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Abstract: In this article, we reconsider the classical target cell limited dynamical within-host HIV
model, solely taking into account the interaction between CD4+ T cells and virus particles. First, we
summarize some analytical results regarding the corresponding dynamical system. For that purpose,
we proved some analytical results regarding the system of differential equations as our first main con-
tribution. Specifically, we showed non-negativity and boundedness of solutions, global existence in
time and global uniqueness in time and examined stability properties of two possible equilibria. In
particular, we demonstrated that the virus-free equilibrium and the plateau-phase equilibrium are lo-
cally asymptotically stable using the Routh–Hurwitz criterion under appropriate conditions. As our
second main contribution, we underline our theoretical findings through some numerical experiments
with standard Runge–Kutta time stepping schemes. We conclude this work with a summary of our
main results and a suggestion of an extension for more complex dynamical systems with regard to
HIV-infection.
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1. Introduction

1.1. Motivation

Today, approximately 40 million people are infected with the human immunodeficiency virus (HIV)
and nearly 5.5 million people are unaware of it [1,2]. For that reason, research on this infectious disease
without treatment still can be regarded as an important topic from a biological and clinical point of
view.

Since HIV was found to be the main reason for the acquired immune deficiency syndrome (AIDS),
many modeling approaches have been explored over the course of the last decades to simulate its
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time development. At the end of the twentieth century, different approaches such as CD4+ T cell
subpopulations [3], experimental data [4] or simpler fundamental models [5–9] were applied to better
understand the dynamics of primary HIV infections. Reviews and fundamental models were proposed
at the beginning of the twenty-first century [10–12]. Afterward, some works on global stability of
fundamental models on viral dynamics were published [13–15]. Later, main fundamental models
were reviewed in [16–18]. Furthermore, different aspects such as drug therapy or treatment can be
implemented to obtain realistically dynamical models [19–23]. Furthermore, agent-based models can
be applied as an alternative [24, 25]. In this work, we specifically consider the well-known, classical
target cell within-host HIV model

dT (t)
dt
= r − β · V (t) · T (t) − d · T (t) =: f1 (t,T (t) ,Ti (t) ,V (t)) ,

dTi (t)
dt

= β · V (t) · T (t) − δ · Ti (t) =: f2 (t,T (t) ,Ti (t) ,V (t)) ,

dV (t)
dt
= π · Ti (t) − c · V (t) =: f3 (t,T (t) ,Ti (t) ,V (t)) ,

T (0) = T0 > 0,
Ti (0) = Ti,0 ≥ 0,
V (0) = V0 > 0,



(1.1)

where all model parameters, also called constant problem parameters, and all variables, also known
as solution components, are described in Table 1; quantities with index 0 represent initial conditions.
We briefly want to remark that the state variable Ti (t) indicates infected CD4+ T cells and the index i
reflects this infected state.

As later explained, this model accurately describes viral load during primary HIV infection in the
acute phase. Additionally, our ideas for proofs of basic mathematical properties, given in the later
part of this work, can be transferred to more complex models. For these reasons, we choose to mainly
concentrate our mathematical examination on model (1.1), although we are aware of dynamical models
including more tissue and mechanisms, as presented in our previous discussion.

Table 1. Explanation of all problem constants and all solution components of (1.1).

Symbol Meaning Unit
t time day
r constant production rate of target CD4+ T cells cells · (µL)−1

·
(
day

)−1

β constant infection rate of target CD4+ T cells with HIV viral
particles

µL ·
(
virions · day

)−1

d constant clearance rate of target CD4+ T cells
(
day

)−1

δ constant clearance rate of infected target CD4+ T cells
(
day

)−1

c constant elimination rate of HIV viral particles
(
day

)−1

π constant replication rate of HIV viral particles virions ·
(
cells · day

)−1

T (t) number of target CD4+ T cells (density in blood) cells · (µL)−1

Ti (t) number of infected target CD4+ T cells (density in blood) cells · (µL)−1

V (t) number of HIV viral particles (density in blood) virions · (µL)−1
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Throughout this article, all model parameters are assumed to be positive. Units are taken from the
work by Alizon and Magnus [17]. Further, we want to shed some light on the dynamical system’s
structure. r represents a constant production rate of target CD4+ T cells while the linear term −d · T (t)
stands for the constant elimination of CD4+ T cells due to non-disease natural reasons. The main non-
linear term of this first-order, non-linear dynamical system is given by −β · T (t) · V (t), which models
the reduction or target CD4+ T cells by being infiltrated by virus particles. Consequently, −δ ·Ti (t) and
−c · V (t) model death or elimination processes of infected CD4+ T cells or of virions. Hence, system
(1.1) describes a non-linear dynamical system of first order. Average lifetimes of infected CD4+ T cells
and of virus particles are represented by 1

d and 1
c , as described by Nowak and Bangham [6]. For further

details regarding biological interpretations, we refer interested readers to [5–7].

