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Abstract: Retinal vessel segmentation plays a vital role in the clinical diagnosis of ophthalmic
diseases. Despite convolutional neural networks (CNNs) excelling in this task, challenges persist, such
as restricted receptive fields and information loss from downsampling. To address these issues, we
propose a new multi-fusion network with grouped attention (MAG-Net). First, we introduce a hybrid
convolutional fusion module instead of the original encoding block to learn more feature information
by expanding the receptive field. Additionally, the grouped attention enhancement module uses high-
level features to guide low-level features and facilitates detailed information transmission through skip
connections. Finally, the multi-scale feature fusion module aggregates features at different scales,
effectively reducing information loss during decoder upsampling. To evaluate the performance of the
MAG-Net, we conducted experiments on three widely used retinal datasets: DRIVE, CHASE and
STARE. The results demonstrate remarkable segmentation accuracy, specificity and Dice coefficients.
Specifically, the MAG-Net achieved segmentation accuracy values of 0.9708, 0.9773 and 0.9743,
specificity values of 0.9836, 0.9875 and 0.9906 and Dice coeflicients of 0.8576, 0.8069 and 0.8228,
respectively. The experimental results demonstrate that our method outperforms existing segmentation
methods exhibiting superior performance and segmentation outcomes.

Keywords: retinal images; vessel segmentation; convolutional neural network; multi-scale
technique; attention mechanism

1. Introduction

Globally, hundreds of millions of people suffer from eye diseases. Conditions such as diabetic
retinopathy, cataracts, age-related macular degeneration, uncorrected refractive errors and glaucoma
contribute significantly to visual impairment [1]. Among various fundus pathologies, changes in the
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morphology and structure of retinal vessels are frequently observed, carrying vital information about
the overall health of the eye and the body. Hence, segmentation of the retinal vessels holds significant
importance for the early screening, diagnosis and treatment of related diseases. Initially, specialists
relied on the manual segmentation of retinal vessels, which is a laborious, monotonous and
time-consuming task [2], particularly when dealing with a large number of segments. Therefore, the
development of computer-aided diagnostic systems for the rapid and efficient automated segmentation
of fundus vessels has become immensely important for ocular medical research and applications.

However, due to its own characteristics, there are a number of challenges in the retinal vessel
segmentation task. First, retinal images often exhibit uneven brightness [3], resulting in low contrast
between the blood vessels and the background, particularly in capillaries, which are difficult to
discern visually. Second, the presence of hemorrhages, hard exudates and other interferences in the
fundus retinal image, which are affected by the lesion, can cause significant noise in vessel
segmentation [4]. Lastly, the retinal vasculature is highly structured. Unlike polyp and skin datasets,
retinal vessels start from the fovea and gradually spread throughout the eye varying in thickness and
overlapping with each other, which makes segmentation more difficult.

In the past, numerous researchers have dedicated their efforts to extracting the structure and
morphology of the retina from fundus images. Currently, the primary segmentation methods can be
categorized into two groups: traditional methods using hand-designed features and methods
employing deep learning. Traditional segmentation methods, which extract the vascular structure
directly by building algorithmic models, can be broadly classified into matched filtering methods [5],
morphological [6] and mathematical modeling methods [7], vascular tracking methods [8] and
variable model methods [9]. Although traditional methods have shown progress in retinal vessel
segmentation, they heavily depend on manual feature extraction and parameter selection, which can
be labor-intensive. Moreover, these methods yield poor segmentation accuracy for processes of
capturing vessel endings and cannot meet the requirements of clinical practice.

With the continuous development of deep learning, the proposal of convolutional neural networks
has led to impressive achievements in medical image segmentation. Fully convolutional networks
(FCNs) [10] constitute the basis of the first method to use convolutional neural networks for semantic
segmentation. Fu et al. [11] introduced a network model called DeepVessel which utilizes an FCN as
a framework and incorporates multi-scale features and conditional random fields. At that time
DeepVessel achieved remarkable results on tasks of retinal vessel segmentation. Following this,
Ronneberger et al. [12] proposed a classical network known as U-Net, which demonstrated excellent
feature extraction capability and outstanding performance. Since then, U-Net and its variants [13-16]
are still the most popular segmentation models in medical image processing and are widely employed
for medical image segmentation tasks, such as retinal vessel segmentation. Nevertheless, these
methods exhibit certain limitations in attempts to achieve high-precision retina segmentation. These
include a restricted receptive domain, the loss of detailed information caused by changes in feature
map size and a decline in segmentation accuracy, as attributed to the semantic gap.

