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Abstract: System-level fault diagnosis model, namely, the PMC model, detects fault nodes only
through the mutual testing of nodes in the system without physical equipment. In order to achieve
server nodes fault diagnosis in large-scale data center networks (DCNs), the traditional algorithm based
on the PMC model cannot meet the characteristics of high diagnosability, high accuracy and high
efficiency due to its inability to ensure that the test nodes are fault-free. This paper first proposed a
fault-tolerant Hamiltonian cycle fault diagnosis (FHFD) algorithm, which tests nodes in the order of
the Hamiltonian cycle to ensure that the test nodes are faultless. In order to improve testing efficiency, a
hierarchical diagnosis mechanism was further proposed, which recursively divides high scale structures
into a large number of low scale structures based on the recursive structure characteristics of DCNs.
Additionally, we proved that 2(n−2)nk−1 and (n−2)tn,k/tn,1 faulty nodes could be detected for BCuben,k

and DCelln,k within a limited time for the proposed diagnosis strategy. Simulation experiments have
also shown that our proposed strategy has improved the diagnosability and test efficiency dramatically.
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1. Introduction

With the continuous expansion of the scale of the data center networks (DCNs), the number of
servers in the network increases exponentially [1]. The server plays an important role in DCNs, which
not only is used to process data but is also needed to forward data. In addition, the probability of server
nodes fault is very high and the server failures cause data loss and abnormal data forwarding. There-
fore, servers fault diagnosis becomes an inevitable measure to ensure a DCN reliable communication
[2].

Preparata et al. [3] proposed the first system-level fault diagnosis model, namely, the PMC model,
which was used to solve the problem of automatic fault diagnosis of the multiprocessor system. Every
node in the system is capable of performing tests on its adjacent node. The PMC model assumes that
the tests performed by fault-free nodes are always correct, whereas tests performed by faulty nodes
are unreliable. Generally, a PMC model is divided into two steps. First, adjacent nodes in the system
produce test results by testing each other, which is called syndrome. Second, syndrome be analyzed
to find out the faulty nodes. Typically, PMC models focus on diagnostic strategies for the second
stage syndrome. Diagnosis strategy contains precise diagnosis [3], pessimistic diagnostics [4] and t/k
diagnostics [5] etc. If all fault-free nodes are not mistaken for faulty nodes, it is called precise diagnosis
[6]; if there are fault-free nodes that are mistaken for faulty nodes, it is called pessimistic diagnosis [7].
t/k diagnostics is that k fault-free nodes may be mistaken for faulty nodes, so precise and pessimistic
diagnosis are special cases of t/k diagnosis [8]. Specifically, t/k diagnosis is precise diagnosis when
k=0, and t/k diagnosis is pessimistic diagnosis when k = 1. Many diagnosis algorithms were proposed
using precise, pessimistic or t/k diagnosis strategy [9–10].

In the past, system-level fault diagnosis was commonly used in small multiprocessor systems.
Nowadays, system-level fault diagnosis is more studied in DCNs with the development of DCNs.
For example, Li et al. [11] studied the diagnosability of precise diagnosis and pessimistic diagnosis of
DCelln,k and studied the t/k diagnosability in literature [12]. The conclusions are that the precise diag-
nosability of DCelln,k is n + k− 1, the pessimistic diagnosability is 2k + n− 2 when n ≥ 2 and k ≥ 2 and
the t/k diagnosability is (k + 1) (m − 1) + n when 1 ≤ m ≤ n − 1. Huang H [13] studied the diagnos-
ability of precise diagnosis of BCuben,k. The conclusion is that the precise diagnosability of BCuben,k

is (n − 1) (k + 1) − 1 when n ≥ 2 and k ≥ 0. However, they are unable to deal with large numbers of
fault nodes in DCN due to their limited diagnosability. For example, DCell3,3 contains 24,492 servers
with precise diagnosability of five, pessimistic diagnosability of seven and t/k diagnosability of nine.
Obviously, there may be more than nine fault nodes in this network.