1.2. Literature review

Let us present a concise history on mathematical modeling in primary HIV infection and related
fields. In 1994, Essunger and Perelson proposed a model of HIV infection of CD4+ T cell subpopu-
lations [3]. Their main mathematical interest was the possible stability of steady states, also known
as equilibrium points. In 1996, Kirschner presented one simplified model for primary HIV infection
similar to model (1.1), but modified by a Michaelis-Menten mechanism [5]. In her work, she mainly
numerically investigated steady states or linear growth of virus particles in time. In the same year,
Nowak and Bingham suggested different models, including (1.1) in [6] and they also mainly investi-
gated plateau-phase equlibrium points. For example, they extended our basic, i.e., very fundamental,
model by immune responses to virus particles. One year later, Bonhoeffer and co-authors discussed
model (1.1) and modified versions in which they emphasized the discussion of equilibria and numerical
simulations [7] (compare page 6971 and especially the section about “A Basic Model” in this refer-
ence). Finzi and Siliciano also discussed equilibria for a simplified primary HIV-infection model [8].
In 1998, De Boer and Perelson investigated different models similar to (1.1) in [9]. However, they were
mainly concerned with steady states. One year later, Perelson and Nelson primarly summarized analyt-
ical investigations on (1.1) regarding stability of equilibria [10]. In 2000, Stafford and co-workers used
model (1.1) for parameter estimation problems [11]. Two years later, Perelson reviewed some classical
mathematical models of primary HIV infection [12]. In 2004, Korobeinikov introduced different Lya-
punov functions for global stability of simple epidemiological and virus dynamical models [13, 14].
Additionally, Wang and Li proved global stability with respect to a modified mathematical model of
primary HIV infection [15]. One year later, Ribeiro investigated the basic mathematical model (1.1)
numerically [16]. In 2012 and 2013, Alizon, Magnus, Perelson and Ribeiro reviewed basic and more
sophisticated mathematical models on dynamics of primary HIV infections including, for example,
immune responses as seen in [6] or different virus strains. In recent years, stability analysis of more
sophisticated models on HIV infections was developed [20–22]. Recently, Xu modified the basic model
(1.1) by a constant CD8+ T cell density in blood and examined stability properties of the suggested
model [23].

The aforementioned articles mainly examined stability of the plateau-phase equilibrium states of
mathematical models of HIV infections and the modeling of infection over time. Hence, we aim to
provide proofs of existence and uniqueness of solutions of (1.1) globally in time as these are essential
properties for biologically plausible models. Additionally, since this model (1.1) properly describes
primary infection during the acute phase of HIV [11], it seems crucial to present thorough proofs of
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certain basic mathematical properties. For that reason, we need statements on boundedness and non-
negativity of (1.1). Additionally, we want to derive all possible equilibria in a thorough manner. To
the best of our knowledge, existence and uniqueness were not proven in the aforementioned articles.
Furthermore, different properties such as boundedness, non-negativity, or derivation of the equilibrium
points were only mentioned in the aforementioned works. Hence, our main goal is to collect these
important properties with mathematical derivations.

1.3. Contributions

Although system (1.1) is one of the simplest models for primary HIV infection, many studies have
focused on applications and modelling with respect to the disease’s time development [4, 5, 10, 12,
18]. For that reason, we want to thoroughly investigate and re-examine system (1.1), since a detailed
analysis can be seen as a preparatory step for future research. In previous investigations [26–30],
different systems of differential equations were first analyzed and then numerical algorithms were
developped and applied for its numerical solution.

Our two main contributions can be summarized as follows:

1) In Section 2, we mainly prove analytical results with respect to the dynamical system (1.1). Here,
we begin with the non-negativity of possible solutions for all t ≥ 0. Afterward, we demonstrate
that all solution components remain bounded for all t ≥ 0. To establish these results, we need
to examine subsystems of (1.1), which is done in the proof of Lemma 2.3. In addition, we
provide results for existence and uniqueness globally in time for all t ≥ 0 in Sections 2.3 and
2.4. We conclude this section with a stability result for the virus-free equilibrium point and the
plateau-phase disease equilibrium point based on the Routh–Hurwitz criterion. Here, the basic
reproduction number occurs as a by-product of this criterion. In addition, we obtain the basic
reproduction number by considering the approach of van den Driessche [31–33].

2) By applying typical Runge–Kutta time stepping schemes in Section 3, we investigate our theoret-
ical findings using numerical simulations and thus underline our results.

To summarize, we aim to provide thorough proofs of analytical results in order to stress the biological
usefulness of model (1.1).

2. Analytical results of (1.1)

In this section, we prove some analytical results with respect to (1.1). Time-continuous solution
components are assumed because of the dynamical system’s structure, since all problem constants are
positive and, as a consequence, no jumps in problem parameters exist. For additional interpretation,
we refer our readers back to the introduction.

We want to note that all right-hand side functions f j (t,T (t) ,Ti (t) ,V (t)) of (1.1) for each index
j ∈ {1, 2, 3} are continuous with respect to all state variables. Since (1.1) can be equivalently written as
an integral equation, all state variables are continuously differentiable functions with respect to time.

2.1. Non-negativity

Here, we discuss the non-negativity of possible solutions for system (1.1). This is of importance
since only non-negative solution components of (1.1) have biological relevance.

Mathematical Biosciences and Engineering Volume 21, Issue 12, 7805–7829.
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Lemma 2.1. All solution components of (1.1) remain non-negative for all t ≥ 0.

Proof. Let us assume that there might be a time where at least one solution component becomes nega-
tive. Due to the continuity of all solution components, there exists a time point t0 ≥ 0 where T (t0) = 0,
Ti (t0) = 0 or V (t0) = 0 hold. Here, it is important to keep in mind that our initial conditions need to be
non-negative as stated in (1.1).

Let us first assume that T (t0) = 0 holds while all other solution components are non-negative due
to continuity. Then

T ′ (t0) = r − β · V (t0) · T (t0)︸︷︷︸
=0

−d · T (t0)︸︷︷︸
=0

= r

> 0

holds and this implies T ′ (t0) > 0.
Now, let us assume that Ti (t0) = 0 holds while all other solution components are non-negative due

to continuity. Then

T ′i (t0) = β · V (t0) · T (t0) − δ · Ti (t0)︸︷︷︸
=0

= β · V (t0) · T (t0)

≥ 0

holds and this implies T ′i (t0) ≥ 0.
Let us assume that V (t0) = 0 holds while all other solution components are non-negative due to

continuity. Then

V ′ (t0) = π · Ti (t0) − c · V (t0)︸︷︷︸
=0

= π · Ti (t0)

≥ 0

holds and this implies V ′ (t0) ≥ 0.
Inductively, for later time points where at least one solution component is zero, we can apply the

same argument. This means that no state variable can become negative. In conclusion, all solution
components remain non-negative for all t ≥ 0 due to continuity and non-negativity of initial conditions,
which finishes our proof.

