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Abstract: In infectious disease models, it is known that mechanisms such as births, seasonality in
transmission and pathogen evolution can generate oscillations in infection numbers. We show how
waning immunity is also a mechanism that is sufficient on its own to enable sustained oscillations.
When previously infected or vaccinated individuals lose full protective immunity, they become par-
tially susceptible to reinfections. This partial immunity subsequently wanes over time, making indi-
viduals more susceptible to reinfections and potentially more infectious if infected. Losses of full and
partial immunity lead to a surge in infections, which is the precursor of oscillations. We present
a discrete-time Susceptible-Infectious-Immune-Waned-Infectious (SIRWY) model that features the
waning of fully immune individuals (as a distribution of time at which individuals lose fully immunity)
and the gradual loss of partial immunity (as increases in susceptibility and potential infectiousness
over time). A special case of SIRWY is the discrete-time SIRS model with geometric distributions
for waning and recovery. Its continuous-time analogue is the classic SIRS with exponential distribu-
tions, which does not produce sustained oscillations for any choice of parameters. We show that the
discrete-time version can produce sustained oscillations and that the oscillatory regime disappears as
discrete-time tends to continuous-time. A different special case of SIRWY is one with fixed times
for waning and recovery. We show that this simpler model can also produce sustained oscillations.
In conclusion, under certain feature and parameter choices relating to how exactly immunity wanes,
fluctuations in infection numbers can be sustained without the need for any additional mechanisms.
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1. Introduction

Sustained oscillations in the number of infections have been observed for some infectious diseases.
A classic example is the highly regular biennial pattern in measles case numbers in England and Wales
from 1950 to 1967 (depicted in Fine and Clarkson, 1982 [1]), which is driven by a combination of
births and seasonality of transmission related to the opening of school terms.

Mathematically, sustained oscillations can be demonstrated by relatively simple models. Such mod-
els focus on a key mechanism such as seasonality in transmission (Aron and Schwartz, 1984 [2]), births
and vaccinations (Earn et al., 2000 [3]), pathogen evolution through time scale separation of within and
between season dynamics (Andreasen, 2003 [4]) or in combination with seasonality forcing (Dushoff

et al., 2004 [5]), changes in human social behavior (d’Onofrio and Manfredi, 2009 [6]), importations of
infectious individuals (Silva and Monteiro, 2014 [7]), heterogeneity in transmission due to chronologi-
cal age (Kuniya and Inaba, 2023 [8] in this special issue) and change in behavior of healthy individuals
due to social pressure (Baccili and Monteiro, 2023 [9]). These mechanisms can drive a surge in in-
fections through three main methods: (i) replenishment of susceptible individuals, (ii) replenishment
of infectious individuals and (iii) variation of the transmission parameter. Sustained oscillations are
possible in these models for certain choices of parameter values.

We argue that waning immunity is also a mechanism that can, by itself, produce sustained oscilla-
tions in infection numbers. For diseases with waning immunity, previous infection or vaccination only
confers a temporary period of full protection against reinfection. The duration of protection ranges
from a few weeks or months for the Omicron variant of SARS-CoV-2 (Burkholz et al., 2023 [10] and
Bobrovitz et al., 2023 [11]), to possibly a few years for pertussis (Wendelboe et al., 2005 [12]). As
fully immune individuals wane, more individuals become susceptible to infection and more infections
occur. Eventually, fewer susceptibles remain and the number of infections falls. When new individuals
lose full immunity, replenishment of susceptibles occurs and the cycle repeats.

Here, we present a discrete-time waning immunity model (SIRWY model) that features the afore-
mentioned loss of full immunity as a general population waning distribution, where the proportion of
fully immune individuals who wane can be specified on a daily basis. In this Susceptible-Infectious-
Immune-Waned-Infectious (SIRWY) model, S and I represent susceptible and infectious individuals
without prior immunity, R represents fully immune individuals and W and Y represent waned (suscep-
tible) and infectious individuals with prior immunity.

A special case of SIRWY is the Susceptible-Infectious-Recovered-Susceptible (SIRS) model
with geometric distributions for waning and recovery. This is the discrete-time counterpart to the
continuous-time classic SIRS model with exponential distributions (Hethcote, 1976 [13]):

dS
dt

= ωR − βS I

dI
dt

= βS I − γI

dR
dt

= γI − ωR.

(1.1)

In these equations, ω is the waning rate, β is the transmission rate per infectious individual and γ is the
recovery rate. For all parameter values, the number of infections either tends to zero or the endemic
equilibrium via exponential decay or damped oscillations (see Hethcote, 1976 [13] or a different proof
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in §6 of this paper). A variation of the classic SIRS is the SIR1...RnS model with Erlang distribution
(sum of exponentials), in which individuals wait in the additional immune sub-compartments before
becoming susceptible. It has been shown that sustained oscillations are possible for the SIR1...RnS
model when n ≥ 3 (Hethcote et al., 1981 [14]). In this paper, we show that the discrete-time version
of SIRS with geometric distributions can generate undamped oscillations, and the oscillatory regime
disappears when discrete-time tends to continuous-time.

A different special case of SIRWY is one with homogeneous waning and recovery distributions.
This model has fixed waning and recovery times, in which individuals spend exactly the same number
of days fully immune and are infectious for exactly same number of days if infected. Due to this fixed
delay in terms of time spent in the immune compartment, surges in susceptibles occur at fixed intervals.
We show that sustained oscillations can be produced, similar to continuous-time models with delays
(Hethcote et al., 1981 [14], Diekmann and Montijn, 1982 [15] and Kyrychko and Blyuss, 2005 [16]).

Besides having a general waning distribution, the full SIRWY model features another effect of wan-
ing immunity, the loss of partial immunity, which also contributes to oscillatory dynamics. After losing
full immunity, individuals still have partial immunity that reduces their susceptibility to reinfection and
potentially also their infectiousness if infected. However, partial immunity wanes over time and indi-
viduals become more susceptible and infectious. The accumulation of susceptibility and infectiousness
in the population leads to a surge in infections. Similar to the loss of full immunity, this results in a
cyclical pattern in infection numbers.

While waning immunity is a mechanism that can generate oscillations, it does not always do so as it
depends on the choice of waning immunity effects (losses of full and partial immunity) and how exactly
these effects are represented in the model (discrete/continuous time, population waning distribution,
changes in susceptibility and infectiousness over time). As a general model which also encompasses
different simpler sub-models, SIRWY allows an appropriate model to be chosen based on what is
currently known about the infectiousness of the disease and the effects of waning immunity in the
population, before scaling up to the full model when needed. Furthermore, for model implementation,
discrete-time SIRWY is a system of difference equations, which makes numerical simulations easier
to perform as compared with integro-differential equations in continuous-time.

The rest of this paper is structured as follows. We start by presenting the Susceptible-Infectious-
Immune-Waned-Infectious (SIRWY) model in §2, before presenting a stability analysis about the
disease-free and endemic equilibria in §3. We then proceed to recover two sub-models of the SIRWY
model, one with fixed waning and recovery times in §4 and another with geometric distributions for
waning and recovery in §5. For these sub-models, we perform bifurcation analysis, on top of the
stability analyses about the disease-free and endemic equilibria. We then study the continuous-time
exponential SIRS model (equation 1.1) in §6, before making the connection between this model and
its discrete-time counterpart in §7 to show that the oscillatory regime disappears in continuous-time.

