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Abstract: Accurate classification and segmentation of polyps are two important tasks in the diagnosis 
and treatment of colorectal cancers. Existing models perform segmentation and classification 
separately and do not fully make use of the correlation between the two tasks. Furthermore, polyps 
exhibit random regions and varying shapes and sizes, and they often share similar boundaries and 
backgrounds. However, existing models fail to consider these factors and thus are not robust because 
of their inherent limitations. To address these issues, we developed a multi-task network that performs 
both segmentation and classification simultaneously and can cope with the aforementioned factors 
effectively. Our proposed network possesses a dual-branch structure, comprising a transformer branch 
and a convolutional neural network (CNN) branch. This approach enhances local details within the 
global representation, improving both local feature awareness and global contextual understanding, 
thus contributing to the improved preservation of polyp-related information. Additionally, we have 
designed a feature interaction module (FIM) aimed at bridging the semantic gap between the two 
branches and facilitating the integration of diverse semantic information from both branches. This 
integration enables the full capture of global context information and local details related to polyps. 
To prevent the loss of edge detail information crucial for polyp identification, we have introduced a 
reverse attention boundary enhancement (RABE) module to gradually enhance edge structures and 
detailed information within polyp regions. Finally, we conducted extensive experiments on five 
publicly available datasets to evaluate the performance of our method in both polyp segmentation and 
classification tasks. The experimental results confirm that our proposed method outperforms other 
state-of-the-art methods. 



2025 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 2024–2049. 

Keywords: polyps; colonoscopy; dual branch network; FIM; RABE; multi-task network; attention 
mechanism 
 

1. Introduction 

Colorectal cancers are malignant tumors that commonly occur in the colon and rectum. They 
make up one of the most prevalent cancer types globally, ranking third in terms of cancer incidence 
and being the leading cause of cancer-related deaths in the United States. Advanced rectal cancers are 
difficult to cure, and thus how to improve survival efficiency is key. Early detection and diagnosis play 
crucial roles in improving survival efficiency. 

Colon polyps are lumps in the lining of the colon. Colon polyps have a high possibility to turn 
into cancers and are a leading cause of colon cancers. Thus, the detection and removal of polyps are 
important in preventing polyps from developing into colon cancers. The primary tool for screening for 
colon cancers is colonoscopy. Studies show that the prevalence of rectal cancers can be reduced by as 
much as 30 percent with regular colonoscopies. 

 

Figure 1. Two basic shapes of colorectal polyps: (a) pedunculated polyps and (b) sessile 
polyps. GT represents ground truth. 

Polyps have two types, based on their shapes: pedunculated polyps and sessile polyps (as shown 
in Figure 1). The latter only account for 15%, and they are difficult to detect in images. Incorrect 
diagnosis carries the risk of bleeding and perforation, thus accurate identification of the type of polyps 
and treatment requires a high degree of concentration and experience of physicians. However, 
according to [1], about 25% of polyps are missed during routine colonoscopy. Thus, we need an 
accurate and efficient method for polyp classification and segmentation. In recent years, deep learning 
has made significant progress in processing medical images. Chen et al. [2] proposed a gait pattern 
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recognition method for lower limb exoskeleton based on long short-term memory (LSTM) and 
convolutional neural network (CNN) to improve the recognition accuracy. Tian [3] proposed a new 
artificial neural network model evaluation strategy, which has been experimentally proved to be closer 
to the actual biological nervous system. Xu [4] proposed using deep learning methods to predict new 
cases of the new coronavirus, and the experiment achieved high prediction performance. Xie [5] 
proposed a Physically Constrained Deep Active Learning (P-DAL) framework to model 
spatiotemporal cardiac electrodynamics. The results showed that the proposed P-DAL method is 
significantly better than the traditional modeling methods. Guan [6] proposed a texture-constrained 
multi-channel asymptotic generative adversarial network (TMP-GAN), which adopts multi-channel 
joint training, which effectively avoids the typical shortcomings of current generative methods. 
Because of the good performance of deep learning for image analysis, deep learning was also used to 
help endoscopists to improve accuracy and efficiency of diagnosis. In a CAD system for colorectal 
cancers, polyp segmentation and classification are two important tasks. With the development of CNN 
based methods, research on polyp segmentation and classification has made some progress. Zhang [7] 
presented a migration learning algorithm to perform classification of colorectal polyps and achieved 
excellent results. Bourne et al. [8] proposed a real-time evaluation model to classify polyps into two 
classes: adenomatous polyps and hyperplastic polyps. Their experiments on polyp videos showed that 
their model obtained an accuracy of 94%. Younas et al. [9] combined the strengths of individual weak 
learners to form a weighted integrated model for polyp multiclass classification. In addition to polyp 
classification, some work is also about polyp segmentation. U-type architectures are the baseline for 
most medical image segmentation, and thus they are also studied in polyp segmentation. Inspired by 
U-Net [10], U-Net++ [11] improved U-Net by employing multi-scale nested jump connections and 
showed high accuracy in polyp segmentation. Jha et al. [12] extended the ResUnet++ [13] by 
incorporating temporal random fields for polyp segmentation. To solve the edge blurring problem 
caused by high similarity of polyps to the background, Fan et al. [14] developed a method using a 
parallel reverse attention network. The proposed network aggregates high-level information through a 
parallel partial decoder to generate a global mapping. The global map is combined with a reverse 
attention module to extract boundary information. Zhang [15] designed a network with an attention 
module aiming at adaptively focusing on different background information. The proposed network 
alleviates intra-class inconsistency. Experimental results on two datasets validated the accuracy of the 
method. Ji et al. [16] first proposed the study of video polyp segmentation, introduced a high-quality 
frame-by-frame annotated VPS dataset, designed a simple and efficient model (PNS+), and 
demonstrated the effectiveness and high performance of the baseline through many experiments. Lin 
et al. [17] proposed a new bit-slice contextual attention network for polyp segmentation to improve 
the ability to extract boundary information, and they proposed a dual-path attention link encoder to 
further improve the segmentation performance for polyps. Many experiments proved that this method 
can effectively improve the performance of polyp segmentation. Zhang et al. [18] built a parallel 
architecture by adding a transformer to CNN for polyp segmentation. Their network can capture both 
long-term dependency and local information. Experiments on several datasets substantiated the 
effectiveness of the method. 

