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Abstract: In this study, we proposed two, symptom-dependent, HIV/AIDS models to investigate
the dynamical properties of HIV/AIDS in the Fujian Province. The basic reproduction number was
obtained, and the local and global stabilities of the disease-free and endemic equilibrium points were
verified to the deterministic HIV/AIDS model. Moreover, the indicators Rj and R{ were derived for
the stochastic HIV/AIDS model, and the conditions for stationary distribution and stochastic extinction
were investigated. By using the surveillance data from the Fujian Provincial Center for Disease Control
and Prevention, some numerical simulations and future predictions on the scale of HIV/AIDS infections
in the Fujian Province were conducted.
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1. Introduction

Human immunodeficiency virus (HIV) infection was regarded as a major global public health issue. The
World Health Organization (WHO) has claimed more than 40.4 million (32.9-51.3 million) infection cases
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as of 13 July 2023, in which 0.63 million (0.48—0.88 million) individuals died from HIV-related causes
during the period from January 2022 to December 2022 [1]. Moreover, China admitted 117.9 thousand
HIV/AIDS infection cases with 30.0 thousand (25.48%) deaths from January 2007 to December 2011 [2],
in which 3266 HIV/AIDS infection cases were diagnosed with 725 deaths (22.20%), among which, 2320
local HIV/AIDS infection cases with 530 deaths (22.84%) and, 946 HIV/AIDS infection cases with 195
deaths (20.61%) from other provinces and overseas were reported during the period from January 2004
to December 2011. Additionally, the symptom characteristics were well recorded and classified by the
surveillance data. Infection cases with mild symptoms may have an influenza-like illness including fever,
headache, rash, sore throat and other symptoms such as swollen lymph nodes, weight loss, diarrhea and
a cough, as reported by the WHO. Without treatment, infection cases with mild symptoms can develop
to include severe symptoms such as tuberculosis, cryptococcal meningitis, severe bacterial infections
and cancers due to the weakness of the immune system [1]. Essentially, the severity of symptoms was
characterized by CD4"* T cell counts [3-5], and the starting and ending points of structured treatment
interruptions were determined in [6]. The transmission mechanism of symptom-dependent HIV/AIDS
was usually described by mathematical models.

Local governments and policy makers controlled and prevented infectious diseases by adopting
mathematical models, which played irreplaceable roles and provided new perspectives when studying
the complex dynamics of infectious diseases, as in [7]. Specifically, the compartment models were often
governed to investigate the transmission mechanisms of infectious diseases, in which the compartment
structures were determined by specific infectious diseases. In fact, various types of deterministic dynamical
models were included such as ordinary differential equation models, difference equation models, delay-
differential equation models, age-structured partial differential equations (PDE) models and diffusion
models in [7-16]. Meanwhile, recent contributions also governed the stochastic differential equation
models and the fractional differential equation models to investigate the basic reproduction number and
dynamical properties in [17-25]. More precisely, HIV/AIDS incorporated with tuberculosis (TB) models
were taken into account, where the effect of Antiretroviral Therapy (ART) treatment and both local and
global stabilities of HIV-only model were studied in [19,20] by adopting the standard incidence rates,
in which the transmission mechanism to the susceptible compartment in [19] presented a more complex
incidence mechanism. After these two contributions, the parameter fluctuation was introduced into the
HIV/AIDS model with the bilinear incidence rate in [21], and the systematic fluctuation was investigated
in [22] based on the model in [20]; therein, the related survival analysis and dynamical properties were
extensively studied. The research results of the stochastic HIV/AIDS models in [21,22,25,26] showed
that the intensities of white noises diminished the scale and threshold of HIV/AIDS. The investigations
of HIV/AIDS models in [23,24] reflected that protection awareness of the susceptible also diminished
the number of HIV/AIDS infection cases.

In this paper, we proposed symptom-dependent HIV/AIDS models to describe the epidemiological
characteristics and dynamical properties of HIV/AIDS in the Fujian Province. Based on the features of real
surveillance data from the Fujian Provincial Center for Disease Control and Prevention (Fujian CDC), the
threshold R, of the deterministic HIV/AIDS model was derived, and the local and global stabilities for the
disease-free point and endemic equilibrium point were extensively investigated in Section 3. Meanwhile,
we introduced environmental fluctuations into the deterministic HIV/AIDS model; the conditions for the
stationary distribution and stochastic extinction were investigated in Section 4. Moreover, we conducted
numerical simulations and made predictions on the scale of HIV/AIDS infections in the Fujian Province

Mathematical Biosciences and Engineering Volume 21, Issue 2, 1819-1843.



1821

in Section 5. The results of this study provided new perspectives to control the scale of HIV infection
for local governments and policy makers including, but not limited to, the Fujian Province.

2. Model formulation

HIV/AIDS infection cases from surveillance data (2004—2011) in the Fujian CDC were recorded as
either mild cases or severe cases. Based on the transmission mechanism and symptoms of HIV/AIDS,
in this paper, we proposed symptom-oriented HIV/AIDS models in a local population. Here, the total
population was separated into four the following mutually-exclusive compartments: S, susceptible
with no HIV/AIDS infection; E, HIV infected with no clinical symptoms but were able to transmit
the HIV virus to others (HIV virus lived in the hosts but did not produce clinical symptoms, the hosts
with an HIV virus lacked awareness of going to hospital and getting checked); 1,,, HIV infected with
mild symptoms; and /;, HIV infected with severe symptoms. Hence, the total population at time ¢ for
a designated region was given by N(¢) = S(¢) + E(t) + 1,(t) + I,(¢). Especially, for the key men who
have sex with men (MSM) population with HIV/AIDS, the transmission mechanism of HIV/AIDS was
usually described by the bilinear incidence between S and E, as well as S and /,, in recent contributions
such as equations-oriented descriptions in [21,23,25,27] and fluctuation-oriented descriptions in [28,29].
The aforementioned HIV/AIDS models with extensive discussions motivated us to govern the bilinear
incidence for investigating symptom-dependent HIV/AIDS models in this paper:

SM) = A—-BSOE®) - BuS O (0) — uS (1),

E() = BSWOE® + BuS O1u(0) - (ye + E®,

I = YeEW) = O+ 01(0), 1)
0) = yula(t) - 5+ I,

where A was the constant recruitment rate, 8, depicted the effective contact coefficient between S and
E, B,, was the effective contact coefficient between S and 1, 1/7y, represented the average time from
the date of being infected by the HIV virus to the date with mild symptoms, 1/y,, was the average time
required from the date of being detected with mild symptoms to the date with severe symptoms, 1/6 was
the average time from the date that they had severe symptoms to the date that they died, and ¢ denoted
the nature death rate. All parameters were assumed to be positive by their biological meanings.