To improve diagnosability, Heng et al. [14] proposed a probabilistic diagnosis method. Because
it is unreliable for two unknown state nodes to test each other, the more times they tested, the more
accurate the test results will be, and finally the states of the two nodes can be obtained. However,
multiple tests can cause the low diagnostic efficiency and occupy the large network bandwidth, so it is
not suitable for DCN networks with a large number of servers. Li et al. [15] proposed an algorithm
with time complexity O (N) for hypercube-like networks by using the Hamiltonian hypercube network
and gemini diagnosis structure, which greatly improves efficiency of the algorithm. Ye et al. [16] put
forward five-round adaptive diagnosis in Hamiltonian networks, which greatly improves diagnosability.

However, traditional algorithms based on the PMC model have two stages of system-level diagno-
sis. The first stage is to test each other between adjacent nodes, in which there may be fault nodes. The
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test results of fault nodes are uncertain, so it is impossible to get the correct status of all nodes through
the syndrome, and it is necessary to apply the diagnosis strategy (precise or pessimistic diagnosis) to
the syndrome in the second step to determine the fault node. If the test node is fault-free, then the status
of the tested node can be obtained, so there is no need for a second step. This paper first proposes a
fault-tolerant Hamiltonian cycle fault diagnosis algorithm (FHFD), which tests nodes in the order of
the Hamiltonian cycle to ensure that the test nodes are fault-free and then combines with probability
diagnosis methods to improve the diagnosability [17]. In order to improve testing efficiency, a hierar-
chical diagnosis strategy is also proposed, which recursively divides high scale structures into a large
number of low scale structures based on the recursive structure characteristics of DCN. Concretely, we
make three main contributions in the strategy.

(1) Compared to traditional diagnosis strategies, the key difference is that our proposed strategy
is more suitable for DCNs with multiple servers. This strategy greatly improves the diagnosability.
2(n−2)nk−1 and (n−2)tn,k/tn,1 fault nodes can be accurately detected for BCuben,k and DCelln,k at most
(when n ≥ 3, k > 0).

(2) There is a misdiagnosis node in pessimistic diagnosis based on the traditional PMC model. The
strategy we proposed ensures that the test node is fault-free by the fault-tolerant Hamiltonian cycle so
that there is no misdiagnosis node.

(3) A hierarchical diagnosis mechanism is further proposed to improve testing efficiency, which re-
cursively divides high scale structures into a large number of low scale structures based on the recursive
structure characteristics of DCNs.

The rest of the paper is organized as follows. Preliminaries are introduced in Section 2 and diagnosis
strategy based on DCNs is described in Section 3. Performance of the proposed algorithms are shown
in Section 4. Finally, we conclude this paper in Section 5.

2. Preliminaries

In Section 2.1, we will present some notations and terminologies used in this paper. Then, in
Section 2.2, we will describe the definition of DCell and BCube structures and some properties of
Hamiltonian. Finally, in Section 2.3, we will introduce the PMC model and probabilistic diagnosis
method for diagnosis.

2.1. Notations and Hamiltonian

The topology of DCNs can be represented by an undirected graph G = (V(G), E(G)), in which V(G)
is the set of vertices and E(G) = {u, v|u, v ∈ V} represents the set of edges. Vertices and edges represent
servers and communication links in DCNs, respectively. For an undirected graph G = (V(G), E(G)), |V |
represents the number of servers in G. The edge between vertices vi and v j is denoted by (vi, v j). The
neighbor set of a vertex x in G is defined as NG(x) = {y ∈ V |(x, y) ∈ E}. Let L ⊂ V , G−L be denoted as
a subgraph with V(G− L) = V − L, E(G− L) = {(x, y) ∈ E|x, y ∈ (V − L)}. Path P(v0, vt) = (v0, v1, ..., vt)
is a sequence of different vertices (except v0 and vt) from v0 to vt, and any two consecutive vertices are
adjacent. Below are the following definitions of the Hamiltonian concept:

Hamiltonian Path: Given graph G, ∀Vi,V j ∈ V , if P is a path from Vi to V j that passes all vertices
once, and only once, in G, then P is called a Hamiltonian path from Vi to V j in G.