To solve the above problems, we propose an efficient and flexible multi-fusion network with
grouped attention (MAG-Net) for accurate retinal vessel segmentation. First, we use the classical data
preprocessing scheme proposed by Jiang et al. [17] to initially alleviate the problems of uneven
brightness in fundus images. Second, we adopt a U-shaped encoder-decoder structure [18], which
performs well on denoising tasks, and introduce depthwise separable convolution and atrous
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convolution into the encoder. These operations enable enlargement of receptive field without inflation
of the parameters and ensure that the feature map can learn more long-range contextual information.
Additionally, we introduce a grouped attention enhancement (GAE) module for skip connections to
further enhance the traditional channel attention method. By using high-level features to complement
low-level features, GAE aims to reduce the semantic gap between the encoder and decoder. Finally, to
further improve the model’s learning capability, we propose a multi-scale feature fusion (MFF)
module.  This module integrates features from different decoder levels to obtain a more
comprehensive and precise feature representation, helping the image restoration.

Our primary contributions can be divided into the following points:

1) We propose a new multi-fusion network with grouped attention that enhances feature extraction
capability and improves model accuracy and robustness.

2) We introduce a grouped attention fusion module that facilitates information interaction between
the encoder and decoder, preserving valuable information across different levels of features.

3) We have evaluated the proposed model on publicly available datasets (DRIVE, CHASE and
STARE), and the results demonstrate the model’s strong segmentation performance and overall
effectiveness.

2. Related works

In recent years, U-Net and its variant models have demonstrated excellent segmentation capabilities
on tasks of retinal vessel segmentation. The incorporation of innovative optimization mechanisms,
including convolutional strategies [19], feature fusion techniques [20] and attention mechanisms [21],
has further enhanced the segmentation performance of these models.

In traditional convolutional neural networks, the application of the receptive field plays a crucial
role in segmentation [22]. How to improve the receptive field and enhance the feature extraction ability
has been a popular research topic. DUNet [23] introduces deformable convolution, which adaptively
adjusts the receptive field based on the scale and shape of the vessels. This adjustment allows the model
to capture retinal vessels with diverse shapes and scales. SCS-Net [24] is a novel scale and context
sensitive network for retinal vessel segmentation, and it includes a scale-aware feature aggregation
module to dynamically adjust the receptive field to obtain multi-scale information. Zhang et al. [25]
proposed a semi-isotropic model that maintains a relatively large receptive field at different stages of
the convolutional network, demonstrating excellent segmentation performance. To enhance the feature
extraction capability, Liu et al. proposed a ResDO-UNet [26] and applied it to retinal blood vessel
segmentation by combining it with the DO-conv [27] layer. MCDAU-Net [28] was designed with a
cascading dilated spatial pyramid pool module that enhances the receptive field and generates feature
maps that are rich in contextual information.

In recent years, attention mechanisms have transcended their initial application of natural language
processing and gained significant traction in medical image segmentation, especially on tasks of retinal
vessel segmentation. For example, Guo et al. [21] proposed a lightweight network called SA-UNet,
which incorporates channel attention to generate a spatial attention map of features along the spatial
dimension for adaptive feature refinement. FANet [29] introduces a novel approach by integrating the
current training features with the mask generated in the previous iteration to generate hard attention,
which aims to suppress unwanted feature clutter. WA-Net [30] has been proposed as a width attention-
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based convolutional neural network that weighs the channel relevance via a width attention module,
which considers the location and position correlations of feature maps. To overcome the difficulty of
segmenting small blood vessels, a generator with attention augmented convolution has been proposed
in [31] to highlight the region of interest in the whole image. DOLG-NeXt [32] integrates SE-Net and
ConvNeXt, which overcomes the problem that the large transformer-based model performs poorly in
small biomedical image environments, as well as realizes effective feature extraction and fine target
segmentation.

While these methods have excelled on tasks of retinal vessel segmentation, they are not without
limitations. Challenges such as the loss of fine-grained details during upsampling, significant
computational overhead and the inclusion of excessive irrelevant information in attention mechanisms
still persist.

3. Methods

3.1. Proposed network model

The complex structure of blood vessels in fundus retinal images, which are susceptible to uneven
illumination and noise, poses challenges for retinal vessel segmentation. To improve the effectiveness
of retinal vessel segmentation, we propose the MAG-Net, a multi-fusion network with grouped
attention.
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Figure 1. MAG-Net network structure. The letter C indicates the number of channels of the
current feature.