3. Survival investigation of model (2.1)

Let X = (S,E, I,,1,)". Adding up the four equations in (2.1), and using the standard comparison
theorem, we obtained that N(r) < A/u; furthermore, we considered the dynamical properties in the
positive invariant sets Q = {X ERWOSS+E+1,+1, < A/,u} and Q) ={(Xe€ QE =1, =1, = 0}
in this paper. It was easy to check that Py = (S, Eo, I, I0)" = (A/u,0,0,0)" was the disease-free
equilibrium point. It was known that the basic reproduction number was an important threshold for
describing the average number of new HIV/AIDS infection cases produced by one HIV infected
individual, which was computed by the next generation matrix in [30]. Let .# be the new infections in
compartments E, I,,, I, and let ¥ = ¥~ — #*, in which 7"~ was the transfer rate for the individuals
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moving out of three compartments, ¥~ was the transfer rate for the individuals entering into the
compartments by all other means. Then, we wrote down the following:

BSE + 6,51, v.E + uE
F = 0 sV =\ Yudy — VeE + ul, |.
0 YVl + 01 +

The Jacobian matrices for .% and ¥ were computed respectively as follows:

ﬁeS ﬂmS 0 Ye + U 0 0
F=10 0O 0, V= v Ynt+tu O
0 0 O 0 —Ym O+ U

Substituting the disease-free equilibrium point P, into matrix FV~' gave the following basic
reproduction number:

Ry:=p(FV')= k]:j;;,

3.1

where p(-) denoted the spectral radius, and ky = y,, + 4, ko = 6 + u, k3 = yo + i, kg = v + k15e.
Ry reflected the average number that an HIV/AIDS infection case transmitted the HIV virus to the
susceptible individuals without interventions.

Alternatively, the endemic equilibrium point P* = (S*, E*, I, I})" existed for model (2.1) when
Ry > 1, where

k]A _ k4A - k]k:;,l,l I* _ ’)/eE'>s I* _ ’)/e)/mE*

B k E* +k1,Ll’ B k3k4 oo ki s kik,

S * *
In fact, let f € R denote the right-hand side of the second equation in (2.1) and substitute S, I;;, I into
the equation. Then, the following expression was obtained:

SE") =B.S"E" +BnS*I;, — k3E*
_ —k3k4E? + (Y + ki BeA — kksp)E”
B k4E*,\+ k],U
—AE* + BE* _f(EY)
kaE* + kit g(E*)’

inwhich A = ksky > 0, B = kyA—kiksu = kykspu(Ro—1) > 0, f(E*) = —AE*2+BE*, g(E*) = kyE* +ky .
It was easy to check that f(E*) is a quadratic function with a negative quadratic coefficient and £(0) = 0;
therefore, when Ry > 1, then f(E*) = 0 had a unique positive real root, which implied that f(E*) = 0
also admitted a unique positive real root since g(E*) > 0 held for E* € R*.

Furthermore, in this part, the locally and globally asymptotic stabilities for two equilibrium points,
Py and P*, to model (2.1) were concerned using the Routh-Hurwitz Theorem and LaSalle’s Invariant
Principle, respectively.
Theorem 3.1. (i). If Ry < 1, then the disease-free equilibrium point Py was locally asymptotically stable
in domain Q.

(i0). If Ry > 1, then P, was unstable, and the endemic equilibrium point P* was locally asymptotically
stable in Q\ Q.
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Proof. (i) The Jacobian matrix of model (2.1) was expressed as follows:

—BeE =Bl — 1t —PeS —BwS 0
BE + Bl BeS — ks B.S 0
0 Ye —k 0

0 0 Ym  —ko

Substituting Py into J(X), then the eigenvalues of the characteristic equation det(4J — J(Py)) = 0 were
givenby 4, = —u < 0,1, = —k; <0 and

J(X) =

1 1
/13,4 = E(ﬁeSO —Ye — )/m) —M + E \//355% + (2ﬁe(7m - )/e) + 47@,8m)S0 + (’}’m - 7@)2-
Here,
1 1
/13 < E([BeSO —Ye _')’m) —H- ELBKSO —Ye +')’m|

If B.So —ve + v = 0, then A3 < —y,, —u < 0; if 8,59 — v. + ¥ < 0O, then we obtained that

A3 <ks(Ry—1)— %’?SO < 0 by Ry < 1. The product of 13 and A, gave the following expression:

B35 = —p(BeS0 = Ye = Ym) + 12— Ve + YeBm)So0 + Ye¥Ym = —kiks(Ro — 1) > 0,

together with A3 < 0, which implied that 1, < 0. By the Routh-Hurwitz Theorem, the disease-free
equilibrium point Py was local asymptotically stable.

(i1). If Ry > 1, then A344 = —k1k3(Ry — 1) < 0. Thus, there existed one positive eigenvalue, and the
disease-free equilibrium point P, was unstable.

