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Abstract: Sound event localization and detection have been applied in various fields. Due to the 
polyphony and noise interference, it becomes challenging to accurately predict the sound event and 
their occurrence locations. Aiming at this problem, we propose a Multiple Attention Fusion ResNet, 
which uses ResNet34 as the base network. Given the situation that the sound duration is not fixed, and 
there are multiple polyphonic and noise, we introduce the Gated Channel Transform to enhance the 
residual basic block. This enables the model to capture contextual information, evaluate channel 
weights, and reduce the interference caused by polyphony and noise. Furthermore, Split Attention is 
introduced to the model for capturing cross-channel information, which enhances the ability to 
distinguish the polyphony. Finally, Coordinate Attention is introduced to the model so that the model 
can focus on both the channel information and spatial location information of sound events. 
Experiments were conducted on two different datasets, TAU-NIGENS Spatial Sound Events 2020, and 
TAU-NIGENS Spatial Sound Events 2021. The results demonstrate that the proposed model 
significantly outperforms state-of-the-art methods under multiple polyphonic and noise-directional 
interference environments and it achieves competitive performance under a single polyphonic environment. 

Keywords: sound event localization and detection; attention; Gated Channel Transformation; deep 
learning 
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1. Introduction 

Sound event localization and detection (SELD) is the combination of sound event detection (SED) 
and sound source localization (SSL), which can simultaneously predict the category and location of 
sound event. SED refers to the task of categorizing sound event, whereas SSL estimates the direction 
of sound sources. Currently, SELD plays a crucial role in improving the quality of life while ensuring 
health and safety [1], which has been applied in various fields [2]. For example, noise pollution can be 
reduced by monitoring the noises in life [3]. By analyzing the sounds made by animals, it is possible 
to monitor their health status [4] and categorize animals [5]. Considering medical treatment, the 
relevant lung diseases can be diagnosed by judging whether the anomaly is present in the breathing 
sounds [6], using the 1D convolutional network to automate COVID-19 disease diagnosis [7]. In 
industrial productions, the operation of facilities [8] is closely monitored. 

The SELD was first introduced in the 2019 Detection and Classification of Acoustic Scenes and 
Events (DCASE) challenge [9]. The traditional SED methods include the Gaussian mixture model 
(GMM), the hidden Markov model (HMM) [10], and so on. The traditional SSL methods are mostly 
premised on the time difference of arrival. For example, Wang et al. [11] proposed the time difference 
of arrival (TDoA) indoor localization technology. Liu et al. [12] proposed the TDoA and frequency 
differences of arrival measurements of the given planar stationary radiation source. Due to the lack of 
expert knowledge, the performance of traditional SED and SSL methods heavily relies on feature 
engineering techniques, whereas deep learning can extract potential information from raw signals 
without expert knowledge. Hayashi et al. [13] combined deep learning and signal analysis for SED. 
By modeling the temporal structure associated with sound events, sequence-to-sequence detection was 
performed without solving domain values. Zhu et al. [14] addressed the transmission loss problem 
caused by the traditional feature extraction method, which improve the performance of the model. 

However, their improvement reaches a significant extent while the accuracy of single-SELD tasks 
is enhanced in the absence of interference. However, the challenges posed by noises and polyphony 
have not been fully addressed yet. In recent years, some deep-learning-based approaches have been 
proposed for SELD research conducted in multiple polyphonic environments. Adavanne et al. [15] 
proposed an End-to-End convolutional recurrent neural network (CRNN), which consists of two 
branches: a classification branch (SED) and a regression localization branch (SSL). The model can be 
applied to various array structures, which became the Baseline for SELD tasks in the DCASE 
Challenge in 2020, and 2021. Komatsu et al. [16] proposed to address the incomplete effectiveness of 
features extracted by convolutional neural networks (CNNs). They introduced a CRNN combined 
with a gated linear unit (GLU). GLU is used to weigh the importance of CNNs input, which enhances 
the extraction of effective features. To reduce model computation, Spoorthy et al. [17] replaced 
ordinary convolutions with depth-separable convolutions. However, this change presents a risk of 
information loss. 

There are up to two polyphonic SELD tasks that have been well performed. However, in more 
complex polyphonic environments with directional interference from noises, the predictive 
performance of the model is significantly compromised. Kim et al. proposed an AD-YOLO [18] model 
based on the YOLO [19] framework, which was initially used in the image detection of multiple targets, 
for SELD. This adaptation enhances the ability of the model, which evidences the inadequacies in 
detecting small objects within the framework. In addition, this can result in the oversight of transient 
sound events in SELD. 
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Despite significant progress has been made in SELD under a single polyphonic environment, 
there often exist multiple polyphony (with two or more polyphony) in the real world. In addition, real-
world SELD task is susceptible to the interference of noises. These problems cause a significant 
challenge for SELD. 

