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Abstract: Sound event localization and detection have been applied in various fields. Due to the
polyphony and noise interference, it becomes challenging to accurately predict the sound event and
their occurrence locations. Aiming at this problem, we propose a Multiple Attention Fusion ResNet,
which uses ResNet34 as the base network. Given the situation that the sound duration is not fixed, and
there are multiple polyphonic and noise, we introduce the Gated Channel Transform to enhance the
residual basic block. This enables the model to capture contextual information, evaluate channel
weights, and reduce the interference caused by polyphony and noise. Furthermore, Split Attention is
introduced to the model for capturing cross-channel information, which enhances the ability to
distinguish the polyphony. Finally, Coordinate Attention is introduced to the model so that the model
can focus on both the channel information and spatial location information of sound events.
Experiments were conducted on two different datasets, TAU-NIGENS Spatial Sound Events 2020, and
TAU-NIGENS Spatial Sound Events 2021. The results demonstrate that the proposed model
significantly outperforms state-of-the-art methods under multiple polyphonic and noise-directional
interference environments and it achieves competitive performance under a single polyphonic environment.

Keywords: sound event localization and detection; attention; Gated Channel Transformation; deep
learning
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1. Introduction

Sound event localization and detection (SELD) is the combination of sound event detection (SED)
and sound source localization (SSL), which can simultaneously predict the category and location of
sound event. SED refers to the task of categorizing sound event, whereas SSL estimates the direction
of sound sources. Currently, SELD plays a crucial role in improving the quality of life while ensuring
health and safety [1], which has been applied in various fields [2]. For example, noise pollution can be
reduced by monitoring the noises in life [3]. By analyzing the sounds made by animals, it is possible
to monitor their health status [4] and categorize animals [5]. Considering medical treatment, the
relevant lung diseases can be diagnosed by judging whether the anomaly is present in the breathing
sounds [6], using the 1D convolutional network to automate COVID-19 disease diagnosis [7]. In
industrial productions, the operation of facilities [8] is closely monitored.

The SELD was first introduced in the 2019 Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge [9]. The traditional SED methods include the Gaussian mixture model
(GMM), the hidden Markov model (HMM) [10], and so on. The traditional SSL methods are mostly
premised on the time difference of arrival. For example, Wang et al. [11] proposed the time difference
of arrival (TDoA) indoor localization technology. Liu et al. [12] proposed the TDoA and frequency
differences of arrival measurements of the given planar stationary radiation source. Due to the lack of
expert knowledge, the performance of traditional SED and SSL methods heavily relies on feature
engineering techniques, whereas deep learning can extract potential information from raw signals
without expert knowledge. Hayashi et al. [13] combined deep learning and signal analysis for SED.
By modeling the temporal structure associated with sound events, sequence-to-sequence detection was
performed without solving domain values. Zhu et al. [14] addressed the transmission loss problem
caused by the traditional feature extraction method, which improve the performance of the model.

However, their improvement reaches a significant extent while the accuracy of single-SELD tasks
is enhanced in the absence of interference. However, the challenges posed by noises and polyphony
have not been fully addressed yet. In recent years, some deep-learning-based approaches have been
proposed for SELD research conducted in multiple polyphonic environments. Adavanne et al. [15]
proposed an End-to-End convolutional recurrent neural network (CRNN), which consists of two
branches: a classification branch (SED) and a regression localization branch (SSL). The model can be
applied to various array structures, which became the Baseline for SELD tasks in the DCASE
Challenge in 2020, and 2021. Komatsu et al. [16] proposed to address the incomplete effectiveness of
features extracted by convolutional neural networks (CNNs). They introduced a CRNN combined
with a gated linear unit (GLU). GLU is used to weigh the importance of CNNs input, which enhances
the extraction of effective features. To reduce model computation, Spoorthy et al. [17] replaced
ordinary convolutions with depth-separable convolutions. However, this change presents a risk of
information loss.

There are up to two polyphonic SELD tasks that have been well performed. However, in more
complex polyphonic environments with directional interference from noises, the predictive
performance of the model is significantly compromised. Kim et al. proposed an AD-YOLO [18] model
based on the YOLO [19] framework, which was initially used in the image detection of multiple targets,
for SELD. This adaptation enhances the ability of the model, which evidences the inadequacies in
detecting small objects within the framework. In addition, this can result in the oversight of transient
sound events in SELD.
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Despite significant progress has been made in SELD under a single polyphonic environment,
there often exist multiple polyphony (with two or more polyphony) in the real world. In addition, real-
world SELD task is susceptible to the interference of noises. These problems cause a significant
challenge for SELD.