2. The RWY model

Since our goal is to understand how waning immunity shapes the long term dynamics of a disease,
we consider a population comprising individuals with some degree of immunity because all individ-
uals would have been infected at least once in the long run. Furthermore, as the focus is on waning
immunity, other mechanisms that replenish susceptibles such as births are not included (similar to how
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Figure 1. Immune-Waned-Infectious (RWY) model for a population with prior immunity.

the evolutionary model is constructed in Pease, 1987 [17]). Since we are also not considering pathogen
evolution, this means that all properties of the disease related to infection, recovery and waning of
immunity are unchanged over extended periods. Let Rt, Wt and Yt denote the proportions of the pop-
ulation who are in the fully immune, waned and infectious compartments respectively on day t. Here,
we always discuss in terms of proportions of population in each compartment rather than exact num-
bers. For completeness, we give the full Susceptible-Infectious-Immune-Waned-Infectious (SIRWY)
model in Appendix A but our focus is on the Immune-Waned-Infectious (RWY) model (Figure 1) for
the rest of the paper.

Rt,0 → … → Rt+60,60 → Wt+61,61 → … → Wt+150,150 → Yt+151,151 → … → Yt+160,160 → Rt+161,0 → …

R compartment
(fully immune)

W compartment
(partially immune)

waned individuals 

have susceptibility that 

changes with τ

Y compartment
(partially immune) 

infectious individuals 

have infectiousness 

that changes with τ

Figure 2. Example of how an individual moves between compartments. The second com-
ponent of the subscript is the time since recovery τ, which starts from 0, increases and then
resets to 0 when the individual rejoins the R compartment. Subtracting the second subscript
from the first subscript gives the day of recovery t.

Each compartment in the model (R, W and Y) is further divided into sub-compartments based on
time since most recent recovery τ (first introduced by Kermack and McKendrick, 1932 [18]) with
respect to day t. For example, Rt,τ denotes the proportion of population in the immune R compartment
on day t and day τ since recovery. In this notation, we can deduce the day of recovery by subtracting
the second subscript from the first subscript (day t − τ for Rt,τ).

The use of time since recovery τ allows us to track the total number of days an individual spends in
the R, W and Y compartments. Time since recovery τ starts from day 0 when the individual first joins
the R compartment and increases with the day as the individual progresses through the waned W and
infectious Y compartments. The value of τ then resets to 0 when the individual rejoins the R compart-
ment (see Figure 2 for an example). This formulation tracks a full RWY cycle (R→W→Y→R→ · · · ),
not just the time spent in each compartment (Inaba, 2001 [19]).

We cover the entire immune spectrum as we have the fully immune R compartment and the waned
W and infectious Y compartments with partial immunity based on each day τ since recovery. We do
not have the fully susceptible S in the RWY model but it is present in the full SIRWY model. The
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R compartment represents full immunity against infection, unlike that in Kermack and McKendrick
(1932) [18], where R individuals are partially susceptible to infection. Partial immunity provides a
reduction in susceptibility ατ of waned W individuals and a reduction in infectiousness χτ of infectious
Y individuals. Since the susceptibility of waned individuals depends on the time since recovery τ, there
is no need to use the method of stages to partition susceptibles into a fixed number of sub-compartments
S1, S2, ..., Sn with n different susceptibilities.

Table 1. Variables, indices and parameters of the RWY model.

Symbol Variable Symbol Index Symbol Parameter
R immune θ time since infection φθ fraction still infectious

W waned θ + 1 max infectious period ξθ infectiousness

y newly infected τ time since recovery ζτ fraction still immune

Y infectious τ + 1 max immune period χτ reduction in infectiousness

F force of infection τ̃ max value of τ ατ reduction in susceptibility

The RWY model, along with a summary of terms in Table 1, is described by the following system
of difference equations,

Rt+1,0 =
∑θ
θ=0(φθ − φθ+1)yt−θ

Rt+1,τ = ζτRt−(τ−1),0 for τ ∈ {1, · · · , τ}

Wt+1,1 = (ζ0 − ζ1)Rt,0

Wt+1,τ = Wt,τ−1 − yt+1,τ + (ζτ−1 − ζτ)Rt−(τ−1),0 for τ ∈ {2, · · · , τ + 1}

Wt+1,τ = Wt,τ−1 − yt+1,τ for τ ∈ {τ + 2, · · · , τ̃ − 1}

Wt+1,τ̃ = Wt,τ̃−1 + Wt,τ̃ − yt+1,τ̃

Ft =
∑θ
θ=0

∑τ̃
τ=2 ξθφθyt−θ,τ(1 − χτ)

yt+1,τ = (1 − ατ−1)Wt,τ−1Ft for τ ∈ {2, · · · , τ̃ − 1}

yt+1,τ̃ = [(1 − ατ̃−1)Wt,τ̃−1 + (1 − ατ̃)Wt,τ̃]Ft

(2.1)

and the conservation of individuals means that

Rt + Wt + Yt = 1. (2.2)

Each compartment (R, W and Y) can be defined in terms of their corresponding sub-compartments
(see Table 2).

In the RWY model (equation 2.1), the newly infected y is used instead of the infectious Y because
the infectious Yt =

∑θ
θ=0 φθyt−θ can be expressed in terms of newly infected y at time t and earlier times,

with φθ representing the fraction of yt−θ still infectious on day θ since infection (as similarly defined
by Kermack and McKendrick, 1927 [20]). Here, φ0 = 1 because all infecteds would have just joined
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Table 2. Definition of variables in the RWY model. The indices t, τ and θ refer to the time,
time since recovery and time since infection respectively. The summations correspond to the
max immune period (τ+1), the max value of τ (τ̃) and the max infectious period (θ+1).

Symbol Variable Composition

Rt immune Rt =
∑τ
τ=0 Rt,τ or Rt =

∑τ
τ=0 ζτRt−τ,0

Wt waned Wt =
∑τ̃
τ=1 Wt,τ

Yt infectious Yt =
∑τ̃
τ=2 Yt,τ or Yt =

∑θ
θ=0 φθyt−θ

yt newly infected yt =
∑τ̃
τ=2 yt,τ

the infectious compartment the same day they became infected, which is day 0 since infection. By
defining the maximum allowable infectious period to be θ + 1 days, the fraction still infectious φθ = 0
for θ ≥ θ + 1 and the infectious Yt is expressed in terms of newly infecteds yt−θ to yt .

The force of infection Ft has contributions from the fraction φθ of newly infecteds yt−θ,τ who are
still infectious on day θ since infection. On day t, each of these individuals contributes a baseline
infectiousness ξθ based on the time since infection θ, which is then reduced by a factor of χτ. Here, the
τ in both χτ and yt−θ,τ refers to the number of days since recovery with respect to the day of infection
t − θ and not with respect to day t. As the maximum infectious period is θ + 1 days, infectiousness
ξθ = 0 for θ ≥ θ + 1.

