing three nodes and applying Eq (8) to perform the calculation. 

1 1 1 1( ) ( ) ( ) ( )n n n n n n n nK x x y y y y x x                            (8) 

where 1 1( , )n nx y    is the parent node of the current node, ( , )n nx y   is the current node, and 

1 1( , )n nx y   is the current node sub node. The node relationship is shown in Figure 9. 

1 1( , )n nx y  ( , )n nx y 1 1( , )n nx y 

1 1( , )n nx y 

( , )n nx y1 1( , )n nx y 

( , )n nx y1 1( , )n nx y 

1 1( , )n nx y 

(a)Straight (b)Turn left (c)Turn right
 

Figure 9. Node relationship. 

For a straight-line path, Eq (8) yields a K value of 0. However, during turning maneuvers, distinct 
K values emerge. Specifically, based on the outcomes of Eq (8), a left turn corresponds to a K value 
of -1, while a right turn corresponds to a K value of 1. In this study, the costs associated with left and 
right turns are not individually considered, but rather are collectively regarded as turning costs. 
Consequently, the expression for the C value is illustrated in Eq (9). 

1  , 0

1.2 ,

K
C

others


 


                                     (9) 

where C  is the turning cost. 
To sum up, the improved A* formula is: 

( ) ( ) ( )totalf n g n C h n                                 (10) 

Under these conditions, the A* algorithm with improved heuristic function will give priority to 
traversing nodes in the current direction during the node search process, which will minimize the 
exploration of nodes in other directions. In Figure 10, the concept is displayed. Figure 10(a),(b) depict 
the search procedure using conventional heuristic functions and weighted heuristic functions, 
respectively. It is evident that node (2.5, 1.5) determines which child nodes are selected differently 
between the two. When choosing child nodes, weighted heuristic functions incur a higher cost at point 
(2.5, 2.5) since (2.5, 1.5) is the turning point, whereas traditional heuristic functions execute a turning 
point at node (2.5, 1.5). Therefore, the weighted heuristic functions continue to search in the original 
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direction, reducing the number of turning points and traversing nodes in the path.  
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g=3.8

h=1.0

(a) (b)  

Figure 10. Weighted heuristic function search process. 

4.2. External improvement of the A* algorithm 

The objective of this section is to conduct further path optimization based on the output path 
generated by the A* algorithm. This process is chiefly divided into two primary steps: Path 
Optimization: Initially, the path is optimized to eliminate extraneous turning points present within it; 
Bezier Curve Fitting: Subsequently, the remaining turning points are subjected to a fitting process 
using Bezier curves. 
1) Path optimization 

While the internal enhancements applied to the A* algorithm effectively curtail the occurrence of 
turns within the path, it is important to acknowledge that the path’s optimality remains contingent on 
the constraints of the grid map. Consequently, the resultant path might not always be the absolute 
optimal solution, and some degree of turns may still persist. As illustrated in Figure 11, an excessive 
number of turns can extend the logistics duration, thereby substantially diminishing logistics efficiency 
within the production workshop setting. 

(a) Shortest Path in Grid Maps (b) Actual shortest path
 

Figure 11. Grid map restrictions. 
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To solve this problem, this paper adopts a path optimization method based on forward search 
optimization [25]. The optimization process of this method is shown in Figure 12: First, define the set 
of input path nodes. Then, take the starting node of the path as the current vertex, search the subsequent 
path nodes, find the last key node 1k  connected with the starting point (connectivity means that the 
connection between the starting point and 1k   point does not pass through obstacles), connect the 
starting point with 1k , then take 1k  as the starting point, search the points after 1k  with the same 
logic, and set these key points to 2k , 3k  in turn. Then, insert the sampling point is  on the path, take 

10s  (the 2k  point in the previous step) as the current key point, and check whether the connection 
between 1 5s s  and 10s  will pass through obstacles. If there are none, take 13s  (the 3k  point in 
the previous step) as the current key point, and check whether the connection between 1 9s s  and 

10s  will pass through obstacles. Since point 7s  is the first point that can be connected with 13s , 7s  
is taken as the new key point 2k . Then, connect 7s  and 13s  to form the second optimization path, 
and 1 7s s  is optimized by using similar methods. Finally, the final optimization path is obtained. 