Figure 1 illustrates the overall network structure of the MAG-Net, which consists of three
components: the encoder-decoder structure, GAE module and MFF module. The backbone of our
model is based on the three-layer U-Net structure, renowned for its exceptional performance and
versatility on diverse medical image segmentation tasks. Initially, the input image is preprocessed and
divided into greyscale images of size 48 x 48, which are then fed into the encoder. To downsample
the feature maps, a maximum pooling operation is applied between the encoder blocks, reducing the
dimensions by half. Similarly, a transposed convolution operation is employed between the decoder
blocks to double the size of the feature maps. The bottleneck is composed of two convolution
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operations followed by batch normalization and ReLU activation. The letter C illustrates the changes
in the feature maps for channels at each stage in Figure 1. In the MAG-Net, the hybrid convolutional
fusion (HCF) module was first designed to obtain a larger receptive field and better feature extraction
capability. Second, the GAE module is utilized to establish connections between corresponding
encoder and decoder layers, facilitating the utilization of multi-scale features and enhancing the
integration of detailed information from different locations. Finally, the MFF module combines
feature maps generated at different scales in the decoder to better capture information at different
levels and scales in the image. The three important modules are described in detail below.

3.2. Hybrid convolutional fusion module

To enhance the extraction capability of the encoder, the HCF module has been incorporated, and
each original encoder module has been replaced by an HCF module. The HCF module combines
depthwise separable convolutions and a spatial attention module, as illustrated in Figure 2. By
employing depthwise convolutions with varying dilation rates, the HCF module encodes the fused
features through element-level summation. Feature maps are then fed into the spatial attention
module, making the network prioritize the vasculature. Next, a pointwise convolution is applied to
perform linear transformations and nonlinear activations on individual pixels in each channel. Finally,
we use a standard convolution operation, followed by DropBlock to prevent overfitting and accelerate
the network convergence.

® Element-wise sum

oY Sin;/ - Spatial Attention Block

DW Conv 3x3 Conv 3x3
d=3 PW Conv (Dropblock)
HxWx2C HxWx2C
DW Conv 3x3
d=5
"""" HxWxC

Figure 2. Structure of the HCF module.

Spatial attention is a machine learning technique that is commonly used in image segmentation
tasks; it emphasizes the interaction between features at different locations in spatial dimensions to help
extract local features. The spatial attention module first performs global average pooling and global
maximum pooling operations on the input features F € R7*"*C along the channel dimension to obtain
global information in the form of F},, € R"™"*! and F;,, € R"™"! and it subsequently generates
spatial attention weights M* € R™*"*! applying a 7 x 7 convolution operation and a sigmoid activation
function. Finally, the spatial attention weights are multiplied element-wise with the input features and
aggregated to obtain the output features F;, thus allowing the network to focus on features at different
locations for enhancement. In summary, the output features F'; can be expressed as
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Fs=F-M°
= F - 6(f 7 [F} FieD) 3.1)
= F - 5(f™ [avgpooling(F); maxpooling(F)))

where ¢ denotes a sigmoid function, f7*7 denotes a 7 X 7 convolution operation and [; ] represents
channel concatenation.

3.3. Grouped attention enhancement module

The integration of skip connections in U-Net facilitates information exchange between the encoder
and the decoder, preventing information loss and enhancing training efficiency. However, the presence
of skip connections can lead to a semantic gap problem, as caused by information distortion and loss
within the encoder and the decoder. To mitigate this issue, the GAE module has been introduced into
the skip connection. This module incorporates feature maps from different levels and utilizes high-
level features, which contain rich category information, to guide the low-level features. The goal is to
achieve more precise segmentation of intricate details.
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Figure 3. Structure of the channel attention module.

The channel attention module, which is often used to selectively generate importance weights for
each channel, is an integral component of the GAE module. The module details are depicted in
Figure 3. Assuming that X; denotes the input feature and H, W and C denote its height, width and
number of input channels respectively. The channels are first compressed by using global average
pooling P,, and global maximum pooling P,,, to obtain the outputs P,.(X;) € R™*¢ and
P,a(X;) € R™C_ This approach allows the pooling pixels to be taken into account and the important
features to be extracted. A multi-layer perceptron (MLP) is used to stimulate the channels and
adaptively recalibrate the channel relationships. The MLP consists of two fully connected layers with
the first fully connected layer having an output channel number of C/r, where r = 4. Subsequently, a
ReLU activation function is introduced, and the output channel number of the second fully connected
layer is restored to C. Subsequently, the stimulated results are fed into a sigmoid function and
summed to obtain the channel attention weights ;. The exact computational procedure can be
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expressed as follows:
Bi = 6(M*(Payg(X))) + 6(M* (Ppar(X:))) (3.2)

The specific structure of the GAE module is shown in Figure 4.
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Figure 4. Structure of the GAE module.