Individuals who recover on day t + 1 join the newly recovered Rt+1,0 immune compartment. Using
the fraction still infectious φθ, we define the population recovery distribution φθ −φθ+1, which gives the
proportion of newly infected yt−θ who recover on day θ + 1 since infection.

We define the immune Rt in a similar way as the infectious Yt. Here, Rt =
∑τ
τ=0 ζτRt−τ,0, where

ζτ represents the fraction of newly recovered Rt−τ,0 still immune on day τ since recovery. Again, ζ0

is equals to 1 because all individuals would have just joined the immune compartment the day they
recover. By defining the maximum allowable immune period to be τ+1 days, the fraction still immune
ζτ = 0 for τ ≥ τ + 1 and the immune Rt only consists of newly recovereds Rt−τ,0 to Rt,0. Since
individuals can only remain in the immune compartment for τ + 1 days and the immune compartment
is the first compartment individuals join after recovery, we can express Rt =

∑τ
τ=0 Rt,τ in terms of its

sub-compartments Rt,τ, with the final term being Rt,τ as Rt,τ = 0 for τ ≥ τ + 1. Using the fraction still
immune ζτ, we define the population waning distribution ζτ−1− ζτ, which gives the proportion of newly
recovered Rt−(τ−1),0 who wane on day τ since recovery.

The waned Wt and newly infected yt can also be expressed in terms of their sub-compartments. For
the waned on day t, Wt,τ starts from Wt,1 rather than Wt,0 because individuals are assumed to spend
at least one day in the immune compartment before moving to the waned compartment. By the same
reasoning, yt,τ starts from yt,2 because individuals are assumed to spend at least another day in the waned
compartment. By defining a maximum value of τ = τ̃, we have Wt =

∑τ̃
τ=1 Wt,τ and yt =

∑τ̃
τ=2 yt,τ,

where the final terms Wt,τ̃ and yt,τ̃ comprise all waned and newly infecteds individuals respectively
with τ ≥ τ̃. We may also define the infectious Yt =

∑τ̃
τ=2 Yt,τ, in terms of its sub-compartments Yt,τ,

where Yt,τ̃ comprises all infectious individuals with τ ≥ τ̃.
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The waning of partial immunity is a decrease in protection, which is equivalent to decreases in the
value of the reduction in susceptibility ατ and potentially also the reduction in infectiousness χτ as
τ increases. As we are using a maximum value of τ = τ̃, the reduction in susceptibility ατ reaches
a constant value ατ̃ for τ ≥ τ̃ and the reduction in infectiousness χτ a constant value χτ̃ for τ ≥ τ̃.
Together with the population waning distribution ζτ−1 − ζτ, these three features specify how the losses
of full and partial immunity are modeled in the RWY model.

We conclude this section by remarking that we have intentionally made a linear approximation on
how the newly infected yt depends on the force of infection Ft (Hernandez-Ceron et al., 2013 [21],
Diekmann et al., 2021 [22]). The full description is the following:

yt+1,τ = (1 − ατ−1)Wt,τ−1(1 − e−Ft) for τ ∈ {2, · · · , τ̃ − 1}

yt+1,τ̃ = [(1 − ατ̃−1)Wt,τ̃−1 + (1 − ατ̃)Wt,τ̃](1 − e−Ft).
(2.3)

This form, however, cannot be utilized easily as Ft is also a function of newly infected yt at earlier
times. As long as the force of infection Ft is not too large, we can work with the linearized equation
(2.1) to perform stability analysis. Equation 2.1 also allows for efficient numerical simulations to be
performed via matrix-vector multiplications.

3. Stability analysis

In this section, we derive the model equations (equation 2.1) at steady state. Letting time tend to
infinity and using ∗ to denote the steady state, the immune R equations become

R∗,0 = y∗

R∗,τ = ζτy∗ for τ ∈ {1, · · · , τ}
(3.1)

after substituting
∑θ
θ=0(φθ − φθ+1) = 1. Adding the equations in (3.1), the proportion of recovered

individuals in the population at steady state is

R∗ = y∗
τ∑
τ=0

ζτ, (3.2)

where we have used ζ0 = 1. Performing a similar analysis on the waned equations, we get:

W∗,1 = (ζ0 − ζ1)y∗

W∗,τ = W∗,τ−1 − y∗,τ + (ζτ−1 − ζτ)y∗ for τ ∈ {2, · · · , τ + 1}

W∗,τ = W∗,τ−1 − y∗,τ for τ ∈ {τ + 2, · · · , τ̃ − 1}

W∗,τ̃−1 = y∗,τ̃,

(3.3)

where we have substituted R∗,0 = y∗. The waned equations can also expressed in terms of y∗ and its
components:

W∗,1 = (ζ0 − ζ1)y∗

W∗,τ =
∑τ̃

k=τ+1 y∗,k − ζτy∗ for τ ∈ {2, · · · , τ}

W∗,τ =
∑τ̃

k=τ+1 y∗,k for τ ∈ {τ + 1, · · · , τ̃ − 1}.

(3.4)
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Note that in the above analysis, we do not have an expression for W∗,τ̃ yet. The steady state equations
for the force of infection and newly infectious are:

F∗ =
∑θ
θ=0 ξθφθ

∑τ̃
τ=2 y∗,τ(1 − χτ)

y∗,τ = (1 − ατ−1)W∗,τ−1F∗ for τ ∈ {2, · · · , τ̃ − 1}

y∗,τ̃ = [(1 − ατ̃−1)W∗,τ̃−1 + (1 − ατ̃)W∗,τ̃]F∗.

(3.5)

Since Yt =
∑θ
θ=0 φθyt−θ, the infectious proportion of population at steady state is

Y∗ = y∗
θ∑
θ=0

φθ. (3.6)

The steady state equations above will be used to derive the disease-free and endemic equilibria in the
sub-sections that follow.

3.1. Disease-free equilibrium

We derive the disease-free equilibrium by setting the newly infected proportion of the population
y∗,τ to be zero for all τ in the steady state equations 3.1, 3.4 and 3.5. By the conservation of individuals
(equation 2.2), we find that in the disease-free equilibrium, all individuals end up in the waned W∗,τ̃
compartment, with

y∗,τ = 0 for τ ∈ {2, · · · , τ̃}

W∗,τ = 0 for τ ∈ {1, · · · , τ̃ − 1}

W∗,τ̃ = 1.

(3.7)

We now proceed to set up a vector system of the model for linear stability analysis about the disease-
free equilibrium. Let xt+1 = g(xt), where xt is a vector that is formed by the newly infected yt−τ−θ to yt

and the waned Wt. Here, g is a function to be specified using the model equations (2.1 and 2.2).
Linearizing about the disease-free equilibrium and performing elementary column operations on

J − λI (where J is the Jacobian for the model equations evaluated at the disease-free equilibrium), we
obtain the following characteristic equation:

λ(τ+θ+2)(τ̃−1)−θ

λθ+1 − (1 − ατ̃)(1 − χτ̃)
θ∑

k=0

ξkφkλ
θ−k

 = 0. (3.8)

Theorems related to the zeroes of polynomial are discussed in Appendix B. Using Theorem B.6 and
Lemma B.7, we find that the disease-free equilibrium is asymptotically stable if and only if R0 < 1,
where the modified basic reproductive ratio is defined as R0 = (1 − ατ̃)(1 − χτ̃)

∑θ
k=0 ξkφk. Note that

R0 < 1 is the explicit threshold for all solutions to tend towards the disease-free equilibrium. Here, R0

is a modified basic reproductive ratio because ατ̃ and χτ̃ are not necessary zero, in particular, waned W
individuals at τ = τ̃ may still be less susceptible to infection than susceptible S individuals.