Although the forementioned methods show improvements in polyp segmentation or classification 
with comparison to traditional methods, they still face several challenges: 1) The past methods 
performed polyp segmentation and classification separately, ignoring the intrinsic correlation 
information between the two tasks. However, multi-task learning allows the network to share feature 
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representations such as image texture, shape, and boundary, which improves the learning efficiency 
and representation of features. In addition, multi-task learning allows information interaction and co-
learning between polyp segmentation and classification tasks, which improves the robustness and 
generalization of the model. 2) Existing multi-stage methods [19–21] combining the two tasks are 
based on CNNs. Due to the limitations of convolutional operations, they can only establish short-
distance dependency relationships and cannot establish relationships between target pixels and global 
pixels. This often leads to the neglect of a significant amount of global information crucial for detecting 
the location of the targets. However, these global features are necessary to achieve more accurate 
classification and segmentation of polyps. For this reason, some researchers have taken steps to 
enhance CNNs by extracting global contextual information. Nonetheless, in most cases, this method 
fails to yield satisfactory results. 

To overcome the limitations of existing methods, we propose a multi-task network that enhances 
the model’s performance by concurrently training it for both classification and segmentation. 
Furthermore, we develop a dual-branch network structure that combines a transformer encoder and a 
CNN encoder, inheriting the advantages of both the transformer and CNN. The transformer branch 
enhances the model’s ability to capture global context information by learning long-term dependencies 
among inter-pixel features, aiding in the localization of polyp regions. Meanwhile, the CNN branch 
excels at capturing feature representations with spatial information (especially local information), such 
as edge information, which is more beneficial for the segmentation of small targets. In addition, to 
fully use the advantages of the two branches, we propose a feature interaction module (FIM) for 
information fusion and a RABE module to enhance the extraction of fuzzy boundaries. In summary, 
our contributions are as follows: 

1) We propose a multi-task model for simultaneous segmentation and classification of colon 
polyps. The proposed network utilizes an end-to-end architecture, employing a task-sharing encoder 
to enhance the correlation between different task networks more effectively. In this network, we adopt 
a dual-branch structure that incorporates a transformer to extract global features from colon images, 
thus combining the advantages of CNN into the proposed model. This approach enables the network 
to learn more meaningful feature information and significantly improves the segmentation and 
classification results of polyps. 

2) We propose a feature interaction module that serves to eliminate the semantic gap between the 
transformer and the CNN. It also fully integrates the global contextual information of polyps extracted 
by both, along with local detail information. This approach reduces the loss of polyp location and 
detailed information. 

3) We design a RABE module to further extract boundary information by establishing 
relationships between the targets and the boundaries. This enhancement improves the network’s 
performance in detecting polyps with ambiguous target boundaries. 

4) Our proposed method has undergone extensive evaluation on several benchmark datasets, and 
a significant number of experimental results demonstrate that our approach outperforms other state-
of-the-art methods. It exhibits superior performance in both polyp segmentation and classification. 

The paper is structured into five distinct sections. The introductory section provides background 
knowledge relevant to the paper’s focus. The second section delves into research pertinent to the 
methodology employed in this study. Following that, the third section offers a comprehensive 
exploration of the principles and structure underlying the chosen method. The fourth section 
substantiates the method’s effectiveness through a series of experiments. Lastly, the fifth section 
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conducts an analysis and summary of the paper’s findings. 

2. Related works 

2.1. Multitask learning 

Multi-task learning (MTL) is a learning paradigm in machine learning that aims to utilize useful 
information contained in multiple related tasks to help improve the performance of all tasks, and it has 
had a great impact in many fields, such as natural language processing and computer vision directions. 
Compared with single-task learning, it can share the common features of multiple tasks, achieve 
multiple tasks at the same time, and have good generalization ability, which is an important application 
of deep learning. Due to the time-consuming and labor-intensive nature of radiologists’ annotation 
work in the field of medical images as well as the label-intensive nature of the images, it is necessary 
to analyze the medical images comprehensively by means of multiple related tasks. Chen et al. [22] 
proposed a multi-task learning network for segmentation and classification of atria, and the results 
showed that by sharing features between related tasks, the multi-task network can obtain additional 
anatomical information about the atria and achieve more accurate segmentation of atria. Zhang et al. [23] 
proposed a multi-task relational learning network for segmentation, localization, and identification of 
vertebrae, which utilized the relationship between vertebrae and the correlation of three tasks to train 
the network and finally proved the effectiveness of the network on an MRI dataset. Zhou et al. [24] 
proposed a multi-task learning framework for joint classification and segmentation of tumors in 
ultrasound images. The framework includes a network for segmentation and a multi-scale network for 
classification. Experiments were conducted on three clinical datasets using an iterative training strategy. 
The experimental results demonstrated that the proposed multi-task framework has better performance 
than the single task learning framework. Liu et al. [25] proposed a multi-task learning method for 
processing data stored in different locations. This method transformed the original centralized 
computing framework into a distributed framework that can be computed in parallel, thereby 
enhancing both learning performance and efficiency. 

In summary, previous studies have demonstrated the effectiveness of multi-task learning networks. 
However, the multi-task models still overlook the importance of global features. Therefore, we propose 
to leverage the transformer architecture to construct a two-branch network for capturing global features. 

2.2. Transformer 

In earlier studies, various CNN-based network models were developed for polyp classification or 
segmentation, and they achieved some level of effectiveness. However, these methods often overlook 
the global features of the targets due to the limitations of convolution operations, hindering the 
improvement of experimental results. In recent years, transformers have been proven to be an excellent 
model for extracting global features from targets, primarily through the self-attention mechanism. A 
large body of research, even before its emergence [26,27], has confirmed that self-attention can 
enhance the performance of CNNs in many applications. Inspired by self-attention, a lot of models on 
transformers have been proposed. Dosovitskiy [28] applied a transformer to image classification and 
achieved good performance. Carion et al. [29] proposed DETR, a model for object detection. 
Experimental results on the Coco dataset outperformed Faster-Rcnn. Due to the superior performance 
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of transformers, many studies combining transformers with other models have been applied to the 
vision direction. Chen [30] proposed to combine a CNN and a transformer for medical image 
segmentation and achieved promising results. Transformer-based methods have also shown great 
potential in colon polyp detection and classification. Wang et al. [31] proposed a multilayer fusion 
network using a hierarchical guided strategy to aggregate information. The proposed network 
combined a transformer encoder and CNN encoder to extract deep semantic information and shallow 
localized spatial features for polyp detection and yielded reliable results. Huang et al. [32] explored 
the potential of using a joint technique that combines transformers and CNNs to address the challenges 
of polyp segmentation. They introduced interaction modules for the identification and fusion of 
information from both sources, resulting in a more robust model compared to existing methods. Park 
et al. [33] proposed the SwineE-Net network for polyp segmentation, and extensive experiments on 
five public datasets demonstrated the model’s generalizability and scalability. In contrast to the tasks 
mentioned above, our goal is to develop a multi-task model that combines transformers and CNNs for 
diagnosing colon cancer from colonoscopy images. 

