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Abstract: In this study, we proposed two, symptom-dependent, HIV/AIDS models to investigate
the dynamical properties of HIV/AIDS in the Fujian Province. The basic reproduction number was
obtained, and the local and global stabilities of the disease-free and endemic equilibrium points were
verified to the deterministic HIV/AIDS model. Moreover, the indicators Rs

0 and Re
0 were derived for

the stochastic HIV/AIDS model, and the conditions for stationary distribution and stochastic extinction
were investigated. By using the surveillance data from the Fujian Provincial Center for Disease Control
and Prevention, some numerical simulations and future predictions on the scale of HIV/AIDS infections
in the Fujian Province were conducted.
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1. Introduction

Human immunodeficiency virus (HIV) infection was regarded as a major global public health issue. The
World Health Organization (WHO) has claimed more than 40.4 million (32.9–51.3 million) infection cases
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as of 13 July 2023, in which 0.63 million (0.48–0.88 million) individuals died from HIV-related causes
during the period from January 2022 to December 2022 [1]. Moreover, China admitted 117.9 thousand
HIV/AIDS infection cases with 30.0 thousand (25.48%) deaths from January 2007 to December 2011 [2],
in which 3266 HIV/AIDS infection cases were diagnosed with 725 deaths (22.20%), among which, 2320
local HIV/AIDS infection cases with 530 deaths (22.84%) and, 946 HIV/AIDS infection cases with 195
deaths (20.61%) from other provinces and overseas were reported during the period from January 2004
to December 2011. Additionally, the symptom characteristics were well recorded and classified by the
surveillance data. Infection cases with mild symptoms may have an influenza-like illness including fever,
headache, rash, sore throat and other symptoms such as swollen lymph nodes, weight loss, diarrhea and
a cough, as reported by the WHO. Without treatment, infection cases with mild symptoms can develop
to include severe symptoms such as tuberculosis, cryptococcal meningitis, severe bacterial infections
and cancers due to the weakness of the immune system [1]. Essentially, the severity of symptoms was
characterized by CD4+ T cell counts [3–5], and the starting and ending points of structured treatment
interruptions were determined in [6]. The transmission mechanism of symptom-dependent HIV/AIDS
was usually described by mathematical models.

Local governments and policy makers controlled and prevented infectious diseases by adopting
mathematical models, which played irreplaceable roles and provided new perspectives when studying
the complex dynamics of infectious diseases, as in [7]. Specifically, the compartment models were often
governed to investigate the transmission mechanisms of infectious diseases, in which the compartment
structures were determined by specific infectious diseases. In fact, various types of deterministic dynamical
models were included such as ordinary differential equation models, difference equation models, delay-
differential equation models, age-structured partial differential equations (PDE) models and diffusion
models in [7–16]. Meanwhile, recent contributions also governed the stochastic differential equation
models and the fractional differential equation models to investigate the basic reproduction number and
dynamical properties in [17–25]. More precisely, HIV/AIDS incorporated with tuberculosis (TB) models
were taken into account, where the effect of Antiretroviral Therapy (ART) treatment and both local and
global stabilities of HIV-only model were studied in [19, 20] by adopting the standard incidence rates,
in which the transmission mechanism to the susceptible compartment in [19] presented a more complex
incidence mechanism. After these two contributions, the parameter fluctuation was introduced into the
HIV/AIDS model with the bilinear incidence rate in [21], and the systematic fluctuation was investigated
in [22] based on the model in [20]; therein, the related survival analysis and dynamical properties were
extensively studied. The research results of the stochastic HIV/AIDS models in [21, 22, 25, 26] showed
that the intensities of white noises diminished the scale and threshold of HIV/AIDS. The investigations
of HIV/AIDS models in [23, 24] reflected that protection awareness of the susceptible also diminished
the number of HIV/AIDS infection cases.

In this paper, we proposed symptom-dependent HIV/AIDS models to describe the epidemiological
characteristics and dynamical properties of HIV/AIDS in the Fujian Province. Based on the features of real
surveillance data from the Fujian Provincial Center for Disease Control and Prevention (Fujian CDC), the
threshold R0 of the deterministic HIV/AIDS model was derived, and the local and global stabilities for the
disease-free point and endemic equilibrium point were extensively investigated in Section 3. Meanwhile,
we introduced environmental fluctuations into the deterministic HIV/AIDS model; the conditions for the
stationary distribution and stochastic extinction were investigated in Section 4. Moreover, we conducted
numerical simulations and made predictions on the scale of HIV/AIDS infections in the Fujian Province
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in Section 5. The results of this study provided new perspectives to control the scale of HIV infection
for local governments and policy makers including, but not limited to, the Fujian Province.

2. Model formulation

HIV/AIDS infection cases from surveillance data (2004–2011) in the Fujian CDC were recorded as
either mild cases or severe cases. Based on the transmission mechanism and symptoms of HIV/AIDS,
in this paper, we proposed symptom-oriented HIV/AIDS models in a local population. Here, the total
population was separated into four the following mutually-exclusive compartments: S , susceptible
with no HIV/AIDS infection; E, HIV infected with no clinical symptoms but were able to transmit
the HIV virus to others (HIV virus lived in the hosts but did not produce clinical symptoms, the hosts
with an HIV virus lacked awareness of going to hospital and getting checked); Im, HIV infected with
mild symptoms; and Is, HIV infected with severe symptoms. Hence, the total population at time t for
a designated region was given by N(t) = S (t) + E(t) + Im(t) + Is(t). Especially, for the key men who
have sex with men (MSM) population with HIV/AIDS, the transmission mechanism of HIV/AIDS was
usually described by the bilinear incidence between S and E, as well as S and Im in recent contributions
such as equations-oriented descriptions in [21,23,25,27] and fluctuation-oriented descriptions in [28,29].
The aforementioned HIV/AIDS models with extensive discussions motivated us to govern the bilinear
incidence for investigating symptom-dependent HIV/AIDS models in this paper:

Ṡ (t) = Λ − βeS (t)E(t) − βmS (t)Im(t) − µS (t),

Ė(t) = βeS (t)E(t) + βmS (t)Im(t) − (γe + µ)E(t),

İm(t) = γeE(t) − (γm + µ)Im(t),

İs(t) = γmIm(t) − (δ + µ)Is(t),

(2.1)

where Λ was the constant recruitment rate, βe depicted the effective contact coefficient between S and
E, βm was the effective contact coefficient between S and Im, 1/γe represented the average time from
the date of being infected by the HIV virus to the date with mild symptoms, 1/γm was the average time
required from the date of being detected with mild symptoms to the date with severe symptoms, 1/δ was
the average time from the date that they had severe symptoms to the date that they died, and µ denoted
the nature death rate. All parameters were assumed to be positive by their biological meanings.