There are two key observations. First, R0 depends on the reductions in infectiousness χτ and sus-
ceptibility ατ only when τ = τ̃ and not earlier values of τ. This is because earlier values of τ are

Mathematical Biosciences and Engineering Volume 21, Issue 2, 1979–2003.



1987

transient and hence not present in the steady disease-free equilibrium. The only value of τ that has a
lasting effect is when τ takes the maximum value of τ̃ because τ remains at this value thereafter even
as the day increases. Second, R0 is independent of population recovery distribution φθ − φθ+1 and pop-
ulation waning distribution ζτ−1 − ζτ (see equation 2.1). Again, this is because recovery takes place for
a maximum allowable period of θ + 1 days (infectious period) and waning for a maximum allowable
period of τ + 1 days (immune period), which are transient periods that do not continue until τ = τ̃.

3.2. Endemic equilibrium

For the endemic equilibrium, an explicit form is difficult to obtain because the steady state equations
(3.1, 3.4 and 3.5) are non-linear in y∗,τ. We can make progress in the special case where the reduction
in susceptibility and infectiousness are independent of τ, namely, ατ = α and χτ = χ respectively.
Then, the force of infection and the newly infected (equation 3.5) can be simplified to:

F∗ = (1 − χ)y∗
∑θ
θ=0 ξθφθ

y∗,τ = R0y∗W∗,τ−1 for τ ∈ {2, · · · , τ̃ − 1}

y∗,τ̃ = R0y∗(W∗,τ̃−1 + W∗,τ̃),

(3.9)

where we have substituted R0 = (1−χ)(1−α)
∑θ
θ=0 ξθφθ defined earlier. Summing up the y∗,τ equations,

we get W∗ = 1
R0

. Substituting this equation along with equations 3.2 and 3.6 into R∗ + W∗ + Y∗ = 1, we
obtain an expression for y∗:

y∗ =
R0 − 1

R0

(∑τ
τ=0 ζτ +

∑θ
θ=0 φθ

) . (3.10)

The term in brackets is the sum of the fraction of newly recovered who remain immune and the fraction
of newly infecteds who remain infectious throughout the entire immune and infectious period respec-
tively. Clearly, y∗ exists (is greater than zero) if and only if R0 is greater than one. Now, W∗ and y∗ are
completely defined in terms of parameter values. Using W∗ =

∑τ̃
τ=1 W∗,τ, equation 3.4 and W∗ = 1

R0
, we

can express W∗,τ̃ in terms of y∗,τ:

W∗,τ̃ =
1
R0

+ y∗
τ∑
τ=1

ζτ −

τ̃∑
τ=2

τ̃∑
j=τ

y∗, j. (3.11)

This equation, along with equations 3.9 and 3.3, allow us to obtain a closed form for the endemic
equilibrium:

y∗,τ = R0y2
∗

∑min(τ−2,τ)
k=0 (ζk − ζk+1)(1 − R0y∗)τ−2−k for τ ∈ {2, · · · , τ̃ − 1}

y∗,τ̃ = y∗
∑τ

k=0(ζk − ζk+1)(1 − R0y∗)τ̃−2−k

W∗,τ = y∗
∑min(τ−1,τ)

k=0 (ζk − ζk+1)(1 − R0y∗)τ−1−k for τ ∈ {1, · · · , τ̃ − 1}

W∗,τ̃ = 1
R0

+ y∗
∑τ
τ=1 ζτ − (τ̃ − 1)y∗

∑τ
k=0(ζk − ζk+1)(1 − R0y∗)τ̃−2−k

−R0y2
∗

∑τ̃−1
τ=2

∑τ̃−1
j=τ

∑min( j−2,τ)
k=0 (ζk − ζk+1)(1 − R0y∗) j−2−k.

(3.12)
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In this case, the endemic equilibrium is uniquely defined. Proceeding, we perform stability analysis
for the simplest case (τ̃ = 3, τ = 1 and θ = 1). Here, R0 = (1 − χ)(1 − α)(ξ0φ0 + ξ1φ1). Equation 3.10
for y∗ simplifies to y∗ = R0−1

R0(2+φ1+ζ1) and the endemic equilibrium (equation 3.12) is

y∗,2 = R0y2
∗(ζ0 − ζ1)

y∗,3 = y∗
[
(ζ0 − ζ1)(1 − R0y∗) + ζ1

]
W∗,1 = y∗(ζ0 − ζ1)

W∗,2 = y∗,3 = y∗
[
(ζ0 − ζ1)(1 − R0y∗) + ζ1

]
W∗,3 =

1
R0

+ y∗ζ1 − 2y∗
[
(ζ0 − ζ1)(1 − R0y∗) + ζ1

]
− R0y2

∗(ζ0 − ζ1).

(3.13)

Performing elementary column operations on J−λI (where J is the Jacobian for the model equations
evaluated at the endemic equilibrium), we get the following characteristic equation:

λ5

λ4 +

3∑
s=0

ksλ
s

 = 0, (3.14)

where

k3 = (1 − α)(1 − χ)
[
−

1
R0
σ0 + y∗(σ0 + σ1)

]

k2 = (1 − α)(1 − χ)
[
−

1
R0
σ1 + y∗(σ0 + σ1)

]
k1 = [φ1 + ζ1(1 − φ1)]R0y∗

k0 = ζ1φ1R0y∗.

(3.15)

Here, we have used the short-form σθ = ξθφθ. Using Theorem B.6, we obtain sufficient conditions for
the endemic equilibrium to be asymptotically stable. Depending on the sign of k2 and k3, there are four
different cases to consider:

1. For k2 < 0 and k3 > 0, i.e., 1 +
2+φ1+ζ1
σ0+σ1

σ0 < R0 < 1 +
2+φ1+ζ1
σ0+σ1

σ1,

the condition for stability is R0 < 1 +
2σ0(2+φ1+ζ1)

(σ0+σ1)(φ1+ζ1) .

2. For k2 > 0 and k3 < 0, i.e., 1 +
2+φ1+ζ1
σ0+σ1

σ1 < R0 < 1 +
2+φ1+ζ1
σ0+σ1

σ0,

the condition for stability is R0 < 1 +
2σ1(2+φ1+ζ1)

(σ0+σ1)(φ1+ζ1) .

3. For k2 > 0 and k3 > 0, i.e., R0 > 1 +
2+φ1+ζ1
σ0+σ1

max(σ0, σ1),

the condition for stability is R0 < 3.