1k

2k

3k

10s

9s

8s

7 2( )s k

5s
4s

3s
2s1s

11s
12s

3 13( )k s

6 1( )s k

3s
2s1s

5s 6s 7 1( )s k

4s

8s
9s

10s

11s
2 12( )k s

1s
2s

3s
4s

5s
6 1( )s k

8s

9s
10s

2 11( )k s

7s

 

Figure 12. Process diagram of forward search optimization method. 

While the concept behind the path optimization method is viable, the execution process proves 
excessively intricate. Consequently, this paper introduces an improved forward search optimization 
approach. This improved method is primarily segmented into the subsequent steps: 
Step 1. The output path set 1 1 2 2([ , ],[ , ], ,[ , ])i iP x y x y x y   of the A* algorithm is interpolated. The 
interpolation method employed here is uniform interpolation, wherein a new node is inserted between 
two given points. This process can be mathematically represented as 

1

1

2

2

n n
new

n n
new

x x
x

y y
y





 
  


                                 (11) 
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where ( , )new newx y  are the coordinates of the inserted new node, ( , )n nx y  are the coordinates of the 
current node, and 1 1( , )n nx y   are the coordinates of the child nodes of the current node. 

Take the interpolated path set 1 1 2 2([ , ],[ , ],[ , ], ,[ , ])new new new i iP x y x y x y x y   as a new path set. 
Step 2. Construct a key point set K  and an obstacle vertex set Ovc . Starting from the initial point, 
perform a forward search to identify the first point connected to the initial point and also present in the 
set Ovc . Label this point as 1k  and add it to K . 
Step 3. Set 1k   as the new starting point, repeat Step 2, and designate the subsequent points as 

2 3, , , ik k k , with i  representing the number of key points. 
Step 4. Repeat Step 3 to obtain the final set of key points, denoted as K . 
Step 5. Connect all key points in K  to achieve path optimization. 

The process diagram of the improved forward search optimization method proposed in this paper 
is shown in Figure 13. 

The pseudo code is shown in Algorithm 2 

Algorithm 2 
1: function INSERT_NEW_NODES_BETWEEN_POINTS(P) 
2:    p_new←{} 
3:    for i←0 to len (P)-1 do 
4:       p_new.append (P [i]) 
5:       x1, y1←P [i] 
6:       x2, y2←P [i + 1] 
7:       new_node←((x1 + x2) / 2, (y1 + y2) / 2) 
8:       p_new.append (new_node) 
9:    end for 
10:   p_new.append (P [-1]) 
11:   return p_new 
12: end function 
13: function FIND_PATH (P) 
14:   p_new←insert_new_nodes_between_points (P) 
15:   Ovc←[] 
16:   K←[] 
17:   K.append(p_new [0]) 
18:   start←p_new [0] 
19:   for j←p_new.index (start) + 1 to len (p_new) do 
20:      if line (start, p_new [j]) and p_new [j - 1]∈Ovc then 
21:         K. append (p_new [j - 1]) 
22:         start←p_new [j - 1] 
23:      end if 
24:   end for 
25:   K.append (p_new [-1]) 
26:   return K 
27: end function 

In the pseudo code of Algorithm 2, lines 1 to 12 correspond to the process in Step 1. Lines 13 to 
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26 correspond to the process in Steps 2–4. The ( , _ [ ])line start p new j  function is used to determine 
whether start  points are connected with _ [ ]p new j  points. 

1k1k

2k

 

Figure 13. Process diagram of the improved forward search optimization method in this paper.  