3. Survival investigation of model (2.1)

Let X = (S , E, Im, Is)T. Adding up the four equations in (2.1), and using the standard comparison
theorem, we obtained that N(t) ≤ λ/µ; furthermore, we considered the dynamical properties in the
positive invariant sets Ω =

{
X ∈ R4

+|0 ≤ S + E + Im + Is ≤ Λ/µ
}

and Ω0 = {X ∈ Ω|E = Im = Is = 0}
in this paper. It was easy to check that P0 = (S 0, E0, Im0, Is0)T = (Λ/µ, 0, 0, 0)T was the disease-free
equilibrium point. It was known that the basic reproduction number was an important threshold for
describing the average number of new HIV/AIDS infection cases produced by one HIV infected
individual, which was computed by the next generation matrix in [30]. Let F be the new infections in
compartments E, Im, Is, and let V = V − − V +, in which V − was the transfer rate for the individuals
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moving out of three compartments, V + was the transfer rate for the individuals entering into the
compartments by all other means. Then, we wrote down the following:

F B


βeS E + βmS Im

0
0

 , V B


γeE + µE

γmIm − γeE + µIm

−γmIm + δIs + µIs

 .
The Jacobian matrices for F and V were computed respectively as follows:

F =


βeS βmS 0

0 0 0
0 0 0

 , V =


γe + µ 0 0
−γe γm + µ 0
0 −γm δ + µ

 .
Substituting the disease-free equilibrium point P0 into matrix FV−1 gave the following basic
reproduction number:

R0 B ρ
(
FV−1

)
=

k4Λ

k1k3µ
, (3.1)

where ρ(·) denoted the spectral radius, and k1 = γm + µ, k2 = δ + µ, k3 = γe + µ, k4 = γeβm + k1βe.

R0 reflected the average number that an HIV/AIDS infection case transmitted the HIV virus to the
susceptible individuals without interventions.

Alternatively, the endemic equilibrium point P∗ = (S ∗, E∗, I∗m, I
∗
s )T existed for model (2.1) when

R0 > 1, where

S ∗ =
k1Λ

k4E∗ + k1µ
, E∗ =

k4Λ − k1k3µ

k3k4
, I∗m =

γeE∗

k1
, I∗s =

γeγmE∗

k1k2
.

In fact, let f ∈ R denote the right-hand side of the second equation in (2.1) and substitute S ∗, I∗m, I
∗
s into

the equation. Then, the following expression was obtained:

f (E∗) B βeS ∗E∗ + βmS ∗I∗m − k3E∗

=
−k3k4E∗2 + (γeβmΛ + k1βeΛ − k1k3µ)E∗

k4E∗ + k1µ

=
−AE∗2 + BE∗

k4E∗ + k1µ
=

f̂ (E∗)
g(E∗)

,

in which A = k3k4 > 0, B = k4Λ−k1k3µ = k1k3µ(R0−1) > 0, f̂ (E∗) = −AE∗2+BE∗, g(E∗) = k4E∗+k1µ.

It was easy to check that f̂ (E∗) is a quadratic function with a negative quadratic coefficient and f (0) = 0;
therefore, when R0 > 1, then f̂ (E∗) = 0 had a unique positive real root, which implied that f (E∗) = 0
also admitted a unique positive real root since g(E∗) > 0 held for E∗ ∈ R+.

Furthermore, in this part, the locally and globally asymptotic stabilities for two equilibrium points,
P0 and P∗, to model (2.1) were concerned using the Routh-Hurwitz Theorem and LaSalle’s Invariant
Principle, respectively.
Theorem 3.1. (i). If R0 < 1, then the disease-free equilibrium point P0 was locally asymptotically stable
in domain Ω.

(ii). If R0 > 1, then P0 was unstable, and the endemic equilibrium point P∗ was locally asymptotically
stable in Ω\Ω0.
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Proof. (i) The Jacobian matrix of model (2.1) was expressed as follows:

J(X) =


−βeE − βmIm − µ −βeS −βmS 0
βeE + βmIm βeS − k3 βmS 0

0 γe −k1 0
0 0 γm −k2

 .
Substituting P0 into J(X), then the eigenvalues of the characteristic equation det(λI − J(P0)) = 0 were
given by λ1 = −µ < 0, λ2 = −k2 < 0 and

λ3,4 =
1
2

(βeS 0 − γe − γm) − µ ±
1
2

√
β2

eS 2
0 + (2βe(γm − γe) + 4γeβm)S 0 + (γm − γe)2.

Here,

λ3 <
1
2

(βeS 0 − γe − γm) − µ −
1
2
|βeS 0 − γe + γm|.

If βeS 0 − γe + γm ≥ 0, then λ3 < −γm − µ < 0; if βeS 0 − γe + γm < 0, then we obtained that
λ3 < k3(R0 − 1) − γeβmS 0

k1
< 0 by R0 < 1. The product of λ3 and λ4 gave the following expression:

λ3λ4 = −µ(βeS 0 − γe − γm) + µ2 − (γmβe + γeβm)S 0 + γeγm = −k1k3(R0 − 1) > 0,

together with λ3 < 0, which implied that λ4 < 0. By the Routh-Hurwitz Theorem, the disease-free
equilibrium point P0 was local asymptotically stable.

(ii). If R0 > 1, then λ3λ4 = −k1k3(R0 − 1) < 0. Thus, there existed one positive eigenvalue, and the
disease-free equilibrium point P0 was unstable.

Then, we substituted P∗ into J(X) to investigate the local asymptotic stability of the endemic
equilibrium point P∗ as follows:

J(P∗) =


−βeE∗ − βmI∗m − µ −βeS ∗ −βmS ∗ 0
βeE∗ + βmI∗m βeS ∗ − k3 βmS ∗ 0

0 γe −k1 0
0 0 γm −k2

 B
(
J1 0
∗ −k2

)
.