To solve the above difficulties, polyphonic sound event localization and detection are proposed
in this paper based on Multiple Attention Fusion ResNet. The major contributions are as follows:

1) By combining multiple attentions, the model can effectively model contextual, channel, and
spatial information. Thus, the model is capable of discriminating polyphony while suppressing noise
interference, and accurately detecting and localizing sound events.

2) Multiple Attention and residual networks are combined to enhance the ability to distinguish
the polyphony.

2. Related work

To address the limitations of traditional methods relying on prior knowledge, Zhang et al. [20]
proposed a novel approach that is reliant on CNNs to extract spectrograms of arbitrary lengths from
audio recordings. Through CNNs, the relevant spatial features were extracted to enhance SSL
performance. Additionally, the recurrent neural networks (RNNs) were leveraged to determine the
temporal dependencies, which enables the integration of sequential information over time. This
combined CNNs and RNNs approach, known as convolutional recurrent neural networks (CRNNs),
was successfully applied to both SED and SSL tasks. Phan et al. [21] proposed that both SED and SSL
are expressed as regression problems and Adavanne et al. [22] investigated the joint localization,
detection, and tracking of sound events using CRNNSs, which outperformed traditional methods [23].
Therefore, it is of profound significance to explore the combination of SED and SSL for SELD.

Nguyen et al. [24] proposed Salsa, which is a method to detect sound events and estimate their
arrival directions separately before a deep neural network is trained to match SED and SSL for joint
optimization. Politis et al. [25] proposed SELDnet to jointly detect sound events and estimate the
location of the sound source. Cao et al. [26] experimentally proved that the trained SED model can
improve SSL performance by weight sharing. The network layers increase resulted in gradient
explosion or vanishing, which would deteriorate the overall performance. To address this issue, the
ResNet [27] is widely applied in SELD [28]. Ranjan et al. [29] combined the ResNet with RNN to
estimate SED and SSL labels jointly for sound events with one or two active sound sources.

To improve the performance of the model in a polyphonic environment, it is proposed in some
research to perform the SELD task through various attention mechanisms. Among them is the squeeze-
and-excitation (SE) network [30], in which the feature vectors of each channel are compressed through
squeeze modules and then the feature representations of each channel are weighed through excitation
modules. Huang et al. [31] combined the SE module with the ResNet in the SELD task to predict
categories and locations in a polyphonic environment. However, the overall performance of the model
remained unsatisfactory. Subsequently, Woo et al. [32] proposed the Convolutional Block Attention
Module (CBAM) after the SE module, which added spatial attention based on channel-wise attention.
Kim et al. [33] applied CBAM to SED tasks, which had higher computational complexity. However,
there was only a slight improvement in the accuracy of recognition. Xu et al. [34] proposed the CECA
model, which integrated an Efficient Channel Attention (ECA) [35] based on SE upgrade,
incorporating it into residual blocks for use in SELD to capture channel-wise information in feature
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maps. Although the application of the above attention mechanisms improves the performance of the
model to a certain extent, ECA and SE are restricted to considering the importance of each channel.
Also, CBAM is capable only of capturing local information, and long-range dependence information
cannot be obtained. The predictive performance is slightly improved for the three types of attention
modules. These constraints underscore the need for further research and the development of more
robust attention mechanisms for SELD models.

In summary, despite significant progress made in SELD research, there remain challenges in daily
life due to the presence of polyphony and noise interference. By achieving the simultaneous detection
and localization of multiple sound events, it is achievable to distinguish between noise and non-noise
events, which is worthy of further research.

3. Multiple Attention Fusion ResNet

The overall flow chart is shown in Figure 1. First, the features of the sound signal were extracted,
which were sent to the proposed Multiple Attention Fusion ResNet (MAFR) for training. Then, the
network outputs the sound category and the sound location. To enhance the performance of SELD in
a polyphonic environment, this paper proposes the MAFR, the network structure of MAFR is shown
in Figure 2.

Input audio  Audio Features Model Model output Metrics

Feature . e { F-score

Training Information
Extraction and r Error Rate

S
g
Testing L
D

Localization Localization Recall
Information Localization Error

Figure 1. Overall flow chart of polyphonic sound event location and detection.