Then, we substituted P* into J(X) to investigate the local asymptotic stability of the endemic
equilibrium point P* as follows:

_IBeE* - ﬁml;:l —H _IBeS : _ﬁmS* 0
o | BeE +Bul,  BST—ks BnST 0| _ (/i O
= 0 oo ko 0 [T\s k)
0 0 Ym _k2
Obviously, A4 = —k; < 0. We denoted ks = k3(k4E™ + ki) = Aky. Let the characteristic equation of
J(P)be 2> + a,A> + a; A + ay = 0, where

A
ay =ki + ks + p+ BE" + Buly, = BeS™ = ki + ks + ks = kiksBe] + BE” + Bl
5

Ak37/eﬁm
ks
ay =kiks + (ki + ka)p + (ki + k3)(BE™ + Bul,) — (kiBe + 4Be + VeB)S ™

=k +u + +B.E" + Bl >0,

A , .
:k_(ﬂklk4 + k2ﬂ)/eﬁin) + (kl + kS)(ﬁc’E‘>F +ﬁm1m)
5

AkZ,u’)/eﬁ m
ks

A
ao =kiksp + kiks(BE™ + Bol,,) — pksS™ = k—(k1k3k4/l — pkiksks) + kik3(BE™ + Bul,,)
5

=uk; + + (ki + k3)(B.E™ + Bul,) > 0,

=kik3(B.E* + Bnl,) > 0.
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Then,

1
M+ k_S(Ak37e,8m) +ﬁeE* +ﬁm1:1

1
X /Jkl + k_S(AkZ/[)/eﬁm) + (kl + k3)(ﬁeE* +18me>;)

aa; —ap =

+ k;

1
pky + k—(Aklee,Bm) +ki(B.E” +ﬁml;:1)] > 0.
5

By the Routh-Hurwitz Theorem, the endemic equilibrium point P* was locally asymptotically stable in
Q\ Q. m]
Theorem 3.2. (i). If Ry < 1, then the disease-free equilibrium point P, was globally asymptotically
stable in domain Q.

(@). If Ry > 1, then the endemic equilibrium point P* was globally asymptotically stable in Q\Qy.

Proof. Noting that the compartment /; did not appear in the first three equations of model (2.1), we
considered the following equivalent model:

SO = A=BSOE® = BuS OL(1) — uS (1),
E(t)y = BSOEQ) +BuS OIn(t) = (ye + WE(®), (3.2)
Im(t) = ’YKE(I) - (7m + /J)Im(t)»

with the following positive invariant sets:
Q={(S.E 1) eRIO<S +E+1, <Au}, Q={(S.E.1,) € QE =1, =0}.

Then, the dynamics of model (2.1) was the same as model (3.2).
(i). We defined a C*-function V; : R3 — R, by the following:

V](SEIm)—S SQ—S()]HS—+E+Aﬁm

0 k"

The time derivation of V; along the positive solution was given by the following:

ABn

. S
Vl:(1—%)(A—,BeSE—,BmSIm—,uS)+ﬁeSE+ﬁmSIm—k3E+ M (y E — k1)

Using relation S = % we derived the following:

) S AS -
Vi=|1- SO)(A—S—)"‘ﬁe 0E + BuS ol —k3E+£(7eE kil,)
0
A A
:A(z_i__o)_'_( ﬁe lBeye—k3)E
So S H kip
S Sy
:A(Z—S—O—?)'Fkg(Ro—l)E

Thus Vi < 0 when n Ry < 1. The equality held if and only if § = S, £ = 0, which corresponded to
{(S E L)€ Q:S = AN/, E = O} cQ. If Ry = 1, then V; < 0; the equality was valid if and only
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if § = S, which corresponded to 52 = {(S LE,I,) € Q:S = A/p} c Q. Recalling the boundedness

of ﬁ, the maximal compact invariant set of model (3.2) on ﬁl and ﬁz contained only one element,
Py. According to LaSalle’s Invariant Principle, the disease-free equilibrium point P, was globally
asymptotically stable.

(i1). For convenience, we denoted x = Si y= %, 7= ;—: By multiplying SL EL and t on both sides
of model (3.2), together with the identities

A =BSE" = BuS L, —puS* =0, BSTE* + BuS Iy, — (Yo + E" = 0, Y. E* = (Y + ), = 0,

model (3.2) was transformed into the following form:

[A (1
X o= x _*(__1)_ﬁeE*(y_1)_:BmI;1(Z_l) )
[ S \x
y = yﬁeS+ﬁ - —kg), (3.3)
yE
E*
z =z ’)/eai)_kl)'

We constructed a C*>-function V, : R} — R, by

ﬁmS *1*2

Vo(x,y,2) =S"(x—1-Inx)+ E*(y— 1 —1ny) + E*m (z—1-1Ingz)

e

to verify the global stability of the endemic equilibrium point P* for model (3.3). Differentiating V,
with respect to ¢ along the positive solution of model (3.3), we obtained the following:

. * %2
Vo= S*(x— 1) + E*(y - 1)X BuS L o —1)-
X v.E
% (x— 1) [% (1 - 1) CBEy — 1) = Bull(z 1)]
S*\x

. - m - *1;12 E*
+E*(y—1)(ﬁeS B —k3) By (—D(nl*y—kl)

e

=QA-B.SE" =B,S°L) — A (x + %) —B.STE* (xy —x—y)
—BuS L (xz2—x—2) +BSE* + LS, + LS E*(xy —x—y)
+BuS”I (xz - % —y)  BuS*I + BuS T, (y —z- %)

=(A = BnS°I") (2 —x- %) + BuS T, (3 L —).