2) Path smoothing 
The smoothing of the path refers to the use of Bezier curves, spline interpolation curves, and other 

methods to fit the path by using the curve to improve the smoothness of the path. 
Although the optimized path greatly reduces turning, the turning point intersects with the vertex 

of the obstacle, and the AGV may collide with the obstacle when passing by. Therefore, the path must 
be adjusted for obstacle avoidance before curve fitting. 

1k

 

Figure 14. Schematic diagram of grid with possible obstacles around. 

First, the relationship between the optimized path and the nearby obstacles is analyzed, as shown 
in Figure 14, where the gray grid indicates the location of the possible obstacles. 

Based on this, to ensure a certain safe distance between the path and the obstacle, the obstacle 
avoidance adjustment process proposed in this paper is presented as follows: 
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Step 1. Calculate the direction vector of 1k  and obstacle coordinates according to Eq (12). 

1 1obstacle obstacle( , )k ka x x y y  


                            (12) 

where a


 is the direction vector, obstacle obstacle( , )x y  is the obstacle coordinate, and 
1 1

( , )k kx y  is the 1k  
coordinate. 

Step 2. Move one half of the grid distance in the opposite direction of 1k  along the direction 
vector as follows: 

1 _ 1 11
_( , ) ( , )

2k nk n k k

L
x y x y a 


                            (13) 

where 
1 _1

_( , )
k nk nx y  represents the new coordinates of 1k , and L  represents the width of the grid. 

Step 3. Update 1k  coordinates, build the linear equation from the starting point to 1k , and assess 

the distance between the obstacle coordinates and the straight line. When the distance is less than L , 

set the nearest vertex from the obstacle to the straight line to insertk  and repeat Steps 1 and 2. At this 

time, 1k  in Steps 1 and 2 is insertk , and the obstacle avoidance of the path is completed. insertk  is 

located between the starting point and 1k . 
Step 4. After completing the obstacle avoidance operation from the starting point to 1k , make 

1k  a new starting point and repeat Steps 1 to 3 to complete the obstacle avoidance of the entire road. 
The process is shown in Figure 15. 

1k 1kinsertk
1kinsertk

 

Figure 15. Path after obstacle avoidance. 

Then, the second-order Bezier curve is used to fit the rotation angle. The second-order Bezier 
curve is mathematically expressed as 

2 2
0 1 2( ) (1 ) 2 (1 ) , [0,1]B t t P t t P t P t                        (14) 

where 0P , 1P , and 2P  are the three control points, and t  is a parameter. 
In this paper, the selection method of control points 0P  and 2P  is explained as follows. First, 

calculate the direction vectors of insertk  and 1k  coordinates and the starting line and the next node 
line. Second, use a similar method in obstacle avoidance adjustment to select 0P   and 2P   control 
points on the two paths with length L   as the distance. Finally, insertk   and 1k   are used as 1P  
control points to achieve curve fitting at turns, as shown in Figure 16. 
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Figure 16. Path after curve fitting. 
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Figure 17. Flow chart of the AGV path planning method based on the improved A* algorithm. 
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4.3. Path planning method based on the improved A* algorithm 

After improving the traditional A* algorithm in Sections 4.1 and 4.2, the AGV path planning 
method based on the improved A* algorithm can be illustrated by the flow chart in Figure 17. 

5. Simulation experiments and analyses 

Comprehensive experiments were conducted on the Pycharm 2022.3 platform. The programming 
language is Python 3.10. The performance of the proposed improved A* algorithm was tested, and the 
framework used by the DQN network was TensorFlow. The performance parameters of the execution 
host are Windows 10, and the hardware parameters are Intel(R) core(TM) i5-8250U CPU, 1.6 GHz, 
x64, 8 GB (RAM). 

5.1. Experimental map and evaluation index 

The obstacles in the production workshop are each production area. These production areas are 
usually large in area and simple in shape. Therefore, this article simulates and constructs maps with 
sizes of 20 × 20, 30 × 30, and 40 × 40 based on the characteristics of obstacles in the production 
workshop, as shown in Figure 18. 