Hamiltonian Cycle: Given graph G, ∀Vi,V j ∈ V , starting from Vi, if P is a path from Vi to V j that
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passes all vertices once, and only once, in G and finally returns to Vi, then P is called a Hamiltonian
cycle from Vi to V j in G.

Hamiltonian connected: Given graph G, if there exists a Hamiltonian path between any distinct
vertices in G, then the graph G is called Hamiltonian connected or G is a Hamiltonian connected graph.

F(G) is used to represent the set of fault elements in graph G(V, E) (in this paper, only the set of
fault servers), where F(G) ⊆ V(G). Let f (G) = |F(G)| represent the number of fault servers, and if
f (G) = 0, then G has no faulty servers.

Definition 1. Fk-fault-tolerant Hamiltonian graph: If G − F(G) is a Hamiltonian graph, then G
is an Fk-fault-tolerant Hamiltonian graph where Fk = f (G).

Hamiltonian cycle is denoted by H(Vh, Eh) in graph G, while G(V, E) is an Fk-fault-tolerant Hamil-
tonian graph, where Vh = V ,Eh ∈ E, ∀xi ∈ Vh(1 ≤ i ≤ |V |), then the Hamiltonian cycle path is
H < xi1, xi2, ..., xi|v|, xi1 >, where < i1, i2, ...,i|V | > is the sequence combination of [1, ..., |V |].

X(n, k) or Xn,k denotes a DCN with fault-tolerant Hamiltonian cycle and recursive structure, where
k represents the hierarchy of structure, n represents the number of servers in X(n, 0) and tn,k represents
the number of servers in X(n, k).

2.2. DCell and BCube structures and properties of Hamiltonian

DCell and BCube structures exist fault-tolerant Hamiltonian cycle and are also recursive network
structures. Next, the recursive construction rules of DCell and BCube and its Hamiltonian properties
are introduced, which prepares for the diagnostic strategy proposed in this article.

Definition 2 [18]. The recursive definition of DCelln,k is as follows:
(1) DCelln,0 is a complete graph with n vertices.
(2) When k ≥ 1, DCelln,k is composed of (tn,k−1 +1) DCelln,k−1. The (i+1)th DCelln,k−1 is represented

by DCelli
n,k−1, where 0 ≤ i < tn,k−1 + 1.

In DCelln,k, the address of the server is represented by akak−1...a0(a0 ∈ [0, n − 1], ap ∈ [0, tp−1,n]p ∈
[1, k]). According to the coding rules of servers in literature [18], DCelli

n,k−1 contains the address of
the server, which is as follows:

DCelli
n,k−1 = {akak−1...a0|i ∈ [0, (tn,k−1 + 1)],

ak = i%(tn,k−1 + 1), a0 ∈ [0, n − 1],
ap ∈ [0, tp−1,n], p ∈ [1, k − 1]}.

(2.1)

Wang X [19] studied the Hamiltonian property of DCell and the conclusions are as follows:
Theorem 1. When n ≥ 2, k ≥ 2, DCelln,k (except DCell2,1) is Hamiltonian connected and is a

(n+k-3)-fault-tolerant Hamiltonian graph.
Definition 3 [20]. The recursive definition of BCuben,k is as follows:
(1) BCuben,0 is a complete graph with n vertices.
(2) When k ≥ 1, BCuben,k is composed of n BCuben,k−1. The (i+1)th BCuben,k−1 is represented by

BCubei
n,k−1, where 0 ≤ i < n.