The following relationships AN=BuS*L, > A=B.S'E* =B, S*L, —uS*=0,8,5",, >0and 2 —x— < <
0,3-1- % -1 - < 0 yielded that V> < 0. The equality was valid if and only if x = 1 and y = z, Wthh

implied that S = S" and g = 1’;’. Therefore, the maximal compact invariant set of model (3.2) on

I m
I

m

— E
Q; = {(S,E,Im) eR}:S = S*,E = } Q\Q,
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was a singleton {P*}. Hence, by LaSalle’s Invariant Principle, the unique endemic equilibrium point P*
was globally asymptotically stable for Ry > 1. O

4. Survival investigation of model (4.1)

Epidemic models with environmental fluctuations were profitable to provide additional perspectives,
such as the survival analysis, as compared with their deterministic counterparts [31]. In general,
environmental fluctuations contained linear fluctuations in [32,33] and nonlinear fluctuations in [34].
Some studies have shown that the evolving process of HIV was naturally subject to environmental
fluctuations [21,22,25] such as policies, medical systems, climate and so on. Motivated by the previous
contributions, in this paper, we assumed that X = (S, E, I,,,, I,)" was a Markov process [35] and assumed
that the environmental fluctuations were proportional to S, E, I,,, and ;. Taking the environmental
fluctuations into account, model (4.1) was described by the following form:

S() = [A—BSOED) —BuS (D1 — S (D)dr + 0, S (1)dB, (1),

E() = [BSWOEW +BuSOL(0) — (e + WEDIdt + o E@dB (1),

(D) = [VeE(t) = Gy + (D1 + 31, (0B 1), -1
AL = Dl — 6+ WLOIE + oL (dBA(),

where B;(t) were four independent standard Brownian motions defined on a complete filtered probability
space (Q, 7, {F}»0, P) with a filtration {¥,};>0, which was increasing and right continuous while 7
contained all P-null sets [35] with the initial values B;(0) = 0; o; reflected the intensities of white noises
fori=1,2,3,4.

Then, we showed that there existed a unique global positive solution to model (4.1) for any given
initial values, which was described by the undermentioned Theorem 4.1.
Theorem 4.1. Model (4.1) had a unique global positive solution X(¢) € R? with the initial value X, € R}
for any ¢ > 0.

Proof. Since the coeflicients of model (4.1) were locally Lipschitz continuous, there existed a unique
local solution X(¢) on t € [0, 7,) for any initial value Xy € R?, where 7, denoted the explosion time. In
order to prove that X(#) was global, we needed to verify that 7, = co held almost surely. Let ny > 1
be sufficiently large such that each component of X(0) stayed in [nl—o, np]. Let the infimum of an empty
set equals co. Obviously, {7,},-,, was monotonically increasing as n — oo. Set 7, = lim,,_,, 7,,; then,
we obtained 7., < 7, by the definition of stopping time. The proof was given by a contradiction. We
assumed that there existed a pair of positive constants 7 > 0 and € € (0, 1) such that the probability that
Too < T was larger than & for any n > ny (i.e., P{r, < T} > &). We defined a C>-function V/ : Rﬁ — R,
by the following:

V)=l —1-InS)+(E—-1-InE)+(,—1-1Inl,)+ I, —1-1Inl,).

Applying the Itd’s formula, we obtained the following:
1
LVi(X) <A+ye+ym+6+4,u+i(o-f+o-§+a§+o-ﬁ).
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The remaining parts of the proof followed the approaches in [36-38] and we omitted them here.

Next, we provided two useful results, Lemmas 4.1 and 4.2, and the corresponding proofs were
quite similar with Lemmas 2.1 and 2.2 in [39]; therefore, we omitted them here. We denoted X, =
(5(0), EQ0), 1,,(0), 1,(0))".

Lemma 4.1. Let X(¢) be a solution of model (4.1) initiated with X, € R%; then,
tim 2?2 = 0, 1im 22 ~ ¢, tim 2?2 _ ¢, 1im 2 -

t—00 t t—00 t t—00 t t—00

0 as..

Lemma 4.2. Suppose that u > (073 V 03 V 03 V 07)/2. Let X(7) be a solution of model (4.1) initiated
with X € R?; then,

1 (7 1 (7
lim — S(s)dB;(s) =0, lim n f E(s)dB,(s) =0 a.s.,
0 t—00 0

t—oo

1 1
lim — f L(5)dBs(s) = 0, lim — f I(5)dBy(s) = 0 ass..
t—oo 0 t—oo 0

Theorem 4.2. For any initial value X, € R, the solution of model (4.1) was stochastically ultimately
bounded.

Proof. We defined Vy(X) = S + E? + I + I?, where 6 € (0, 1). By using Itd’s formula, we obtained
dVL(X) = LV,(X)dt + G(X)dB(t), in which

LV2(X) =65" (A = BSE = fuS by = puS) + OE" [BS E + S Ly = (ve + E]
+ O [y E = (Yo + 0L + 017 [yl — (6 + )]

06 - 1
+ %[afse + 0B + o310 + o317,

and
G(X)dB(t) = 6018 dB(f) + 0o, E’dB,(1) + 00317, dB(t) + 004 1°dBy(1).

We defined F(X) := Vo(X) + LV,(X), which was bounded in Rﬁ to model (4.1). Furthermore, there
existed a constant H; such that F(X) < H; < oo; hence, LV,(X) < H; — V,(X). Again, by It6’s formula,
for €'V, (X), we obtained the following:

dle'Vo(X)] = €'[Va(X) + LV(X)]dt + €G(X)dB(t) < H e'dt + ¢'G(X)dB(r). 4.2)
Integrating (4.2) and taking the expectation yielded the following:
TNt
E [eT"A'VQ X(t, A l))] < Vo (Xo) + HlEf e’ ds.
0
Let n — oo, we obtained the following:
e’EVz(X(t)) < Vo(Xp) + Hy (et - 1) < Vh(Xp) + Hlet.

Noticing that
XI" < 477 max X} < 472V (X),
<i<
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we obtained
EIX(0))° < 2%(e™"Va(Xo) + H)),

which revealed that
lim sup E|X(1)|’ < 2°H;.