Obviously, λ4 = −k2 < 0. We denoted k5 = k3(k4E∗ + k1µ) = Λk4. Let the characteristic equation of
J(P∗) be λ3 + a2λ

2 + a1λ + a0 = 0, where

a2 =k1 + k3 + µ + βeE∗ + βmI∗m − βeS ∗ =
Λ

k5
[(k1 + k3 + µ)k4 − k1k3βe] + βeE∗ + βmI∗m

=k1 + µ +
Λk3γeβm

k5
+ βeE∗ + βmI∗m > 0,

a1 =k1k3 + (k1 + k3)µ + (k1 + k3)(βeE∗ + βmI∗m) − (k1βe + µβe + γeβm)S ∗

=
Λ

k5
(µk1k4 + k2µγeβm) + (k1 + k3)(βeE∗ + βmI∗m)

=µk1 +
Λk2µγeβm

k5
+ (k1 + k3)(βeE∗ + βmI∗m) > 0,

a0 =k1k3µ + k1k3(βeE∗ + βmI∗m) − µk4S ∗ =
Λ

k5
(k1k3k4µ − µk1k3k4) + k1k3(βeE∗ + βmI∗m)

=k1k3(βeE∗ + βmI∗m) > 0.
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Then,

a2a1 − a0 =

[
µ +

1
k5

(Λk3γeβm) + βeE∗ + βmI∗m

]
×

[
µk1 +

1
k5

(Λk2µγeβm) + (k1 + k3)(βeE∗ + βmI∗m)
]

+ k1

[
µk1 +

1
k5

(Λk2µγeβm) + k1(βeE∗ + βmI∗m)
]
> 0.

By the Routh-Hurwitz Theorem, the endemic equilibrium point P∗ was locally asymptotically stable in
Ω\Ω0. □
Theorem 3.2. (i). If R0 ≤ 1, then the disease-free equilibrium point P0 was globally asymptotically
stable in domain Ω.

(ii). If R0 > 1, then the endemic equilibrium point P∗ was globally asymptotically stable in Ω\Ω0.

Proof. Noting that the compartment Is did not appear in the first three equations of model (2.1), we
considered the following equivalent model:

Ṡ (t) = Λ − βeS (t)E(t) − βmS (t)Im(t) − µS (t),

Ė(t) = βeS (t)E(t) + βmS (t)Im(t) − (γe + µ)E(t),

İm(t) = γeE(t) − (γm + µ)Im(t),
(3.2)

with the following positive invariant sets:

Ω =
{
(S , E, Im) ∈ R3

+|0 ≤ S + E + Im ≤ Λ/µ
}
, Ω0 =

{
(S , E, Im) ∈ Ω|E = Im = 0

}
.

Then, the dynamics of model (2.1) was the same as model (3.2).
(i). We defined a C2-function V1 : R3

+ → R+ by the following:

V1(S , E, Im) = S − S 0 − S 0 ln
S
S 0
+ E +

Λβm

k1µ
Im.

The time derivation of V1 along the positive solution was given by the following:

V̇1 =

(
1 −

S 0

S

)
(Λ − βeS E − βmS Im − µS ) + βeS E + βmS Im − k3E +

Λβm

k1µ
(γeE − k1Im).

Using relation S 0 =
Λ
µ

, we derived the following:

V̇1 =

(
1 −

S 0

S

) (
Λ −
ΛS
S 0

)
+ βeS 0E + βmS 0Im − k3E +

Λβm

k1µ
(γeE − k1Im)

= Λ

(
2 −

S
S 0
−

S 0

S

)
+

(
Λβe

µ
+
Λβeγe

k1µ
− k3

)
E

= Λ

(
2 −

S
S 0
−

S 0

S

)
+ k3(R0 − 1)E.

Thus, V̇1 ≤ 0 when R0 ≤ 1. The equality held if and only if S = S 0, E = 0, which corresponded to
Ω1 =

{
(S , E, Im) ∈ Ω : S = Λ/µ, E = 0

}
⊂ Ω. If R0 = 1, then V̇1 ≤ 0; the equality was valid if and only
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if S = S 0, which corresponded to Ω2 =
{
(S , E, Im) ∈ Ω : S = Λ/µ

}
⊂ Ω. Recalling the boundedness

of Ω, the maximal compact invariant set of model (3.2) on Ω1 and Ω2 contained only one element,
P0. According to LaSalle’s Invariant Principle, the disease-free equilibrium point P0 was globally
asymptotically stable.

(ii). For convenience, we denoted x = S
S ∗ , y = E

E∗ , z = Im
I∗m
. By multiplying 1

S ∗ ,
1

E∗ and 1
I∗m

on both sides
of model (3.2), together with the identities

Λ − βeS ∗E∗ − βmS ∗I∗m − µS
∗ = 0, βeS ∗E∗ + βmS ∗I∗m − (γe + µ)E∗ = 0, γeE∗ − (γm + µ)I∗m = 0,

model (3.2) was transformed into the following form:

ẋ = x
[
Λ

S ∗

(
1
x
− 1

)
− βeE∗(y − 1) − βmI∗m(z − 1)

]
,

ẏ = y
(
βeS +

βmS Im

yE∗
− k3

)
,

ż = z
(
γe

E∗y
I∗mz
− k1

)
.

(3.3)

We constructed a C2-function V2 : R3
+ → R+ by

V2(x, y, z) = S ∗(x − 1 − ln x) + E∗(y − 1 − ln y) +
βmS ∗I∗2m

γeE∗
(z − 1 − ln z)

to verify the global stability of the endemic equilibrium point P̄∗ for model (3.3). Differentiating V2

with respect to t along the positive solution of model (3.3), we obtained the following:

V̇2 = S ∗(x − 1)
ẋ
x
+ E∗(y − 1)

ẏ
y
+
βmS ∗I∗2m

γeE∗
(z − 1)

ż
z

= S ∗(x − 1)
[
Λ

S ∗

(
1
x
− 1

)
− βeE∗(y − 1) − βmI∗m(z − 1)

]
+ E∗(y − 1)

(
βeS +

βmS Im

yE∗
− k3

)
+
βmS ∗I∗2m

γeE∗
(z − 1)

(
γe

E∗y
I∗mz
− k1

)
=(2Λ − βeS ∗E∗ − βmS ∗I∗m) − Λ

(
x +

1
x

)
− βeS ∗E∗(xy − x − y)

− βmS ∗I∗m(xz − x − z) + βeS ∗E∗ + βmS ∗I∗m + βeS ∗E∗(xy − x − y)

+ βmS ∗I∗m

(
xz −

xz
y
− y

)
+ βmS ∗I∗m + βmS ∗I∗m

(
y − z −

y
z

)
=(Λ − βmS ∗I∗m)

(
2 − x −

1
x

)
+ βmS ∗I∗m

(
3 −

1
x
−

xz
y
−

y
z

)
.