 

Figure 2. (a) Overall structure of the network. (b) Classification block, where the blue 
blocks represent the fully connected layers, the green block represents the Normalization 
operation, and the yellow and gray blocks represent Dropout and sigmoid, respectively. (c) 
Transformer block. 
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3. Methods 

3.1. Network architecture 

The structure of our proposed network for the segmentation and classification of polyps is shown 
in Figure 2(a). The network is composed of a dual-branch encoder, a classification module, and a 
decoder. The dual-branch encoder consists of a transformer branch and a CNN branch. The transformer 
branch is responsible for gathering high-level semantic information of polyps, aiming at capturing 
long-term dependent features. The CNN branch is used to learn the localized detailed texture features 
of polyps. We designed a feature interaction module, which can better fuse global and local features 
by eliminating the semantic gap between the two branches and learning more useful information from 
the fused features. The decoder consists of a partial decoder (PD) as well as a RABE module. The PD 
combines features from multiple levels for decoding and initially aggregates a pre-segmentation result. 
This combined information is then used in conjunction with the RABE module for level-by-level 
decoding, resulting in a series of feature mappings 𝑍  , 𝑗 ∈ 0, 1, 2, 3  . The mappings are used to 
facilitate network learning. The decoding process is to extract boundary information of the polyps, 
aiming at capturing structural details, minimizing the segmentation errors at the boundaries. In addition, 
our segmentation and classification tasks share a two-branch encoder. The classification task consists 
of the shared encoder as in Figure 2(a) and a classification module as in Figure 2(b) to classify the 
polyp images. The classification module consists of four fully connected layers, three normalized 
layers, two dropout layers, and a sigmoid activation function. In the classification module, we set the 
first dropout rate as 0.7 and the second set to 0.5. The results were labeled as two different colonoscopy 
polyp images. 

3.2. Dual branch encoder structure 

The shapes, sizes, and locations of polyps vary significantly in different images, especially within 
large and small target regions. Consequently, inaccurate segmentation and classification may occur, 
primarily due to the absence of contextual information. Many existing segmentation and classification 
networks utilize encoding and decoding structures, with the encoder playing a pivotal role in 
information extraction. The encoder is responsible for learning the mapping relationships between 
pixels and their corresponding topology and projecting the learned salient features onto the pixel space. 
Hence, the design of the encoder holds significant importance as it directly impacts the robustness of 
the extracted features, thereby influencing the overall performance of the network. A traditional CNN-
based encoder learns through convolutional parameter sharing, making the encoder more sensitive to 
noise from the input. To address this issue, we propose to integrate transformers in the network because 
transformers can obtain more robust information through remote dependency modeling. The 
combination of the two possesses the advantages of both CNNs and transformer, which can provide 
richer coded information and semantic features for polyp segmentation and classification. For the 
transformer branch, we use patch partition to divide the input polyp image 𝑥 ∈ 𝑅  into a set of 
non-overlapping image patches. The feature dimension of each patch is 𝐻/4 𝑊/4 3. The number 
is 4 4  , and then these patches are used as input to the transformer branch. We employ a mix 
transformer (MIT) [34] (as shown in Figure 2(c)). Compared with the models in [29], MIT generates 
multi-scale features and can improve the performance of semantic segmentation. MIT extracts multi-
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scale features, preserving both coarse- and fine-grained features, enabling a more accurate region 
classification and a more complete set of edges. MIT demonstrates several advantages through its 
unique processes. First, to reduce the complexity of self-attention computation, MIT additionally 
employs a sequence reduction operation known as efficient self-attention. This operation reduces the 
computational complexity by decreasing the sequence length. Specifically, in this process, for each 
input patch, its Q, K, and V values are calculated through linear transformation, and then the Attention 
weight of the multi-head attention is calculated based on these three vector values. Then, the Attention 
of each head is spliced to obtain the final Attention representation to update the model. In the original 
multi-head self-attention process, The Q, K, and V of each head are the same dimensions N × C, where 
represents the length of the sequence. This process is expressed by the formula 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
ℎ

𝑉 (1) 

To reduce the amount of calculation, the K matrix with input dimension N × C is transformed 
as follows: 

                      𝐾 𝐿𝑖𝑛𝑒𝑎𝑟 𝐶 ∙ 𝑅, 𝐶 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 , 𝐶 ∙ 𝑅 𝐾  (2) 

where 𝐾 is the sequence to be reduced, 𝐾 is the reduced sequence, its dimension is 𝐶，𝑑ℎ  

represents a scalar value used to scale the attention weights, used to solve the gradient disappearance 
problem of the softmax function when the inner product value is too large. We set the value of 𝑑ℎ  

to 4 and set the R values for the four transformer blocks to 64, 16, 4, 1 . 
Second, to enhance the representation capability of the model, Mix-FFN is added as a technique 

used to improve the self-attention model. A depth-separable convolution and a multilayer perceptron 
are employed to convey position information to Mix-FFN to ensure local continuity. This not only 
reduces computational complexity and parameter requirements but also greatly aids in localizing the 
position of the polyp region. This process is expressed by the formula 

                    X MLP GELU Conv MLP X X  (3) 

where MLP represents the Multilayer Perceptron, GELU () represents the activation function, and 𝑋  
represents the output of efficient self-attention. 

Finally, MIT includes an overlap patch merging module, which serves to reduce the feature map 
size while increasing the number of channels in the feature map. However, MIT still exhibits some 
shortcomings; it does not effectively handle continuity information between blocks, potentially leading 
to segmentation results with boundary or detail loss consequently. The above issues can be mitigated 
by the CNN branch. The convolutional encoder in the CNN branch can preserve shallow high-
resolution features for better characterization of local information. The CNN branch employs 
ResNet18 as the backbone and adopts small 3 × 3 convolution kernels. The small size kernels can learn 
relative relationship between neighboring pixel points effectively, thereby extracting texture and detail 
information effectively. 

The process in the network is described as follows: For a given input image 𝑥 ∈ 𝑅 , the 

CNN branch initially performs a convolution operation to obtain the feature map 𝐴 ∈ 𝑅  . 