[—0o0

Now, for any & > 0, let H = (2°H, /&)*>. By Chebyshev’s Inequality, we obtained the following:

E|X(0)|'/*
P{X(®)| > H} < W
Let & = 1/2. Then, we derived
. 2'2H,
hrtriioupP{lX(t)l > H} < NI £,
which was rewritten as follows:
limsupP{|X(1)| < H} >1—e&.
t—00
The proof was complete. O

In the undermentioned Theorem 4.3, we established the sufficient conditions to guarantee the
existence of a stationary distribution and the ergodicity of model (4.1). This main result showed that
HIV exhibited a sustainable behavior in a long run. We denoted

s Aky

O ki + LoD + LoD + L)
which degenerated to Ry when oy = 0, = 03 = 0. Here, the expression of Rj was independent of the
fluctuation of /;. In order to show the main result for Theorem 4.3, we used Lemma 3.1 of [25] to check

the details.
Theorem 4.3. Model (4.1) admitted a unique stationary distribution, and it was ergodic when Rj > 1.

Proof. The positive definite diffusion matrix of model (4.1) was A (X) = diag {O'%S 2, 05E*, 031} oﬁlf} :

3 m>
therefore, condition (i) of Lemma 3.1 of [25] was satisfied. To prove condition (ii), we constructed a C*-

function J(X) =MV3+Vi+Vs+ Vg, with V3 = —2C1 InS —C ll’lE—Cg ll’llm, V4 = (S +E+1,+ Is)m+1,
Vs=—-InS, Vg =—-Inl, c; e R, (i =1,2,3); M was a sufficiently large positive constant, while m was
a sufficiently small positive constant. Meanwhile, M and m satisfied the following relations:

—3M(Ry = 1)+ ciSM + Bo)e; + F —e; < —1,

=3M(JRy = 1)+ QcifuM + Bp)er + F — ey < —1, (4.3)
- 1
M::,u—Em(o'fVO'%VO%VO'Z)>O,

where B, F, e}, e; were defined in (4.6) and (4.12), respectively. Then, we obtained the following:

lim inf J(X)= +oo,
k—co XxeR¥\Dy
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where D, = (%, k) X (%, k) X (%, k) X (i, k) . Obviously, J (X) was a continuous function. We assumed

that the minimum value of J (X) was J. We defined a non-negative C2-function Q (X) = J (X) — J. 1t0’s
formula acted on V3, which gave the following:

A 1 S,
LVy=- 2c1§ + 2¢c1B.E + 2c1B,1, + 2¢4 (,u + 50‘%) — 23S — Cz,BmT

1 E 1
+ Cp (k3 + EO’%) - C3’)/3E + C3 (k] + EO’%)
“4.4)
= A+ ,BSI’"+ £ A+ B.S + c3ky |+ 2c18.E
= CIS szE Cs)’elm Cls C2P C3K] C1Pe

2 4

By applyinga+b+c >3 Vabe and fa + Vb > Va + b for positive a, b and ¢, expression (4.4) turned
to the following:

1 1 1
+2¢c1Bul, + 2¢4 (u + 50'%) + (k3 + —0'%) + 2¢3 (Iq + —o’%).

.£V3 <- 3\3/C102C3A (ﬁm')/e +ﬁek1) + 2ClﬁeE + chﬁmlm

1 1 1
+2C1('u+EO‘%)+C2(]€3+§0'§)+2C3(]<1+ZO'§).

We set
_ 1 3 1 3 1
a= u+ %O‘%’ @ ks + %0%’ “= ky + iar
then,
LV3 <=3(J/R = 1)+ 2¢c18.E + 2¢18l + 2. 4.5)
Similarly,

1
LVi=(m+ DN" (A =pN = 61) + 5+ DmN"" (18 + 03B + 031, + o3)
<(m+1)AN™ - (m + 1) MN™!
1 .
<B-Z(m+1) M(S™" + E™ 4 I+ 1), (4.6)

with
1 .
B=sup (m+ 1)(AN’” - —MN’"”) < 00.
NeR, 2
Additionally, we derived the following:

Lw=—§+mE+m@ﬁy+§ﬁ,Lw=—n

N

1
+5+ﬂ+§ai 4.7
From (4.5)—(4.7), we obtained the following:

LO <=3M({[Ry = 1)+ 2c1SeM + B)E + 2¢18uM + )1

1 . A,
—5m+nM@WuEW+m“+wﬂ———w—

3 2 (4.8)

1 1
+6+2,u+§o-%+§ai+B+2M.
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We defined a bounded region as follows:

&1 &1 &1 82

_ i 1 1 L 1
H={XeR:6§<S<—,1<EL—,5 <], —, << ,
1

where g, > 0 was sufficiently small and satisfied the following relations:

in(A. v,

_mintA gyl ey, (4.9)
€1

- m+D+F <-1, (4.10)
48r1n+1

s m+ )+ F<-1, 4.11)
28% +2

with 1 1
F::2M+B+e1+e2+6+2y+§a%+§ai,

MEm+1
e = sup {— 7 (m+1)+ Q2c1B.M +,) E} < 00, (4.12)

EeR,

m+1
e, = sup {— Z (m+ 1)+ QciSuM + ) IM} < ©0.

I,eRy

Obviously, RI\H = D; U D, U - - - U Dg, where

Di={XeR{:0<S<za), Dy={XeR':0<E<s],
D3:XeRﬁ:0<Im<gl}, D4=XER110<IS<8%,Im281},
Ds={XeRt:S21/e), Do={XeRi:E21/z],
D;={XeRt: 1,21/}, Dy={XeRi:I>1/&}.

With (4.3) and (4.8), we discussed each case as follows:
Case 1. When X € Dy, by (4.9), we obtained the following:

A A
LO<——+F<-——+F< -1
S &1
Case 2. When X € D,, due to (4.8), we derived the following:
LO <=3M({[R) = 1)+ QciSeM +B)E + F — ¢
<-3M(; Ry — 1)+ 2c1pM + Bo)e) + F —e; < —1.
Case 3. When X € Ds, in view of (4.8), we obtained the following:
LO<-3M(; Ry — 1)+ 2c1pnM + By + F — e3

<= 3M(JRS = 1) + QcrfuM + By)er + F — ey < —1.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 1819-1843.