The network structure of MAFR is shown in Figure 2. A robust feature extraction capability serves
as the cornerstone for SELD. While convolutions in the feature extraction process mainly attend to
local information, SELD tasks demand consideration of both local and global features. In this paper,
ResNet34 and Bidirectional Gated Recurrent Units (BIGRU) are selected as the basic network model.
Gated Channel Transformation (GCT), Split Attention (SA), and Coordinate Attention (CA) are added
to the basic residual block, where GCT is added to realize the effective modeling of sound context
information and inter-channel information, SA is added to capture cross-channel information, and CA
is added to enable the model focus both on channel and location information of the sound event.
Through the effective combination of GCT, SA, and CA, the SELD performance in a polyphonic
environment has been improved.
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Figure 2. The overall structure of MAFR. Blue: Convolution block with kernel size 3,
Green: Attention, grey: Basic residual block; CA: Coordinate Attention, SA: Split
Attention, GCT: Gated Channel Transformation, Conv Block: Conv 3 x 3 + BN + ReLLU,
dashed arrows indicate the specific structure of a block.

3.1. Feature extraction

The Spatial cue-augmented log-spectrogram (Salsa) is used as the input feature for MAFR with
a shape of [7, 200, 4800]. Where “7” represents the number of sound channels, “200” indicates the
Mel-frequency range, and “4800” signifies that the audio is divided into 4800 segments. Salsa consists
of two components: The log linear-frequency spectrogram of the first four-channel sound signals, and the
normalized intensity vector of the spatial covariance matrix for the remaining three-channel sound signals.
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Figure 3. Salsa feature.
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The log linear-frequency spectrogram contains information about the energy distribution of sound
in frequency and time, which can help distinguish different sound events, and the normalized intensity
vector of the spatial covariance matrix contains information such as inter-channel amplitude and phase
differences, which facilitate source localization. In conclusion, Salsa contributes to the extraction of
multi-channel features and the differentiation of overlapping sounds. The visualization of Salsa is
presented in Figure 3.

3.2. Basic network architecture

This paper used ResNet as the basic network [36]. The optimized ResNet has 34 layers and mainly
consists of convolutional blocks and basic residual blocks with skip connections. In the convolutional
block, we replace the 7 X 7 kernel convolutional layer with two 3 X 3 kernel convolutional layers,
aiming to improve the model’s generalization ability. Specific modifications are depicted in Figure 4.

I
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I
Conv7X7-BN-ReLU| —~—~—~~- > i i
| I

|
| Conv3x3-BN-ReLU i
I
CA Y [ |
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Resnet BasicBlock
. Resnet BasicBlock

Figure 4. Structure diagram of partial changes in the residual network.
3.3. Gated Channel Transformation

In real-life scenarios, sound signals are complex, uncertain, and contain multiple polyphony. The
presence of polyphony significantly impacts the performance of SELD. Inspired by Yang et al. [37],
GCT enables more effective modeling of inter-channel and contextual information. In this paper, the
GCT is positioned as shown in Figure 2.

The structure of the GCT module is shown in Figure 5. First, the global context information for
each channel is aggregated and combined with the trainable parameter a., and the importance of
different channels is controlled. When «a, approaches 0, the features of the c-th channel will not be
propagated to the subsequent convolutional layers. Second, to reduce computational complexity, [, —
norm is used to establish competition among neurons. Finally, a gate mechanism is adopted to adapt
the original features.

se = aclxcll, (1)
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$c = f(C,sc,€) )
X = xc[1 + tanh(y:S + Bo)] 3)

where x. is the corresponding input feature of the c-#h channel, a. is a trainable parameter, s, is
the output value after the global control of the context, ¢ is a constant close to 0 and is used to avoid
the inverse being 0, C is the corresponding channel, f(-) denotes channel normalization operation,
B. and y, are trainable parameters, and X, is the output of the c-#k channel after GCT processing,
X 1s the output transformed by the entire GCT module.
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input-x, | s 13, 125 5o -5 [5] 9
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Figure 5. Gated Channel Transformation module.

By combining normalization and the gating mechanism, we model the competitive or cooperative
relationships between different channels. When the specific channel’s gating weight is activated (non-
noise) and competes with features from other channels, it emphasizes that channel’s features, leading
to the attenuation of other channels and the reduction of noise interference. When polyphony occurs,
the channels cooperate, combining multi-channel information for prediction, enabling polyphonic
differentiation.