2.2. Boundedness of all solution components

In this subsection, we investigate the boundedness of all solution components of system (1.1). For
this proof, we need one comparison principle from differential equations, stated in [34, Lemma 3.4].

Lemma 2.2. Consider the scalar differential equation

u′ (t) = f (t, u (t)) , u (t0) = u0
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where f (t, u) is continuous in t and locally Lipschitz in u for all t ≥ t0 and all u ∈ J ⊂ R. Let [t0,T )
(T could be infinity) be the maximal interval of existence of the solution u (t). Suppose u (t) ∈ J for all
t ∈ [t0,T ). Let v (t) be a continuous functions whose upper right-hand derivative D+v (t) satisfies the
differential inequality

D+v (t) ≤ f (t, v (t)) , v (t0) ≤ u0

with v (t) ∈ J for all t ∈ [t0,T ). Then, it holds v (t) ≤ u (t) for all t ∈ [t0,T ).

Now, we are able to prove the boundedness of all states variables of (1.1).

Lemma 2.3. All solution components of (1.1) remain bounded for all t ≥ 0.

Proof. 1) Let us first consider T ′ (t) = r − β · V (t) · T (t) − d · T (t). Due to Lemma 2.1, we conclude
that

T ′ (t) = r − β · V (t) · T (t) − d · T (t)

= r − (β · V (t) + d) · T (t)

≤ r − d · T (t)

holds. Consequently, by application of the comparison principle from Lemma 2.2 and by non-
negativity, we notice that

0 ≤ T (t) ≤
r
d
+

(
T0 −

r
d

)
· exp (−d · t)

is valid for all t ≥ 0 because all assumptions of Lemma 2.2 are fulfilled in this situation. Finally,
this implies

0 ≤ T (t) ≤ max
{ r

d
,T0

}
for all t ≥ 0.

2) By investigating the subsystem

T ′ (t) = r − β · V (t) · T (t) − d · T (t) ,
T ′i (t) = β · V (t) · T (t) − δ · T ′i (t)

 (2.1)

of (1.1) and defining
M (t) = T (t) + Ti (t) (2.2)

as the complete number of target CD4+ T cells, we obtain the following differential equation

M′ (t) := (T (t) + Ti (t))′

= T ′ (t) + T ′i (t)

= (r − β · V (t) · T (t) − d · T (t)) +
(
β · V (t) · T (t) − δ · T ′i (t)

)
= r − d · T (t) − δ · Ti (t)

≤ r −min {d, δ} · (T (t) + Ti (t))

= r −min {d, δ} · M (t)
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with initial condition M0 := T0 + Ti,0. Hence, it follows

0 ≤ M (t) ≤
r

min {d, δ}
+

(
M0 −

r
min {d, δ}

)
· exp (−min {d, δ} · t) (2.3)

for all t ≥ 0, which implies the validity of

0 ≤ M (t) ≤ max
{

r
min {d, δ}

,M0

}
(2.4)

for all t ≥ 0.
3) Due to the boundedness of T (t) and Ti (t) for all t ≥ 0, we obtain the following differential

inequality
V ′ (t) := π · Ti (t) − c · V (t)

≤ π ·max
{

r
min {d, δ}

,M0

}
− c · V (t)

and we can conclude

0 ≤ V (t) ≤
π

c
·max

{
r

min {d, δ}
,M0

}
+

(
V0 −

π

c
·max

{
r

min {d, δ}
,M0

})
· exp (−c · t) (2.5)

for all t ≥ 0, which has

0 ≤ V (t) ≤ max
{
π

c
·max

{
r

min {d, δ}
,M0

}
,V0

}
(2.6)

for all t ≥ 0 as a consequence.
This proves our assertion that all solution components of (1.1) remain bounded for all t ≥ 0. This

finishes our proof.

2.3. Existence of all solution components of (1.1) for all t ≥ 0

Here, we want to give one statement from [35, Theorem 4.7.1] or [36, Theorem 2.2]. We consider
a general initial-value problem

z′ (t) = G (t, z (t)) ,
z (0) = z0

 (2.7)

where z (t) = (z1 (t) , . . . , zn (t))T denotes our solution vector, the vectorial function is given by
G (t, z (t)) = (g1 (t, z (t)) , . . . , gn (t, z (t)))T , and initial conditions are given by z0 ∈ R

n. By ∥·∥Rn , we
denote a suitable vector norm on Rn. Here, we apply the supremum norm

∥F (x)∥∞ := sup
j=1,...,n

sup
x∈Rn

∣∣∣ f j (x)
∣∣∣

on the space of bounded, continuous functions on Rn since this leads to a Banach space.

Mathematical Biosciences and Engineering Volume 21, Issue 12, 7805–7829.
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Theorem 2.1. If G : [0,∞) × Rn −→ Rn is locally Lipschitz-continuous in both time and state vari-
ables and if there are non-negative real functions D : [0,∞) −→ [0,∞) and K : [0,∞) −→ [0,∞)
such that

∥G (t, z (t))∥Rn ≤ K (t) · ∥z (t)∥Rn + D (t)

holds for all z (t) ∈ Rn, then the solution of the initial-value problem (2.7) exists for all t ≥ 0. Moreover,
for every finite T ≥ 0, we have

∥z (t)∥Rn ≤ ∥z0∥Rn · exp (Kmax · |t|) +
Dmax

Kmax
·
(
exp (Kmax · |t|) − 1

)
for all t ∈ [0,T ] where

Dmax = max
0≤s≤T

|D (s)| and Kmax = max
0≤s≤T

|K (s)|

are described.

Now, we are able to show the global existence of all solution components for our dynamical system
in (1.1) for all t ≥ 0. Existence is one main property that reliable models in natural sciences should
fulfill. This also holds for uniqueness, later analyzed in this work.