Subsequently, it undergoes four ResBlock operations, resulting in feature maps 𝐹 ∈ 𝑅  , 
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where 𝐶 ∈ 64, 128, 256, 512  and 𝑖 ∈ 1, 2, 3, 4 . In contrast, the transformer branch extracts four 

layers of feature maps 𝑇 ∈ 𝑅 , where 𝐷 ∈ 64, 128, 256, 512 . Finally, the outputs of each 
layer from the two branches F , 𝑇  are jointly input into the feature interaction module to combine 
the information of the two branches. 

3.3. Feature interaction module 

Given that the learning mechanisms and semantic information acquired by the transformer branch 
and the CNN branch are distinct, seamless fusion of information from both branches becomes crucial. 
This allows us to leverage the integration advantages offered by both branch encoders effectively. We 
propose employing feature interaction module (FIM) to achieve the goal. The FIM employs an 
interactive fusion approach to integrate the local features with the global representation, effectively 
eliminating the semantic gap between the two branches. The proposed FIM is shown in Figure 3. 

 

Figure 3. FIM. 

In the proposed FIM, to narrow the semantic gap between the CNN and the transformer, we begin 
by employing convolutional kernels of various sizes to expand the receptive field of the feature map 
𝐹   obtained from the CNN branch. This enables the capture of more contextual information. The 
results after various convolutional operations are then catenated into a new feature map denoted as 𝑀. 
Subsequently, we conduct an element-wise summation operation between 𝑀  and the feature 𝑇  
produced by the transformer branch. The whole process can be represented by the following equation: 

 𝐹 Add 𝑇 , 𝑀  (4) 

where 

 𝑀 f 𝐹   

where 𝑓() denotes various convolutional operations on feature map 𝐹  to enlarge the receptive field 
and the information catenation operation. The convolutional operations on feature map 𝐹   is 
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composed of four convolutional branches. The first level of each convolutional branch employs 1 𝑡 
conventional kernel, where 𝑡 ∈ 1,3,5,7  . Except for the first convolutional branch, each other 
conventional branch is composed of three conventional levels. For the second level of the second to 
fourth branches, the convolution operation employs 3 1, 5 1, 7 1  convolution kernel, 
respectively. For the third level of the second to fourth branches, 3 3 dilated convolution operations 
are employed. Each conventional branch output a feature map 𝑀  (k = 1,2,3,4). The feature maps 
𝑀  and 𝑀 , which have different receptive fields, are fused together to obtain 𝑀. 

 𝑀 𝐶𝑜𝑛𝑣 𝐶𝑜𝑛𝑐𝑎𝑡 𝑀 , 𝑀 , 𝑀 , 𝑀  (5) 

where 

𝑀 𝐶𝑜𝑛𝑣 𝐹  

𝑀 𝐷𝐶𝑜𝑛𝑣 𝐶𝑜𝑛𝑣 𝐶𝑜𝑛𝑣 𝐹  

In addition, we hope that 𝐹   and 𝑇   can learn useful features from their fused features 𝐹   while 
retaining their respective original features. Inspired by the attention mechanism [35], we learned that 
spatial attention operation is used to extract the spatial relationship of features, focusing on the regions 
with key information in the image, thus improving the perception of local details. Meanwhile, channel 
attention focuses on learning the relationship between feature channels and ultimately selecting 
effective features. Therefore, we first obtain the important information of the fusion feature 𝐹   in 
channel and spatial dimensions: the spatial attention map 𝑆  and the channel attention map 𝐶 . Then, 
we pass the information in 𝑆  and 𝐶  to the original input features 𝐹  and 𝑇  to make them learn 
the effective features of 𝐹 . Meanwhile, to maintain the original features of each of the two branches 
in this process, we perform a Split operation on the channel attention map to select different channel 
weights for 𝐹  and 𝑇 . After that, the features 𝐹  and 𝑇  of the two branches are first subjected to 
spatial level multiplication operation with the spatial attention map, and then subjected to channel level 
multiplication operation with different channel weights respectively. Finally, the final fused feature 
map 𝐹  is obtained by combining the results 𝐹  and 𝑇  produced by the two branches. This process 
can be expressed as equations:  

 𝐹 𝑆𝑝𝑙𝑖𝑡 𝐶 ⊙ 𝑆 ⊙ 𝐹  (6) 

 𝑇 𝑆𝑝𝑙𝑖𝑡 𝐶 ⊙ 𝑆 ⊙ 𝑇  (7) 

 𝐹 𝐶𝑜𝑛𝑣 𝐶𝑜𝑛𝑐𝑎𝑡 𝐹 ,  𝑇  (8) 

where 

𝐶 𝑠 𝐹𝐶 MaxPool 𝐹 ⊕ 𝐹𝐶 AvgPool 𝐹  

𝑆 𝜎 𝐶𝑜𝑛𝑣 𝐶𝑜𝑛𝑐𝑎𝑡 MaxPool 𝐹 , AvgPool 𝐹  

where FC represents fully connected operation. 



2034 

Mathematical Biosciences and Engineering  Volume 20, Issue 2, 2024–2049. 

3.4. The partial decoder 

The good performance of Unet-based image segmentation relies on the aggregation of multilevel 
features extracted from the encoder. For example, Unet aggregates all the hierarchical features 
extracted from the encoder, and there are many network variants that utilize Unet, such as Unet++ [11] 
and ResUnet [36]. However, research found that low-level features contribute less to the performance 
in comparison with high-level features, while the computational cost is high when both low-level and 
high-level features are used. Thus, to achieve a more efficient use of the features and reduction of 
computational cost, we developed a PD module, as shown in Figure 4 in the decoder path. In the PD 
module, we only use three high-level feature mappings 𝐹 , 𝑛 2, 3, 4 . The specific steps are as 
follows: We first reshape the three feature mappings to the same channel size using 1 × 1 convolution. 
Then, we resample the resulting feature mappings to the same spatial resolution and concatenate them 
together. The final feature map  𝑍 𝑃𝐷 𝐹 ,  𝐹 ,  𝐹   is obtained using convolution, batch 
normalization and ReLu operations. Our PD module uses a small number of parameters to preserve 
multi-scale contextual information for localizing the approximate location of polyps. 

 

Figure 4. The partial decoder. 