The following relationships Λ− βmS ∗I∗m > Λ− βeS ∗E∗ − βmS ∗I∗m − µS
∗ = 0, βmS ∗I∗m > 0 and 2− x− 1

x ≤

0, 3 − 1
x −

xz
y −

y
z ≤ 0 yielded that V̇2 ≤ 0. The equality was valid if and only if x = 1 and y = z, which

implied that S = S ∗ and E
E∗ =

Im
I∗m

. Therefore, the maximal compact invariant set of model (3.2) on

Ω3 =

{
(S , E, Im) ∈ R3

+ : S = S ∗,
E
E∗
=

Im

I∗m

}
⊂ Ω\Ω0,
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was a singleton {P∗}. Hence, by LaSalle’s Invariant Principle, the unique endemic equilibrium point P∗

was globally asymptotically stable for R0 > 1. □

4. Survival investigation of model (4.1)

Epidemic models with environmental fluctuations were profitable to provide additional perspectives,
such as the survival analysis, as compared with their deterministic counterparts [31]. In general,
environmental fluctuations contained linear fluctuations in [32, 33] and nonlinear fluctuations in [34].
Some studies have shown that the evolving process of HIV was naturally subject to environmental
fluctuations [21, 22, 25] such as policies, medical systems, climate and so on. Motivated by the previous
contributions, in this paper, we assumed that X = (S , E, Im, Is)T was a Markov process [35] and assumed
that the environmental fluctuations were proportional to S , E, Im, and Is. Taking the environmental
fluctuations into account, model (4.1) was described by the following form:

dS (t) = [Λ − βeS (t)E(t) − βmS (t)Im(t) − µS (t)]dt + σ1S (t)dB1(t),

dE(t) = [βeS (t)E(t) + βmS (t)Im(t) − (γe + µ)E(t)]dt + σ2E(t)dB2(t),

dIm(t) = [γeE(t) − (γm + µ)Im(t)]dt + σ3Im(t)dB3(t),

dIs(t) = [γmIm(t) − (δ + µ)Is(t)]dt + σ4Is(t)dB4(t),

(4.1)

where Bi(t) were four independent standard Brownian motions defined on a complete filtered probability
space (Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0, which was increasing and right continuous while F0

contained all P-null sets [35] with the initial values Bi(0) = 0; σi reflected the intensities of white noises
for i = 1, 2, 3, 4.

Then, we showed that there existed a unique global positive solution to model (4.1) for any given
initial values, which was described by the undermentioned Theorem 4.1.
Theorem 4.1. Model (4.1) had a unique global positive solution X(t) ∈ R4

+ with the initial value X0 ∈ R
4
+

for any t ≥ 0.

Proof. Since the coefficients of model (4.1) were locally Lipschitz continuous, there existed a unique
local solution X(t) on t ∈ [0, τe) for any initial value X0 ∈ R

4
+, where τe denoted the explosion time. In

order to prove that X(t) was global, we needed to verify that τe = ∞ held almost surely. Let n0 > 1
be sufficiently large such that each component of X(0) stayed in [ 1

n0
, n0]. Let the infimum of an empty

set equals∞. Obviously, {τn}n≥n0 was monotonically increasing as n→ ∞. Set τ∞ = limn→∞ τn; then,
we obtained τ∞ ≤ τe by the definition of stopping time. The proof was given by a contradiction. We
assumed that there existed a pair of positive constants T > 0 and ε ∈ (0, 1) such that the probability that
τ∞ ≤ T was larger than ε for any n ≥ n0 (i.e., P {τn ≤ T } ≥ ε). We defined a C2-function V1 : R4

+ → R+
by the following:

V1(X) = (S − 1 − ln S ) + (E − 1 − ln E) + (Im − 1 − ln Im) + (Is − 1 − ln Is) .

Applying the Itô’s formula, we obtained the following:

LV1(X) < Λ + γe + γm + δ + 4µ +
1
2

(σ2
1 + σ

2
2 + σ

2
3 + σ

2
4).
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The remaining parts of the proof followed the approaches in [36–38] and we omitted them here.
Next, we provided two useful results, Lemmas 4.1 and 4.2, and the corresponding proofs were

quite similar with Lemmas 2.1 and 2.2 in [39]; therefore, we omitted them here. We denoted X0 =

(S (0), E(0), Im(0), Is(0))T.

Lemma 4.1. Let X(t) be a solution of model (4.1) initiated with X0 ∈ R
4
+; then,

lim
t→∞

S (t)
t
= 0, lim

t→∞

E(t)
t
= 0, lim

t→∞

Im(t)
t
= 0, lim

t→∞

Is(t)
t
= 0 a.s..

Lemma 4.2. Suppose that µ > (σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4)/2. Let X(t) be a solution of model (4.1) initiated

with X0 ∈ R
4
+; then,

lim
t→∞

1
t

∫ t

0
S (s)dB1(s) = 0, lim

t→∞

1
t

∫ t

0
E(s)dB2(s) = 0 a.s.,

lim
t→∞

1
t

∫ t

0
Im(s)dB3(s) = 0, lim

t→∞

1
t

∫ t

0
Is(s)dB4(s) = 0 a.s..

Theorem 4.2. For any initial value X0 ∈ R
4
+, the solution of model (4.1) was stochastically ultimately

bounded.

Proof. We defined V2(X) = S θ + Eθ + Iθm + Iθs , where θ ∈ (0, 1). By using Itô’s formula, we obtained
dV2(X) = LV2(X)dt +G(X)dB(t), in which

LV2(X) =θS θ−1(Λ − βeS E − βmS Im − µS ) + θEθ−1[βeS E + βmS Im − (γe + µ)E]
+ θIθ−1

m [γeE − (γm + µ)Im] + θIθ−1
s [γmIm − (δ + µ)Is]

+
θ(θ − 1)

2
[σ2

1S θ + σ2
2Eθ + σ2

3Iθm + σ
2
4Iθs ],

and
G(X)dB(t) = θσ1S θdB1(t) + θσ2EθdB2(t) + θσ3IθmdB3(t) + θσ4IθsdB4(t).

We defined F(X) B V2(X) + LV2(X), which was bounded in R4
+ to model (4.1). Furthermore, there

existed a constant H1 such that F(X) ≤ H1 < ∞; hence, LV2(X) ≤ H1 − V2(X). Again, by Itô’s formula,
for etV2(X), we obtained the following:

d[etV2(X)] = et[V2(X) +LV2(X)]dt + etG(X)dB(t) ≤ H1etdt + etG(X)dB(t). (4.2)

Integrating (4.2) and taking the expectation yielded the following:

E
[
eτn∧tV2 (X(τn ∧ t))

]
≤ V2(X0) + H1E

∫ τn∧t

0
es ds.

Let n→ ∞, we obtained the following:

etEV2(X(t)) ≤ V2(X0) + H1(et − 1) ≤ V2(X0) + H1et.