First, we use standard and transposed convolution operations to resize the low-level and high-level
features in the encoder, respectively, to the same size and concatenate them into multi-scale features
along the channel dimension. The multi-scale features are given as follows:

MF = [ f33(Fiow); up(Fpign)] (3.3)

where F,,, indicates the low-level features and F,;y;, indicates the high-level features. Additionally, MF
denotes the multi-scale features, f;x3 denotes a 3 x 3 standard convolution and up() means a transposed
convolution operation.

Second, we employ a channel attention module to extract the channel attention weights of the feature
maps at different scales, denoted as 8, and f3,, respectively. The detailed calculation will be explained
in the next paragraph. The multi-scale channel attention weights are obtained by cascading, and they
can be expressed as follows:

B = 1B1:5:] (3.4)

where £ is the multi-scale channel attention weight. Next, a softmax function is applied to S to obtain
the recalibrated soft attention att;. att; contains the complete spatial information and the attention
weights on the channel dimensions that facilitate the interaction between a particular feature channel
attention and another feature channel attention. This operation is defined as follows:
exp(B;
att; = Softmax(B) = ]pﬂ,i - 0,1 (3.5)

2 exp(B)

Mathematical Biosciences and Engineering Volume 21, Issue 2, 1938—-1958.



1945

att is obtained by concatenating att; to denote the multi-scale channel attention weights after channel
attention interactions, and it is expressed as follows:

att = [atty; att;] 3.6)

Subsequently, the recalibrated multi-scale channel attention weight att is multiplied by the multi-
scale features to obtain the feature F.. Finally, F. is the output after applying a 1 X 1 convolution
operation, which rescales channels and sums with adjusted low-level features.

Fc = ‘f3><3(Fl(JW) + leI(MF X let) (37)

where fix; denotes a 1 X 1 convolution operation.

3.4. Multi-scale feature fusion module

Due to the multivariate shape and structure of fundus vessels, existing vessel segmentation methods
still exhibit limitations. To overcome the problem of feature adaptation for retinal vessels at different
scales, we introduced the MFF module. This module leverages bilinear interpolation upsampling to
complete the semantic interaction between neighboring low-level features and high-level features as
well as the aggregation of features at different scales. It merges spatial and channel information,
obtaining detailed local and global information. The structure of the MFF module is shown in Figure 5.
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Figure 5. Structure of the MFF module.

Specifically, the MFF module initiates at the bottleneck which is positioned between the encoder
and decoder. It performs a level-by-level decoding process while employing a 1 X 1 convolution
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operation at different scales, reducing the number of feature channels to 16 to decrease the
computational effort. Next, the MFF module conducts an operation by applying bottom-up bilinear
interpolation along the decoder, thus merging with the adjacent upper-level feature maps via
element-by-element summation. Thereafter, a nonlinear activation function, ReLU, is applied to
improve the fitting of the nonlinear model and the nonlinear transformation. After upsampling and
feature merging, the feature map achieves a flexible and adaptive feature transformation and
incorporates differences in information between scales, complementing the spatial and channel
information. In addition, the MFF module employs upsampling and cascades the activated features
from each layer through bilinear interpolation to obtain multi-scale cascaded features (MCFs).
Finally, through a series of convolution operations, batch normalization and nonlinear activation, the
MCFs recombine the spatial and channel information to generate multi-scale aggregated features,
which are cascaded with an output feature map along the decoder to obtain the final output.

4. Datasets and evaluation metrics

4.1. Datasets

We validated our method on three standard public datasets (DRIVE, CHASE, STARE). These
datasets are described in detail as follows:

1) DRIVE [33]. This dataset contains 40 digital retinal images, namely, the corresponding
groundtruth images and the corresponding masked images, 20 of which are used for training and the
other 20 for testing. The size of each image is 565 X 584 pixels, and each image contains annotations
of retinal regions and vascular regions.

2) CHASE [34]. This dataset contains 28 digital retinal images, namely, the corresponding
groundtruth images and the corresponding masked images, 14 of which are normal retinal images,
and the other 14 are retinal images with lesions. The size of each image is 999 X 960 pixels. Twenty
images were set as the training set, and the other eight images were set as the test set.

3) STARE [35]. This dataset contains 20 fundus images, namely, the corresponding groundtruth
images and the corresponding masked images with an image size of 605 X 700 pixels. We divided the
dataset with the first 10 images used for training and the last 10 images used for testing.