(b)30×30(a)20×20 (c)40×40  

Figure 18. Grid map used in the experiment. 

This study uses path length, turning angle, number of traversal nodes, and algorithm running time 
as evaluation indices. The length of the path indicates the true cost of the path. The turning angle is the 
total of the degrees the AGV must turn in order to travel down the course. The number of nodes that 
the algorithm traverses in order to locate the path is represented by the number of traversal nodes. The 
algorithm’s running time shows how long the path is searched throughout that period. 

This paper uses both theoretical and simulated experiments for its experimental section. In the 
theoretical experimental part, the internal improved A* algorithm is first compared with other 
algorithms, and then the improved forward search optimization algorithm is verified. A custom path 
planner in the ROS system is used in the simulation experiment section of this article to use the 
traditional A* algorithm, internally improved A* algorithm, and improved A* algorithm as plugins. 
Simulation verification is carried out by calling algorithm plugins.  
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5.2. Theoretical experiments 

5.2.1. Performance verification of internal improved A* algorithm 

The algorithms involved in the comparison include the traditional A* algorithm, Dijkstra 
algorithm, bidirectional A* algorithm, ant colony algorithm, DQN algorithm, and the internal 
improved A* algorithm in this paper. The starting point is the (0.5, 0.5) point, and the ending point is 
the point in the upper right corner. The cyan and red grids in the grid graph represent the traversed 
nodes. The parameters of the ant colony algorithm are shown in Table 2, and the parameters of the 
DQN algorithm are shown in Table 3. 

Table 2. Ant colony algorithm parameters. 

parameter value 
Number of ants 20 
Number of iterations 150 
Pheromone evaporation rate 0.5 
pheromone factor 1.1 
heuristic function factor 4 

Table 3. DQN algorithm parameters. 

parameter value 
Learning rate 0.001 
Discount factor 0.995 
Exploration rate 0.4 
Batch size 64 

Obstacle block Path ×/× Visited nodes Start Goal

(c)Dijkstra

(c)Ant colony

(d)DQN

(a)Traditional A* (b)Bidirectional A*

(f)Internally improved A*

 

Figure 19. 20 × 20 comparison of results in the map. 
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As shown in Figure 19, when comparing the ant colony method to other algorithms at a 20 × 20 
grid map, it yielded the longest path length, with the other algorithms obtaining the same path length. 
The turning angle of the traditional A*, bidirectional A*, ant colony algorithm, DQN algorithm, and 
Dijkstra method has grown by 135, 135, 315, 135, and 90°, respectively. The ant colony algorithm and 
DQN algorithm have distinct search algorithms from the others, therefore, the indicator of the number 

of traversal nodes is not considered,  however, the traditional A* algorithm, bidirectional A* algorithm, 
and Dijkstra algorithm have increased by 43, 35, and 285, respectively. Algorithm running times rose 
by 0.51 s for the traditional A* algorithm, 0.24 s for the bidirectional A* method, 4.59 s for the ant 
colony algorithm, 4.33 s for the DQN algorithm, and 1.59 s for the Dijkstra algorithm. 

As shown in Figure 20, the conventional A* algorithm outperforms the internal improved A* 
algorithm on a 30 × 30 grid map in terms of path length, number of traversed nodes, and algorithm 
running time. The bidirectional A* algorithm outperforms the internal improved A* algorithm in terms 
of both these metrics. The ant colony and DQN algorithms outperform the internal improved A* 
algorithm in terms of path length. Although in some indicators the comparison algorithm outperforms 
the internal improved A* algorithm, the comparison algorithm’s planned path, which goes from nodes 
(20.5, 19.5) to (21.5, 20.5), diagonally passes through two obstacle nodes (20.5, 20.5) and (19.5, 21.5), 
making the expected path AGV invalid. This illustration confirms that the A* algorithm’s internal 
improvement can prevent the creation of erroneous pathways.  