In BCuben,k, the address of the server is represented by akak−1...a0(a0 ∈ [ap ∈ [0, n − 1], p ∈ [0, k]).
According to the coding rules of servers in literature [20], BCubei

n,k−1 contains the address of the
server, which is as follows:
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Table 1. PMC model.

vi v j σi, j

Fault-free Fault-free 0
Fault-free Faulty 1

Faulty Fault-free o or 1
Faulty Faulty 0 or 1

DCubei
n,k−1 = {akak−1...a0|i ∈ [0, n],

ak = i%n, ap ∈ [0, n], p ∈ [0, k − 1]}
(2.2)

Huang et al. [21] studied the Hamiltonian connection of BCube and Wang et al. [22] studied the
fault-tolerant Hamiltonian property of BCube, and their conclusions are as follows:

Theorem 2. When n ≥ 3, k ≥ 0, BCuben,k is Hamiltonian connected, and when n ≥ 4, k ≥
0,BCuben,k is a [(n − 1)(k + 1) − 2]-fault-tolerant Hamiltonian graph.

2.3. PMC model and probabilistic diagnosis method

In undirected graph G = (V, E), for any two adjacent nodes (vi, v j), the notation σi j is used to
represent the result of vi test v j. σi j=0 represents test result as fault-free. On the contrary, σi j=1
represents test result as faulty.

When vi is fault-free: If v j is fault-free, then σi j = 0; if v j is faulty, then σi j = 1.
When vi is faulty: Whether v j is fault-free or faulty, its test result may be σi j = 0 or σi j = 1, and

assume that the probability of σi j = 0 is p, where 0 < p < 1.
All possible comparison results are shown in Table 1 for the PMC model.
In the PMC model, if the result of the test is σi j=0, from Table 1, we can get the corresponding

three situations:
1) Both vi and v j are fault-free;
2) vi is faulty, but v j is fault-free;
3) Both vi and v j are faulty.
We cannot get the precise results though just one test; therefore, we test testing many times between

two nodes before they are set to get their state and the probabilistic diagnosis method can be designed.
Theorem 3. Four diagnosis results would be obtained through the responses of tests executed by

each other r times by a pair of adjacent nodes vi and v j (r is large enough):

(1) If
r∑
1
σi j =

r∑
1
σ ji=0, then vi and v j are fault-free;

(2) If
r∑
1
σi j = r&0 <

r∑
1
σ ji < r, then vi is fault-free and v j is faulty;

(3) If 0 <
r∑
1
σi j < r&

r∑
1
σ ji = r, then vi is faulty and v j is fault-free;

(4) If 0 <
r∑
1
σi j < r&0 <

r∑
1
σ ji < r, then vi and v j are faulty;

Proof:
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Table 2. BCube and DCell construct rules.

Xn,0 Xn,1 ... Xn,k

BCube BCuben,0 nBCuben,0 ... nBCuben,k−1

2 DCell (tn,0 + 1)DCelln,0 ... (tn,k−1 + 1)DCelln,k−1

(1) If vi is faulty, the probability of
r∑
1
σi j = 0 can be calculated by binomial distribution: P{X =

k} = Cr
k pk(1 − p)r−k=pk.

Assuming that the probability of σi j = 0 is p =0.5, test times r=9 and P{X = k} = 0.59 = 0.0019.
Since the probability is too small, it can be considered that vi= 0 and v j= 0.

(2) If vi=1, the probability of
r∑
1
σi j = r can be calculated by binomial distribution: P{X = k} =

Cr
k pk(1 − p)r−k= (1−p)r.

Assuming that the probability of σi j = 0 is p =0.5, test times r=9 and P{X = k} = 0.59 = 0.0019.

Since the probability is too small, it can be considered that vi , 1 and v j= 0. Since 0 <
r∑
1
σ ji < r and

vi= 0, according to the PMC rule, v j= 1. Through the same logic, it can be proved that (3) holds.

(4) Since 0 <
r∑
1
σi j < r&0 <

r∑
1
σ ji < r, it means σ ji = 0 or σ ji = 1, and σ ji = 0 or σ ji = 1.

According to the PMC rule, vi=1 and v j= 1.