A richer representation of sound features can be achieved with GCT, which determines whether
or not to pass the information of that channel to the convolutional layer. In addition, noisy channels
and segments are suppressed, the ability to distinguish between different polyphony is enhanced, and
directional interference is reduced, thus improving the predictive performance of the model.

3.4. Split Attention Module

Sound in complex environments is subject to noise and other interference. To accurately realize
SELD, it is crucial to distinguish polyphony. SA combines the channel-wise attention strategy with a
multi-path network layout, which can capture cross-channel feature correlations, in sound signals to
enhance the ability of distinguishing polyphony. This paper incorporates the SA [38] module into the
residual basic blocks. First, the input features are divided into K groups, and then each group is divided
into R subgroups, a total of G = KR subgroups of features are obtained, the weights of K groups
weights were calculated and the corresponding features are fused. The R groups’ intermediate features
are obtained through this splitting transformation. The structure of the Split Attention Module is shown
in Figure 6.
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Figure 6. k-th subgroups Split Attention Module.

The R groups’ intermediate features s¥ are summed up and grasp the global context information

by globally pooling. The assignment of weights a¥(c) between feature channels are performed
according to the activation function, and the corresponding intermediate features are interacted to
generate the corresponding weights V¥ for each group.

A 25:1 a{c(c)UR(k—l)+i 4)
V = concat{V1,V?,---V&} ()

where Ug(k—1)+; 1s the k-th input, where ak(c) denotes inter-channel weights in the k group
concat{-} denotes concatenated along the channel dimension.
X.=V+x (6)

In a polyphonic environment, by splitting and combining the features along the channel
dimension, corresponding channel weights VX are obtained to measure the importance of each
channel. This process enables the separation of various sound events occurring simultaneously. The
SA module is placed alongside the GCT convolutional layer, and the specific integration of the modules
is depicted in Figure 6. The outputs of the SA, the first convolutional layer, and the outputs through
GCT and the second convolutional layer are summed together, as described in Eq (7).

£=x+2+ % (7)

where x denotes the input raw features, X; denotes the features after passing through the SA module,
X; denotes the features after passing through the GCT module.
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3.5. Coordinate Attention Module

The sound features are further processed by both the SA module and the GCT module, which
suppresses noises and distinguishes overlapping sounds. However, there exists an issue of incomplete
separation of overlapping sounds.

To enhance the model’s representation capability and balance the importance of each channel
feature, we adopt the CA [39]. CA not only balances the importance of various channels but also
captures favorable spatial feature information. The structure of the CA module is illustrated in
Figure 7.

l input
Residual CxHxW

CxHxI ’XAvgpoolHYAvgpool‘ Cxxw
2ty |zrow

‘ Concat—iConV2d ‘ Clr xIx(W+H)
CxHXI ’ BN+Non-liner ‘ Clr xIX(W+H)
v

CxHxl | Convad || Comvad | CxIxWW

| Sigmoid || Sigmoid | cxixw

\xj:\\w Aw

CoiIy
output

Figure 7. Structure diagram of Coordinate Attention module.

The CA decomposes the channel attention into two one-dimensional feature encoding processes,
aggregating features along two spatial directions. In the time domain, it captures long-range
dependencies (Z(h)), while in the frequency domain, it preserves precise positional information
(Z¥ (w)). The feature map is encoded into a pair of attention maps that are direction-aware and
position-sensitive, thereby forming feature maps with specific directional information and accurately
highlighting regions of interest. To fully utilize the extracted positional information and handle the
inter-channel relationships, the CA module concatenates the outputs from two directions after two
pooling layers. The dimension is consistent with the input dimension through the convolution layer
with convolution kernel 1, and the output weights in both directions are as follows.

g" = o(Fu(f") (8)

w

g¥ =o(E,(f") 9)

where f"and f% denote the tensors in two spatial directions, F, and F), are both convolution
transformations with convolution kernel 1, and ¢ is the sigmoid function.
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By weighting the horizontal and vertical directions together, the final feature contains inter-
channel information, horizontal spatial information, and vertical spatial information.

Ye(@,)) = x(1,)) x g2 (i, 1) X g2 (i, /) (10)

where g"(i,j) and g¥(i,j) denote the feature weights through the horizontal and vertical
directions, respectively, x.(i,j) denotes the input to the CA, and y.(i,j) denotes the output through
the CA module, where i € (0,W), j € (0,H), W and H are the width and height of the feature
map, respectively.