Noticing that
|X|θ ≤ 4θ/2 max

1≤i≤4
Xθi ≤ 4θ/2V2(X),
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we obtained
E|X(t)|θ ≤ 2θ(e−tV2(X0) + H1),

which revealed that
lim sup

t→∞
E|X(t)|θ ≤ 2θH1.

Now, for any ε > 0, let H = (2θH1/ε)2. By Chebyshev’s Inequality, we obtained the following:

P {|X(t)| > H} ≤
E|X(t)|1/2

H1/2 .

Let θ = 1/2. Then, we derived

lim sup
t→∞

P {|X(t)| > H} ≤
21/2H1

H1/2 = ε,

which was rewritten as follows:

lim sup
t→∞

P {|X(t)| ≤ H} ≥ 1 − ε.

The proof was complete. □
In the undermentioned Theorem 4.3, we established the sufficient conditions to guarantee the

existence of a stationary distribution and the ergodicity of model (4.1). This main result showed that
HIV exhibited a sustainable behavior in a long run. We denoted

Rs
0 =

Λk4

(k1 +
1
4σ

2
3)(k3 +

1
2σ

2
2)(µ + 1

2σ
2
1)
,

which degenerated to R0 when σ1 = σ2 = σ3 = 0. Here, the expression of Rs
0 was independent of the

fluctuation of Is. In order to show the main result for Theorem 4.3, we used Lemma 3.1 of [25] to check
the details.
Theorem 4.3. Model (4.1) admitted a unique stationary distribution, and it was ergodic when Rs

0 > 1.

Proof. The positive definite diffusion matrix of model (4.1) was A (X) = diag
{
σ2

1S 2, σ2
2E2, σ2

3I2
m, σ

2
4I2

s

}
;

therefore, condition (i) of Lemma 3.1 of [25] was satisfied. To prove condition (ii), we constructed a C2-
function J (X) B MV3+V4+V5+V6, with V3 = −2c1 ln S −c2 ln E−c3 ln Im, V4 = (S + E + Im + Is)m+1,
V5 = − ln S , V6 = − ln Is, ci ∈ R+ (i = 1, 2, 3); M was a sufficiently large positive constant, while m was
a sufficiently small positive constant. Meanwhile, M and m satisfied the following relations:

−3M( 3
√

Rs
0 − 1) + (2c1βeM + βe)ε1 + F − e1 ≤ −1,

−3M( 3
√

Rs
0 − 1) + (2c1βmM + βm)ε1 + F − e2 ≤ −1,

M̂ B µ −
1
2

m
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)
> 0,

(4.3)

where B, F, e1, e2 were defined in (4.6) and (4.12), respectively. Then, we obtained the following:

lim
k→∞

inf
X∈R4

+\Dk

J (X) = +∞,
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where Dk =
(

1
k , k

)
×

(
1
k , k

)
×

(
1
k , k

)
×

(
1
k , k

)
. Obviously, J (X) was a continuous function. We assumed

that the minimum value of J (X) was J̃. We defined a non-negative C2-function Q (X) = J (X) − J̃. Itô’s
formula acted on V3, which gave the following:

LV3 = − 2c1
Λ

S
+ 2c1βeE + 2c1βmIm + 2c1

(
µ +

1
2
σ2

1

)
− c2βeS − c2βm

S Im

E

+ c2

(
k3 +

1
2
σ2

2

)
− c3γe

E
Im
+ c3

(
k1 +

1
2
σ2

3

)
= −

(
c1
Λ

S
+ c2βm

S Im

E
+ c3γe

E
Im

)
−

(
c1
Λ

S
+ c2βeS + c3k1

)
+ 2c1βeE

+ 2c1βmIm + 2c1

(
µ +

1
2
σ2

1

)
+ c2

(
k3 +

1
2
σ2

2

)
+ 2c3

(
k1 +

1
4
σ2

3

)
.

(4.4)

By applying a + b + c ≥ 3 3√abc and 3
√

a + 3√b ≥ 3√a + b for positive a, b and c, expression (4.4) turned
to the following:

LV3 ≤ − 3 3
√

c1c2c3Λ (βmγe + βek1) + 2c1βeE + 2c1βmIm

+ 2c1

(
µ +

1
2
σ2

1

)
+ c2

(
k3 +

1
2
σ2

2

)
+ 2c3

(
k1 +

1
4
σ2

3

)
.

We set
c1 =

1
µ + 1

2σ
2
1

, c2 =
1

k3 +
1
2σ

2
2

, c3 =
1

k1 +
1
4σ

2
3

,

then,
LV3 ≤ − 3( 3

√
Rs

0 − 1) + 2c1βeE + 2c1βmIm + 2. (4.5)

Similarly,

LV4 = (m + 1) Nm (Λ − µN − δIs) +
1
2

(m + 1) mNm−1(σ2
1S 2 + σ2

2E2 + σ2
3I2

m + σ
2
4I2

s )

≤ (m + 1)ΛNm − (m + 1) M̂Nm+1

≤B −
1
2

(m + 1) M̂
(
S m+1 + Em+1 + Im+1

m + Im+1
s

)
, (4.6)

with

B = sup
N∈R+

(m + 1)
(
ΛNm −

1
2

M̂Nm+1
)
< ∞.

Additionally, we derived the following:

LV5 = −
Λ

S
+ βeE + βmIm + µ +

1
2
σ2

1, LV6 = −
γmIm

Is
+ δ + µ +

1
2
σ2

4. (4.7)

From (4.5)–(4.7), we obtained the following:

LQ ≤ − 3M( 3
√

Rs
0 − 1) + (2c1βeM + βe)E + (2c1βmM + βm)Im

−
1
2

(m + 1)M̂
(
S m+1 + Em+1 + Im+1

m + Im+1
s

)
−
Λ

S
− γm

Im

Is

+ δ + 2µ +
1
2
σ2

1 +
1
2
σ2

4 + B + 2M.

(4.8)
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We defined a bounded region as follows:

H =
{

X ∈ R4
+ : ε1 ≤ S ≤

1
ε1
, ε1 ≤ E ≤

1
ε1
, ε1 ≤ Im ≤

1
ε1
, ε2

1 ≤ Is ≤
1
ε2

1

}
,

where ε1 > 0 was sufficiently small and satisfied the following relations:

−
min{Λ, γm}

ε1
+ F ≤ −1, (4.9)

−
M̂

4εm+1
1

(m + 1) + F ≤ −1, (4.10)

−
M̂

2ε2m+2
1

(m + 1) + F ≤ −1, (4.11)

with
F B 2M + B + e1 + e2 + δ + 2µ +

1
2
σ2

1 +
1
2
σ2

4,

e1 B sup
E∈R+

{
−

M̂Em+1

4
(m + 1) + (2c1βeM + βe) E

}
< ∞,

e2 B sup
Im∈R+

{
−

M̂Im+1
m

4
(m + 1) + (2c1βmM + βm) Im

}
< ∞.