4. For k2 < 0 and k3 < 0, i.e., R0 < 1 +
2+φ1+ζ1
σ0+σ1

min(σ0, σ1),

the condition for stability is φ1 + ζ1 < 2.
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Using Lemma B.7, the necessary conditions for the endemic equilibrium to be asymptotically stable
are:

1. R0 < 1 +
2+φ1+ζ1
ζ1φ1

2. R0 < 1 +
2σ0(2+φ1+ζ1)

(σ0+σ1)(φ1+ζ1−2ζ1φ1) if ζ1φ1 <
1
2 (φ1 + ζ1)

R0 > 1 +
2σ0(2+φ1+ζ1)

(σ0+σ1)(φ1+ζ1−2ζ1φ1) if ζ1φ1 >
1
2 (φ1 + ζ1).

Unlike the case for the disease-free equilibrium, the sufficient and necessary conditions here do not
together provide equivalence conditions for asymptotic stability. As such, we do not have explicit
thresholds for the solutions to be in the endemic equilibrium regime. This is similar to models with
varying delays in continuous-time, in which sufficient conditions for the endemic equilibrium regime
are obtained (Stech and Williams, 1981 [23]) or numerical bifurcation analysis is performed (Blyuss
and Kyrychko, 2010 [24]).

4. Sub-model with fixed waning and recovery times

We consider the case where every individual follows exactly the same waning and recovery trajec-
tory. Infected individuals join the immune compartment on day θ + 1 since infection and recovered
individuals join the waned compartment on day τ + 1 since recovery. Similar to how classic SIRS is
formulated, we consider the simplest model by dropping the dependence on time since infection θ and
time since recovery τ, arriving at a constant value of infectiousness ξ, reduction in susceptibility α and
reduction in infectiousness χ. The RWY model (equation 2.1) becomes:

Rt+1 = Rt + yt−θ − yt−τ−θ−1

Wt+1 = Wt − yt+1 + yt−τ−θ−1

yt+1 = βWt

θ∑
θ=0

yt−θ,

(4.1)

where β = ξ(1 − χ)(1 − α). Note that the proportions of the population in the sub-compartments
yt+1,τ and Wt+1,τ are no longer needed to be considered individually as they have been summed up. In
addition, from the RWY model (equation 2.1), we get Rt+1,0 = yt−θ and Rt =

∑θ+τ+1
θ=θ+1

yt−θ. Substituting
the latter expression and Wt = 1 − Rt − Yt into the last equation of (4.1), we obtain a non-linear scalar
equation:

yt+1 = β

θ∑
θ=0

yt−θ

1 − θ+τ+1∑
θ=0

yt−θ

 . (4.2)

We linearize about the disease-free equilibrium by setting yt = ελt, where ε is small, to get the
following characteristic equation:

λθ+1 − β

θ∑
s=0

λs = 0. (4.3)

By Theorem B.6 and Lemma B.7, the disease-free equilibrium is asymptotically stable if and only
if R0 < 1, where R0 = β(θ + 1). The endemic equilibrium can be found using equation (4.2) to
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be y∗ = R0−1
R0(θ+τ+2)

, which is uniquely defined. Linearizing about the endemic equilibrium, we get the
following characteristic equation:

λt+1 =
2θ + τ + 3 − β(θ + 1)2

(θ + 1)(θ + τ + 2)

θ∑
θ=0

λt−θ −
β(θ + 1) − 1

θ + τ + 2

θ+τ+1∑
θ=θ+1

λt−θ. (4.4)

Applying Theorem B.6, the sufficient conditions for asymptotic stability are:

1 < R0 < 3 and θ > τ. (4.5)

The second condition requires the infectious period to be greater than the immune period for stability.
This agrees with what other continuous-time models have found (Diekmann and Montijn, 1982 [15],
Hethcote et al. (1981) [14] and Stech and Williams (1981) [23]): a long immune period can lead
to instability of the endemic equilibrium. On the other hand, applying Lemma B.7, the necessary
conditions for asymptotic stability are given by:

1 < R0 < θ + τ + 3. (4.6)

Note that θ + τ + 3 is the minimum amount of time an individual spends going through the R (τ + 1
days), W (1 day) and Y (θ + 1 days) compartments before returning to the R compartment.

To obtain explicit thresholds, we consider two special cases. Case 1: If the immune period is one
day (τ = 0), then using Theorem B.5, the endemic equilibrium is asymptotically stable if and only if
equation (4.6) holds. Case 2: If the infectious period is one day (θ = 0), then we use the Determinantal
Criterion directly (Theorem B.3) for τ = 1, 2 and 3 to get 1 < R0 < 5

2 , 1 < R0 < 5 − 2
√

2 and
1 < R0 <

19−5
√

5
4 respectively.

We perform bifurcation analysis for these two cases. For case 1 (τ = 0), at the critical value
R0 = θ + 3, the endemic equilibrium loses stability. There are two sub-cases.

1. For θ odd, setting θ = 2n + 1, the characteristic polynomial is λ2n+3 + 2n+1
2n+2

∑2n+2
j=1 λ j + 1. We apply

Theorem (B.8) with a = 2n+1
2n+2 , and find that all eigenvalues lie on the unit circle. One of the

eigenvalues is −1 and there are (n + 1) complex conjugage pairs. A flip (also known as period
doubling) and Neimark-Sacker bifurcation occur concurrently.

2. For θ even, setting θ = 2n, the characteristic polynomial is λ2n+2 + 2n
2n+1

∑2n+1
j=1 λ j + 1. Again,

applying Theorem (B.8) with a = 2n
2n+1 , all eigenvalues lie on the unit circle and there are (n + 1)

complex conjugate pairs. A Neimark-Sacker bifurcation occurs.

(a) If θ = 0, the eigenvalues are ±i, which leads to a 1 : 4 (also known as period 4) resonance, for
which the constants b and d in the complex normal form can be computed using equations
(C.11) and (C.12) to be 9

4 −
9i
8 and −9i

8 respectively.

For case 2 (θ = 0), for τ = 1 to 3, at the critical value of R0, we have a pair of complex conjugate
eigenvalues with modulus 1, leading to a Neimark-Sacker bifurcation. There is no strong resonance
for these eigenvalues found. The invariant expression d can be computed using equation (C.9) and they
are all negative, which means that a stable closed invariant curve bifurcates from the fixed point for R0

greater than the critical value.
Our analysis above for the RWY sub-model with fixed recovery and waning times implies that there

are three dynamic regimes - (i) disease-free equilibrium, (ii) endemic equilibrium and (iii) oscillatory
solutions due to flip or Neimark-Sacker bifurcations.
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5. Sub-model with geometric distributions

We now consider geometric distributions for both recovery and waning. At the individual level, on
each day, an infectious individual has a probability γ of recovering and a recovered individual has a
probability ω of joining the waned compartment. At the population level, the fraction still infectious is
φθ = (1 − γ)θ and the fraction still immune is ζτ = (1 − ω)τ. The R equations can thus be expressed as:

Rt+1 =

∞∑
τ=0

(1 − ω)τ+1Rt−τ,0 + γ

∞∑
θ=0

(1 − γ)θyt−θ. (5.1)

Note that both the immune period and the infectious period are infinite days long. Furthermore, if we
assume that the infectiousness ξ, reduction in susceptibility α and reduction in infectiousness χ are
constants, then the RWY model (using equations 2.1, 2.2 and 5.1) becomes:

Rt+1 = (1 − ω)Rt + γYt

Wt+1 = Wt + ωRt − βWtYt

Yt+1 = (1 − γ)Yt + βWtYt,

(5.2)

where the transmission parameter β = ξ(1 − χ)(1 − α). Using the property of geometric distributions,
we note that the mean number of days an individual stays in the infectious and immune compartments
is 1

γ
and 1

ω
respectively. Such a model with geometric distributions is often described as ‘memoryless’

because the probabilities that an infectious individual remains infectious and an immune individual
remains immune on a particular day do not depend on the number of days they have already spent in
the infectious and immune compartments respectively.