To solve the above difficulties, polyphonic sound event localization and detection are proposed 
in this paper based on Multiple Attention Fusion ResNet. The major contributions are as follows:  

1) By combining multiple attentions, the model can effectively model contextual, channel, and 
spatial information. Thus, the model is capable of discriminating polyphony while suppressing noise 
interference, and accurately detecting and localizing sound events. 

2) Multiple Attention and residual networks are combined to enhance the ability to distinguish 
the polyphony. 

2. Related work 

To address the limitations of traditional methods relying on prior knowledge, Zhang et al. [20] 
proposed a novel approach that is reliant on CNNs to extract spectrograms of arbitrary lengths from 
audio recordings. Through CNNs, the relevant spatial features were extracted to enhance SSL 
performance. Additionally, the recurrent neural networks (RNNs) were leveraged to determine the 
temporal dependencies, which enables the integration of sequential information over time. This 
combined CNNs and RNNs approach, known as convolutional recurrent neural networks (CRNNs), 
was successfully applied to both SED and SSL tasks. Phan et al. [21] proposed that both SED and SSL 
are expressed as regression problems and Adavanne et al. [22] investigated the joint localization, 
detection, and tracking of sound events using CRNNs, which outperformed traditional methods [23]. 
Therefore, it is of profound significance to explore the combination of SED and SSL for SELD.  

Nguyen et al. [24] proposed Salsa, which is a method to detect sound events and estimate their 
arrival directions separately before a deep neural network is trained to match SED and SSL for joint 
optimization. Politis et al. [25] proposed SELDnet to jointly detect sound events and estimate the 
location of the sound source. Cao et al. [26] experimentally proved that the trained SED model can 
improve SSL performance by weight sharing. The network layers increase resulted in gradient 
explosion or vanishing, which would deteriorate the overall performance. To address this issue, the 
ResNet [27] is widely applied in SELD [28]. Ranjan et al. [29] combined the ResNet with RNN to 
estimate SED and SSL labels jointly for sound events with one or two active sound sources. 

To improve the performance of the model in a polyphonic environment, it is proposed in some 
research to perform the SELD task through various attention mechanisms. Among them is the squeeze-
and-excitation (SE) network [30], in which the feature vectors of each channel are compressed through 
squeeze modules and then the feature representations of each channel are weighed through excitation 
modules. Huang et al. [31] combined the SE module with the ResNet in the SELD task to predict 
categories and locations in a polyphonic environment. However, the overall performance of the model 
remained unsatisfactory. Subsequently, Woo et al. [32] proposed the Convolutional Block Attention 
Module (CBAM) after the SE module, which added spatial attention based on channel-wise attention. 
Kim et al. [33] applied CBAM to SED tasks, which had higher computational complexity. However, 
there was only a slight improvement in the accuracy of recognition. Xu et al. [34] proposed the CECA 
model, which integrated an Efficient Channel Attention (ECA) [35] based on SE upgrade, 
incorporating it into residual blocks for use in SELD to capture channel-wise information in feature 
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maps. Although the application of the above attention mechanisms improves the performance of the 
model to a certain extent, ECA and SE are restricted to considering the importance of each channel. 
Also, CBAM is capable only of capturing local information, and long-range dependence information 
cannot be obtained. The predictive performance is slightly improved for the three types of attention 
modules. These constraints underscore the need for further research and the development of more 
robust attention mechanisms for SELD models. 

In summary, despite significant progress made in SELD research, there remain challenges in daily 
life due to the presence of polyphony and noise interference. By achieving the simultaneous detection 
and localization of multiple sound events, it is achievable to distinguish between noise and non-noise 
events, which is worthy of further research. 

3. Multiple Attention Fusion ResNet 

The overall flow chart is shown in Figure 1. First, the features of the sound signal were extracted, 
which were sent to the proposed Multiple Attention Fusion ResNet (MAFR) for training. Then, the 
network outputs the sound category and the sound location. To enhance the performance of SELD in 
a polyphonic environment, this paper proposes the MAFR, the network structure of MAFR is shown 
in Figure 2. 

 

Figure 1. Overall flow chart of polyphonic sound event location and detection. 