(4.12)

Obviously, R4
+\H = D1 ∪ D2 ∪ · · · ∪ D8, where

D1 =
{
X ∈ R4

+ : 0 < S < ε1

}
, D2 =

{
X ∈ R4

+ : 0 < E < ε1

}
,

D3 =
{
X ∈ R4

+ : 0 < Im < ε1

}
, D4 =

{
X ∈ R4

+ : 0 < Is < ε
2
1, Im ≥ ε1

}
,

D5 =
{
X ∈ R4

+ : S ≥ 1/ε1

}
, D6 =

{
X ∈ R4

+ : E ≥ 1/ε1

}
,

D7 =
{
X ∈ R4

+ : Im ≥ 1/ε1

}
, D8 =

{
X ∈ R4

+ : Is ≥ 1/ε2
1

}
.

With (4.3) and (4.8), we discussed each case as follows:
Case 1. When X ∈ D1, by (4.9), we obtained the following:

LQ ≤ −
Λ

S
+ F ≤ −

Λ

ε1
+ F ≤ −1.

Case 2. When X ∈ D2, due to (4.8), we derived the following:

LQ ≤ − 3M( 3
√

Rs
0 − 1) + (2c1βeM + βe)E + F − e1

≤ − 3M( 3
√

Rs
0 − 1) + (2c1βeM + βe)ε1 + F − e1 ≤ −1.

Case 3. When X ∈ D3, in view of (4.8), we obtained the following:

LQ ≤ − 3M( 3
√

Rs
0 − 1) + (2c1βmM + βm)Im + F − e2

≤ − 3M( 3
√

Rs
0 − 1) + (2c1βmM + βm)ε1 + F − e2 ≤ −1.
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Case 4. When X ∈ D4, according to (4.9), we derived the following:

LQ ≤ −
γmIm

Is
+ F ≤ −

γm

ε1
+ F ≤ −1.

Case 5. When X ∈ D5, by (4.10), we obtained the following:

LQ ≤ −
M̂S m+1

2
(m + 1) + F ≤ −

M̂
2εm+1

1

(m + 1) + F ≤ −1.

Case 6. When X ∈ D6, due to (4.10), we derived the following:

LQ ≤ −
M̂Em+1

2
(m + 1) + (2c1βeM + βe)E + F − e1

≤ −
M̂Em+1

4
(m + 1) + F ≤ −

M̂
4εm+1

1

(m + 1) + F ≤ −1.

Case 7. When X ∈ D7, in view of (4.10), we obtained the following:

LQ ≤ −
M̂Im+1

m

2
(m + 1) + (2c1βmM + βm)Im + F − e2

≤ −
M̂Im+1

m

4
(m + 1) + F ≤ −

M̂
4εm+1

1

(m + 1) + F ≤ −1.

Case 8. When X ∈ D8, according to (4.11), we derived the following:

LQ ≤ −
1
2

(m + 1) M̂Im+1
s + F ≤ −

1
2

(m + 1)
M̂
ε2m+2

1

+ F ≤ −1.

Therefore, LQ ≤ −1 when X ∈ R4
+\H. Consequently, condition (ii) of Lemma 3.1 was satisfied. □

The sufficient conditions for the extinction were established with notation ⟨S (t)⟩ = 1
t

∫ t

0
S (s)ds.

Theorem 4.4. If the following conditions held,

Re
0 =
Λ(βe + βm)
µ(µ + 1

3σ̂)
< 1, µ >

1
2

(σ2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4), σ̂ =

1
2
σ2

2 ∧
1
2
σ2

3 ∧

(
δ +

1
2
σ2

4

)
,

then the solution of model (4.1) satisfies the following:

lim
t→∞

1
t

ln (E(t) + Im(t) + Is(t)) < 0 a.s.,

which implied that HIV/AIDS became extinct with an exponential rate.

Proof. Integrating the first equation of model (4.1), then, by Lemmas 4.1 and 4.2, we obtained the
following:

lim
t→∞

1
t

(S (t) − S (0)) ≤ lim
t→∞

(
Λ − µ ⟨S (t)⟩ +

σ1

t

∫ t

0
S (s)dB1(s)

)
,
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which indicated
lim
t→∞
⟨S (t)⟩ ≤

Λ

µ
a.s.. (4.13)

By Itô’s formula, we defined W (X) = E + Im + Is and obtained the following:

d ln W(X) = L ln W(X)dt +
σ2E
W

dB2(t) +
σ3Im

W
dB3(t) +

σ4Is

W
dB4(t), (4.14)

where
L ln W(X) = βeS

E
W
+ βmS

Im

W
− µ −

δIs

W
−

1
2W2

(
σ2

2E2 + σ2
3I2

m + σ
2
4I2

s

)
≤ (βe + βm)S − µ −

1
W2

[
σ2

2

2
E2 +

σ2
3

2
I2
m +

(
δ +
σ2

4

2

)
I2

s

]
≤ (βe + βm)S − µ −

E2 + I2
m + I2

s

W2 σ̂

≤ (βe + βm)S − µ −
1
3
σ̂.

The integration on (4.14) provided the following:

1
t

(ln W(X(t)) − ln W (X(0))) ≤ (βe + βm) ⟨S (t)⟩ − µ −
σ̂

3
+
σ2

t
B2(t) +

σ3

t
B3(t) +

σ4

t
B4(t). (4.15)

Applying the strong law of large numbers [35], we obtained the following:

lim
t→∞

Bi(t)
t
= 0 (i = 2, 3, 4) . (4.16)

Recalling (4.13), (4.16), Re
0 < 1, and letting t → ∞, we derived from (4.15) that

lim sup
t→∞

ln W(X(t))
t

≤
Λ(βe + βm)
µ

− µ −
σ̂

3
=

(
Re

0 − 1
) (
µ +
σ̂

3

)
< 0.

Thus, the number of infected individuals decreased to zero with an exponential rate in the long run. □
Remark 4.1. The following relationships held:

R0 > Rs
0 and Re

0 > Rs
0.

Moreover, R0 < Re
0 when min{γe, γm} ≥

1
3σ̂. Precisely, model (4.1) had a unique stationary

distribution when Rs
0 > 1. Furthermore, R0 > Rs

0 > 1, which implied that the solution of model (2.1)
eventually approached the endemic equilibrium point P∗. However, R0 > 1 revealed that HIV/AIDS
became an endemic disease for model (2.1), but not for model (4.1), since Rs

0 > 1 was not guaranteed.