(e)Dijkstra

(b)Bidirectional A*

Obstacle block Path ×/× Visited nodes Start Goal

(c)Ant colony

(d)DQN

(a)Traditional A*

(f)Internally improved A*

 

Figure 20. 30 × 30 comparison of results in the map. 

As shown in Figure 21, the ant colony algorithm produced the longest path length on a 40 × 40 
grid map when compared to other algorithms, and the other algorithms produced the same path length. 
The turning angle of the traditional A*, bidirectional A*, ant colony algorithm, DQN algorithm, and 
the Dijkstra algorithm has risen by 135, 315, 360, 225, and 45°, respectively. Regarding traversing the 
number of nodes, the traditional A* algorithm, bidirectional A* algorithm, and Dijkstra algorithm have 
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increased by 12, 87, and 863 respectively; however, there is no need to traverse the number of nodes 
because the ant colony algorithm and DQN algorithm have different search mechanisms than the others. 
Algorithm running times rose by 0.76 s for the traditional A* algorithm, 0.47 s for the bidirectional 
A* method, 10.47 s for the ant colony algorithm, 9.54 s for the DQN algorithm, and 2.05 s for the 
Dijkstra algorithm. 

The specific experimental results of each algorithm are shown in Table 4. 

Table 4. Comparison of results in different environments. 

Map Algorithm Length Turning angle 
Number of 

traversal nodes 
Algorithm run time

20 × 20 

Traditional A* 30.2 270° 104 1.29 s 

Bidirectional A* 30.2 270° 96 1.02 s 

Ant Colony 31.6 450° \ 5.37 s 

DQN 30.2 270° \ 5.11 s 

Dijk stra 30.2 225° 346 2.37 s 

Internally improved A* 30.2 135° 61 0.78 s 

30 × 30 

Traditional A* 43.6 360° 151 1.35 s 

Bidirectional A* 45.4 315° 162 1.24 s 

Ant Colony 43.6 540° \ 8.32 s 

DQN 43.6 225° \ 9.43 s 

Dijk stra 43.6 405° 764 2.43 s 

Internally improved A* 45.4 225° 206 1.34 s 

40 × 40 

Traditional A* 60.6 270° 362 2.32 s 

Bidirectional A* 65.2 450° 437 2.03 s 

Ant Colony 68.6 495° \ 12.03 s 

DQN 65.4 360° \ 11.10 s 

Dijk stra 62.2 180° 1213 3.61 s 

Internally improved A* 60.6 135° 350 1.56 s 

In summary, this comparison demonstrates the usefulness of the internal modification of the A* 
algorithm in this work by demonstrating the modified algorithm’s good performance in terms of path 
length, turning angle, number of traversal nodes, and algorithm running time. 

5.2.2. Path optimization and smoothness verification 

This part is dedicated to path optimization and smoothing verification. The path generated by the 
internally enhanced A* algorithm serves as the initial path input and is subsequently smoothed and 
optimized. The comparative algorithms are the internally enhanced A* algorithm and the improved A* 
algorithm (with both external and internal enhancements). The turning angle and length of the path act 
as assessment marks. In Figure 22, the blue dotted line represents the initial path, the green dotted line 
represents the optimized path, and the red solid line represents the final smoothed path. 
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(e)Dijkstra (f)Internally improved A*

(b)Bidirectional A* (c)Ant colony

(d)DQN

(a)Traditional A*

Obstacle block Path ×/× Visited nodes Start Goal  

Figure 21. 40 × 40 comparison of results in the map. 

(f)Improve A* 40×40(d)Improved A* 20×20 (e)Improved A* 30×30

(a)Internally improved A* 20×20 (a)Internally improved A* 30×30 (a)Internally improved A* 40×40

 

Figure 22. Path optimization and smoothing verification. 