The network structure of MAFR is shown in Figure 2. A robust feature extraction capability serves 
as the cornerstone for SELD. While convolutions in the feature extraction process mainly attend to 
local information, SELD tasks demand consideration of both local and global features. In this paper, 
ResNet34 and Bidirectional Gated Recurrent Units (BIGRU) are selected as the basic network model. 
Gated Channel Transformation (GCT), Split Attention (SA), and Coordinate Attention (CA) are added 
to the basic residual block, where GCT is added to realize the effective modeling of sound context 
information and inter-channel information, SA is added to capture cross-channel information, and CA 
is added to enable the model focus both on channel and location information of the sound event. 
Through the effective combination of GCT, SA, and CA, the SELD performance in a polyphonic 
environment has been improved. 
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Figure 2. The overall structure of MAFR. Blue: Convolution block with kernel size 3, 
Green: Attention, grey: Basic residual block; CA: Coordinate Attention, SA: Split 
Attention, GCT: Gated Channel Transformation, Conv Block: Conv 3 × 3 + BN + ReLU, 
dashed arrows indicate the specific structure of a block. 

3.1. Feature extraction 

The Spatial cue-augmented log-spectrogram (Salsa) is used as the input feature for MAFR with 
a shape of [7, 200, 4800]. Where “7” represents the number of sound channels, “200” indicates the 
Mel-frequency range, and “4800” signifies that the audio is divided into 4800 segments. Salsa consists 
of two components: The log linear-frequency spectrogram of the first four-channel sound signals, and the 
normalized intensity vector of the spatial covariance matrix for the remaining three-channel sound signals. 

 

Figure 3. Salsa feature. 
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The log linear-frequency spectrogram contains information about the energy distribution of sound 
in frequency and time, which can help distinguish different sound events, and the normalized intensity 
vector of the spatial covariance matrix contains information such as inter-channel amplitude and phase 
differences, which facilitate source localization. In conclusion, Salsa contributes to the extraction of 
multi-channel features and the differentiation of overlapping sounds. The visualization of Salsa is 
presented in Figure 3. 

3.2. Basic network architecture 

This paper used ResNet as the basic network [36]. The optimized ResNet has 34 layers and mainly 
consists of convolutional blocks and basic residual blocks with skip connections. In the convolutional 
block, we replace the 7 × 7 kernel convolutional layer with two 3 × 3 kernel convolutional layers, 
aiming to improve the model’s generalization ability. Specific modifications are depicted in Figure 4. 

 

Figure 4. Structure diagram of partial changes in the residual network. 

3.3. Gated Channel Transformation 

In real-life scenarios, sound signals are complex, uncertain, and contain multiple polyphony. The 
presence of polyphony significantly impacts the performance of SELD. Inspired by Yang et al. [37], 
GCT enables more effective modeling of inter-channel and contextual information. In this paper, the 
GCT is positioned as shown in Figure 2. 

The structure of the GCT module is shown in Figure 5. First, the global context information for 
each channel is aggregated and combined with the trainable parameter 𝛼  , and the importance of 
different channels is controlled. When 𝛼  approaches 0, the features of the c-th channel will not be 
propagated to the subsequent convolutional layers. Second, to reduce computational complexity, 𝑙𝑛𝑜𝑟𝑚 is used to establish competition among neurons. Finally, a gate mechanism is adopted to adapt 
the original features. 

 𝑠 = 𝛼 |𝑥 |  (1) 
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 �̂� = 𝑓 𝐶, 𝑠 , 𝜀  (2) 

 𝑥 = 𝑥 1 tanh 𝛾 �̂� 𝛽  (3) 

where 𝑥  is the corresponding input feature of the c-th channel, 𝛼  is a trainable parameter, 𝑠  is 
the output value after the global control of the context, 𝜀 is a constant close to 0 and is used to avoid 
the inverse being 0, 𝐶 is the corresponding channel, 𝑓 ∙  denotes channel normalization operation, 𝛽  and 𝛾  are trainable parameters, and 𝑥  is the output of the c-th channel after GCT processing, 𝑥  is the output transformed by the entire GCT module. 

 

Figure 5. Gated Channel Transformation module. 

By combining normalization and the gating mechanism, we model the competitive or cooperative 
relationships between different channels. When the specific channel’s gating weight is activated (non-
noise) and competes with features from other channels, it emphasizes that channel’s features, leading 
to the attenuation of other channels and the reduction of noise interference. When polyphony occurs, 
the channels cooperate, combining multi-channel information for prediction, enabling polyphonic 
differentiation. 

A richer representation of sound features can be achieved with GCT, which determines whether 
or not to pass the information of that channel to the convolutional layer. In addition, noisy channels 
and segments are suppressed, the ability to distinguish between different polyphony is enhanced, and 
directional interference is reduced, thus improving the predictive performance of the model. 