The spatial information is complemented with the channel information and applied to the input
feature map to enhance the representation of the object of interest. In a polyphonic environment,
multiple sound events may occur simultaneously. By combining spatial information in both horizontal
and vertical directions, the focus is on local positions to determine if they contain interference. This
helps reduce the probability of erroneous predictions in a polyphonic environment. In this proposed
method, the CA is integrated even in shallow layers of the network, as shown in Figure 2. Applying
CA in the shallow layers allows for the initial learning of both channel information and positional
information. This leads to the preliminary reduction in noise interference and separates overlapping
sound events. Moreover, the CA module is embedded after the GCT and SA modules within the basic
residual blocks.

4. Dataset and experimental parameters
4.1. Dataset

To verify the model’s generalization ability in a polyphonic environment, we conducted
experiments using the TAU-NIGENS Spatial Sound Events 2020 [40] and TAU-NIGENS Spatial
Sound Events 2021 datasets [41]. The sound events included different categories of sounds such as
alarms, dog barks, etc. There were 14 sound categories in the 2020 dataset and 12 sound categories in
the 2021 dataset. The official data provided two different acquisition methods: 4-channel microphone
acoustics and first-order ambisonics acoustics. We used the first-order ambisonics audio format for
model training and evaluation. Any sound events in the data that are different from the specified
categories will be considered interfering noises, including sounds of the running engine and the
burning fire.

Both datasets have a common characteristic of being one-minute long and non-continuous; the
differences between them include the number of polyphony, the presence of directional interference,
and event durations. Relevant dataset details are provided in Table 1, where “long” and “short”
represent whether the duration of a single sound event is long or short.

1) Polyphony: In the former dataset, there is typically one sound event per second, with a
maximum of two overlapping sound events at the same moment. In contrast, the latter dataset may
have two to three different sound events occurring simultaneously at a given moment.

2) Interfering noises: The former has no directional noise interference.

3) Duration: The sound events in the former dataset have relatively longer durations compared to
the sound events in the latter dataset, which tend to have shorter durations.

Data visualization is shown in Figures 8 and 9. Top to bottom, they are Waveform, Spectrogram, and
Mel Spectrogram, and the fourth subgraph represents sound events occurring within the 60 s, the length
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of the short horizontal line represents the duration, and the color represents the sound category. “2020”
in Table 1 represents the TAU-NIGENS Spatial Sound Events 2020 dataset, and “2021” in Table 1
represents the TAU-NIGENS Spatial Sound Events 2021 dataset.

Table 1. Detailed information about the two datasets.

Dataset Audio sample Total number ~ Number of sound events Duration Directional
name duration  number of events occurring at the same time interferers
1 2 3

2020 60 s 600 267,855 181,412 86,443 0 Long None
2021 60 s 600 302,119 125,303 123,808 53,008 Short Exist

° Waveform

3 0.21
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Figure 8. Visualization of TAU-NIGENS Spatial Sound Events 2020.
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Figure 9. Visualization of TAU-NIGENS Spatial Sound Events 2021.
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4.2. Experimental process and parameter design

In this experiment, the Adam optimizer is used for model training, with a learning rate of 0.0003
for the first 70% of epochs and 0.0001 for the remaining 30% of epochs. The batch size is 16, and the
epochs are 90.

The comparative methods, Baseline, AD-YOLO, Salsa, and CECA, are all intended for DCASE.
The parameters in the training process of the comparative methods are consistent with the training
parameters in the corresponding papers. All the results of comparative methods are obtained from the
corresponding paper. It should be noted that the experiments of the CECA model are conducted only
on the TAU-NIGENS Spatial Sound Events 2021 dataset in the original paper. In this paper, the CECA
model is reproduced and conducted on the TAU-NIGENS Spatial Sound Events 2020 dataset to get
corresponding results, with the same parameters provided in the corresponding paper.

4.3. Evaluation metrics

Multiple evaluation metrics can better evaluate the model performance [42]. In this paper, F
Score (F1-Score), Error Rate (ER) Localization Frame Recall (LR), and Localization Error (LE) are
used to evaluate the SELD performance of models [43], F; and ER for the detection task and LR and
LE for the localization task. The calculation formulas are as follows: Eqs (11) to (14).