Theorem 2.2. There exists a solution of (1.1) globally in time for all t ≥ 0.

Proof. We define
G (t,T (t) ,Ti (t) ,V (t))

:=


r − β · V (t) · T (t) − d · T (t)
β · V (t) · T (t) − δ · Ti (t)
π · Ti (t) − c · V (t)


=:


g1 (t,T (t) ,Ti (t) ,V (t))
g2 (t,T (t) ,Ti (t) ,V (t))
g3 (t,T (t) ,Ti (t) ,V (t))


for our vectorial function of (1.1).

1) At first, we prove Lipschitz-continuity locally for g1 (t,T (t) ,Ti (t) ,V (t)) because the other com-
ponent functions are estimated in a similar manner. By the boundedness of all solution compo-
nents by Lemma 2.3, we can assume that

Tsup := sup
t≥0
|T (t)| ; Ti,sup := sup

t≥0
|Ti (t)| and Vsup := sup

t≥0
|V (t)|

exist. We obtain

∥g1
(
t,T1 (t) ,T1,i (t) ,V1 (t)

)
− g1

(
t,T2 (t) ,T2,i (t) ,V2 (t)

)
∥∞

= ∥(−β · V1 (t) · T1 (t) − d · T1 (t)) − (−β · V2 (t) · T2 (t) − d · T2 (t))∥∞
≤ d · ∥T1 (t) − T2 (t)∥∞ + β · ∥V1 (t) · T1 (t) − V2 (t) · T2 (t)∥∞
= d · ∥T1 (t) − T2 (t)∥∞ + β · ∥V1 (t) · T1 (t) − V1 (t) · T2 (t) + V1 (t) · T2 (t) − V2 (t) · T2 (t)∥∞
≤ d · ∥T1 (t) − T2 (t)∥∞ + β · ∥V1 (t) · {T1 (t) − T2 (t)}∥∞ + β · ∥T2 (t) · {V1 (t) − V2 (t)}∥∞.
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This result implies

∥g1
(
t,T1 (t) ,T1,i (t) ,V1 (t)

)
− g1

(
t,T2 (t) ,T2,i (t) ,V2 (t)

)
∥∞

≤ d · ∥T1 (t) − T2 (t)∥∞ + β · ∥V1 (t) · {T1 (t) − T2 (t)}∥∞ + β · ∥T2 (t) · {V1 (t) − V2 (t)}∥∞
≤ d · ∥T1 (t) − T2 (t)∥∞ + β · Vsup · ∥T1 (t) − T2 (t)∥∞ + β · Tsup · ∥V1 (t) − V2 (t)∥∞
≤

(
d + β ·

{
Vsup + Tsup

})
· ∥

(
T1 (t) − T2 (t) ,T1,i (t) − T2,i (t) ,V1 (t) − V2 (t)

)
∥∞.

As a consequence, we conclude that our defined vectorial function of (1.1) is locally Lipschitz-
continuous.

2) By our assumptions, we obtain

∥g1 (t,T (t) ,Ti (t) ,V (t))∥∞
= ∥r − β · V (t) · T (t) − d · T (t)∥∞

≤ r + β · ∥V (t)∥∞ ·max
{ r

d
,T0

}
+ d ·max

{ r
d
,T0

}
≤

(
r + d ·max

{ r
d
,T0

})
︸                     ︷︷                     ︸

=:A1

+

(
β ·max

{ r
d
,T0

})
︸               ︷︷               ︸

=:B1

·∥(T (t) ,Ti (t) ,V (t))∥∞

= A1 + B1 · ∥(T (t) ,Ti (t) ,V (t))∥∞

for the first vectorial component,

∥g2 (t,T (t) ,Ti (t) ,V (t))∥∞
= ∥β · V (t) · T (t) − δ · Ti (t)∥∞

≤ β ·max
{ r

d
,T0

}
· ∥V (t)∥∞ + δ · ∥Ti (t)∥∞

≤

(
β ·max

{ r
d
,T0

}
+ δ

)
︸                     ︷︷                     ︸

=:B2

·∥(T (t) ,Ti (t) ,V (t))∥∞

for the second vectorial component and

∥g3 (t,T (t) ,Ti (t) ,V (t))∥∞
= ∥π · Ti (t) − c · V (t)∥∞
≤ π · ∥Ti (t)∥∞ + c · ∥V (t)∥∞
≤ (π + c)︸ ︷︷ ︸

=:B3

·∥(T (t) ,Ti (t) ,V (t))∥∞

for the final vectorial component. Set

A := A1 and B := max {B1, B2, B3} .

Furthermore, we see that

∥G (t,T (t) ,Ti (t) ,V (t))∥∞ ≤ A + B · ∥(T (t) ,Ti (t) ,V (t))∥∞

is valid for all t ≥ 0. This inequality implies the existence of all solution components globally in
time for all t ≥ 0 due to the application of Theorem 2.1.

Hence, our proof is complete.
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2.4. Uniqueness of all solution components of (1.1) for all t ≥ 0

To show the uniqueness of system (1.1), we need Banach’s fixed point theorem; compare [37,
Theorem V.18].

Theorem 2.3. Let (X, ϱ) be a complete metric space with metric ϱ : X×X −→ [0,∞). Let T : X −→ X
be a strict contraction, i.e., there exists a constant K ∈ [0, 1) such that ϱ (T x,Ty) ≤ K · ϱ (x, y) holds
for all x, y ∈ X. Then, the mapping T has a unique fixed point in X.

Now, we are able to formulate our statement on uniqueness of system (1.1) globally in time.

Theorem 2.4. System (1.1) possesses a unique solution globally in time for all t ≥ 0.

Proof. We first define the equivalent system of integral equations

T (t) = T0 +

t∫
0

{r − β · V (s) · T (s) − d · T (s)} ds,

Ti (t) = Ti,0 +

t∫
0

{β · V (s) · T (s) − δ · Ti (s)} ds,

V (t) = V0 +

t∫
0

{π · Ti (s) − c · V (s)} ds



(2.8)

to system (1.1) for the application of Banach’s fixed point theorem.