3.4. Split Attention Module 

Sound in complex environments is subject to noise and other interference. To accurately realize 
SELD, it is crucial to distinguish polyphony. SA combines the channel-wise attention strategy with a 
multi-path network layout, which can capture cross-channel feature correlations, in sound signals to 
enhance the ability of distinguishing polyphony. This paper incorporates the SA [38] module into the 
residual basic blocks. First, the input features are divided into K groups, and then each group is divided 
into R subgroups, a total of 𝐺 = 𝐾𝑅 subgroups of features are obtained, the weights of K groups 
weights were calculated and the corresponding features are fused. The R groups’ intermediate features 
are obtained through this splitting transformation. The structure of the Split Attention Module is shown 
in Figure 6. 
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Figure 6. k-th subgroups Split Attention Module. 

The R groups’ intermediate features 𝑠  are summed up and grasp the global context information 
by globally pooling. The assignment of weights 𝛼 𝑐   between feature channels are performed 
according to the activation function, and the corresponding intermediate features are interacted to 
generate the corresponding weights 𝑉  for each group. 

 𝑉 = ∑ 𝛼 𝑐 𝑈  (4) 

 𝑉 = 𝑐𝑜𝑛𝑐𝑎𝑡 𝑉 , 𝑉 ,⋯𝑉  (5) 

where 𝑈   is the k-th input, where 𝛼 𝑐   denotes inter-channel weights in the k group 𝑐𝑜𝑛𝑐𝑎𝑡 ∙  denotes concatenated along the channel dimension. 

 𝑥 = 𝑉 𝑥 (6) 

In a polyphonic environment, by splitting and combining the features along the channel 
dimension, corresponding channel weights 𝑉   are obtained to measure the importance of each 
channel. This process enables the separation of various sound events occurring simultaneously. The 
SA module is placed alongside the GCT convolutional layer, and the specific integration of the modules 
is depicted in Figure 6. The outputs of the SA, the first convolutional layer, and the outputs through 
GCT and the second convolutional layer are summed together, as described in Eq (7). 

 𝑥 = 𝑥 𝑥 𝑥  (7) 

where 𝑥 denotes the input raw features, 𝑥  denotes the features after passing through the SA module, 𝑥  denotes the features after passing through the GCT module. 
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3.5. Coordinate Attention Module 

The sound features are further processed by both the SA module and the GCT module, which 
suppresses noises and distinguishes overlapping sounds. However, there exists an issue of incomplete 
separation of overlapping sounds.  

To enhance the model’s representation capability and balance the importance of each channel 
feature, we adopt the CA [39]. CA not only balances the importance of various channels but also 
captures favorable spatial feature information. The structure of the CA module is illustrated in 
Figure 7. 

 

Figure 7. Structure diagram of Coordinate Attention module. 

The CA decomposes the channel attention into two one-dimensional feature encoding processes, 
aggregating features along two spatial directions. In the time domain, it captures long-range 
dependencies (𝑍 ℎ  ), while in the frequency domain, it preserves precise positional information 
(𝑍 𝑤  ). The feature map is encoded into a pair of attention maps that are direction-aware and 
position-sensitive, thereby forming feature maps with specific directional information and accurately 
highlighting regions of interest. To fully utilize the extracted positional information and handle the 
inter-channel relationships, the CA module concatenates the outputs from two directions after two 
pooling layers. The dimension is consistent with the input dimension through the convolution layer 
with convolution kernel 1, and the output weights in both directions are as follows. 

 𝑔 = 𝜎 𝐹 𝑓  (8) 

 𝑔 = 𝜎 𝐹 𝑓  (9) 

where 𝑓  and 𝑓   denote the tensors in two spatial directions, 𝐹   and 𝐹   are both convolution 
transformations with convolution kernel 1, and 𝜎 is the sigmoid function. 
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By weighting the horizontal and vertical directions together, the final feature contains inter-
channel information, horizontal spatial information, and vertical spatial information. 

 𝑦 𝑖, 𝑗 = 𝑥 𝑖, 𝑗 × 𝑔 𝑖, 𝑗 × 𝑔 𝑖, 𝑗  (10) 

where 𝑔 𝑖, 𝑗  and 𝑔 𝑖, 𝑗  denote the feature weights through the horizontal and vertical 
directions, respectively, 𝑥 𝑖, 𝑗  denotes the input to the CA, and 𝑦 𝑖, 𝑗  denotes the output through 
the CA module, where 𝑖 ∈ 0,𝑊 , 𝑗 ∈ 0, 𝐻 , 𝑊 and 𝐻 are the width and height of the feature 
map, respectively. 