As can be seen from Table 5, based on the internal improved A* algorithm, after optimizing and 
smoothing the path, the path length and turning angle obtained are both shorter than the path obtained 
by the internal improved A* algorithm. In the 20 × 20 map, compared with the internal improved A* 
algorithm results, the final improved A* algorithm path length is reduced by 4.4, and the turning angle 
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is reduced by 88.49°. In the 30 × 30 map, compared with the internal improved A* algorithm results, 
the final improved A* algorithm path length is reduced by 4.7, and the turning angle is reduced by 176.79°. 
In the 40 × 40 map, compared with the internal improved A* algorithm results, the final improved A* 
algorithm path length is reduced by 5.2, and the turning angle is reduced by 85.69°. It shows that the 
improved A* algorithm proposed in this article can effectively reduce the length of the path and the 
turning angle in the path, and can effectively reduce the distance and steering angle of the AGV, 
ensuring the smoothness of AGV driving. 

Table 5. Comparison of path optimization and smoothing results. 

Map Algorithm Length Turning angle 

20 × 20 
Internally improved A* 30.2 135° 
Improved A* 25.8 46.51° 

30 × 30 
Internally improved A* 45.4 225° 
Improved A* 40.7 48.21° 

40 × 40 
Internally improved A* 60.6 135° 
Improved A* 55.4 49.31° 

5.3. Simulated experiments 

This article’s suggested algorithm has been verified in ROS. Using the 20 × 20 map as an example, 
just the essential components of the map were built during the modeling of the map SLAM technique 
in order to conserve computing power. Figure 23 displays the simulation results. The path is 
represented by the green line, open space is represented by the gray section, and obstacle boundaries 
are displayed by the black part. 

(a)Traditional A* (b)Internal improvement A* (c)Improved A*  

Figure 23. Simulation results. 

The paths designed by the conventional A* algorithm are depicted in Figure 23(a), the internally 
improved A* method in Figure 23(b), and the improved A* algorithm in Figure 23(c). The three paths 
take the AGV 21, 15, and 9 seconds to complete, respectively. This demonstrates that the path quality 
predicted by the revised A* method put forth in this research is high, which can shorten the AGV’s 
running time and increase its effectiveness. 
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6. Conclusions 

Although the A* algorithm has the advantages of being a simple algorithm and having a fast 
search speed, the planned path may involve more turns and the path may not be smooth enough. In 
order to solve this problem, this paper improves the internal and external properties of the traditional 
A* algorithm. The node traversal logic of the A* algorithm is internally optimized to avoid the path 
passing between two obstacle vertices. Subsequently, the cost estimation function was modified to 
replace the traditional Euclidean distance with the diagonal distance, thereby improving the accuracy 
of cost prediction. This adjustment effectively reduces the number of redundant turns within the path. 
Then, the weight of the cost estimation function of the A* algorithm is added to give priority to the 
current search direction when finding a path, thereby reducing the number of nodes traversed and the 
number of turns compared to the traditional A* algorithm. Finally, a path optimization smoothing 
method based on the improved forward search optimization method and Bezier curve method is 
proposed. This method is used in addition to the A* algorithm to eliminate redundant turning points in 
the path and perform curve fitting at turns to improve the smoothness of the path. 

Finally, the experimental results show that the internal modification of the A* algorithm avoids 
planning invalid paths, reduces the number of turns, reduces the number of traversed nodes, and 
shortens the search time. After external modifications to the A* algorithm, the number of turns in the 
path is further reduced and the length of the path is shortened. 

Although the path planning method based on the improved A* algorithm proposed in this article 
can effectively make up for the shortcomings of the traditional A* algorithm, it still encounters some 
shortcomings and defects: 

1) In the actual workshop environment, the location of obstacles cannot be accurately located, but 
dynamic obstacles may appear, and the method proposed in this article is based on the path planning 
method in a static obstacle environment. 

2) The improved A* algorithm proposed in this article is suitable for environments with 
concentrated obstacles such as workshops, but is not suitable for areas with many and scattered 
obstacles, such as in warehousing environments. 
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