1) The function space of bounded, continuous functions on the interval [0,∞) is a complete metric
space with the supremum norm.

2) First, we estimate

∥T1 (τ1) − T2 (τ1)∥∞

≤ ∥β ·

τ1∫
0

{V2 (s) · T2 (s) − V1 (s) · T1 (s)} ds∥∞ + ∥d ·

τ1∫
0

{T2 (s) − T1 (s)} ds∥∞

≤ β · τ1 · Tsup · ∥V1 (s) − V2 (s)∥∞ + β · τ1 · Vsup · ∥T1 (s) − T2 (s)∥∞ + d · τ1 · ∥T1 (s) − T2 (s)∥∞
≤ τ1 ·

(
β · Tsup + β · Vsup + d

)
· ∥

(
T1 (s) − T2 (s) ,T1,i (s) − T2,i (s) ,V1 (s) − V2 (s)

)
∥∞

by the boundedness of all solution components. If we choose τ1 ≤
1

2 ·
(
β · Tsup + β · Vsup + d

) , we

obtain

∥T1 (τ1) − T2 (τ1)∥∞ ≤
1
2
· ∥

(
T1 (s) − T2 (s) ,T1,i (s) − T2,i (s) ,V1 (s) − V2 (s)

)
∥∞.

3) Second, we see that

∥T1,i (τ2) − T2,i (τ2)∥∞
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= ∥

τ2∫
0

{
β · V1 (s) · T1 (s) − δ · T1,i (s)

}
ds −

τ2∫
0

{
β · V2 (s) · T2 (s) − δ · T2,i (s)

}
ds∥∞

≤ β · τ2 · Tsup · ∥V1 (s) − V2 (s)∥∞ + β · τ2 · Vsup · ∥T1 (s) − T2 (s)∥∞
+δ · τ2 · ∥T1,i (s) − T2,i (s)∥∞

≤ τ2 ·
(
β · Tsup + β · Vsup + δ

)
· ∥

(
T1 (s) − T2 (s) ,T1,i (s) − T2,i (s) ,V1 (s) − V2 (s)

)
∥∞

holds by the boundedness of all solution components. If we choose τ2 ≤
1

2 ·
(
β · Tsup + β · Vsup + δ

) , we obtain

∥T1,i (τ2) − T2,i (τ2)∥∞ ≤
1
2
· ∥

(
T1 (s) − T2 (s) ,T1,i (s) − T2,i (s) ,V1 (s) − V2 (s)

)
∥∞.

4) Third, we notice that

∥V1 (τ3) − V2 (τ3)∥∞
≤ π · τ3 · ∥T1,i (s) − T2,i (s)∥∞ + c · τ3 · ∥V1 (s) − V2 (s)∥∞
≤ τ3 · (π + c) · ∥

(
T1 (s) − T2 (s) ,T1,i (s) − T2,i (s) ,V1 (s) − V2 (s)

)
∥∞

is valid by the boundedness of all solution components. If we choose τ3 ≤
1

2 · (π + c)
, we obtain

∥V1 (τ3) − V2 (τ3)∥∞ ≤
1
2
· ∥

(
T1 (s) − T2 (s) ,T1,i (s) − T2,i (s) ,V1 (s) − V2 (s)

)
∥∞.

5) If we choose τ ≤ min {τ1, τ2, τ3}, we get

∥
(
T1 (s) − T2 (s) ,T1,i (s) − T2,i (s) ,V1 (s) − V2 (s)

)
∥∞

≤
1
2
· ∥

(
T1 (s) − T2 (s) ,T1,i (s) − T2,i (s) ,V1 (s) − V2 (s)

)
∥∞

as an estimate. Hence, system (1.1) has a unique fixed point on [0, τ].

Inductively, we can conclude that this fixed point is unique on every interval [k · τ, (k + 1) · τ] for all
k ∈ {0} ∪ N. This implies the uniqueness of a solution of (1.1) globally in time for all t ≥ 0.

2.5. Stability analysis of equilibrium states

Denote possible equilibrium states by
(
T⋆,T⋆i ,V

⋆
)
. From (1.1), we obtain the system of equations

r − β · V⋆ · T⋆ − d · T⋆ = 0,
β · V⋆ · T⋆ − δ · T⋆i = 0,
π · T⋆i − c · V⋆ = 0

 (2.9)

for possible equilibrium states.
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Lemma 2.4. The two possible equilibrium points read(
T⋆1 ,T

⋆
1,i,V

⋆
1

)
=

( r
d
, 0, 0

)
and

(
T⋆2 ,T

⋆
2,i,V

⋆
2

)
=

(
c · δ
β · π
,
β · π · r − c · d · δ
β · δ · π

,
β · π · r − c · d · δ
β · c · δ

)
. (2.10)

Proof. We want to split our proof into two parts.

1) We can easily check by plugging (
T⋆1 ,T

⋆
1,i,V

⋆
1

)
=

( r
d
, 0, 0

)
into (2.9) that this point is definitely one possible equilibrium state.