3. Diagnosis Strategy Based On DCNs

We propose a novel fault diagnosis strategy, which tests nodes in the order of the Hamiltonian cycle
to ensure that test nodes are fault-free. Specifically, the strategy consists of two parts: FHFD algorithm
and hierarchical diagnosis method, which is suitable for DCNs with the following conditions:

(1) Topology G(V, E) of Xn,k is Hamiltonian connected and an Fk-fault-tolerant hamiltonian graph,
where k > 0;

(2)∃m > 2, when n > 2, k > 0, Xn,k consists of m Xn,k−1, as shown in equation (3.1):

Xn,k =

(m−1)∑
(i=0)

Xi
n,k−1. (3.1)

Xi
n,k−1 is the (i+1)th Xn,k−1, where 0 ≤ i < m and m has different values on different network

structures. Both BCube and DCell construct rules are shown as in Table 2.
(3) The address of the server in Xn,k is denoted by akak−1...a0(ap ∈ [0,m − 1], p ∈ [0, k]). Through

(1) and (2), we can distinguish different Xn,k−1 by ak, as shown in equation (3.2):

Xi
n,k−1 = {akak−1...a0|i ∈ [0,m], ak = i%m,

ap ∈ [0,m − 1], p ∈ [0, k]}.
(3.2)

3.1. FHFD Algorithm

There exists a Hamiltonian cycle H(Vh, Eh) while a graph G(V, E) is Fk-fault-tolerant Hamiltonian.
Let the H(Vh, Eh) path be H < xi1, xi2, ..., xi|v|, xi1 >. We first use probabilistic diagnosis in Theorem 3
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Figure 1. Topology of H(Vh, Eh).

to find a fault-free node as xi1, and the state of xi2 will be determined accurately according to the testing
of xi1 to xi2. If xi2 is fault-free, the test outcome is accurate while xi2 tests xi3; Therefore, we can get
the accurate outcome of xi3 testing xi4, for xi3 is fault-free. In turn, all nodes could be tested until the
last node. On the other hand, if xi2 is faulty, two cases are discussed:

Algorithm 1: FHFD step
1 Constructing the hamiltonian cycle H(Vh, Eh) of G(V, E).
2 Let xi1 test xi2 using the probability diagnosis method in Theorem 3; if xi1 = 0, let a =xi1; if xi1

= 1, then reselect two adjacent nodes to test using probabilistic diagnostic methods until the
correct node is found.

3 ∃b, (a, b) ∈ Eh, let a test b; if σab = 0, let a = b. Repeat step 3 until all nodes are detected; if
σab = 1 , b corresponding fault node is record F(G) and step 4 is executed.

4 Variable i is used to record the number of fault nodes; if i ≤ Fk, the new Hamiltonian cycle
H(Vh − b, Eh) is constructed and step 3 is executed; if i > Fk, step 5 is executed.

5 Set the next node of b as a, and the next node of a as b. Let a test b with the probability test
method, and there are four situations: a = b = 1, the faulty nodes a and b are recorded to
F(G), and step 5 is repeated until all nodes are detected; a = b = 0, let a = b and step 3 is
executed; a = 0 and b = 1, the fault node b is recorded to F(G), and step 5 is repeated until all
nodes are detected; a = 1 and b = 0, the fault node a is recorded to F(G), and let a = b, then
step 3 is executed .

Case 1: f (G) ≤ Fk
G(V, E) is Fk-fault-tolerant Hamiltonian, and deleting Fk faulty nodes can still form a new Hamilto-

nian cycle. If f (G) ≤ Fk, the fault node xi2 can be deleted, then a new Hamiltonian cycle H(Vh−xi2, Eh)
is generated. Let xi1 continue to test xi3 following Hamiltonian cycle.

Case 2: f (G) > Fk
If xi2 is deleted when f (G) > Fk, the remaining nodes will not be able to construct a new Hamilto-

nian cycle, so let xi3 test xi4 using the probability diagnosis method. Due to the need for repeated tests
between two nodes, the test efficiency is low and the network bandwidth is greatly occupied.