5. Parameter estimation and numerical simulations

5.1. Features of surveillance data

In this section, we mainly analyzed the features of the surveillance data from the Fujian CDC in
2004–2011. Figure 1 presents the yearly incidence of HIV/AIDS infection cases with gender groups and
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age groups, and the maximum age, the minimum age and the average age for all HIV/AIDS infection
cases in the Fujian Province are clearly presented within the left panel. Meanwhile, the yearly incidence
of deaths with age groups are presented within the right panel of Figure 1, in which the cumulative
incidence of deaths over eight years were 2.05/100,000 and 0.20/100,000 for all ages and for 60 years
old and over, respectively. Precisely, the monthly incidence of infection cases and severe cases by
genders were investigated in Figure 2.

Figure 1. The maximum age, the minimum age, the average age of HIV/AIDS infection cases
(left), and the yearly incidence (1/100,000) of deaths at all ages as well as 60 years old and
over (right).
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Figure 2. Monthly incidence (1/100,000) for infection cases (left) and severe cases (right) by
genders in 2004–2011 from the Fujian CDC.

5.2. Estimation for parameters and optimal simulations

According to the report in [40], the total population scale and the life expectancy of the Fujian
Province in 2004 were 35,290,000 and 73.834, respectively, which then gave the following initial values
of this study:

N(0) = 35, 290, 000, Λ =
35, 290, 000

73.834
, µ =

1
73.834

.

As of January 2004, nine HIV/AIDS infection cases were recorded by the Fujian CDC, in which seven
mild cases (72.7%) and two severe cases (27.3%) were reported with no deaths. According to the research
results in [41], the basic reproduction number of HIV/AIDS ranged from 1.3 to 6.0. Subsequently, we
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computed the total HIV/AIDS infection cases as follows: 7 × 6.0 + 2 × 1.3 = 44.6 ≈ 45. By proportion,
we derived Im(0) = 33 and Is(0) = 12 because we took potential HIV/AIDS infection cases before 2004
into account in this study. Furthermore, we assumed that the number of HIV/AIDS infection cases with
no clinical symptoms was 1,000, that is, E(0) = 1, 000. By S (0) = N(0) − E(0) − Im(0) − Is(0), we
computed that S (0) = 35, 288, 955. Therefore, all initial values were given herewith.

With modified HIV policies from the Chinese government in February 2006 in [42], the targeted
population with HIV test was extended, which produced an increase in the number of HIV/AIDS infection
cases from 2006. Therefore, the values of βe were usually regarded as distinct before and after 2006.
Utilizing the least squares method, βe was estimated by two parts: β1

e =
0.258

35,290,000 for 2004–2005,
β2

e =
0.417

35,290,000 for 2006–2011. Moreover, βm was estimated by 0.120
35,290,000 . By comparing the population

scales of Mexico and the Fujian Province, we took γe = 0.1411 in [43]. The surveillance data from the
Fujian CDC indicated that the probability that an HIV/AIDS infection case developed into a severe case
was 0.2731. Meanwhile, the average time from Im to Is was 2.0162 years, which gave γm =

0.2731
2.0162 . The

average time for a severe case to death was 1.1419 years, which indicated that δ = 1
1.1419 . We collected

all parameters in Table 1.

Table 1. Parameters in Fujian province.

Parameter Value Period Source
Λ 35,290,000

73.834 2004–2011 [40]

µ 1
73.834 2004–2011 [40]

β1
e

0.258
35,290,000 2004–2005 Estimated

β2
e

0.417
35,290,000 2006–2011 Estimated

βm
0.120

35,290,000 2004–2011 Estimated

γe 0.1411 2004-2011 [43]

γm
0.2731
2.0162 2004–2011 Fujian CDC

δ 1
1.1419 2004–2011 Fujian CDC

By the surveillance data from the Fujian CDC, the gender and age distributions of HIV/AIDS
infection cases in 2004–2011 were recorded, in which the proportions for male infection cases (69.9%)
and female infection cases (30.1%) were investigated during the period 2004–2011, and the percentages
for key infection cases (85.9%, 20–49 years old) and ordinary infection cases (14.1%, 1–19 years old
as well as 50 years old and over) were discussed by clustering the data. The curves for cumulative
incidences of infection cases by genders are plotted on left panel of Figure 3, in which the simulations for
total incidence (in yellow), male incidence (in blue) and female incidence (in pink) were performed. The
analysis for the cumulative incidences of infection cases by age are shown on right panel of Figure 3. By
the same argument, similar investigations on the cumulative incidence of severe cases, the proportions
of male and female cases, and the proportions of key and ordinary cases are presented in Figure 4.
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Figure 3. Monthly and cumulative incidences (1/100,000) of HIV/AIDS infection cases in
2004–2011 by genders, 69.9% for male, 30.1% for female (left); 85.9% for key infection
cases, 14.1% for ordinary infection cases (right).

Figure 4. Monthly and cumulative incidences (1/100,000) of HIV/AIDS severe cases in
2004–2011 by genders, 68.35% for male, 31.65% for female (left); 79.75% for key severe
cases, 20.25% for ordinary severe cases (right).

Furthermore, predictions of HIV/AIDS incidence for the period 2012–2014 were made. We chose the
values of βe from 0.377

35,290,000 to 0.417
35,290,000 , and kept other parameters the same as Table 1. Then, the results

of the predictions were derived, which ranged from 22.97/100,000 to 23.84/100,000 at the end of 2014
as presented on left panel of Figure 5. The minimum value of βe was estimated by 2β1

e+6β2
e

8 , and the
maximum value was same with β2

e . By the proportion of male infection cases, the possible incidence
rate ranged from 16.6/100,000 and 16.66/100,000, and by the percentage of key infection cases, the
possible incidence rate ranged from 19.73/100,000 to 20.48/100,000 at the end of 2014. Especially, by
the same discussion, the predictions of incidence for severe cases during the period 2012–2014 were
operated, which produced the range from 7.12/100,000 to 7.23/100,000 at the end of 2014, and were
presented on right panel of Figure 5.
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Figure 5. Predictions of cumulative incidences of infection cases and severe cases in 2012–2014.

5.3. Comparisons for dynamical properties

The recent contributions in [44,45] established approaches regarding the positivity preserving truncated
Euler-Maruyama (PPTEM) method, which supported the numerical simulations on the extinction and
persistence of stochastic models. Moreover, the PPTEM method was governed on the extinction of
stochastic models to avoid the negative values. We used the Milstein’s higher order (MHO) method [46]
to establish the discretization equations of model (4.1), due to its efficiency and performance of the
persistence of stochastic models.