 

Figure 5. The reverse attention boundary enhancement (RABE) module. 
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3.5. The reverse attention boundary enhancement module 

The network with dual-branch encoder and FIM module can only obtain the approximate 
positions of various polyps, lacking the refinement of polyp structure. Conversely, the general 
network for polyp segmentation lacks detailed boundary information and structural details. To 
address this issue, [14] introduced the inverse attention module for polyp segmentation and obtained 
some improvements in preserving the boundaries of polyps. Inspired by [14], we added a reverse 
attention boundary enhancement (RABE) module in the decoder section, as shown in Figure 5. The 
RABE module consists of reverse attention and spatial attention. We first use the reverse attention 
mechanism to focus on the details of the polyp boundary. The network can better identify the edge 
information between the target and the background, thereby making the boundary of the segmentation 
result clearer and more accurate, and then gradually incorporate it into the decoder to obtain the global 
segmentation feature map, specifically expressed by the following formula: 

 𝑅 1 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑆𝑎𝑚𝑝𝑙𝑒 𝑍  (9) 

where 𝑍   denotes the feature map obtained from the decoder, and 𝑅   denotes the output reverse 
attentional feature. Here, 𝑗 ∈ 0, 1, 2, 3  . The operation Sample () denotes the sampling operation 
corresponding to the input of 𝑍  to the module, as shown in Figure 1(a). 

We employed spatial attention to extract polyp location information from the initially segmented 
feature maps. When a segmentation network locates polyp boundaries in the feature map, extreme 
binarization of polyp regions and other regions could easily lose boundary details. To address this issue, 
we put more weight on the initially located non-polyp regions in the spatial direction while reducing 
the weights of the polyp regions. The spatial attention module can capture rich boundary information 
of polyps and enhance the performance of polyp segmentation. Let the output of the spatial attention 
module be 𝑃 , and it can be computed from 𝑅  by  

 𝑃 𝑅 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝐶𝑜𝑛𝑣2 𝑅𝐸𝐿𝑈 𝐶𝑜𝑛𝑣1 𝑅  (10) 

where Conv represents a convolution operation, and RELU represents an activation function operation. 
Because 𝑃  can capture detailed boundary information, we combine it with the feature map 𝐹  

to enrich the boundary details of polyps in the initial predicted segmentation map and finally get the 
feature map 𝑃 . 

 𝑃  𝐹 ⊗ 𝑃  (11) 

3.6. Loss function 

We employed cross-entropy loss for the classification task, which is defined as follows: 

 𝐿 ∑ 𝑦 log 𝑦 1 𝑦 log 1 y  (12) 

where Q is the number of classes, 𝑦   represents true labels of a class, and 𝑦   represents the 
predicted labels. 

For colonoscopy polyp segmentation, Dice loss is usually used. However, when the polyps are 
small, it could make significant changes in the network gradients. One way to mitigate the issue is to 
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use binary cross entropy (BCE) loss to guide Dice loss to make the gradient reasonably small. 
Therefore, we combine the two losses for the segmentation task. These losses are defined as in [37]. 
In addition, we performed deep supervision on the outputs 𝑍  of the four decoders. Before calculating 
the deeply supervised losses, we up-sampled them to the same size as GT. Therefore, the total 
segmentation loss is 

 𝐿 ∑ 𝐿 𝐺, 𝑍 𝐿 𝐺, 𝑌  (13) 

where 

𝐿 𝐿 𝐿  

where 𝐺 denotes GT, 𝑍  denotes the results after up-sampling to the original image size, which are 

used for deep supervision, and Y denotes the final prediction result. 
The total loss for classification and segmentation is as follows: 

 𝐿 𝐿 𝐿  (14) 

4. Experiments and results 

The proposed segmentation and classification network was implemented using the PyTorch 
framework with NVIDIA RTX 3090Ti graphics environment. For the experiments, we trained the 
model using the Adam optimizer with a momentum of 0.9 and a weight decay of 1e-4. The initial 
learning rate was set to 0.01 and then reduced by half every 30 cycles. The batch size was set to 8, and 
the learning period was set to 100. Our network was pre-trained on the ImageNet dataset to accelerate 
network training. To evaluate the effectiveness of the proposed method, we conducted experiments on 
segmentation and classification tasks using five publicly available datasets: KvasirSEG [38], CVC-
ClinicDB [39], CVC-ColonDB [40], ETIS-LaribPolypDB [41] and CVC-EndoSceneStill [42]. In 
these datasets, images were annotated by a specialized endoscopist. We adopted dataset division 
criterion by [9]: 900 images from KvasirSEG and 550 images from CVC-ClinicDB were used as the 
training set while the remaining images from KvasirSEG and CVC-ClinicDB plus all the images from 
the other three datasets (ETIS, CVC-ColonDB, and CVC-300) were used as the test set. Many existing 
methods have utilized this criterion for their experiments, so to be fair, we also used this division 
criterion in our experiments. Tables 1 and 2 show the dataset divisions for the two tasks, respectively. 

Table 1. Division of the data set for the polyp segmentation task. 

Datasets Image 
Training Set KvasirSEG [38] 900 

CVC-ClinicDB [39] 550 
Testing Set KvasirSEG [38] 100 

CVC-ClinicDB [39] 62 
CVC- ColonDB [40] 380 
ETIS [41] 196 
CVC-300 [42] 60 

All 2248 
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Table 2. Division of the data set for the polyp classification task. 

Datasets Pedunculated Sessile 

Training Set 
KvasirSEG [38] 
CVC-ClinicDB [39] 

1067 383 

Testing Set 

KvasirSEG [38] 

300 498 
CVC-ClinicDB [39] 
CVC- ColonDB [40] 
ETIS [41] 
CVC-300 [42] 

All 1367 881 

4.1. Evaluation metric 

For the classification task, we evaluated the performance using four metrics: specificity (Spe), 
recall (Rec), accuracy (ACC), and the area under the curve (AUC). According to [43], sessile polyps 
are at a higher risk of complications such as perforation or hemorrhage during the treatment process. 
Therefore, we considered the class of sessile polyps as positive samples, and the class of pedunculated 
polyps as negative samples. TP denotes the instances where the class of sessile polyps is correctly 
predicted. So, these four indicators can be represented by the following formulas: 

 𝑆𝑝𝑒𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  (15) 

 𝑅𝑒𝑐𝑎𝑙𝑙  (16) 

 𝐴𝐶𝐶   (17) 

For the segmentation task, we used three evaluation metrics: Dice similarity coefficient (DSC) 
which was used to evaluate the accuracy of the segmentation; intersection over union (IoU), which 
was used to assess the internal consistency of the segmented objects; and Hausdorff distance (HD), 
which was used as a similarity metric. These three metrics are follows: 

 DSC ∗

∗
 (18) 

 𝐼𝑜𝑈  (19) 

 𝐻𝐷 𝑚𝑎𝑥 ℎ 𝐶, 𝐷 , ℎ 𝐷, 𝐶  (20) 

where 

ℎ 𝐶, 𝐷 𝑚𝑎𝑥
∈

𝑚𝑖𝑛
∈

|| 𝑐 𝑑 || 

ℎ 𝐷, 𝐶 𝑚𝑎𝑥
∈

𝑚𝑖𝑛
∈

|| 𝑑 𝑐 || 

where TP, FP, FN, and TN represent true positive, false positive, false negative, and true negative, 
respectively. True positive means that the model correctly labels the pixels or regions in the image that 
belong to the polyps to be segmented. The DSC and IoU metrics have a range of [0, 1], with higher 
values representing better segmentation or classification results. On the other hand, for the HD metric, 
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lower values represent better results. 