Substituting Rt = 1 − Yt −Wt and Wt = 1
βYt

[Yt+1 − (1 − γ)Yt] into the second equation of (5.2), we
obtain a scalar nonlinear difference equation:

Yt+1 =

[
(1 − ω)

Yt

Yt−1
− βYt + ω(1 − γ + β) + β(1 − γ − ω)Yt−1

]
Yt. (5.3)

We linearize about the disease-free equilibrium by letting Yt = ελt, where ε is small, and obtain the
characteristic equation ω[λ − (1 − γ + β)] = 0. The disease-free equilibrium is asymptotically stable if
and only if R0 < 1, where R0 =

β

γ
.

From equation (5.3), the endemic equilibrium can be found to be Y∗ =
ω(β−γ)
β(ω+γ) , which is uniquely

defined. Linearizing about the endemic equilibrium, we get the characteristic equation λ2+p1λ+p0 = 0,
where p1 = −2 + ω +

ω(β−γ)
ω+γ

and p0 = 1 − ω + ω(β − γ)(ω+γ−1
ω+γ

). Using the Determinantal Criterion for
order 2 (equation B.2), the endemic equilibrium is asymptotically stable if and only if

1 < R0 < 1 + q, (5.4)

where

q =


γ+ω

γ(γ+ω−1) if 0 < ω < 1 and 4−4ω+ω2

4−ω < γ < 1
2(2−ω)(γ+ω)
γω(2−γ−ω) if 0 < ω < 1 and 0 < γ < 4−4ω+ω2

4−ω .
(5.5)
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At the critical value R∗0 = 1 +
2(2−ω)(γ+ω)
γω(2−γ−ω) , the eigenvalues are −1 and −2+(γ+ω)(−3+ω)

−2+γ+ω
. The latter

eigenvalue cannot take the value 1 or −1 under the constraints for γ and ω. Hence, the Jacobian J has a
simple critical eigenvalue −1 and a flip bifurcation occurs. The invariant formula b in the normal form
of a flip bifurcation (equation C.6) can be calculated using the formula (equation C.7) to be

b =
(−2 + γ + ω)3[γ(−1 + ω) + (−2 + ω)ω][γ2ω + 2(−2 + ω)ω + γ(−4 + ω2)]2

[γ(−4 + ω) + (−2 + ω)2]3(−2 + ω)2ω2(γ + ω)
. (5.6)

Under the constraints for γ and ω, b is always greater than 0, which means that a stable period two
cycle bifurcates from the fixed point for R0 > R∗0.

On the other hand, at the critical value R∗0 = 1 +
γ+ω

γ(γ+ω−1) , the eigenvalues are

−2 − γ(−2 + ω) + 2ω − ω2 ± i
√
ω[γ2(4 − ω) − (−2 + ω)2ω + 2γ(−2 + 4ω − ω2)]
2(−1 + γ + ω)

, (5.7)

which have modulus one under the constraints for γ and ω. Thus, a Neimark-Sacker bifurcation occurs
at the critical value R∗0.

Like the RWY sub-model with fixed recovery and waning times, our analysis here for the sub-
model with geometric distributions in discrete-time implies that there are three dynamic regimes - (i)
the disease-free equilibrium, (ii) the endemic equilibrium and (iii) oscillatory solutions due to flip or
Neimark-Sacker bifurcation.

6. Sub-model with exponential distributions

We take the limit as time step tends to zero for the discrete-time sub-model with geometric distri-
butions (equation 5.2), to get the continuous-time RWY model with exponential distributions:

dR
dt

= −ωR + γY

dW
dt

= ωR − βWY

dY
dt

= −γY + βWY,

(6.1)

where β is the transmission rate per infectious individual, ω is the waning rate and γ is the recovery
rate. We present the following analysis in the same manner as earlier sections of the paper, and refer
the reader to Hethcote, 1976 [13] for an alternative derivation of these results.

The disease-free equilibrium is given by: R∗ = 0, W∗ = 1 and Y∗ = 0. It is asymptotically stable if
and only if R0 < 1, where R0 =

β

γ
.

The endemic equilibrium is given by: R∗ =
γ(β−γ)
β(ω+γ) , W∗ =

γ

β
and Y∗ =

ω(β−γ)
β(ω+γ) , which is uniquely

defined. Note that the expression for the endemic equilibrium in continuous-time is the same as that in
discrete-time. The eigenvalues of the Jacobian matrix are

λ± =
1
2

[
−ω̌ ±

√
ω̌2 − 4ωγ(R0 − 1)

]
, (6.2)
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where ω̌ = ω
( ω
γ +R0
ω
γ +1

)
. The endemic equilibrium is asymptotically stable if and only if both eigenvalues

are negative, which occurs if and only if R0 > 1. Hence, the RWY sub-model with exponential
distributions in continuous-time only has two dynamic regimes: the disease-free equilibrium and the
endemic equilibrium. No oscillatory solution is possible.

7. Bridging between discrete-time and continuous-time sub-models with geometric distributions

In this section, we seek to understand how the dynamic regimes change when we transit from
discrete-time to continuous-time. The discrete-time sub-model with geometric distributions with time
step h is:

Rt+1 = (1 − hω)Rt + hγYt

Wt+1 = Wt + hωRt − hβWtYt

Yt+1 = (1 − hγ)Yt + hβWtYt,

(7.1)

which is almost identical to the discrete-time sub-model with geometric distributions (equation 5.2),
except that each of the parameters ω, β and γ is scaled by h. By taking into account this factor h
in previous results for the discrete-time model with a time step of one day, we see that as before,
R0 =

β

γ
and the disease-free equilibrium is asymptotically stable if and only if R0 < 1. The endemic

equilibrium also remains the same: R∗ =
γ(β−γ)
β(ω+γ) , W∗ =

γ

β
and Y∗ =

ω(β−γ)
β(ω+γ) . It is asymptotically stable if

and only if 1 < R0 < 1 + qh, where

qh =


γ+ω

γ(hγ+hω−1) if 0 < ω < 1
h and 4−4hω+h2ω2

h(4−hω) < γ < 1
h

2(2−hω)(γ+ω)
hγω(2−hγ−hω) if 0 < ω < 1

h and 0 < γ < 4−4hω+h2ω2

h(4−hω) .
(7.2)

In the limit as h tends to zero, the top case in equation 7.2 collapses and qh tends to infinity. Hence,
the endemic equilibrium is asymptotically stable if and only if R0 > 1 and the last regime with
flip/Neimark-Sacker bifurcation in discrete-time disappears (see Figure 3). The number of dynamic
regimes decreases from three to two and oscillatory solutions are no longer possible.