4.2. Evaluation indicators

The segmentation performance of retinal vessels was quantitatively evaluated in this study by
using several metrics: Dice coefficient, accuracy, sensitivity and specificity. These metrics were
assessed by using a confusion matrix. The Dice coefficient measures the similarity between the
predicted and labeled results, while the accuracy represents the ratio of correctly segmented pixels to
the total pixels providing an overall assessment of segmentation accuracy. Sensitivity evaluates the
model’s ability to segment the vascular region by measuring the proportion of correctly segmented
positive samples. Specificity quantifies the model’s capability to segment non-vascular regions by
measuring the proportion of correctly segmented negative samples. Accuracy reflects the accuracy of
the model’s prediction as a positive sample. Each metric is defined as follows:

. 2xXTP
Dice = “4.1)
2XTP+FN+ FP
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TP+TN
Accuracy = “4.2)
TP+ FN+TN+ FP
TP
tivity = ————— 4.
S ensitivity TP+ FN 4.3)
TN
i ficity = ————— 4.4
S pecificity TN - FP 4.4)
TP
Precision = ——— 4.5)
TP+ FP

where true positive (TP) represents correctly segmented vessel pixels, true negative (TN) represents
correctly segmented background pixels, false positive (FP) denotes the background pixels incorrectly
segmented as vessel pixels and false negative (FN) denotes the vessel pixels incorrectly segmented as
background pixels.

5. Experiments and results

5.1. Implementation details

Our deep learning method, implemented through the use of a PyTorch framework, was evaluated
on an Ubuntu 64-bit operating system using a QuadroRTX 6000 server. During training, we employed
a random patch approach with a patch size set to 48 x 48 pixels and a total number of 104800 patches.
The model underwent 100 iterations with an initial learning rate of 0.001. For the DRIVE dataset and
CHASE dataset, the training batch size was 128 and the threshold was 0.48. For the STARE dataset,
we set the batch size to 64 and the threshold to 0.48. The model was optimized by using the Adam
optimizer, with the exponential decay rate 8, = 0.9, 8, = 0.999 and the momentum € = 1 x 1078,

The loss function we use is the cross-entropy loss function, defined as follows:

Losse (y,y) = —Zﬁlogﬁ+ (1 -y log (1 -7) (5.1)

where y; denotes the true label and y; represents the predicted label.

5.2. Preprocessing

@ () © @ ©

Figure 6. Preprocessing results: (a) original fundus vascular medicine image; (b) greyscale
map; (c) data normalized image; (d) adaptive histogram equalized image; (¢) gamma adjusted
image.
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The problem of uneven brightness in the original retinal image significantly interferes with
automatic segmentation. Preprocessing of the fundus images can effectively alleviate this problem.
We have processed the original images by employing the following four steps and the effect of each
preprocessing step was as shown in Figure 6.

1) Three-channel fusion of the color images to convert the corresponding greyscale images;

2) Normalization of greyscale images to mean and standard deviation to improve the convergence
speed of the model;

3) Adaptive histogram equalization (CLAHE) of greyscale images to increase the contrast between
the blood vessels and the background and suppress noise;

4) Gamma correction for vessel images to suppress illumination unevenness and centerline
reflections.

5.3. Module ablation

To verify the validity of each component in the MAG-Net, we conducted ablation experiments on
the DRIVE, CHASE and STARE datasets. Specifically, we evaluated the impact of HCF, GAE and
MFF, individually. Our baseline model was U-Net, while the standard model encompassed U-Net
augmented with HCF, GAE and MFF. In the experimental setup, we also examined models without
specific components, denoted as “w/o HCF”, “w/o GAE” and “w/o MFF”, respectively. The
experimental results, displayed in Tables 1-3, highlight the most favorable outcomes for better
visibility and analysis.

As can be seen in Tables 1-3, the MAG-Net achieved better overall performance compared than
the baseline model. The area under the receiver operating characteristic curve (AUC_ROC), accuracy,
sensitivity and Dice coeflicient for the MAG-Net respectively reached 0.9895, 0.9708, 0.8588 and
0.8576 on the DRIVE dataset, 0.9884, 0.9773, 0.8123 and 0.8069 on the CHASE dataset and 0.9895,
0.7781, 0.9743 and 0.8228 on the STARE dataset. When we removed the HCF module from the
standard model and replaced it with the standard convolution operation in U-Net, the model showed a
slight decrease of 0.04 and 1.14% for the AUC_ROC and 0.06 and 1.66% for sensitivity on the
DRIVE dataset and CHASE dataset, respectively, and a decrease of 2.01% for sensitivity on the
STARE dataset. It demonstrates that increasing the perceptual field by using depthwise atrous
convolutions with different dilation rates is effective in segmenting vascular pixels accurately. When
we removed the GAE, the data in Tables 1-3 revealed that the absence of the GAE module has a small
effect, as the effects were more pronounced for the accuracy and Dice coefficient, which decreased
by 0.03 and 0.29%, 0.04 and 0.29% and 0.05 and 0.61%, respectively. Results emphasize the
importance of the GAE module in the MAG-Net. The effectiveness of the MFF module is also well
demonstrated by the fact that the three metrics, i.e., sensitivity, accuracy and the Dice coefficient,
decreased by 1.15, 0.07 and 0.42% on the DRIVE dataset and 1.09, 0.06 and 0.60% on the CHASE
dataset without the MFF.