As shown in Figure 1, X(V, E) is 1-fault-tolerant Hamiltonian graph, and the generated Hamiltonian
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Figure 2. Topology of H(Vh − Xi3, Eh)).

Figure 3. The number of BCube4,4.

circle is represented by H(Vh, Eh). Assuming p = 0.5, the number of test r = 9 and
∑9

1(Xi1, Xi2) =∑9
1(Xi2, Xi1) = 0 satisfies Case 1 in Theorem 3, then Xi1 and Xi2 are fault-free. Let Xi2 test Xi3 so that

Xi3 is faulty node and a new Hamiltonian cycle H(Vh−Xi3, Eh) is constructed, as shown in Figure 2. Let
Xi2 test Xi4 so that Xi4 is fault-free, and Xi4 test Xi5 so that Xi5 is faulty. Since X(V, E) is 1-fault-tolerant
Hamiltonian graph, deleting two nodes cannot construct a new Hamiltonian cycle and the remaining
nodes can use the probability diagnosis method to detect the fault.

For Fk-fault-tolerant Hamiltonian graph G(V, E), the relationship between the number of fault nodes
and the number of tests in diagnosis is as follows:

N =

{
|v| − 2 + r f (G) ≤ Fk

|v| + (r − 2)[ f (G) − Fk + 1] Fk < f (G).
(3.3)

In equation (3.3), N is the total number of tests, |v| denotes the number of servers in G(V, E), f (G)
denotes the number of fault nodes and r is the number of times that two nodes in the probability
diagnosis method need to test each other.

BCube4,4 is 13-fault-tolerant Hamiltonian graph by Theorem 2, where Fk = 13. |v| is the number
of servers, where |v| = 1024. Supposing n = 15, the numbers of tests required for different number
of faulty nodes are shown in Figure 3 from equation (3.3). DCell5,2 is 4-fault-tolerant Hamiltonian
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Figure 4. The number of BCell5,2.

Figure 5. The test time of different scale small network.

graph by Theorem 1, where Fk = 4 and |v| = 930. Supposing n = 15, the numbers of tests required for
different numbers of faulty nodes are shown in Figure 4 from equation (3.3).

As shown in Figure 3 and Figure 4, when f (G) > Fk, the number of tests increases substantially
with the number of faulty nodes. On the basis of the previous analysis, we can get that it will take up a
lot of bandwidth and more time to test faulty nodes while f (G) > Fk, and when the FHFD algorithms
are applied to the node diagnosis of DCNs, there will be some problems as follows because of the large
scale of its servers. First, a lot of time would be spent to build Hamiltonian cycles and fault tolerant
Hamiltonian cycles. Second, the nodes should be tested in the order of Hamiltonian cycles, and a
complete test for the DCNs with thousands of servers will also take a lot of time.

The total diagnostic time of the FHFD algorithm includes two parts. One part is the test time
between nodes. The other part is the time consumed by constructing Hamiltonian cycles and fault-
tolerant Hamiltonian cycles. We use MATLAB to simulate the FHFD algorithm for different scale
networks, and the running times of the algorithm are shown in Figure 5 and Figure 6.

The experimental results show that:
1) In Figure 5, when the number of network nodes is small, the test time between nodes is greater
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2130

Figure 6. The test time of different scale big network.

than the time used to construct the Hamiltonian cycle. With the increase in the number of nodes, the
test time between nodes does not increase much and all the time for constructing Hamiltonian cycles
increases sharply.

2) In Figure 6, when the nodes in the network reach a certain scale, the construction of Hamiltonian
cycles consumes a lot of time. For example, it takes 3,000 to construct Hamiltonian cycles for the
network with 196 nodes.

The FHFD algorithm in the test process by breadth-first search to construct the fault-tolerant Hamil-
tonian cycle is an non-deterministic polynomial (NP)-complete problem, so when the number of nodes
increases to a certain value, the time of constructing the Hamiltonian cycle increases sharply. Obvi-
ously, such a long diagnosis time cannot meet the actual situation. In the next section, we propose a
hierarchical diagnosis method to solve the above problems.