The spatial information is complemented with the channel information and applied to the input 
feature map to enhance the representation of the object of interest. In a polyphonic environment, 
multiple sound events may occur simultaneously. By combining spatial information in both horizontal 
and vertical directions, the focus is on local positions to determine if they contain interference. This 
helps reduce the probability of erroneous predictions in a polyphonic environment. In this proposed 
method, the CA is integrated even in shallow layers of the network, as shown in Figure 2. Applying 
CA in the shallow layers allows for the initial learning of both channel information and positional 
information. This leads to the preliminary reduction in noise interference and separates overlapping 
sound events. Moreover, the CA module is embedded after the GCT and SA modules within the basic 
residual blocks.  

4. Dataset and experimental parameters 

4.1. Dataset 

To verify the model’s generalization ability in a polyphonic environment, we conducted 
experiments using the TAU-NIGENS Spatial Sound Events 2020 [40] and TAU-NIGENS Spatial 
Sound Events 2021 datasets [41]. The sound events included different categories of sounds such as 
alarms, dog barks, etc. There were 14 sound categories in the 2020 dataset and 12 sound categories in 
the 2021 dataset. The official data provided two different acquisition methods: 4-channel microphone 
acoustics and first-order ambisonics acoustics. We used the first-order ambisonics audio format for 
model training and evaluation. Any sound events in the data that are different from the specified 
categories will be considered interfering noises, including sounds of the running engine and the 
burning fire.  

Both datasets have a common characteristic of being one-minute long and non-continuous; the 
differences between them include the number of polyphony, the presence of directional interference, 
and event durations. Relevant dataset details are provided in Table 1, where “long” and “short” 
represent whether the duration of a single sound event is long or short. 

1) Polyphony: In the former dataset, there is typically one sound event per second, with a 
maximum of two overlapping sound events at the same moment. In contrast, the latter dataset may 
have two to three different sound events occurring simultaneously at a given moment. 

2) Interfering noises: The former has no directional noise interference. 
3) Duration: The sound events in the former dataset have relatively longer durations compared to 

the sound events in the latter dataset, which tend to have shorter durations. 
Data visualization is shown in Figures 8 and 9. Top to bottom, they are Waveform, Spectrogram, and 

Mel Spectrogram, and the fourth subgraph represents sound events occurring within the 60 s, the length 
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of the short horizontal line represents the duration, and the color represents the sound category. “2020” 
in Table 1 represents the TAU-NIGENS Spatial Sound Events 2020 dataset, and “2021” in Table 1 
represents the TAU-NIGENS Spatial Sound Events 2021 dataset. 

Table 1. Detailed information about the two datasets. 

Dataset  
name 

Audio 
duration 

sample 
number 

Total number 
of events 

Number of sound events 
occurring at the same time 

Duration Directional 
interferers 

1 2 3 
2020 60 s 600 267,855 181,412 86,443 0 Long None 
2021 60 s 600 302,119 125,303 123,808 53,008 Short Exist 

 

Figure 8. Visualization of TAU-NIGENS Spatial Sound Events 2020. 

 

Figure 9. Visualization of TAU-NIGENS Spatial Sound Events 2021. 
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4.2. Experimental process and parameter design 

In this experiment, the Adam optimizer is used for model training, with a learning rate of 0.0003 
for the first 70% of epochs and 0.0001 for the remaining 30% of epochs. The batch size is 16, and the 
epochs are 90. 

The comparative methods, Baseline, AD-YOLO, Salsa, and CECA, are all intended for DCASE. 
The parameters in the training process of the comparative methods are consistent with the training 
parameters in the corresponding papers. All the results of comparative methods are obtained from the 
corresponding paper. It should be noted that the experiments of the CECA model are conducted only 
on the TAU-NIGENS Spatial Sound Events 2021 dataset in the original paper. In this paper, the CECA 
model is reproduced and conducted on the TAU-NIGENS Spatial Sound Events 2020 dataset to get 
corresponding results, with the same parameters provided in the corresponding paper. 

4.3. Evaluation metrics 

Multiple evaluation metrics can better evaluate the model performance [42]. In this paper, F1 
Score (F1-Score), Error Rate (ER) Localization Frame Recall (LR), and Localization Error (LE) are 
used to evaluate the SELD performance of models [43], F1 and ER for the detection task and LR and 
LE for the localization task. The calculation formulas are as follows: Eqs (11) to (14). 