In Figure 7, we show the segmentation results of various models in the ablation experiments on
three datasets, aiming to visually validate the effectiveness of our module in segmenting retinal vessel
details. The figure showcases six columns, (a) to (f), representing the preprocessed fundus images,
ground truth annotations and the segmentation results obtained by using “w/o HCF”, “w/o GAE”,
“w/o MFF” and the MAG-Net, respectively. The results on the DRIVE, CHASE and STARE datasets
are shown from top to bottom in the figure above. Upon examination of the images, it is evident
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Table 1. Ablation experiments on DRIVE dataset. AUC_ROC: area under the receiver
operating characteristic curve, Acc: accuracy, Se: sensitivity and Dice: Dice coefficient.

Model AUC_ROC Sp Se Acc Dice
baseline 0.9891 0.9856 0.8375 0.9704 0.8529
w/o HCF 0.989 0.9846 0.8474 0.9705 0.8549
w/o GAE 0.9892 0.9837 0.8544 0.9705 0.8556
w/o MFF 0.9891 0.9842 0.8473 0.9701 0.8532

ours 0.9895 0.9836 0.8588 0.9708 0.8576

Table 2. Ablation experiments on the CHASE dataset.

Model AUC_ROC Sp Acc Dice
baseline 0.9867 0.9883 0.7876 0.9765 0.7970
w/o HCF 0.9878 0.9885 0.7957 0.9772 0.8031
w/o GAE 0.9878 0.9872 0.8104 0.9769 0.8040
w/o MFF 0.9880 0.9876 0.8014 0.9767 0.8009

ours 0.9884 0.9875 0.8123 0.9773 0.8069

Table 3. Ablation experiments on the STARE dataset.

Model AUC_ROC Pr Sp Se Acc Dice
baseline 0.9886 09166 0.9932 0.7461 0.9742 0.8161
w/o HCF 0.9895 0.9195 0.9929 0.7578 0.9748 0.8219
w/o GAE  0.9890 0.9138 0.9915 0.7604 0.9738 0.8167
w/o MFF 0.9882 09141 09915 0.7676 0.9743 0.8208

ours 0.9895 0.9158 0.9906 0.7781 0.9743 0.8228

that all four models possess the ability to accurately segment the main trunk of the vessel and finer
vessels across different datasets. Using capillary segmentation as a significant metric, the MAG-Net
demonstrates its exceptional performance. We have highlighted the segmentation of some capillaries
by marking and enlarging the same areas of each image with red boxes.

5.4. Experiments on the ablation of attention modules

The GAE module is a very important part of the MAG-Net, and to validate the reliability of our
proposed grouped attention, we conducted a series of ablation experiments for the GAE module. We
selected the widely used SE module [36], CBAM [37] module and GC block [38] to substitute the
attention computation method in the GAE module and conducted experiments on the DRIVE dataset.
Table 4 shows the results of our experiments.
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Figure 7. Visualization of the results of the ablation experiments on the three datasets. From
top to bottom: DRIVE dataset, CHASE dataset and STARE dataset are indicated respectively.
From left to right: (a) preprocessed image, (b) groundtruth image, (c) w/o HCF, (d) w/o GAE,
(e) w/o HFF and (f) MAG-Net.

Table 4. Ablation experiments with different attention methods on the DRIVE dataset.

Model AUC_ROC Sp Se Acc Dice
MAG-Net+SE 0.9892 0.9837 0.8517 0.9702 0.8542
MAG-Net+CBAM 0.9891 0.9850 0.844 0.9706 0.8547
MAG-Net+GC 0.9894 0.9849 0.8471 0.9708 0.8559
ours 0.9895 0.9836 0.8588 0.9708 0.8576

Although the addition of the SE, CBAM and GC block improves the model’s performance to a
certain extent, these three methods are slightly inferior compared to the grouped attention approach.
This is because the GAE module not only learns the channel weights of features at different scales, it
also retains the details of low-level features and high-level features to the greatest extent possible. At
the same time, the GAE module is simple in structure and achieves efficient segmentation with only a
small amount of computation.