2) The third equation of (2.9) yields

V⋆ =
π

c
· T⋆i or T⋆i =

c
π
· V⋆. (2.11)

Considering the second equation of (2.9), we obtain

β · V⋆ · T⋆ − δ · T⋆i = 0

⇐⇒ β ·
π

c
· T⋆i · T

⋆ − δ · T⋆i = 0

⇐⇒ T⋆i ·
{
β ·
π

c
· T⋆ − δ

}
= 0

and this implies

T⋆ =
c · δ
β · π

. (2.12)

Looking at the first equation of (2.9), we get

r − β · V⋆ · T⋆ − d · T⋆ = 0

⇐⇒ r = V⋆ ·
β · c · δ
β · π

+
c · d · δ
β · π

⇐⇒ r −
c · d · δ
β · π

= V⋆ ·
c · δ
π

⇐⇒

(
r −

c · d · δ
β · π

)
·
π

c · δ
= V⋆

⇐⇒
π · r
c · δ
−

d
β
= V⋆

and it follows

V⋆ =
β · π · r − c · d · δ
β · c · δ

. (2.13)

As a consequence, it holds

T⋆i =
c
π
· V⋆
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=
c
π
·

(
β · π · r − c · d · δ
β · c · δ

)
=
β · π · r − c · d · δ
β · δ · π

and this results in

T⋆i =
β · π · r − c · d · δ
β · δ · π

. (2.14)

Hence, the second possible equilibrium state reads

(
T⋆2 ,T

⋆
2,i,V

⋆
2

)
=

(
c · δ
β · π
,
β · π · r − c · d · δ
β · δ · π

,
β · π · r − c · d · δ
β · c · δ

)
This proves our proposition.

We note that these two equilibrium points are the same as solely mentioned in [11]. Here, we give
one statement for locally asymptotic stable equilibria of an autonomous dynamical system

x′ (t) = G (x (t))

from [35, Theorem 6.1.1].

Theorem 2.5. Suppose that b⋆ is an equilibrium point for x′ (t) = G (x (t)) where G ∈ C1 (U) with a
domainU ⊂ Rd. Furthermore, we assume that

ℜ
(
λ j (DG⋆)

)
< 0

holds for all j ∈ {1, 2, . . . , d} where DG⋆ is the Jacobian of G. Then, there is a neighborhoodV of b⋆
in Rd such that, for any initial data b ∈ V, the initial value problem

x′ (t) = G (x (t)) with x (0) = b

has a solution for all t ≥ 0 and lim
t→∞

x (t) = b⋆.

We consider a special case of the Routh–Hurwitz criterion; compare [38].

Lemma 2.5. Consider the characteristic equation

a0 · λ
3 + a1 · λ

2 + a2 · λ + a3 = 0

of a corresponding Jacobian of the linearization of a dynamical system. Its eigenvalues all have nega-
tive real parts and it is locally asymptotically stable if and only if

a j > 0 for all j ∈ {0, 1, 2, 3} and a1 · a2 − a0 · a3 > 0. (2.15)

Hence, we can prove that the virus-free equilibrium state
(
T⋆1 ,T

⋆
1,i,V

⋆
1

)
and the plateau-phase equi-

librium state
(
T⋆2 ,T

⋆
2,i,V

⋆
2

)
from Lemma 2.4 are locally asymptotically stable. For that reason, we
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define the basic reproduction number R0 :=
β · π · r
c · d · δ

of primary HIV infections, which can be regarded
as a transition point from the virus-free to the plateau-phase equilibrium state. In [6], this threshold
was only defined. Here, we want to give a derivation based on an approach by van den Driessche [32].
Fore more details, we refer interested readers to that article. We mainly follow concise ideas from [33]
for a within-host model of COVID-19.

We reorganize (1.1) as follows

T ′i (t) = β · V (t) · T (t) − δ · Ti (t) ,
V ′ (t) = π · Ti (t) − c · V (t) ,
T ′ (t) = r − β · V (t) · T (t) − d · T (t)

where we consider the subsystem

T ′i (t) = β · V (t) · T (t) − δ · Ti (t) ,
V ′ (t) = π · Ti (t) − c · V (t)

of infected and viral particles. We define two vectors

F⃗ (Ti (t) ,V (t)) =
(
β · V (t) · T (t)

0

)
and V⃗ (Ti (t) ,V (t)) =

(
δ · Ti (t)

c · V (t) − π · Ti (t)

)
such that (

T ′i (t)
V ′ (t)

)
= F⃗ (Ti (t) ,V (t)) − V⃗ (Ti (t) ,V (t))

holds. For the approach by van den Driessche, one needs the virus-free equilibrium state(
T⋆1 ,T

⋆
1,i,V

⋆
1

)
=

( r
d
, 0, 0

)
as later given in Theorem 2.6. By computing both Jacobians

F⋆ =
(
0 β · T⋆1
0 0

)
and V⋆ =

(
δ 0
−π c

)
of these vectorial functions at this virus-free equilibrium state, the basic reproduction number is given
by

R0 = ϱ
(
F⋆ ·

(
V⋆

)−1
)
.

Here, ϱ defines the spectral radius of the considered matrix. Since we obtain

(
V⋆

)−1
=

1
c · δ
·

(
c 0
π δ

)
and F⋆ ·

(
V⋆

)−1
=

β · πc · δ
· T⋆1

β

c
· T⋆1

0 0

 ,
this yields

R0 = ϱ
(
F⋆ ·

(
V⋆

)−1
)
=
β · π

c · δ
· T⋆1 =

β · π · r
c · δ · d

.
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This basic reproduction number helps us to determine and distinguish the stability of equilibrium
states. More specifically, if R0 < 1 holds, the disease’s progress settles to the virus-free equilibrium
state while it settles in the disease-plateau-phase equilibrium state if R0 > 1 holds. This threshold is
also an important number in mathematical epidemiology for a disease’s spread [13, 14]. Additionally,
although Korobeinikov proved the global stability [13,14], we want to show locally asymptotic stability
by using the Routh–Hurwitz criterion, which, to the best of our knowledge, cannot be found in the
aforementioned articles.