4.2. Comparison experiment 

4.2.1. Segmentation results 

For segmentation of colon polyps, we compared the proposed network with several state-of-the-art 
models. These comparison models include CNN networks that are widely used for segmentation tasks, 
including Unet [10] and Unet++ [11]. We also compared the proposed network with the networks that 
are specifically designed for polyp segmentation, including ParNet [14], EMS-Net [44], BDG-Net [45] 
and BSCA-Net [17]. In addition, we also compared with some transformer-based segmentation models, 
including TransUnet [30] and TransFuse [18]. 

Table 3. Segmentation results on the KvasirSEG dataset. 

Methods DSC IoU HD (mm) 𝐹  𝑆  𝐸  

Unet [10] 0.811 0.726 26.498 0.780 0.848 0.893
Unet++ [11] 0.821 0.738 23.458 0.797 0.856 0.900  
ParNet [14] 0.898 0.840 14.537 0.885 0.915 0.948
TransUNet [30] 0.913 0.856 13.767 0.887 0.918 0.960
EMS-Net [44] 0.897 0.842 10.421 0.889 0.915 0.949
TransFuse [18] 0.918 0.868 7.103 0.902 0.917 0.962
BDG-Net [45] 0.915 0.863 7.235 0.906 0.920 0.964
BSCA-Net [17] 0.910 0.855 8.340 0.900 0.913 0.957
Ours 0.932 0.882 7.212 0.918 0.934 0.975 

Table 4. Segmentation results on the CVC-ClinicDB dataset. 

Methods DSC IoU HD (mm) 𝐹  𝑆  𝐸  

Unet [10] 0.876 0.818 16.498 0.870 0.915 0.943
Unet++ [11] 0.886 0.830 15.458 0.881 0.921 0.953
ParNet [14] 0.899 0.849 13.537 0.896 0.936 0.979
TransUNet [30] 0.929 0.887 7.167 0.913 0.942 0.978
EMS-Net [44] 0.923 0.874 7.021 0.923 0.949 0.980 
TransFuse [18] 0.934 0.886 4.235 0.926 0.941 0.977
BDG-Net [45] 0.915 0.863 6.074 0.902 0.930 0.968
BSCA-Net [17] 0.926 0.887 5.387 0.912 0.940 0.973
Ours 0.958 0.914 4.732 0.933 0.950 0.980 

Tables 3–7 presents the results of the proposed model for each metric on each of the five test 
datasets. In addition to the standard evaluation metrics, we also included three additional metrics 
inspired by ParNet to provide a more comprehensive evaluation of the model’s performance. These 
additional metrics are a weighted measure (𝐹 ) [46] that combines recall and precision, an S-measure 
(𝑆 ) [47] that evaluates the similarity between predicted and true values, and an E-measure (𝐸 ) [48] 

that assesses similarity at both the pixel and global level. In the table, the optimal results were 
highlighted in bold, while the second-best results were highlighted in blue font. Except for HD, the 
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proposed network achieved the best segmentation results evaluated by other metrics on both the 
KvasirSEG and CVC-ClinicDB datasets. Specifically, for the KvasirSEG dataset, as shown in Table 3, 
our model outperforms the next best results by 1.4% in Dice, 1.4% in IoU, 1.2% in 𝐹 , 1.4% in 
𝑆 , and 1.1% in 𝐸 . For the CVC-ClinicDB dataset, as shown in Table 4, our model achieved results 
of 0.958, 0.914, 4.732, 0.933, 0.950 and 0.980 for DSC, IoU, HD, 𝐹 , 𝑆 , 𝐸 , respectively. 

For the ETIS dataset, the small size of polyps in the image makes segmentation challenging, and 
as seen in Table 5, most of the models performed poorly on this dataset. Compared with other models, 
our model showed better performance than other methods. Specifically, it achieved optimal results in 
five metrics, reaching 0.786, 22.49, 0.766, 0.902, and 0.921 in DSC, HD, 𝐹 , 𝑆  𝑎𝑛𝑑 𝐸  , and is 

higher than the inferior results in each of the metrics by 2%, 1.6, 1%, 1% and 1.1% respectively.  

Table 5. Segmentation results on the ETIS dataset. 

Method DSC IoU HD (mm) 𝐹  𝑆  𝐸  

Unet [10] 0.398 0.335 57.35 0.357 0.662 0.673 
Unet++ [11] 0.418 0.356 46.21 0.357 0.682 0.635 
ParNet [14] 0.628 0.567 36.74 0.600 0.794 0.841 
TransUNet [30] 0.718 0.672 27.95 0.735 0.842 0.894 
EMS-Net [44] 0.682 0.611 29.83 0.660 0.820 0.876 
TransFuse [18] 0.737 0.659 25.48 0.744 0.892 0.905 
BDG-Net [45] 0.756 0.679 24.36 0.719 0.860 0.910 
BSCA-Net [17] 0.768 0.714 24.04 0.753 0.886 0.908 
Ours 0.786 0.713 22.49 0.766 0.902 0.921 

Table 6. Segmentation results on the CVC- ColonDB dataset. 

Methods DSC IoU HD (mm) 𝐹  𝑆  𝐸  

Unet [10] 0.584 0.493 42.54 0.559 0.740 0.773 
Unet++ [11] 0.618 0.538 44.67 0.602 0.764 0.790 
ParNet [14] 0.709 0.640 28.87 0.696 0.819 0.869 
TransUNet [30] 0.779 0.683 26.55 0.728 0.827 0.903 
EMS-Net [44] 0.715 0.642 27.93 0.707 0.822 0.891 
TransFuse [18] 0.773 0.696 23.05 0.783 0.859 0.907 
BDG-Net [45] 0.802 0.723 21.17 0.781 0.870 0.912 
BSCA-Net [17] 0.783 0.720 20.46 0.775 0.869 0.904 
Ours 0.829 0.752 19.12 0.793 0.897 0.907 

For the CVC-ColonDB dataset and CVC-300, our method was also efficient because it 
outperformed other models in most of the metrics (see Table 6). Our method achieved the best 
results on five of these metrics, The results on the DSC, IoU, HD, 𝐹  , and 𝑆   metrics are all 
optimal at 0.829, 0.752, 19.12, 0.793, 0.897, and 0.907, respectively. The CVC-300 dataset, as shown 
in Table 7, contained fewer images, and there was a great deal of inter-image variability among the 
images. Most of the models achieved stable performance on this dataset. Our proposed model achieved 
optimal results on two measures and suboptimal results on two other measures. 
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Table 7. Segmentation results on the CVC-300 dataset. 