8. Discussion

We have intentionally chosen to focus on waning immunity to improve our understanding of the
underlying mechanism behind the recent waves of COVID-19 infections in this ongoing pandemic.
The emergence of new variants has often been invoked as the reason causing waves of surges in case
numbers. However, our work shows that the waning of prior immunity, whether that immunity is from
infection or vaccine, is sufficient on its own to drive oscillations. Hence, at least in theory, pathogen
evolution may be purely consequential rather the cause of these waves.

In practice, COVID-19 waves are unlikely to be driven by a single mechanism. The effects of
phylodynamics (Grenfell et al., 2004 [25]) are complex and there is likely a feedback loop between
waning immunity dynamics and pathogen evolution. However, we argue that for diseases with evi-
dence of waning immunity, the loss of immunity should be considered to be a candidate for the main
mechanism driving oscillatory dynamics. This is particularly true for diseases with a short temporary

Mathematical Biosciences and Engineering Volume 21, Issue 2, 1979–2003.



1994

0.0 0.2 0.4 0.6 0.8 1.0
h

0

1

2

3

4

5

6

7

8

9

10

R
0

oscillatory solution

disease-free equilibrium

endemic equilibrium

Figure 3. Schematic of the stable long term dynamic regimes for the discrete-time Immune-
Waned-Infectious (RWY) model with geometric distributions. As the time step h tends to
zero, this model tends to its continuous classic SIRS and the regime with sustained oscilla-
tions disappears.

period of strong protection like COVID-19, where parsimonious waning immunity models can be used
to explain the key trends of observed oscillations in case numbers.

From the public health point of view, policy makers may want to know whether surges in case num-
bers will happen in the long term for endemic diseases with waning immunity. Surges in case numbers
are particularly problematic if the disease has severe health outcomes, especially when healthcare ca-
pacity is a major constraint. Models can help by distinguishing between two model outcomes for
endemic diseases – the endemic equilibrium and sustained oscillations. The former does not lead to
long term surges in case numbers but the latter does. If waning immunity plays a role in sustaining
oscillations, then understanding the population infection dynamics can help policy makers decide the
timing of booster campaigns to reduce the size of future case surges.
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Appendix A The SIRWY model

YWR
Waning Infection

Recovery

IS
Infection Recovery

Figure 4. Susceptible-Infectious-Immune-Waned-Infectious (SIRWY) model.

The SIRWY model (see Figure 4) is an extension to the RWY model as it takes into account indi-
viduals in the population who do not have prior immunity to the disease. These individuals belong to
either the susceptible (S ) or infectious (I) compartment. The proportion of population that is infectious
at time t is denoted by It =

∑θ
θ=0 φ̌θit−θ, which is defined in an analogous manner as its counterpart Yt

with prior immunity. Table 3 gives a list of the variables, indices and parameters used in SIRWY model,
comparing terms with/without prior immunity whenever possible. The SIRWY model is described by
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Table 3. Variables, indices and parameters of the SIRWY model.

Without With Terms without/with prior immunity Symbol Other terms
f̌ f force of infection F total force of infection

S W susceptible R immune

i y newly infected θ time since infection

I Y infectious θ + 1 max infectious period

φ̌θ φθ fraction still infectious τ time since recovery

ξ̌θ ξθ infectiousness τ + 1 max immune period

τ̃ max value of τ

ζτ fraction still immune

χτ reduction in infectiousness

ατ reduction in susceptibility

the following system of difference equations,

Ft = f̌t + ft =
∑θ
θ=0 ξ̌θφ̌θit−θ +

∑θ
θ=0

∑τ̃
τ=2 ξθφθyt−θ,τ(1 − χτ)

S t+1 = S t − it+1

it+1 = S tFt

Rt+1,0 =
∑θ
θ=0(φ̌θ − φ̌θ+1)it−θ +

∑θ
θ=0(φθ − φθ+1)yt−θ

Rt+1,τ = ζτRt−(τ−1),0 for τ ∈ {1, · · · , τ}

Wt+1,1 = (ζ0 − ζ1)Rt,0

Wt+1,τ = Wt,τ−1 − yt+1,τ + (ζτ−1 − ζτ)Rt−(τ−1),0 for τ ∈ {2, · · · , τ + 1}

Wt+1,τ = Wt,τ−1 − yt+1,τ for τ ∈ {τ + 2, · · · , τ̃ − 1}

Wt+1,τ̃ = Wt,τ̃−1 + Wt,τ̃ − yt+1,τ̃

yt+1,τ = (1 − ατ−1)Wt,τ−1Ft for τ ∈ {2, · · · , τ̃ − 1}

yt+1,τ̃ = [(1 − ατ̃−1)Wt,τ̃−1 + (1 − ατ̃)Wt,τ̃]Ft

(A.1)

and the conservation of individuals means that

S t + It + Rt + Wt + Yt = 1. (A.2)

The I, R, W and Y compartments can be defined in terms of their corresponding sub-compartments
(see Table 4). Similar to the RWY model, the SIRWY model is specified using the proportion of newly
infecteds (i and y) rather than the proportion of infectious individuals (I and Y).
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Table 4. Definition of variables in the SIRWY model. The indices t, τ and θ refer to the time,
time since recovery and time since infection respectively. The summations correspond to the
max infectious period (θ+1), the max immune period (τ+1) and the max value of τ (τ̃).

Symbol Variable Composition

It infectious (without prior immunity) It =
∑θ
θ=0 φ̌θit−θ

Rt immune Rt =
∑τ
τ=0 Rt,τ or Rt =

∑τ
τ=0 ζτRt−τ,0

Wt waned Wt =
∑τ̃
τ=1 Wt,τ

Yt infectious (with prior immunity) Yt =
∑τ̃
τ=2 Yt,τ or Yt =

∑θ
θ=0 φθyt−θ

yt newly infected (with prior immunity) yt =
∑τ̃
τ=2 yt,τ

Appendix B Theorems regarding zeroes of polynomial

For a kth order difference equation, we define the following characteristic polynomial:

p(λ) = λk + pk−1λ
k−1 + · · · + p1λ + p0, (B.1)

where pi are real numbers in our case.

Definition B.1 (Inners of a matrix). (Jury, 1971 [26], Jury, 1974 [27] and Elaydi, 2005 [28]) The
inners of a matrix B = (bi j) are the matrix itself and all the matrices obtained by sequentially removing
the first and last rows and the first and last columns. For example, other than the matrix itself, the
inners of the following matrices are indicated by boxes:

3 by 3 matrix 4 by 4 matrix 5 by 5 matrix
b11 b12 b13

b21 b22 b23

b31 b32 b33

,

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

,

b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55


.

Definition B.2 (Postive Innerwise). (Jury, 1971 [26], Jury, 1974 [27] and Elaydi, 2005 [28]) A matrix
B is positive innerwise if the determinants of all of its inners are positive.

Theorem B.3 (Determinantal Criterion, a special case of Schur-Cohn Criterion). (Jury, 1964 [29],
Jury, 1971 [26], Jury, 1974 [27] and Elaydi, 2005 [28]) The zeroes of the characteristic polynomial
(equation B.1) lie inside the unit disc if and only if the following hold:

(i) p(1) > 0

(ii) (−1)k p(−1) > 0
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(iii) The (k − 1) by (k − 1) matrices

B±k−1 =



1 0 0 · · · 0 0 0
pk−1 1 0 · · · 0 0 0
pk−2 pk−1 1 · · · 0 0 0
...