Theorem 2.6. (i) Suppose that

β · π · r − c · d · δ < 0 ⇐⇒ R0 < 1

holds. The virus-free equilibrium state(
T⋆1 ,T

⋆
1,i,V

⋆
1

)
=

( r
d
, 0, 0

)
of our dynamical system

x′ (t) :=


T ′ (t)
T ′i (t)
V ′ (t)

 =

r − β · V (t) · T (t) − d · T (t)
β · V (t) · T (t) − δ · Ti (t)
π · Ti (t) − c · V (t)

 =: G (x (t))

from (1.1) is locally asymptotically stable.
(ii) Suppose that

β · π · r − c · d · δ > 0 ⇐⇒ R0 > 1

holds. The plateau-phase equlibrium state(
T⋆2 ,T

⋆
2,i,V

⋆
2

)
=

(
c · δ
β · π
,
β · π · r − c · d · δ
β · δ · π

,
β · π · r − c · d · δ
β · c · δ

)
=

(
c · δ
β · π
,

c · d · δ · (R0 − 1)
β · δ · π

,
c · d · δ · (R0 − 1)
β · c · δ

)
of our dynamical system

x′ (t) :=


T ′ (t)
T ′i (t)
V ′ (t)

 =

r − β · V (t) · T (t) − d · T (t)
β · V (t) · T (t) − δ · Ti (t)
π · Ti (t) − c · V (t)

 =: G (x (t))

from (1.1) is locally asymptotically stable.

Proof. We divide our proof into multiple steps.

1) Let

G
(
T⋆,T⋆i ,V

⋆) =

r − β · V⋆ · T⋆ − d · T⋆

β · V⋆ · T⋆ − δ · T⋆i
π · T⋆i − c · V⋆

 .
Its Jacobian reads

DG
(
T⋆,T⋆i ,V

⋆) =

−β · V⋆ − d 0 −β · T⋆

β · V⋆ −δ β · T⋆

0 π −c

 .
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2) We compute the characteristic equation of the previous Jacobian. At first, we obtain

det
(
DG

(
T⋆,T⋆i ,V

⋆) − λ · I3×3
)

= det


−β · V⋆ − d − λ 0 −β · T⋆

β · V⋆ −δ − λ β · T⋆

0 π −c − λ


=

(
−β · V⋆ − d − λ

)
·
{
(−δ − λ) · (c − λ) − π · β · T⋆

}
− β · T⋆ ·

{
β · V⋆ · π

}
= −

(
λ + β · V⋆ + d

)
· (λ + δ) · (λ + c) +

(
β · V⋆ + d + λ

)
· π · β · T⋆ − β · T⋆ · β · V⋆ · π

= −
(
λ + β · V⋆ + d

)
· (λ + δ) · (λ + c) + (λ + d) · π · β · T⋆

= 0.

This yields

λ3 + λ2 ·
{
c + δ + β · V⋆ + d

}
+ λ ·

{
c · δ + β · V⋆ · (c + δ) + (c + δ) · d − π · β · T⋆

}
+

{
β · V⋆ · c · δ + c · d · δ − β · d · π · T⋆

}
= 0.

3)i. Let us first consider the virus-free equilibrium state
(
T⋆1 ,T

⋆
1,i,V

⋆
1

)
and let R0 < 1. We can define

a0 := 1 > 0,
a1 := c + δ + β · V⋆1 + d = c + δ + d > 0,
a2 := c · δ + β · V⋆1 · (c + δ) + (c + δ) · d − π · β · T⋆1 ,
a3 := β · V⋆1 · c · δ + c · d · δ − β · d · π · T⋆1 .

Obviously, a0 and a1 are positive. By plugging in the definition of the virus-free equilibrium
point, we conclude that

a2 := c · δ + (c + δ) · d − π · β ·
r
d

=
c · δ · d − π · β · r

d
+ (c + δ) · d

=
c · d · δ · (1 − R0)

d︸                ︷︷                ︸
>0

+ (c + δ) · d

> 0,
a3 := c · d · δ − β · π · r

= c · d · δ · (1 − R0)︸   ︷︷   ︸
>0

> 0,

and

a1 · a2 − a0 · a3 := (c + d + δ) ·
(
(c + δ) · d +

c · d · δ − β · π · r
d

)
− (c · d · δ − β · π · r)
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= (c + d + δ) · (c + δ) · d + (c + d + δ) · c · d · δ ·
(
1 − R0

d

)
+ β · π · r − c · d · δ

≥ (c + d + δ) · c · d · δ ·
(
1 − R0

d

)
︸    ︷︷    ︸

>0

+β · π · r

> 0

hold. Hence, if R0 < 1 is valid, we have locally asymptotic stability by the Routh–Hurwitz
criterion.

3)ii. Here, we consider the plateau-phase equilibrium state
(
T⋆2 ,T

⋆
2,i,V

⋆
2

)
and let R0 > 1. Now, we can

again define

a0 := 1 > 0,
a1 := c + δ + β · V⋆2 + d > 0,
a2 := c · δ + β · V⋆2 · (c + δ) + (c + δ) · d − π · β · T⋆2 ,
a3 := β · V⋆2 · c · δ + c · d · δ − β · d · π · T⋆2 .

Obviously, a0 and a1 are positive. By plugging in the definition of the plateau-phase equilibrium
point, we conclude that

a2 = c · δ + β · V⋆2 · (c + δ) + (c + δ) · d − π · β · T⋆2

= c · δ + β ·
(
β · π · r − c · d · δ
β · c · δ

)
· (c + δ) + (c + δ) · d − π · β ·

c · δ
β · π

= β ·

(
β · π · r − c · d · δ
β · c · δ

)
· (c + δ) + (c + δ) · d

= β · c · d · δ ·
(

R0 − 1
β · c · δ

)
︸     ︷︷     ︸

>0

· (c + δ) + (c + δ) · d

> 0

and

a3 = β · V⋆2 · c · δ + c · d · δ − β · d · π · T⋆2

= β ·

(
β · π · r − c · d · δ
β · c · δ

)
· c · δ + c · d · δ − β · d · π ·

c · δ
β · π

= β ·

(
β · π · r − c · d · δ
β · c · δ

)
· c · δ

= β · c · d · δ ·
(

R0 − 1
β · c · δ

)
︸     ︷︷     ︸

>0

·c · δ

> 0

hold. Hence, all coefficients a j are positive for all j ∈ {0, 1, 2, 3}. Since we want to apply the
Routh–Hurwitz criterion from Lemma 2.5, we still need to show