3.2. Hierarchical Diagnosis Method

By equation (3), we have that Xn,k can be divided into m Xn,k−1. Each Xn,k−1 can be divided into m
Xn,k−2, and the lowest can be divided into Xn,0. Therefore, there is the following conclusion:

Xn,k can be divided into M Xn,bs (0 ≤ b < k), where M is a constant (different structures have
different M values):

We consider the following two cases according to b.
Case 1: 0 < b < k
Xn,k can be divided into M Xn,bs (0 < b < k) and Xn,b is an Fk-fault-tolerant Hamiltonian graph. If

M Xn,b are simultaneously tested, then Xn,k equals to having M Fk-fault-tolerant values. The network
structure of BCube3,2 is shown in Figure 7, which can be divided into 3 BCube3,1 for simultaneous
testing. By equation (4), Xi

n,k−1 = {akak−1...a0|i ∈ [0,m], ak = i%m}; therefore, the nodes contained in
BCube3,2 can be divided:

BCube0
3,1= {000, 001, 002, 010, 011, 012, 020, 021, 022}

BCube1
3,1= {100, 101, 102, 110, 111, 112, 120, 121, 122}

BCube2
3,1= {200, 201, 202, 210, 211, 212, 220, 221, 222}

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2121–2136.



2131

000 001 002 010 011 012 020 021 022 100 101 102 110 111 112 120 121 122 200 201 202 210 211 212 220 221 222

Bcube(3,2)

Bcube(3,1)

Figure 7. The test time of different scale big network.

Table 3. Fault-tolerant values of BCube4,4.

M Fk MFk

BCube4,3 4 10 40
BCube4,2 16 7 112
BCube4,1 64 4 256

By theorem 2, BCube3,2 is 4-fault-tolerant Hamiltonian graph, where fault-tolerant values Fk =

4. BCube3,1 is 2-fault-tolerant Hamiltonian graph, where degree of diagnosability Fk = 2. When
the FHFD algorithm is applied to BCube0

3,1, BCube1
3,1 and BCube2

3,1 to complete the test, the sum
of fault-tolerant values of three BCube3,1 are Fk=6, which is two more than fault-tolerant values of
BCube3,2, thereby increasing the degree of diagnosability.

BCube4,4 can be divided into M BCube4,b (0 < b < k) and different values of b corresponding M
and fault-tolerant values Fk are shown in Table 3.

Table 3 shows that the smaller b, the greater the fault tolerance value Fk could be obtained. How-
ever, the central server needs to send and collect information to all BCube4,b at the same time during
the parallel testing, and a higher performance central server is needed to increase costs with larger
M. Therefore, for a more appropriate division of Xn,k into M Xn,b (0 < b < k), there is the following
equation (3.4):

H =
α|F|

βT (tn,p)γC(M)
. (3.4)

In equation (3.4), |F| represents the sum of fault-tolerant values Fk of M Xn,bs and T (tn,p) represents
the time spent on tn,p server tests. C(M) represents performance requirements for central servers. α, β, γ
are the weights, and their values of different network structures are also different. The larger the H
value, the more reasonable the division.

For example, when α = 0.1, β = 0.1, γ = 0.5, BCube4,4 can be divided into BCube4,3, BCube4,2 or
BCube4,1. The equation (6) can get the following values by taking into the above value.

H(BCube4,3) = 0.14
H(BCube4,2) = 0.77
H(BCube4,1) = 0.76
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Table 4. Diagnosability of DCelln,k.

DCell3,2 DCell4,2 DCell3,3 DCell4,3
tnk 156 420 24492 176820

precise 4 5 5 6
pessimistic 5 6 7 8

t/c 6 7 9 12
FHFD+Hierarchical 13 42 2041 17682

Table 5. Diagnosability of BCuben,k.

BCube3,2 BCube4,2 BCube3,3 BCube4,3

tnk 64 256 1024 4096
precise 8 11 14 17

FHFD+Hierarchical 16 64 256 1024

Since H(BCube4,2) is the largest, it is most reasonable to divide BCube4,4 into 16 BCube4,2.