As given by Table 1, the basic reproduction number R0 was 2.4032 for the period between
2004 and 2005 and 3.3990 for the period between 2006 and 2011. Our investigation showed that
the solution of model (2.1) eventually approached the globally asymptotically stable P∗, but was
repelled by the unstable P0 as claimed in Theorem 3, where P∗ and P0 were calculated as P∗ =
(2.91×104, 6.21×103, 5.88×103, 8.59×102)T, and P0 = (105, 0, 0, 0)T. Additionally, our investigation
revealed that model (4.1) admitted the indicator Rs

0 ≈ 3.3849 when taking σi = 0.01(i = 1, 2, 3, 4). By
Theorem 4.3, we concluded that HIV/AIDS was stochastically persistent for a long run as demonstrated
on left panel of Figures 6–8. When we repeated 3,000 runs, the corresponding curves for the histogram
were respectively carried out as shown on right panel of Figures 6-8. Specifically, we noticed that
R0 > Rs

0 > 1 held in Remark 4, which indicated that the stochastic persistence to model (4.1) implied
the persistence to model (2.1) for HIV/AIDS.
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Figure 6. Stochastic persistence (left) and histogram (right) of E(t).
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Figure 7. Stochastic persistence (left) and histogram (right) of Im(t).
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Figure 8. Stochastic persistence (left) and histogram (right) of Is(t).

Furthermore, we performed an operation for models (2.1) and (4.1) in 400 years. The research results
showed that the solution for model (4.1) and the solution for model (2.1) matched well when we took
σi = 0.01(i = 1, 2, 3, 4). The deviations are shown in Figure 9. Then, we defined the proportion of
deviation for the solutions of models (2.1) and (4.1) by the following form:

ds(t) =
solution of model (2.1) − solution of model (4.1)

solution of model (2.1)
,

where the proportion of deviations varied with the time t. The research results showed that when we
took σi = 0.01(i = 1, 2, 3, 4), the maximum absolute values of the proportion of deviations were 5.35%
for E, 5.93% for Im and 6.15% for Is.
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Figure 9. Deviations for the solutions to models (2.1) and (4.1).
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Furthermore, the changes of the solutions and the probability density functions to model (4.1) were
explored when the intensities of white noises σi = 0.01, 0.02, 0.03, 0.04, 0.05 (i = 1, 2, 3, 4) were chosen
and other parameters were kept the same as Table 1. Then, the corresponding numerical simulations of
the solutions were derived on left panels of Figures 10–12. Meanwhile, the changes of the probability
density functions were demonstrated on right panels of Figures 10–12 when the intensities of white
noises increased.

The research results showed that the tendencies of the numerical simulations for next five decades were
very similar when we compared Figure 6.1 for Indonesia in [25] and Figures 7–8 for the Fujian Province
in this study. The incidence (1/100,000) of HIV/AIDS infection cases for the Fujian Province reached a
peak with about 2.86× 104, then rapidly declined and gradually became stable around at 1.61 × 104, which
revealed that the potential risk of medical burden raised near the infection peak. We suggested that
the local government adopted more tough strategies before the medical burden appeared, and medical
service centers were asked to prepare the future medical resources as early as possible.
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Figure 10. Comparison of stochastic persistence for E.
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Figure 11. Comparison of stochastic persistence for Im.
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Figure 12. Comparison of stochastic persistence for Is.

6. Conclusions

By surveillance data from 2004 to 2011 of the Fujian CDC, we proposed symptom-dependent
HIV/AIDS models since the mild and severe symptom cases were recorded well, and further investigated
the survival dynamics such as persistence, extinction and stationary distribution. The research results
showed that the disease-free equilibrium P0 was locally and globally asymptotically stable for model (2.1)
when R0 < 1; additionally, P0 was unstable, whereas the endemic equilibrium point P∗ was locally and
globally asymptotically stable when R0 > 1. When it came to the environmental fluctuations, the
interaction mechanism among compartments of model (2.1) remained the same. Based on the existence
and uniqueness of the global positive solution, the ergodic stationary distribution of stochastic model (4.1)
was valid when Rs

0 > 1, which indicated that HIV/AIDS prevailed for the long run. Moreover, we
investigated the sufficient condition of extinction for HIV/AIDS for a short period of time.

The surveillance data of HIV/AIDS from the Fujian CDC gave that R0 ≈ 3.3990 > 1 to model (2.1),
which indicated that HIV/AIDS became an endemic disease for a long time in the Fujian Province, and
that HIV/AIDS displayed an exponential upward trend in Figure 5. Meanwhile, model (4.1) displayed
small fluctuations (say σi = 0.01) provided that Rs

0 ≈ 3.3849 > 1, which revealed that HIV/AIDS cases
of the Fujian Province persisted almost surely, as shown in Figures 6-8. However, when σi = 0.10 were
taken in Theorem 4 such that Rs

0 ≈ 2.3876 > 1, the sample paths did not present the stationary properties
very well. To perform the 90–90–90% plan of WHO in [47], the scale to the HIV infection mainly
relied on the reductions of βe (the effective contact coefficient between S and E) and βm (the effective
contact coefficient between S and Im). For the susceptible population, the reduction of HIV infection
might come from the following: individual-oriented protection such as male or female condom use;
medical-system-oriented protection such as HIV tests and voluntary medical male circumcision in [48];
and social-oriented protection such as harm reduction services for people who inject and use drugs.
Alternatively, some medicines and medical devices such as antiretroviral drugs (ARVs), dapivirine
vaginal rings and injectable long acting cabotegravir were extensively available to prevent HIV, which
reduced the value of γm, and the numbers of severe cases and deaths were therefore declined.

Figure 5 indicated that the HIV/AIDS incidence rate ranged from 22.97/100,000 to 23.84/100,000
in the Fujian Province at the end of 2014; in comparison, the research results in [25] showed that the
HIV/AIDS incidence rate was 36.36/100,000. In 2020, the incidence rate of HIV/AIDS infection cases
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for Mainland of China admitted 76.47/100,000 in [25], while the prediction by model (2.1) showed that
the lower and upper incidence rates for the Fujian Province were 120.16/100,000 and 149.04/100,000,
respectively, at the end of 2020. In comparison with other previous contributions, our models consisted
of four equations with seven parameters to handle the surveillance data from the Fujian CDC, and the
optimal fittings were performed very well. Our model (2.1) modified model (2.1) in [25] by combining
the equations for I and C as an equation of Im, and keeping the equation of A as an equation of Is.
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