5.5. Qualitative experiment

Figure 8 presents a visual comparison of our model, MAG-Net, with other competing models. We
selected U-Net [12], SA-UNet [21] and Attention-UNet [39] as the competition, and we applied a test
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image from both the DRIVE and CHASE datasets for visual analysis, arranged in left-to-right order.
Columns (a)—(f) display the preprocessed original image, the groundtruth image, U-Net segmented
results, Attention-UNet segmented results, SA-UNet segmented results and MAG-Net segmented
results, respectively. Under each image, we included an enlarged local area to promote the
comparison of the results.

By comparing the detailed regions, it can be seen that U-Net, Attention U-Net, SA-UNet and MAG-
Net already have the ability to extract the vascular backbone from the original image and achieves
satisfactory segmentation for most vascular regions. However, when comparing the groudtruth images,
disconnections and mis-segmentations in the capillary region are easy to observe. Comparing the
details, it can be seen that the MAG-Net does well at denoising, minimizes mis-segmentation and has
excellent vessel connectivity.

Figure 8. Visualization results on the DRIVE dataset and CHASE dataset. From top to
bottom: DRIVE dataset and CHASE dataset are indicated respectively. From left to right:
(a) preprocessed image, (b) groundtruth image, (c) U-Net, (d) Attention U-Net, (e) SA-UNet
and (f) MAG-Net.

5.6. Quantitative experiment

To further demonstrate the superiority of our method, we compared the MAG-Net with some other
deep learning-based retinal vessel segmentation methods. We evaluated them by using four metrics:
specificity, sensitivity, accuracy and the Dice coefficient, respectively. Tables 5-7 indicate their
segmentation results on the DRIVE, CHASE, and STARE datasets, respectively. When compared to
existing segmentation methods, our proposed method showed significant improvements for most
metrics, especially accuracy, outperforming the other methods on all three datasets. As can be seen
in Table 5, the MAG-Net exhibits competitive ability that is not exhibited by other methods, with the
best accuracy and Dice coefficient, which improved by 0.04 and 2.73%, respectively. As shown in
Table 6, on the CHASE dataset, the MAG-Net excelled in the cases of the specificity and accuracy
metrics, achieving 98.75 and 97.73% respectively. As can be seen in Table 7, similar to the CHASE
dataset, the MAG-Net performed best for specificity and accuracy metrics, with a respective
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Table 5. Comparison with other methods on the DRIVE dataset.

Model Year Sp Se Acc Dice
R2U-Net [40] 2018 0.9813 0.7792 0.9556 0.8171
DUNet [23] 2019 0.9800 0.7963 0.9566 0.8237
NFN+ [41] 2020 0.9813 0.7996 0.9582 0.8295
SA-UNet [21] 2020 0.9840 0.8212 0.9698 0.8263
MPS-Net [42] 2021 0.9740 0.8361 0.9563 0.8278
SCS-Net [24] 2021 0.9838 0.8289 0.9697 0.8189
AACA-MLA-D-UNet [43] 2022 0.9805 0.8046 0.9581 0.8303
Bridge-Net [44] 2022 0.9818 0.7853 0.9565 0.8203
CRAUNet [45] 2022 - 0.7954 0.9586 0.8302
SDDC-Net [46] 2023 0.9808 0.8603 0.9704 0.8289
ours 2023 0.9836 0.8588 0.9708 0.8576

Table 6. Comparison with other methods on the CHASE dataset.

Model Year Sp Se Acc Dice

R2U-Net [40] 2018 0.9862 0.8298 0.9712 0.8475
DUNet [23] 2019 09752 0.8155 0.9610 0.7883
NEN+ [41] 2020 0.9880 0.8003 0.9688 0.8369
SA-UNet [21] 2020 0.9835 0.8573 0.9755 0.8153

SCS-Net [24] 2021 0.9839 0.8365 0.9744 -
MPS-Net [42] 2021 09795 0.8488 0.9668 0.8332
AACA-MLA-D-UNet [43] 2022 0.9801 0.8402 0.9673 0.8246
Bridge-Net [44] 2022 0.9840 0.8132 0.9667 0.8293
CRAUNet [45] 2022 - 0.8259 0.9659 0.8156
SDDC-Net [46] 2023 0.9789 0.8268 0.9669 0.7965
ours 2023 0.9875 0.8123 0.9773 0.8069

improvement of 0.28 and 0.18%.

Table 7. Comparison with other methods on the STARE dataset.