Case 2: b=0

Xn,k is divided into M Xn,0, where n is sufficiently large. By definition 2 and 3, Xn,0 is a complete
graph G (V, E) and ∀x, x ∈ V,NG(x) = V − x. That is, x is adjacent to all other nodes. If x is fault-
free, using x to test the remaining nodes in Xn,0 can accurately measure the state of other nodes. This
case does not need to generate a Hamiltonian cycle for diagnosis, which can greatly improve the test
efficiency.

4. Analysis Based on Fault-tolerant Hamiltonian Cycle

In this section, the FHFD algorithm and hierarchical testing method are applied to BCube and DCell
networks, respectively, and their diagnosabilities are analyzed and compared with traditional diagnostic
strategies.

4.1. Diagnosability Analysis of DCell

The diagnosability of the FHFD algorithm (in only Case 1) combined with hierarchical test method
for DCell is as follows:

Theorem 4: The maximum diagnosability of DCelln,k is (n − 2)(tn,k/tn,1) by combining the FHFD
algorithm and hierarchical test method with n ≥ 4 and k > 0.

Proof: DCelln,k can be divided into (tn,k/tn,1)DCelln,1 by equation (3) and DCelln,1 is (n-2)-fault
tolerant Hamiltonian by Theorem 1, then the sum of fault tolerant value of (tn,k/tn,1)DCelln,1 is (n −
2)(tn,k/tn,1).

We summarize the diagnosability of DCelln,k based on different strategies in the PMC model in
Table 4, which shows that the FHFD algorithm combined with hierarchical testing can greatly improve
the diagnosability.
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Figure 8. The testing time of FHFD algorithm and hierarchical method.

4.2. Diagnosability Analysis of BCube

This section will study the diagnosability of the FHFD algorithm (in only Case 1) combined with
hierarchical test method for BCube.

Theorem 5: The maximum diagnosability of BCuben,k is 2(n − 2)nk−1 by combining the FHFD
algorithm and hierarchical test method while n ≥ 4 and k > 0.

Proof: By equation (3), BCuben,k = nk−1BCuben,1 and BCuben,1 is 2(n-2)-fault tolerant Hamiltonian
by Theorem 2 and, thus, the sum of diagnosability of nk−1BCuben,1 is 2(n − 2)nk−1.

We summarize the diagnosability of BCuben,k based on different strategies in the PMC model in
Table 5, which shows that the FHFD algorithm combined with hierarchical testing can greatly improve
the degree of diagnosability.

4.3. Testing time analysis

This section simulates the test time of FHFD and the hierarchical method in BCube network by
MATLAB, as shown in Figure 8.

(1) BCube3,4 has 243 server nodes, and diagnosis only spends 0.97s. BCube4,4 has 1,024 nodes and
diagnosis only spends 5.12s, which shows that the time consumed increases linearly as the number of
server nodes increases. This result proves that server nodes have a significant impact on diagnostic
time.

(2) BCube4,4 has 1,024 nodes and spends 5.12s in the actual test. BCube6,3 has 1296 nodes and
spends 21.38s in the actual test, which shows that the size of the two networks is similar but the test
time is quite different. The reason is that the two are divided into layers through the Hierarchical
Diagnosis Based on Recursive (HDBR) algorithm. BCube6,1contains 36 nodes, BCube4,1 contains 16
nodes and the time is different to construct Hamiltonian cycles for 36 nodes and 16 nodes, resulting in
a large difference in the final test time but it is still acceptable.
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5. Conclusion

In this paper, we proposed a novel node fault diagnosis strategy based on the PMC model in DCNs
structure, satisfying recursiveness by using fault-tolerant Hamiltonian cycle property. Compared with
the traditional diagnosis strategy, our proposed strategy can meet the characteristics of high diagnos-
ability, high accuracy and high efficiency. Therefore, this strategy is more suitable for system-level
fault diagnosis of DCNs.
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