2yk_, TP(K)

b = S Triorsk R0 TSE L NG

(11)

Yk=y FPUO)+3K_, FN(K)
ER = 12
YK TPR)+IK_ FP(R)+Xk_ TN(k)+ XK _, FN (k) (12)

where True Positive (7P) refers to the number of correctly identified positive samples, False Positive
(FP) refers to the number of incorrectly identified positive samples, and False Negative (FN) refers to
the number of incorrectly identified negative samples.

1
LE = S oE Y K_H(DOAK, DOAY) (13)

where K denotes the frame length, DOAX denotes the location true angle of the sound event, DOAX
denotes the location prediction angle of the sound event, and DX denotes the total number of angles
DOAK at the k-th moment, H(-) is the Hungarian algorithm.

LR = BA=DE) (14)
where DX denotes the total number of angles DOAX at the k-th frame, DX denotes the total number
of angles DOAK at the k-th frame. If DX = DX then 1(D¥ = DX) = 1, K denotes all the moments.
The subscript R denotes the true value and the subscript P denotes the predicted value.

The SED and SSL evaluation metrics are combined to assess the overall model performance using
the value indicated in Eq (15).

LE
ER+(1—F; 1-LR)+——=
+(A=F)+(1-LR)+-o

SELD = (15)

4
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When F, approaches 1, and ER approaches 0, it indicates more accurate sound event category
predictions. When LR approaches 1 and LE approaches 0, it signifies more accurate event localization
predictions. it indicates the better overall performance of SELD.

5. Analysis of experimental results
5.1. Comparative experiment

To validate the effectiveness of the proposed MAFR in a polyphonic environment, we conducted
comparative experiments with Baseline, AD-YOLO, Salsa, and CECA methods. The Baseline is the
official DCASE baseline for the SELD task in 2020 and 2021. The AD- YOLO model utilizes the
YOLO network architecture for SELD tasks. Salsa combines pannresnet [44] and BIGRU as the
network architecture. CECA is an improvement over Salsa, adding CA and ECA modules, and adopting
the L1 loss function as the loss function. The results of the comparative experiments can be found in
Tables 2 and 3.

In the following tables (from Tables 2 to 7), the up arrows denote that larger values indicate better
model performance in the corresponding columns; conversely, the down arrows denote that smaller
values indicate better model performance in the corresponding columns.

Table 2. Comparative experimental results of TAU-NIGENS Spatial Sound Events 2020.

Method ER | Fi 1 LE | LR 1 SELD |
Baseline [15] 0.720 37.40% 22.80° 60.70% 0.466
AD-YOLO [18] 0.482 61.27% 8.60° 69.75% 0.305
Salsa [24] 0.338 74.80% 7.90° 78.40% 0.226
CECA [34] 0.372 73.40% 8.57° 78.20% 0.225
MAFR 0.336 74.80% 8.05° 78.65% 0.212

Table 3. Comparative experimental results of TAU-NIGENS Spatial Sound Events 2021.

Method ER | Fi 1 LE | LR 1 SELD |
Baseline [15] 0.690 33.90% 24.10° 43.90% 0.690
AD-YOLO [18] 0.519 54.35% 13.54° 64.70% 0.351
Salsa [24] 0.404 72.40% 12.51° 72.70% 0.255
CECA [34] 0.393 72.00% 11.71° 72.80% 0.253
MAFR 0.369 73.53% 13.85° 74.91% 0.240

Table 2 shows the experimental results of the TAU-NIGENS Spatial Sound Events 2020 dataset.
MAFR has shown the best overall performance among these methods, where ER is 0.336, LE is 8.05°,
Fi1s 74.8%, and LR is 78.65%. Specifically, MAFR shows significant improvement in F; and LR
(13.53% and 8.9%) compared with AD-YOLO. MAFR increases by 0.25% in LR compared with Salsa
and achieves an increase in ER by 0.036 compared with CECA. These demonstrated that the MAFR
is superior in SELD tasks when one or two sound events occur at the same time.