 𝐹 = ∑∑ ∑ ∑  (11) 

 𝐸𝑅 = ∑ ∑∑ ∑ ∑ ∑  (12) 

where True Positive (TP) refers to the number of correctly identified positive samples, False Positive 
(FP) refers to the number of incorrectly identified positive samples, and False Negative (FN) refers to 
the number of incorrectly identified negative samples. 

 𝐿𝐸 = ∑ ∑ 𝐻 𝐷𝑂𝐴 , 𝐷𝑂𝐴  (13) 

where K denotes the frame length, 𝐷𝑂𝐴  denotes the location true angle of the sound event, 𝐷𝑂𝐴  
denotes the location prediction angle of the sound event, and 𝐷  denotes the total number of angles 𝐷𝑂𝐴  at the k-th moment, 𝐻 ∙  is the Hungarian algorithm. 

 𝐿𝑅 = ∑  (14) 

where 𝐷  denotes the total number of angles 𝐷𝑂𝐴  at the k-th frame, 𝐷  denotes the total number 
of angles 𝐷𝑂𝐴  at the k-th frame. If 𝐷 = 𝐷  then 1 𝐷 = 𝐷 = 1, K denotes all the moments. 
The subscript R denotes the true value and the subscript P denotes the predicted value.  

The SED and SSL evaluation metrics are combined to assess the overall model performance using 
the value indicated in Eq (15).  

 𝑆𝐸𝐿𝐷 = ° (15) 



2016 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2004–2023. 

When 𝐹  approaches 1, and ER approaches 0, it indicates more accurate sound event category 
predictions. When LR approaches 1 and LE approaches 0, it signifies more accurate event localization 
predictions. it indicates the better overall performance of SELD. 

5. Analysis of experimental results 

5.1. Comparative experiment 

To validate the effectiveness of the proposed MAFR in a polyphonic environment, we conducted 
comparative experiments with Baseline, AD-YOLO, Salsa, and CECA methods. The Baseline is the 
official DCASE baseline for the SELD task in 2020 and 2021. The AD- YOLO model utilizes the 
YOLO network architecture for SELD tasks. Salsa combines pannresnet [44] and BIGRU as the 
network architecture. CECA is an improvement over Salsa, adding CA and ECA modules, and adopting 
the L1 loss function as the loss function. The results of the comparative experiments can be found in 
Tables 2 and 3. 

In the following tables (from Tables 2 to 7), the up arrows denote that larger values indicate better 
model performance in the corresponding columns; conversely, the down arrows denote that smaller 
values indicate better model performance in the corresponding columns. 

Table 2. Comparative experimental results of TAU-NIGENS Spatial Sound Events 2020. 

Method ER ↓ F1 ↑ LE ↓ LR ↑ SELD ↓
Baseline [15] 0.720 37.40% 22.80° 60.70% 0.466
AD-YOLO [18] 0.482 61.27% 8.60° 69.75% 0.305
Salsa [24] 0.338 74.80% 7.90° 78.40% 0.226
CECA [34] 0.372 73.40% 8.57° 78.20% 0.225
MAFR 0.336 74.80% 8.05° 78.65% 0.212 

Table 3. Comparative experimental results of TAU-NIGENS Spatial Sound Events 2021. 

Method ER ↓ F1 ↑ LE ↓ LR ↑ SELD ↓
Baseline [15] 0.690 33.90% 24.10° 43.90% 0.690
AD-YOLO [18] 0.519 54.35% 13.54° 64.70% 0.351
Salsa [24] 0.404 72.40% 12.51° 72.70% 0.255
CECA [34] 0.393 72.00% 11.71° 72.80% 0.253
MAFR 0.369 73.53% 13.85° 74.91% 0.240 

Table 2 shows the experimental results of the TAU-NIGENS Spatial Sound Events 2020 dataset. 
MAFR has shown the best overall performance among these methods, where ER is 0.336, LE is 8.05°, 
F1 is 74.8%, and LR is 78.65%. Specifically, MAFR shows significant improvement in F1 and LR 
(13.53% and 8.9%) compared with AD-YOLO. MAFR increases by 0.25% in LR compared with Salsa 
and achieves an increase in ER by 0.036 compared with CECA. These demonstrated that the MAFR 
is superior in SELD tasks when one or two sound events occur at the same time. 