Methods DSC IoU HD (mm) 𝐹  𝑆  𝐸  

Unet [10] 0.743 0.648 21.35 0.708 0.840 0.877 
Unet++ [11] 0.773 0.687 19.68 0.760 0.861 0.882 
ParNet [14] 0.871 0.797 16.45 0.843 0.925 0.972 
TransUNet [30] 0.893 0.824 13.13 0.879 0.939 0.971 
EMS-Net [44] 0.900 0.834 10.98 0.885 0.943 0.978 
TransFuse [18] 0.904 0.838 10.37 0.882 0.944 0.979 
BDG-Net [45] 0.899 0.831 10.88 0.881 0.935 0.975 
BSCA-Net [17] 0.927 0.875 9.81 0.912 0.950 0.985 
Ours 0.908 0.833 11.04 0.897 0.953 0.987 

 

Figure 6. Visualization results for each comparison method, where the green line 
represents GT, and the blue line represents the segmentation result. 

Next, we visually compared the segmentation results obtained with different models. The 
visualization results clearly demonstrated the superiority of our model for polyp segmentation. Figure 6(a) 
is an image with easily identifiable polyps, and we found that most methods produced good 
segmentation results. However, our method exhibited slightly better performance in capturing finer 
details. Figure 6(b) is an image with small and densely distributed polyps, and we found that some 
methods failed to identify the correct polyp regions, such as Unet. Others only identified a few polyp 
regions and have incorrect polyp location information, like Unet++ and EMS-Net. BDG-Net and 
BSCA-Net identified polyp regions in multiple locations compared to the other methods but still 
produced incorrect predictions. Our method effectively suppressed non-noise regions of interest, 
accurately localized polyps and correctly identified most polyp regions. Figure 6(c) is an image with 
large and irregularly shaped polyps, and our method demonstrated a strong scale adaptation. In contrast, 
all other methods were negatively affected to some extent and struggled to accurately segment the 
polyps. Figure 6(d)–(f) are images of polyps with blurred backgrounds that are difficult to distinguish 
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from the direct border of the normal intestinal wall. Many methods struggled to correctly detect the 
edge region of the polyps. Unet and Unet++ performed the worst and almost failed to recognize the 
polyp regions. Pranet, TransUnet and EMS-Net had a small number of incorrectly detected regions 
and missed many target regions that are like the background. BDG-Net and BSCA-Net performed 
slightly better than Transfuse but still had a small number of under-segmented regions. In contrast, our 
method excelled in the polyp edge region and accurately detected the polyp boundary with the best 
segmentation effect. 

In summary, the above observations demonstrate that our method outperformed other methods in 
capturing global context information and local detail information. It performed well on both large polyps 
in Figure 6(c) and small target polyps in Figure 6(b) and achieves the best detection of edge regions. 

4.2.2. Classification results 

For polyp classification, we compared our proposed model with several powerful and effective 
classification methods based on our dataset classification criteria. These methods included 
Inceptionv3 [49], MobileNetv3 [50], DenseNet [51], Vit [28], ResNet-50 [52], EfficientNet [53], 
TransUNet [30], and FusionM4Net [54]. Table 8 presents the average classification results for each 
metric evaluated on our experiments using the five test datasets. When combining the results from 
all five datasets, our model achieved the optimal performance with AUC of 0.915, Spe of 0.901, Rec 
of 0.934, and ACC of 0.937. These results represent 3%, 2%, 3%, and 3% improvements, respectively, 
over the Second-best results. This indicates that our model possesses strong learning and generalization 
capabilities. Upon reviewing Table 8, it is evident that the results achieved by other methods on the 
polyp classification were not very satisfactory. For instance, the AUC of each classification model 
ranged from approximately 0.813 to 0.855. This suggests that existing classification methods were not 
effective for recognizing polyps. Particularly, the ViT model and the transformer model performed 
relatively poorly compared to the other models. This implies that transformer-based classification 
models struggled to process polyp images with distinct local features despite their advantage in 
extracting global feature information. However, according to Table 8, our model overcame the 
performance bottleneck of traditional classification models and achieved more accurate classification 
results by leveraging the strengths of both CNN and transformer architectures. 

Table 8. Average classification results for five datasets. 

Methods AUC Spe Rec ACC 
Inceptionv3 [49] 0.820 0.814 0.826 0.859 
MobileNetv3 [50] 0.851 0.862 0.892 0.910 
DenseNet [51] 0.842 0.846 0.879 0.913 
Vit [28] 0.606 0.579 0.633 0.679 
ResNet-50 [52] 0.814 0.808 0.822 0.876 
EfficientNet [53] 0.859 0.809 0.910 0.895 
TransUNet [30] 0.786 0.714 0.865 0.863 
FusionM4Net [54] 0.881 0.884 0.901 0.907 
Ours 0.915 0.901 0.934 0.937 

For a clearer understanding of the classification results, we provide a confusion matrix in Figure 7. 
The horizontal axis represents the predicted classes, which are Sessile polyps and Pedunculated polyps, 
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while the vertical axis represents the actual classes. The figure displays the number of polyp images 
that were misclassified as other classes for each class. In the confusion matrix, we observed that there 
were 36 instances where Sessile polyps were misclassified as Pedunculated polyps. On the other hand, 
there were 13 instances where Pedunculated polyps were misclassified. Therefore, Sessile polyps were 
more prone to misclassification compared with Pedunculated polyps. 

 

Figure 7. Confusion matrix for classification results. 