...
...

...
...

...
...

p4 p5 p6 · · · 1 0 0
p3 p4 p5 · · · pk−1 1 0
p2 p3 p4 · · · pk−2 pk−1 1


±



0 0 0 · · · 0 0 p0

0 0 0 · · · 0 p0 p1

0 0 0 · · · p0 p1 p2
...

...
...

...
...

...
...

0 0 p0 · · · pk−6 pk−5 pk−4

0 p0 p1 · · · pk−5 pk−4 pk−3

p0 p1 p2 · · · pk−4 pk−3 pk−2


are positive innerwise.

Corollary B.4. (Eladyi, 2005 [28]) The three criteria in the Determinantal Criterion have an explicit
form for lower orders.
For k = 2,

|p1| < 1 + p0 < 2. (B.2)

For k = 3,
|p2 + p0| < 1 + p1 and |p1 − p2 p0| < 1 − p2

0. (B.3)

In the event that equation B.1 is of the following form with only 2 parameters:

p(λ) = λk + a
k−1∑
i=i

λi + b, (B.4)

we have an explicit form for the necessary and sufficient conditions for asymptotic stability.

Theorem B.5. (Tomášek, 2015 [30]) Let a and b be real non-zero constants and k ≥ 2. The zeroes of
the characteristic polynomial (equation B.4) lie inside the unit disc if and only if

(i) b > a − 1

(ii) b < 1

(iii) b > (1 − k)a − 1.

Theorem B.6 (Sufficient condition for stability). (Eladyi, 2005 [28]) The zeroes of the characteristic
polynomial (equation B.1) lie inside the unit disc if

k−1∑
i=0

|pi| < 1. (B.5)

Lemma B.7 (Necessary conditions for stability). (Bistritz, 1984 [31]) If the zeroes of the characteristic
polynomial (equation B.1) lie inside the unit disc, then the following hold:

(i) |p0| < 1

(ii) p(1) > 0

(iii) (−1)k p(−1) > 0.
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Theorem B.8. (Botta et al., 2014 [32]) The zeroes of the polynomial p(λ) = λk + a(λk−1 + · · ·+ λ) + 1,
a ∈ R, of degree k > 1 lie on the unit circle if and only if

(i) − 2
k−1 ≤ a ≤ 2 if k is even

(ii) − 2
k−1 ≤ a ≤ 2 + 2

k−1 if k is odd.

Appendix C Theorems regarding bifurcation analysis

We first start from the following discrete time dynamical system (map) given by

x 7→ f (x, ω), x ∈ Rn, ω ∈ R1. (C.1)

To perform a bifurcation analysis on the fixed point x∗ at the critical parameter value ω∗, we do a
coordinate shift, placing the fixed point at the origin. Now, in the new coordinates, after renaming and
keeping the same variable x, we assume that this system can be written in the form

x̃ = Jx + F(x), x ∈ Rn, (C.2)

where J is the Jacobian matrix and F(x) is a smooth function of orderO(||x||2) with the following Taylor
expansion

F(x) =
1
2

K(x, x) +
1
6

L(x, x, x) + O(||x||4). (C.3)

Here, K(x, y) and L(x, y, z) are defined by

Ki(x, y) =

n∑
j,k=1

∂2Fi(s)
∂s j∂sk

∣∣∣∣∣
s=0

x jyk (C.4)

and

Li(x, y, z) =

n∑
j,k,l=1

∂3Fi(s)
∂s j∂sk∂sl

∣∣∣∣∣
s=0

x jykzl (C.5)

for i = 1, · · · , n. This presentation and subsequent results in this section are attributed to Kuznetsov,
2004 [33].

C.1 Flip Bifurcation

Here, assume that the Jacobian J has a simple eigenvalue −1 on the unit circle. The map (equation
C.2), when restricted to the center manifold, can be transformed to the normal form

ỹ = −y + by3 + O(y4), (C.6)

where b gives the direction of bifurcation of the period-two cycle and can be computed using the
following invariant formula:

b =
1
6
〈p, L(q, q, q)〉 −

1
2
〈p,K(q, (J − I)−1K(q, q))〉. (C.7)
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In this case, q is the real eigenvector satisfying Jq = −q while p is the real adjoint eigenvector satisfying
JT p = −p. The eigenvectors p and q have been normalized such that 〈p, q〉 = 1. Functions K(x, y) and
L(x, y, z) are as defined in equations C.4 and C.5 respectively.

If b > 0, then a stable period-two cycle bifurcates from the fixed point for parameter values ω larger
than the critical parameter value ω∗. When b < 0, then the cycle of period-two is unstable. The case of
b = 0 means that the bifurcation is more degenerate than the normal form.

C.2 Neimark-Sacker Bifurcation

C.2.1 Absence of strong resonances

Assuming that the Jacobian J has a simple pair of eigenvalues on the unit circle e±iθ0 , where θ0 ∈

(0, π) and these are the only eigenvalues with modulus 1. The absence of strong resonances means that
eikθ0 , 1 for k ∈ {1, 2, 3, 4}. Then, the map (equation C.2) can be restricted to the center manifold and
transformed to the complex normal form

z̃ = eiθ0z
(
1 + d1|z|2

)
+ O(|z|4), (C.8)

where d =Re d1 gives the direction of the closed invariant curve and can be computed using the
following invariant expression

d =
1
2

Re
{
e−iθ0[〈p, L(q, q, q)〉 + 2〈p,K(q, (I − J)−1K(q, q))〉 + 〈p,K(q, (e2iθ0 I − J)−1K(q, q))〉]

}
. (C.9)

Here, q is the complex eigenvector satisfying Jq = eiθ0q and Jq = e−iθ0q while p is the complex adjoint
eigenvector satisfying JT p = e−iθ0 p and JT p = eiθ0 p. The scalar product 〈p, q〉 = pT q is the standard
one in Cn; p and q have been normalized such that 〈p, q〉 = 1. Functions K(x, y) and L(x, y, z) are as
defined in equations C.4 and C.5 respectively.

If d < 0, then a stable closed invariant curve bifurcates from the fixed point for parameter values
ω larger than the critical parameter value ω∗. When d > 0, then the closed invariant curve is unstable.
The case of d = 0 means that the bifurcation is more degenerate than the normal form.

C.2.2 1:4 resonance

In this case, Jacobian J has eigenvalues e±i π2 = ±i and the map (equation C.2) can be transformed to
the following complex normal form

z̃ = iz + bz|z|2 + dz3
+ O(|z|4), (C.10)

where
b =

1
2
〈p, L(q, q, q) + 2K(q, (I − J)−1K(q, q)) − K(q, (I + J)−1K(q, q))〉 (C.11)

and
d =

1
6
〈p, L(q, q, q) − 3K(q, (I + J)−1K(q, q))〉. (C.12)

As before, the terms K, L, p and q are as defined in the previous section where there is an absence of
strong resonances.
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