Table 3 shows the experimental results of the TAU-NIGENS Spatial Sound Events 2021 dataset. 
MAFR had gain best overall results, where ER is 0.369, LE is 13.85°, F1 is 73.53%, and LR is 74.91%. 
MAFR achieved the best performance in ER, F1, and LR. In particular, MARF shows tremendous 
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performance improvement compared with AD-YOLO, in which ER decreased by 0.15, SELD 
decreased by 0.111, F1 increased by 19.18%, and LR increased by 10.21%. Compared with CECA, 
GCT, and SA modules added to MAFR, F1 increased by 1.53% and LR increased by 2.21%. It shows 
that the GCT and SA in MAFR are effective for SELD in multiple polyphonic. Compared to Salsa, the 
proposed MAFR has the same F1 as Salsa’s model in the TAU-NIGENS Spatial Sound Events 2020 
dataset; in the TAU-NIGENS Spatial Sound Events 2021 dataset, the proposed MAFR has an increase 
in F1 by 1.13%. From the experimental results, it can be seen that the model shows more significant 
improvement in the TAU-NIGENS Spatial Sound Events 2021 dataset than in the TAU-NIGENS 
Spatial Sound Events 2020 dataset when compared with the state-of-the-art methods. In conclusion, 
the proposed MARF outperforms the state-of-the-art methods in SELD tasks under multiple polyphony 
environments with directional interference.  

5.2. Analysis of the CA module 

To verify the effectiveness of the CA module, we use the optimized ResNet34 (Section 3.1) as 
the basis network. Four attention mechanisms (SE, CBAM, ECA, and CA) are combined with it for 
SELD. Each attention module is placed at the position of the green box in Figure 2, and the 
experimental results are presented in Tables 4 and 5. In the table header, “2020” represents the TAU-
NIGENS Spatial Sound Events 2020 dataset, and “2021” represents the TAU-NIGENS Spatial Sound 
Events 2021 dataset. 

Table 4. Comparison of the effects of four different attention models (2020). 

Method ER ↓ F1 ↑ LE ↓ LR ↑ SELD ↓
None 0.375 71.66% 8.85° 76.60% 0.235
CBAM 0.362 72.84% 8.98° 77.70% 0.227
SE 0.364 72.95% 8.32° 77.29% 0.227 
ECA 0.375 72.05% 9.29° 77.04% 0238 
CA 0.350 74.39% 8.88° 78.58% 0.217

Table 5. Comparison of the effects of four different attention models (2021). 

Method ER ↓ F1 ↑ LE ↓ LR ↑ SELD ↓
None 0.422 69.46% 14.23° 72.66% 0.270
CBAM 0.407 69.93% 14.90° 71.87% 0.268
SE 0.403 70.52% 14.86° 73.23% 0.261 
ECA 0.410 69.45% 15.42° 72.73% 0.268
CA 0.394 70.92% 14.84° 72.40% 0.261

The results show that compared with the model without adding the attention module, the model 
performance is improved after adding CA, CBAM, SE, and ECA, respectively. CA can both focus on 
channel information and capture the direction perception of each sound source under multiple polyphonic 
environments. In the TAU-NIGENS Spatial Sound Events 2020 dataset, compared with not adding 
attention, F1 increased by 2.73% and LR increased by 2% when adding CA. In the TAU-NIGENS 
Spatial Sound Events 2021 dataset, compared with not adding attention, F1 increased by 1.46% after 
adding CA, and the performance of adding the CA module is optimal. The results show that only a 
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small performance improvement is achieved in the SELD task when SE or ECA is added. Since SE 
and ECA modules only focus on the channel information and cannot completely extract all the useful 
information. CBAM is unable to obtain the global spatial information, and experiments show that the 
CABM module is not suitable for this task. In summary, in the SELD task, the use of the CA module 
enables the whole network to better distinguish polyphony and reduce noise interference by 
comprehensively learning the channel information and location information. 

5.3. Ablation study 

To verify the impact of each module in the proposed MAFR, the following ablation experiments 
are conducted. The basic network structure is called ResNet34-Bigru, abbreviated as RB (7 × 7). To 
replace the convolutions in RB (7 × 7) with two convolutional layers using a kernel size of 3 × 3, the 
resulting network is referred to RB. SA, CA, and GCT modules are introduced to RB to form RBS, 
RBC, and RBG, respectively. Then, the CA module is incorporated into RBS to get RBSC. Finally, the 
proposed MAFR is constructed by integrating GCT into RBSC. To assess the effectiveness of all 
proposed modules, ablation experiments are conducted. The results are presented in Tables 6 and 7. 

Table 6. TAU-NIGENS Spatial Sound Events 2020 ablation experiment. 