1831

Case 4. When X € Dy, according to (4.9), we derived the following:

mIm m
LQ3—71—+F3—Y—+F§—1.

s &1

Case 5. When X € Ds, by (4.10), we obtained the following:

A

m+1

LO< -

m+1)+F < -

m+1)+F <-1.

m+1
1

Case 6. When X € Dg, due to (4.10), we derived the following:

m+1
LQS— 3 (m+1)+(2c1,3eM+,8e)E+F—e1
m+1 M
<- m+1)+F<——m+1)+F<—1.
48m+1

1
Case 7. When X € D, in view of (4.10), we obtained the following:

7 ym+1

LO<- 2’" (m+1)+ QcSuM +B,), + F —e>

7 ym+1
m

A

M
m+1)+F < —
4 +1
1

< —

m+1)+F <-1.

Case 8. When X € Dg, according to (4.11), we derived the following:

A

1 . 1
LQS—?M+DM@”+F§—§W+D +F <—1.

8%m+2

Therefore, £Q < —1 when X € Rﬁ\H . Consequently, condition (i1) of Lemma 3.1 was satisfied. |
The sufficient conditions for the extinction were established with notation (S (¢)) = % fot S (s)ds.
Theorem 4.4. If the following conditions held,

:Awyu%)<

Ry -
up + 36)

1 L1 1 1
I, ,u>§(0'%\/0'§V0'§V0'Z), 0'250'3/\50'%/\(5+50'2),

then the solution of model (4.1) satisfies the following:
o1
lim " In(E(t) + 1,(t) + I,(1)) <0 a.s.,
—o0

which implied that HIV/AIDS became extinct with an exponential rate.

Proof. Integrating the first equation of model (4.1), then, by Lemmas 4.1 and 4.2, we obtained the
following:

lim % S®O-SO) <Im(A-pu{S®)+ % f S(s)dBl(s)) ,
[—00 [—00 0
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which indicated

A
lim{S(¥)) < — as.. (4.13)
t—00 #
By It0’s formula, we defined W (X) = E + I, + I and obtained the following:
O'2E 0'3Im 0-413'
dinW(X) = LInW(X)dt + —dBy(¢) + dB;(t) + ——dBy(1), (4.14)
w w w
where E I ol 1
_ m s 212 272 272
LINWX) = BeS o +BuS v — 1= 32 = 5 (3E? + 0312 + 212)
1 [o3 o3 o?
< e S — U — — —ZE>+ 2P 0 _4 I?
< (Be+Bm) ”WZZ +2m+ +25
E>+ 12+ 1%,
< B+ Bu)S —p—
1
< (ﬁe +ﬁm)S —H— gaA-

The integration on (4.14) provided the following:
1 o o o o
— (InWX@) = In W (XO) < e + B (SW) == 5+ —Bot) + —B(t) + —Bat).  (4.15)

Applying the strong law of large numbers [35], we obtained the following:

lim B =0 (i=23,4). (4.16)

t—oo

Recalling (4.13), (4.16), Rj; < 1, and letting  — oo, we derived from (4.15) that

1 X(t AB, + B o o
lim sup nW(t())s ('8+'8)—,u—%:(R8—1)(,u+%)<0.
t—o0 M

Thus, the number of infected individuals decreased to zero with an exponential rate in the long run. O
Remark 4.1. The following relationships held:

Ry >Ry and R > R,.

Moreover, Ry < Rj when min{y,,y,} > %6‘. Precisely, model (4.1) had a unique stationary
distribution when R;) > 1. Furthermore, Ry > Rj > 1, which implied that the solution of model (2.1)
eventually approached the endemic equilibrium point P*. However, R, > 1 revealed that HIV/AIDS

became an endemic disease for model (2.1), but not for model (4.1), since R} > 1 was not guaranteed.
5. Parameter estimation and numerical simulations

5.1. Features of surveillance data

In this section, we mainly analyzed the features of the surveillance data from the Fujian CDC in
2004-2011. Figure 1 presents the yearly incidence of HIV/AIDS infection cases with gender groups and
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age groups, and the maximum age, the minimum age and the average age for all HIV/AIDS infection
cases in the Fujian Province are clearly presented within the left panel. Meanwhile, the yearly incidence
of deaths with age groups are presented within the right panel of Figure 1, in which the cumulative
incidence of deaths over eight years were 2.05/100,000 and 0.20/100,000 for all ages and for 60 years
old and over, respectively. Precisely, the monthly incidence of infection cases and severe cases by
genders were investigated in Figure 2.

==@==The minimum age The average age ==@== The maximum age === A\|| ages ==®== 60 years old and over
84
90 80 80
75 76 76 75 75

e o o ©°
B o oo N
S © © o

& 31 % 37 36 37 38 36 37

e o
R
S o

18 0.12

0.07

Yearly incidence of death

003 004 oo0a 007
002 001 0

=]
=
S}

10 2 1 2 2 1 1

0.00
0.00 001 o—p

2004 2005 2006 2007 2008 2009 2010 2011 2004 2005 2006 2007 2008 2009 2010 2011

Year Year

Figure 1. The maximum age, the minimum age, the average age of HIV/AIDS infection cases
(left), and the yearly incidence (1/100,000) of deaths at all ages as well as 60 years old and
over (right).
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Figure 2. Monthly incidence (1/100,000) for infection cases (left) and severe cases (right) by
genders in 2004-2011 from the Fujian CDC.