Model Year Sp Se Acc Dice

R2U-Net [40] 2018 0.9820 0.7756 0.9634 0.7928

DUNet [23] 2019 0.9878 0.7595 0.9641 0.8143

NFN+ [41] 2020 0.9863 0.7963 0.9672 0.8298
SCS-Net [24] 2021 0.9839 0.8207 0.9736 -

MPS-Net [42] 2021 0.9819 0.8566 0.9689 0.8491

AACA-MLA-D-UNet [43] 2022 0.9870 0.7914 0.9665 0.8276

Bridge-Net [44] 2022 0.9864 0.8002 0.9668 0.8289

SDDC-Net [46] 2023 0.9784 0.7988 0.9642 0.7776

ours 2023 0.9906 0.7781 0.9743 0.8228
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5.7. Generalization ability of proposed multi-fusion network with grouped attention

Generalization ability is a very important performance evaluation metric for retinal vessel
segmentation tasks.  We evaluated the generalization ability of the model by performing
cross-validation on different training and test sets. Table 8 gives a comparison of the generalization
ability of the proposed method with three other methods, under the condition of the training being
performed on the DRIVE dataset and testing performed on the STARE dataset, as well as the opposite
experiment. Experiments show that our method has good overall performance and excellent
performance on the Dice coefficient and sensitivity metrics, which shows that our method has
excellent generalization ability in the task of vessel segmentation.

Table 8. Cross-validation results.

Database Methods Sp Se Acc Dice
MS-CANet [47] ; = 0.9673 0.7%26

. GDE-Net [48]  0.9795 0.7089 0.9588 -

STARE (trained on DRIVE) W= AN[31] 09883 07839 09647 -
ours 0.9745 0.8471 09648 0.7855
MS-CANet [47] - ~ 09701 0.8035

. GDE-Net [48]  0.9902 0.7289 0.9593 -

DRIVE (trained on STARE) W AN[31] 09928 0.8250 09635 -
ours 0.9828 0.8255 09690 0.8236

5.8. Receiver operating characteristic curve evaluation and number of model parameters

In addition, we present the Receiver operating characteristic (ROC) curves for the different models
in the ablation experiment for the three datasets. As can be seen in Figure 9, the values of the area
under the curve for all four models were close to 1, indicating the models’ superior performance for
retinal vessel segmentation. Of these, the MAG-Net had the largest area of the ROC curve among all
four models for all three datasets, further emphasizing the superiority of the MAG-Net over the other
models in the three ablation experiments.
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Figure 9. ROC curves for the ablation models on different datasets.

1.0

Furthermore, we compared our work with other state of the art models in terms of the number of
model parameters on the DRIVE dataset. The comparison results are shown in Table 9. It can be seen
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Table 9. Model complexity comparison with state-of-the-art methods.

U-Net ResUnet R2U-Net AACA-MLA-D-UNet MRC-Net [49] ours
# Param. 4.32M 32.61M  39.09M 2.03M 0.9M 0.6M

that our model demonstrated lower complexity than the other methods. In other words, our model
performs well in terms of efficiency.

6. Conclusions and discussion

This paper presents a new retinal vessel segmentation framework, the MAG-Net, which combines
a multi-scale technique and an attention mechanism to realize improvements. The HCF module was
introduced, and it utilizes spatial attention and multiple convolutions to expand the receptive field of
the encoder, minimize noise and optimize the performance of the feature extractor at the source. The
GAE module uses high-level features to guide low-level features on skip connections, optimizing
segmentation details and alleviating the semantic gap between the encoder and decoder. The MFF
module addresses the information loss problem during upsampling in the decoder by integrating
features of multiple scales, which serves to supplement the detailed information. We validated our
method on three datasets, i.e., the DRIVE, the CHASE and the STARE datasets. The experimental
results show that our method achieves superior retinal vessel segmentation performance, as compared
to U-Net, Attention-UNet and SA-UNet.

However, there are certain limitations of our work. First, the current implementation relies on
annotated datasets, which can be expensive and restricts the availability of a larger number of annotated
datasets. Second, our network was specifically designed for retinal vessel segmentation, while fundus
images contain a wealth of information related to various fundus diseases. A single-target segmentation
architecture is temporarily unable to meet the diagnostic needs of multiple fundus diseases.

Regarding future research, our research goals can be divided into two main points. First, we will
focus on the improvement and optimization of the model to make it more adaptable to the specificity
of fundus images and to increase its robustness for applicability to different pathological situations.
Second, transfer learning and self-supervised learning are effective means to address data scarcity and
labeling difficulties. In the absence of large-scale labeled data, we will consider exploring how to learn
knowledge from other medical image tasks through transfer learning and use self-supervised learning
to improve the performance of the model.
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