Method ER ↓ F1 ↑ LE ↓ LR ↑ SELD ↓
RB (7 × 7) 0.459 67.00% 14.58° 72.10% 0.287
RB 0.375 71.66% 8.85° 76.60% 0.235
RBS 0.367 72.32% 9.06° 77.05% 0.231
RBG 0.345 74.56% 8.60° 78.89% 0.215
RBC 0.349 74.80% 8.38° 78.23% 0.216
RBSG 0.347 74.80% 8.31° 78.31% 0.214
MAFR 0.336 74.80% 8.05° 78.65% 0.212 

Table 7. TAU-NIGENS Spatial Sound Events 2021 ablation experiment. 

Method ER ↓ F1 ↑ LE ↓ LR ↑ SELD ↓
RB (7 × 7) 0.457 66.80% 15.72° 71.00% 0.291
RB 0.422 69.46% 14.23° 72.66% 0.270
RBS 0.412 69.80% 15.43° 72.30% 0.269
RBG 0.391 71.84% 14.28° 73.93% 0.253
RBC 0.396 70.93% 15.06° 73.31% 0.259
RBSG 0.394 71.50% 14.90° 73.50% 0.255
MAFR 0.369 73.53% 13.85° 74.91% 0.240 

Table 6 shows that RB outperformed RB (7 × 7), where ER and LE decreased by 0.084 and 5.73°, 
respectively; and F1 and LR increased by 4.66% and 4.5%, respectively. The comparison indicates that 
using multiple layers with smaller convolutional kernels to replace one layer with a large convolutional 
kernel can enhance the ability to extract key sound features. Compared to RB, RBC reduced the ER 
and LE by 0.026 and 0.47°, respectively, while increasing the F1 and LR by approximately 3.14% 
and 0.65%, respectively. It demonstrated that CA is helpful in SELD tasks. Compared to RB, the F1 
and LR of RBS improved by 0.66% and 0.45%, respectively; and the F1 and LR of RBG improved 
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by 2.9% and 2.29%, respectively. RBS and RBG both gain performance improvement compared with 
RB. Additionally, when CA, SA, and GCT were simultaneously integrated into RB, the ER, and LE 
were reduced by 0.011 and 0.26°, respectively, while the F1 remained unchanged, and the LR increased 
by 0.34%. 

Table 7 shows that all modules are effective in SELD under a complex polyphonic environment. 
Compared to RB (7 × 7), the RB model reduced the ER by 0.035 and increased the F1 and LR by 2.66% 
and 1.66%, respectively. Compared with RB, the RBC model reduced the ER by 0.026 and increased 
the F1 and LR by 1.47% and 1.63%, respectively; while the performance of RBS and RBG also showed 
improvement. Adding both CA and SA to RB has better performance than adding only one of the 
modules. It is worth noting that when SA is added to RBC, the model performance improves more 
significantly in the environment with multiple polyphony and noise directional interference than in the 
environment with one or two polyphony and no noise directional interference. When CA, SA, and 
GCT were added to RB, the ER and LE were 0.369, 13.85°, F1 and LR were 73.53% and 74.91%, 
respectively. MAFR showed the best performance. 

In summary, when the duration of sound events is short and there are multiple overlapping sound 
and noise directional interferences, SA can increase the receptive field of the whole model; GCT can 
connect the context, which reduces the number of mispredictions of brief sound events and weakens 
the interference of polyphonic and noises on the model. Through CA, the channel information and direction 
and position information of sound features can be captured. Furthermore, the effective combination of 
SA, GCT, and CA with ResNet34 can further improve the performance of the SELD task. 

6. Conclusions 

Due to the interference of polyphony and noise, accurately predicting the sound event category 
and the occurrence locations in SELD becomes challenging. In this paper, we propose the MAFR to 
achieve satisfactory performance in SELD task under multiple polyphonic environments with noise-
induced interference, which combines GCT, SA, and CA with ResNet34. Experimental results 
demonstrate that GCT selectively captures spatial features, enabling a better extraction of global 
information. SA increases the model’s receptive field, facilitating joint learning of cross-channel 
features. CA enhances feature complementarity between channel and positional features. On dataset 
TAU-NIGENS Spatial Sound Events 2020, MAFR achieved ER and LE of 0.336 and 8.05°, 
respectively; F1 and LR of 74.80% and 78.65%, respectively. On dataset TAU-NIGENS Spatial Sound 
Events 2021, MAFR achieved ER and LE of 0.369 and 13.85°, respectively; F1 and LR of 73.53% 
and 74.91%, respectively.  

In summary, in multiple polyphonic environments with noise-induced interference, MAFR 
significantly outperforms the state-of-the-art methods in terms of comprehensive performance in 
SELD task. Moreover, the MAFR also shows competitive performance compared to the state-of-the-
art methods in a single polyphonic environment. For future work, we would like to focus on the SELD 
task with moving sound sources. 
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