4.3. Ablation experiment 

To demonstrate the effectiveness of our proposed model for polyp segmentation and classification, 
we selected three challenging datasets KvasirSEG, CVC-ClinicDB and CVC-ColonDB for ablation 
experiments. These experiments aimed to showcase the effectiveness of each individual module in our 
model. The results are presented in Tables 9–11. For the baseline model, we only utilized the 
transformer encoder (TE) and a simple U-Net decoder. Subsequently, we added the CNN branch (CB) 
to form a two-branch network. Further, we incorporated the FIM module and the RABE module into 
the network in sequence to assess the effectiveness of each module. The table displays the results 
obtained in various cases. It is evident that the model’s performance gradually improved as each module 
was added to the network. Specifically, the inclusion of CB helped in learning local information, 
resulting in 2%, 1%, and 1% improvement in the segmentation index (DSC), 4%, 2%, and 2% 
improvement in the classification index (AUC) for datasets KvasirSEG, CVC-ClinicDB, and CVC-
ColonDB respectively. The SFEM module enhanced the model’s performance by preserving edge 
detail information, and the FIM module aided in learning by fusing information from the two branches. 
The data presented in the table demonstrates that each module of our model is effective and contributes 
to an improvement in model performance. 

Figure 8 shows the visualization results of the ablation experimental results for segmentation with 
different settings of the dual-branch network. From the left to the right, new modules were added to 
the baseline dual-branch network one by one. The results clearly show that the localization effect of 
the polyps and the local segmentation effect were gradually improved. After fusing the information of 
the two branches through FIM, the information of the polyp acquired by the network also became more 
information, which was more friendly to the segmentation of some details and the segmentation of 
small targets. In addition, with the addition of the RABE module, the network’s ability to detect the 
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boundary region of polyps was improved, and the effect of polyp edge segmentation was more accurate. 
For the classification task, the first and fourth rows are dedicated to the classification of pedunculated 
polyps, and the model consistently classified them correctly from start to finish. several experimental 
processes in the middle of the second and third rows produced some incorrect class predictions, but 
with the addition of our proposed modules, the learning effect of the network was greatly improved 
accordingly, and therefore, the correct classification results were finally obtained. The last row is a 
typical example of misclassification of polyps. 

Table 9. Ablation experiments on the KvasirSEG dataset. 

Methods 
Segmentation Classification 

DSC IoU HD AUC Spe Rec ACC 
TE 0.870  0.848 14.384 0.842 0.855 0.875 0.891 
TE+CB 0.887 0.855 12.874 0.881 0.872 0.901 0.909 
TE+CB+FIM 0.907 0.861 9.273 0.913 0.890 0.929 0.918 
TE+CB+FIM+RABE 0.920 0.874 7.945 0.927 0.914 0.947 0.936 

   

Figure 8. Visualization results of a multi-task ablation study, where the green line 
represents GT, and the blue line represents the segmentation result. 
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Table 10. Ablation experiments on the CVC-ClinicDB dataset. 

Methods 
Segmentation Classification 

DSC IoU HD AUC Spe Rec ACC 
TE 0.890 0.848 13.047 0.837 0.839 0.852 0.881 
TE+CB 0.917 0.862 10.852 0.871 0.862 0.891 0.904 
TE+CB+FIM 0.929 0.874 8.409 0.903 0.883 0.920 0.915 
TE+CB+FIM+RABE 0.935 0.899 6.235 0.915 0.901 0.934 0.937 

Table 11. Ablation experiments on the CVC- ColonDB dataset. 

Methods 
Segmentation Classification 

DSC IoU HD AUC Spe Rec ACC 
TE 0.786 0.714 23.047 0.833 0.845 0.782 0.893 
TE+CB 0.795 0.722 22.852 0.851 0.873 0.810 0.916 
TE+CB+FIM 0.807 0.728 21.324 0.875 0.883 0.822 0.921 
TE+CB+FIM+RABE 0.818 0.740 20.423 0.885 0.891 0.834 0.937 

4.4. Time complexity and efficiency analysis 

The computational complexity and efficiency of deep learning models are crucial indicators for 
evaluating their prospects in clinical applications. Parameters (Param) and floating-point operations 
per second (FLOPs) serve as metrics for computational complexity, while frames per second (FPS) is 
a measure of analysis efficiency. Smaller values for Param and FLOPs indicate lower computational 
and time complexity, while higher FPS values suggest a faster model. Table 12 displays the values of 
Param, FLOPs, and FPS for each comparison method. As observed in the table, the Param of our 
method was approximately 42.4 M, which was lower than that of Unet++ [11] and BSCA-Net [17]. 
Furthermore, in terms of FPS, the model’s efficiency in this paper was notably advantageous, ranking 
second only to EMS-Net [44] and BSCA-Net [17]. Additionally, our model demonstrated heightened 
sensitivity to polyp detection accuracy, achieving a commendable trade-off between efficiency, time 
complexity, and accuracy. 

Table 12. Time complexity and efficiency analysis of each method. 

Method Params (M) FLOPs (G) FPS 
Unet [10] 13.1 21.05 12 
Unet++ [11] 48.9 108.76 15 
ParNet [14] 30.5 13.1 24 
TransUNet [30] 31.2 25.6 35 
EMS-Net [44] 31.5 75.75 46 
TransFuse [18] 26.2 19.8 37 
BDG-Net [45] 32.7 10.84 26 
BSCA-Net [17] 64.8 89.5 74 
Ours 42.4 74.6 40 
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5. Conclusions and discussion 

Polyp segmentation and classification have important applications in the diagnosis of 
colorectal cancers. Traditional image segmentation methods [55,56] and traditional image 
classification methods [57,58] offer low-accuracy performance. Thus, we proposed a multi-task 
network for polyp segmentation and classification that can better handle segmentation and 
classification of randomly located polyps with varying sizes and confusing edges and backgrounds. 
The main structure of the network is a combination of dual-branch encoders, which employ CNN 
and transformer as its two branches. We also designed several modules to make the model more 
effective. One module is the feature interaction module (FIM), aiming at eliminating the semantic 
gap between the two branches, and better fusion of the information obtained by the dual encoder 
while retaining the information of each branch. Another module is RABE. This module helps the 
model extract boundary information and enhances the segmentation performance, particularly for 
small targets and images with fuzzy boundaries. 

We performed experiments on five public datasets. Experimental results show that the multi-task 
network proposed in this paper has high segmentation and classification accuracy and good reliability. 
However, the network proposed in this paper still has potential for improvement in two key areas: The 
small target area is small, which is difficult to accurately locate and capture, resulting in inaccurate 
segmentation. In addition, sessile polyps do not have obvious pedicle features and are not easy to 
identify, resulting in misclassification. Another possible work is to enhance the inference speed of our 
network on devices with low computational power. In our future research work, we will focus on 
addressing these challenges by optimizing the network architecture and reducing redundancy 
parameters. By doing so, we aim to better meet the requirements of high-precision and real-time 
clinical applications. 
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