Table 3 shows the experimental results of the TAU-NIGENS Spatial Sound Events 2021 dataset.
MAFR had gain best overall results, where ER is 0.369, LE is 13.85°, F1 is 73.53%, and LR is 74.91%.
MAFR achieved the best performance in ER, Fi, and LR. In particular, MARF shows tremendous
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performance improvement compared with AD-YOLO, in which ER decreased by 0.15, SELD
decreased by 0.111, F: increased by 19.18%, and LR increased by 10.21%. Compared with CECA,
GCT, and SA modules added to MAFR, F increased by 1.53% and LR increased by 2.21%. It shows
that the GCT and SA in MAFR are effective for SELD in multiple polyphonic. Compared to Salsa, the
proposed MAFR has the same F as Salsa’s model in the TAU-NIGENS Spatial Sound Events 2020
dataset; in the TAU-NIGENS Spatial Sound Events 2021 dataset, the proposed MAFR has an increase
in F1 by 1.13%. From the experimental results, it can be seen that the model shows more significant
improvement in the TAU-NIGENS Spatial Sound Events 2021 dataset than in the TAU-NIGENS
Spatial Sound Events 2020 dataset when compared with the state-of-the-art methods. In conclusion,
the proposed MARF outperforms the state-of-the-art methods in SELD tasks under multiple polyphony
environments with directional interference.

5.2. Analysis of the CA module

To verify the effectiveness of the CA module, we use the optimized ResNet34 (Section 3.1) as
the basis network. Four attention mechanisms (SE, CBAM, ECA, and CA) are combined with it for
SELD. Each attention module is placed at the position of the green box in Figure 2, and the
experimental results are presented in Tables 4 and 5. In the table header, “2020” represents the TAU-
NIGENS Spatial Sound Events 2020 dataset, and “2021” represents the TAU-NIGENS Spatial Sound
Events 2021 dataset.

Table 4. Comparison of the effects of four different attention models (2020).

Method ER | Fi 1 LE | LR 1 SELD 1
None 0.375 71.66% 8.85° 76.60% 0.235
CBAM 0.362 72.84% 8.98° 77.70% 0.227
SE 0.364 72.95% 8.32° 77.29% 0.227
ECA 0.375 72.05% 9.29° 77.04% 0238
CA 0.350 74.39% 8.88° 78.58% 0.217

Table 5. Comparison of the effects of four different attention models (2021).

Method ER | Fir 1 LE | LR 1T SELD 1
None 0.422 69.46% 14.23° 72.66% 0.270
CBAM 0.407 69.93% 14.90° 71.87% 0.268
SE 0.403 70.52% 14.86° 73.23% 0.261
ECA 0.410 69.45% 15.42° 72.73% 0.268
CA 0.394 70.92% 14.84° 72.40% 0.261

The results show that compared with the model without adding the attention module, the model
performance is improved after adding CA, CBAM, SE, and ECA, respectively. CA can both focus on
channel information and capture the direction perception of each sound source under multiple polyphonic
environments. In the TAU-NIGENS Spatial Sound Events 2020 dataset, compared with not adding
attention, £ increased by 2.73% and LR increased by 2% when adding CA. In the TAU-NIGENS
Spatial Sound Events 2021 dataset, compared with not adding attention, F: increased by 1.46% after
adding CA, and the performance of adding the CA module is optimal. The results show that only a
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small performance improvement is achieved in the SELD task when SE or ECA is added. Since SE
and ECA modules only focus on the channel information and cannot completely extract all the useful
information. CBAM is unable to obtain the global spatial information, and experiments show that the
CABM module is not suitable for this task. In summary, in the SELD task, the use of the CA module
enables the whole network to better distinguish polyphony and reduce noise interference by
comprehensively learning the channel information and location information.

5.3. Ablation study

To verify the impact of each module in the proposed MAFR, the following ablation experiments
are conducted. The basic network structure is called ResNet34-Bigru, abbreviated as RB (7 X 7). To
replace the convolutions in RB (7 X 7) with two convolutional layers using a kernel size of 3 X 3, the
resulting network is referred to RB. SA, CA, and GCT modules are introduced to RB to form RBS,
RBC, and RBG, respectively. Then, the CA module is incorporated into RBS to get RBSC. Finally, the
proposed MAFR is constructed by integrating GCT into RBSC. To assess the effectiveness of all
proposed modules, ablation experiments are conducted. The results are presented in Tables 6 and 7.

Table 6. TAU-NIGENS Spatial Sound Events 2020 ablation experiment.

Method ER | Fi 1 LE | LR 1 SELD 1
RB (7 X 7) 0.459 67.00% 14.58° 72.10% 0.287
RB 0.375 71.66% 8.85° 76.60% 0.235
RBS 0.367 72.32% 9.06° 77.05% 0.231
RBG 0.345 74.56% 8.60° 78.89% 0.215
RBC 0.349 74.80% 8.38° 78.23% 0.216
RBSG 0.347 74.80% 8.31° 78.31% 0.214
MAFR 0.336 74.80% 8.05° 78.65% 0.212

Table 7. TAU-NIGENS Spatial Sound Events 2021 ablation experiment.