5.2. Estimation for parameters and optimal simulations

According to the report in [40], the total population scale and the life expectancy of the Fujian
Province in 2004 were 35,290,000 and 73.834, respectively, which then gave the following initial values

of this study:
35,290,000 1

73834 M7 73834

As of January 2004, nine HIV/AIDS infection cases were recorded by the Fujian CDC, in which seven
mild cases (72.7%) and two severe cases (27.3%) were reported with no deaths. According to the research
results in [41], the basic reproduction number of HIV/AIDS ranged from 1.3 to 6.0. Subsequently, we

N(0) = 35,290,000, A =
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computed the total HIV/AIDS infection cases as follows: 7 X 6.0 + 2 X 1.3 = 44.6 = 45. By proportion,
we derived 1,,(0) = 33 and 7,(0) = 12 because we took potential HIV/AIDS infection cases before 2004
into account in this study. Furthermore, we assumed that the number of HIV/AIDS infection cases with
no clinical symptoms was 1,000, that is, £(0) = 1,000. By S(0) = N(0) — E(0) — 1,,(0) — 1,(0), we
computed that S (0) = 35,288, 955. Therefore, all initial values were given herewith.

With modified HIV policies from the Chinese government in February 2006 in [42], the targeted
population with HIV test was extended, which produced an increase in the number of HIV/AIDS infection
cases from 2006. Therefore, the values of 8, were usually regarded as distinct before and after 2006.

Utilizing the least squares method, 8, was estimated by two parts: ! = % for 2004-2005,
B = 352';‘&%00 for 2006-2011. Moreover, ,, was estimated by 5 2'915’%00. By comparing the population

scales of Mexico and the Fujian Province, we took y, = 0.1411 in [43]. The surveillance data from the
Fujian CDC indicated that the probability that an HIV/AIDS infection case developed into a severe case
was 0.2731. Meanwhile, the average time from /,, to I; was 2.0162 years, which gave y,, = 92131 "The

20162°
average time for a severe case to death was 1.1419 years, which indicated that 6 = —1_114 5 We collected
all parameters in Table 1.
Table 1. Parameters in Fujian province.
Parameter Value Period Source
35,290,000
A e 2004-2011 [40]
u ﬁ 2004-2011 [40]
! 50500 2004-2005 Estimated
2 55000 2006-2011 Estimated
Bun 590005 2004-2011 Estimated
Ve 0.1411 2004-2011 [43]
Vi % 20042011 Fujian CDC
§ i 2004-2011 Fujian CDC

By the surveillance data from the Fujian CDC, the gender and age distributions of HIV/AIDS
infection cases in 2004-2011 were recorded, in which the proportions for male infection cases (69.9%)
and female infection cases (30.1%) were investigated during the period 2004—2011, and the percentages
for key infection cases (85.9%, 2049 years old) and ordinary infection cases (14.1%, 1-19 years old
as well as 50 years old and over) were discussed by clustering the data. The curves for cumulative
incidences of infection cases by genders are plotted on left panel of Figure 3, in which the simulations for
total incidence (in yellow), male incidence (in blue) and female incidence (in pink) were performed. The
analysis for the cumulative incidences of infection cases by age are shown on right panel of Figure 3. By
the same argument, similar investigations on the cumulative incidence of severe cases, the proportions
of male and female cases, and the proportions of key and ordinary cases are presented in Figure 4.
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Figure 3. Monthly and cumulative incidences (1/100,000) of HIV/AIDS infection cases in
2004-2011 by genders, 69.9% for male, 30.1% for female (left); 85.9% for key infection
cases, 14.1% for ordinary infection cases (right).
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Figure 4. Monthly and cumulative incidences (1/100,000) of HIV/AIDS severe cases in
2004-2011 by genders, 68.35% for male, 31.65% for female (left); 79.75% for key severe
cases, 20.25% for ordinary severe cases (right).

Furthermore, predictions of HIV/AIDS incidence for the period 2012-2014 were made. We chose the
values of B, from 5z3305 10 55550 5. and kept other parameters the same as Table 1. Then, the results
of the predictions were derived, which ranged from 22.97/100,000 to 23.84/100,000 at the end of 2014

as presented on left panel of Figure 5. The minimum value of 3, was estimated by %jﬂ%, and the
maximum value was same with 2. By the proportion of male infection cases, the possible incidence
rate ranged from 16.6/100,000 and 16.66/100,000, and by the percentage of key infection cases, the
possible incidence rate ranged from 19.73/100,000 to 20.48/100,000 at the end of 2014. Especially, by
the same discussion, the predictions of incidence for severe cases during the period 2012-2014 were
operated, which produced the range from 7.12/100,000 to 7.23/100,000 at the end of 2014, and were

presented on right panel of Figure 5.
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Figure 5. Predictions of cumulative incidences of infection cases and severe cases in 2012-2014.

5.3. Comparisons for dynamical properties

The recent contributions in [44,45] established approaches regarding the positivity preserving truncated
Euler-Maruyama (PPTEM) method, which supported the numerical simulations on the extinction and
persistence of stochastic models. Moreover, the PPTEM method was governed on the extinction of
stochastic models to avoid the negative values. We used the Milstein’s higher order (MHO) method [46]
to establish the discretization equations of model (4.1), due to its efficiency and performance of the
persistence of stochastic models.

As given by Table 1, the basic reproduction number R, was 2.4032 for the period between
2004 and 2005 and 3.3990 for the period between 2006 and 2011. Our investigation showed that
the solution of model (2.1) eventually approached the globally asymptotically stable P*, but was
repelled by the unstable Py as claimed in Theorem 3, where P* and P, were calculated as P* =
(2.91x10%6.21 x10%,5.88 % 10%,8.59 x 10%)™, and P, = (10°,0,0,0)". Additionally, our investigation
revealed that model (4.1) admitted the indicator Rj ~ 3.3849 when taking o; = 0.01(i = 1,2, 3,4). By
Theorem 4.3, we concluded that HIV/AIDS was stochastically persistent for a long run as demonstrated
on left panel of Figures 6-8. When we repeated 3,000 runs, the corresponding curves for the histogram
were respectively carried out as shown on right panel of Figures 6-8. Specifically, we noticed that
Ry > R; > 1 held in Remark 4, which indicated that the stochastic persistence to model (4.1) implied
the persistence to model (2.1) for HIV/AIDS.