Method ER | Fir 1 LE | LR 1T SELD 1
RB (7 X 7) 0.457 66.80% 15.72° 71.00% 0.291
RB 0.422 69.46% 14.23° 72.66% 0.270
RBS 0.412 69.80% 15.43° 72.30% 0.269
RBG 0.391 71.84% 14.28° 73.93% 0.253
RBC 0.396 70.93% 15.06° 73.31% 0.259
RBSG 0.394 71.50% 14.90° 73.50% 0.255
‘MAFR 0.369 73.53% 13.85° 74.91% 0.240

Table 6 shows that RB outperformed RB (7 X 7), where ER and LE decreased by 0.084 and 5.73°,
respectively; and /7 and LR increased by 4.66% and 4.5%, respectively. The comparison indicates that
using multiple layers with smaller convolutional kernels to replace one layer with a large convolutional
kernel can enhance the ability to extract key sound features. Compared to RB, RBC reduced the ER
and LE by 0.026 and 0.47°, respectively, while increasing the F; and LR by approximately 3.14%
and 0.65%, respectively. It demonstrated that CA is helpful in SELD tasks. Compared to RB, the F
and LR of RBS improved by 0.66% and 0.45%, respectively; and the F; and LR of RBG improved
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by 2.9% and 2.29%, respectively. RBS and RBG both gain performance improvement compared with
RB. Additionally, when CA, SA, and GCT were simultaneously integrated into RB, the ER, and LE
were reduced by 0.011 and 0.26°, respectively, while the /7 remained unchanged, and the LR increased
by 0.34%.

Table 7 shows that all modules are effective in SELD under a complex polyphonic environment.
Compared to RB (7 X 7), the RB model reduced the ER by 0.035 and increased the F7 and LR by 2.66%
and 1.66%, respectively. Compared with RB, the RBC model reduced the £ER by 0.026 and increased
the F7 and LR by 1.47% and 1.63%, respectively; while the performance of RBS and RBG also showed
improvement. Adding both CA and SA to RB has better performance than adding only one of the
modules. It is worth noting that when SA is added to RBC, the model performance improves more
significantly in the environment with multiple polyphony and noise directional interference than in the
environment with one or two polyphony and no noise directional interference. When CA, SA, and
GCT were added to RB, the ER and LE were 0.369, 13.85°, F; and LR were 73.53% and 74.91%,
respectively. MAFR showed the best performance.

In summary, when the duration of sound events is short and there are multiple overlapping sound
and noise directional interferences, SA can increase the receptive field of the whole model; GCT can
connect the context, which reduces the number of mispredictions of brief sound events and weakens
the interference of polyphonic and noises on the model. Through CA, the channel information and direction
and position information of sound features can be captured. Furthermore, the effective combination of
SA, GCT, and CA with ResNet34 can further improve the performance of the SELD task.

6. Conclusions

Due to the interference of polyphony and noise, accurately predicting the sound event category
and the occurrence locations in SELD becomes challenging. In this paper, we propose the MAFR to
achieve satisfactory performance in SELD task under multiple polyphonic environments with noise-
induced interference, which combines GCT, SA, and CA with ResNet34. Experimental results
demonstrate that GCT selectively captures spatial features, enabling a better extraction of global
information. SA increases the model’s receptive field, facilitating joint learning of cross-channel
features. CA enhances feature complementarity between channel and positional features. On dataset
TAU-NIGENS Spatial Sound Events 2020, MAFR achieved ER and LE of 0.336 and 8.05°,
respectively; F7 and LR of 74.80% and 78.65%, respectively. On dataset TAU-NIGENS Spatial Sound
Events 2021, MAFR achieved ER and LE of 0.369 and 13.85°, respectively; F7 and LR of 73.53%
and 74.91%, respectively.

In summary, in multiple polyphonic environments with noise-induced interference, MAFR
significantly outperforms the state-of-the-art methods in terms of comprehensive performance in
SELD task. Moreover, the MAFR also shows competitive performance compared to the state-of-the-
art methods in a single polyphonic environment. For future work, we would like to focus on the SELD
task with moving sound sources.
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