10% 4
- T T T T T 450

T T
E(t) for model(2.1)
—— E(t) for model(4.1) 4k

3k -

35

T
—— T =200 years
——T =300 years|_J

T = 400 years|

25 1

3
T
Probability density

Yearly incidence of E(t)
&
T

1k

05

L L L L L L L 0 L L L - L |
0 50 100 150 200 250 300 350 400 2300 3700 5100 6500 7900 9300 10700 12100
Years Yearly incidence of E(t)

Figure 6. Stochastic persistence (left) and histogram (right) of E(¢).
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Figure 8. Stochastic persistence (left) and histogram (right) of 7(¢).

Furthermore, we performed an operation for models (2.1) and (4.1) in 400 years. The research results
showed that the solution for model (4.1) and the solution for model (2.1) matched well when we took
o; = 0.01(G = 1,2,3,4). The deviations are shown in Figure 9. Then, we defined the proportion of
deviation for the solutions of models (2.1) and (4.1) by the following form:

di(t) = solution of model (2.1) — solution of model (4.1)
S solution of model (2.1) ’

where the proportion of deviations varied with the time #. The research results showed that when we
took o; = 0.01(i = 1,2, 3,4), the maximum absolute values of the proportion of deviations were 5.35%
for E, 5.93% for I,, and 6.15% for I,.
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Figure 9. Deviations for the solutions to models (2.1) and (4.1).
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Furthermore, the changes of the solutions and the probability density functions to model (4.1) were
explored when the intensities of white noises o-; = 0.01,0.02,0.03,0.04,0.05 (i = 1, 2, 3,4) were chosen
and other parameters were kept the same as Table 1. Then, the corresponding numerical simulations of
the solutions were derived on left panels of Figures 10—12. Meanwhile, the changes of the probability
density functions were demonstrated on right panels of Figures 10-12 when the intensities of white
noises increased.

The research results showed that the tendencies of the numerical simulations for next five decades were
very similar when we compared Figure 6.1 for Indonesia in [25] and Figures 7-8 for the Fujian Province
in this study. The incidence (1/100,000) of HIV/AIDS infection cases for the Fujian Province reached a
peak with about 2.86 x 10%, then rapidly declined and gradually became stable around at 1.61 x 10*, which
revealed that the potential risk of medical burden raised near the infection peak. We suggested that
the local government adopted more tough strategies before the medical burden appeared, and medical
service centers were asked to prepare the future medical resources as early as possible.
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Figure 10. Comparison of stochastic persistence for E.
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Figure 12. Comparison of stochastic persistence for /.

6. Conclusions

By surveillance data from 2004 to 2011 of the Fujian CDC, we proposed symptom-dependent
HIV/AIDS models since the mild and severe symptom cases were recorded well, and further investigated
the survival dynamics such as persistence, extinction and stationary distribution. The research results
showed that the disease-free equilibrium P, was locally and globally asymptotically stable for model (2.1)
when R < 1; additionally, Py, was unstable, whereas the endemic equilibrium point P* was locally and
globally asymptotically stable when R, > 1. When it came to the environmental fluctuations, the
interaction mechanism among compartments of model (2.1) remained the same. Based on the existence
and uniqueness of the global positive solution, the ergodic stationary distribution of stochastic model (4.1)
was valid when R} > 1, which indicated that HIV/AIDS prevailed for the long run. Moreover, we
investigated the sufficient condition of extinction for HIV/AIDS for a short period of time.

The surveillance data of HIV/AIDS from the Fujian CDC gave that Ry ~ 3.3990 > 1 to model (2.1),
which indicated that HIV/AIDS became an endemic disease for a long time in the Fujian Province, and
that HIV/AIDS displayed an exponential upward trend in Figure 5. Meanwhile, model (4.1) displayed
small fluctuations (say o; = 0.01) provided that Rj ~ 3.3849 > 1, which revealed that HIV/AIDS cases
of the Fujian Province persisted almost surely, as shown in Figures 6-8. However, when o; = 0.10 were
taken in Theorem 4 such that R ~ 2.3876 > 1, the sample paths did not present the stationary properties
very well. To perform the 90-90-90% plan of WHO in [47], the scale to the HIV infection mainly
relied on the reductions of S, (the effective contact coefficient between S and E) and §,, (the effective
contact coeflicient between S and 7,,). For the susceptible population, the reduction of HIV infection
might come from the following: individual-oriented protection such as male or female condom use;
medical-system-oriented protection such as HIV tests and voluntary medical male circumcision in [48];
and social-oriented protection such as harm reduction services for people who inject and use drugs.
Alternatively, some medicines and medical devices such as antiretroviral drugs (ARVs), dapivirine
vaginal rings and injectable long acting cabotegravir were extensively available to prevent HIV, which
reduced the value of vy,,, and the numbers of severe cases and deaths were therefore declined.

Figure 5 indicated that the HIV/AIDS incidence rate ranged from 22.97/100,000 to 23.84/100,000
in the Fujian Province at the end of 2014; in comparison, the research results in [25] showed that the
HIV/AIDS incidence rate was 36.36/100,000. In 2020, the incidence rate of HIV/AIDS infection cases
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for Mainland of China admitted 76.47/100,000 in [25], while the prediction by model (2.1) showed that
the lower and upper incidence rates for the Fujian Province were 120.16/100,000 and 149.04/100,000,
respectively, at the end of 2020. In comparison with other previous contributions, our models consisted
of four equations with seven parameters to handle the surveillance data from the Fujian CDC, and the
optimal fittings were performed very well. Our model (2.1) modified model (2.1) in [25] by combining
the equations for 7 and C as an equation of /,,, and keeping the equation of A as an equation of /.
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