a1 · a2 − a0 · a3 > 0.
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We obtain

a1 · a2 − a0 · a3

=

(
c + δ + β ·

(
β · π · r − c · d · δ
β · c · δ

)
+ d

)
·

(
β ·

(
β · π · r − c · d · δ
β · c · δ

)
· (c + δ) + (c + δ) · d

)
−1 ·

(
β ·

(
β · π · r − c · d · δ
β · c · δ

)
· c · δ

)
=

(
c + β ·

(
β · π · r − c · d · δ
β · c · δ

)
+ d

)
·

(
β ·

(
β · π · r − c · d · δ
β · c · δ

)
· (c + δ) + (c + δ) · d

)
+δ ·

(
β ·

(
β · π · r − c · d · δ
β · c · δ

)
· (c + δ) + (c + δ) · d

)
−

(
β ·

(
β · π · r − c · d · δ
β · c · δ

)
· c · δ

)
>

(
c + β ·

(
β · π · r − c · d · δ
β · c · δ

)
+ d

)
·

(
β ·

(
β · π · r − c · d · δ
β · c · δ

)
· (c + δ) + (c + δ) · d

)
> 0

because (
β · π · r − c · d · δ
β · c · δ

)
= c · d · δ ·

(R0 − 1)
β · c · δ

> 0

holds, which shows this assertion.

Since all assumptions of the Routh–Hurwitz criterion from Lemma 2.5 are fulfilled, its application for
both cases yields the desired stability results and finishes our proof.

3. Numerical simulations

We give two numerical examples to provide evidence for our theoretical findings. First, we consider
the case R0 > 1 with all model parameters taken from [11,17], which means that we obtain the plateau-
phase equilibrium point. Additionally, we also provide the case R0 < 1, which corresponds to the
virus-free equilibrium state.

3.1. Case 1: R0 > 1

In this subsection, we apply the following initial conditions and constant problem parameters, taken
from [11, 17] and presented in Table 2. We want to remark again that all constant problem parameters
are assumed to be positive. In addition, we note that the initial conditions of (1.1) are non-negative for
numerical simulations. Taking all values of Table 2, we can compute the basic reproduction number
R0, which reads

R0 :=
β · π · r
c · d · δ

=
6.5 · 10−4 · 850 · 0.17

3 · 0.01 · 0.39
≈ 8.0278
> 1
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in this case. Hence, R0 > 1 holds and we expect an plateau-phase equilibrium state.
Here, we use the standard function ode45 of GNU Octave [39]. For further information regarding

these modified Runge-Kutta time stepping methods, we refer interested readers to [40, 41]. Our GNU
Octave code can be found in the supplementary file for reproducibility. We must note that we shortened
all time vectors and all solution components vectors for the plotting of the figure due to representation
problems on the author’s computer.

Using the given initial conditions and problem parameters from Table 2, we obtain

T⋆1 = 2.1176,
T⋆1,i = 0.3816,
V⋆1 = 108.12

for the coordinates of the plateau-phase equilibrium point. Simulation results of (1.1) with parameters
from Table 2 can be seen in Figure 1. Here, we can see that the model of primary HIV infection
converges towards the plateau-phase disease equilibrium point after a certain amount of time. This
shows that system (1.1) is especially appropriate for the acute and asymptotic phase of HIV infections
[5, 17] and it settles into the correct equilibrium state as we can see in Figure 1. Additionally, we also
notice that our theoretical results of boundedness and non-negativity for all solution components of
system (1.1) hold in numerical simulations. However, we address that preservation of boundedness or
non-negativity is not intrinsically fulfilled by explicit time integration methods; compare with [30].

Table 2. Values for initial conditions and constant problem parameters for numerical simu-
lation of (1.1) where time t is measured in days and R0 ≈ 8.0278 > 1.

Constant Value

T0 10
cells
µL

Ti,0 0
cells
µL

V0 10−6 virions
µL

r 0.17
cells
µL · day

β 6.5 · 10−4 µL
virions · day

d 0.01
1

day

δ 0.39
1

day

π 850
virions

cells · day

c 3
1

day
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Figure 1. Simulation results of model (1.1) with initial conditions and constant problem
parameters taken from Table 2. Here, it holds that R0 > 1. Dashed lines represent corre-
sponding equilibrium variables T⋆, T⋆i , and V⋆.

3.2. Case 2: R0 < 1

Here, we present a case for R0 < 1. Let us take the following model parameters as presented in
Table 3. It holds that

R0 :=
β · π · r
c · d · δ

=
6.5 · 10−4 · 850 · 0.17

3 · 0.1 · 0.39
≈ 0.8028
< 1
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and we notice that the graphs of all solution components converge to the correct equilibrium point.
Using all model parameters from Table 3, we obtain(

T⋆2 ,T
⋆
2,i,V

⋆
2

)
= (1.7000, 0, 0)

as the correct virus-free equilibrium state, as seen in Figure 2.

0 50 100 150 200
0

2

4

6

8

10

t [days]

T
(t

)

LLoo aadd   oo ff   TTaarrggeett   CCDD44--cceell llss

0 50 100 150 200
0

2e-06
4e-06
6e-06
8e-06
1e-05

1.2e-05
1.4e-05

t [days]

T
i(

t)

LLoo aadd   oo ff   IInn ff eecctt eedd   TTaarrgg eett   CCDD44--CCeell llss

0 50 100 150 200
0

200
400
600
800

1000
1200
1400

t [days]

V
(t

)

LLoo aadd   oo ff   VVii rraall   PPaarrtt iicclleess

Figure 2. Simulation results of model (1.1) with initial conditions and constant problem pa-
rameters taken from Table 3. Here, R0 ≈ 0.8028 < 1. Dashed lines represent corresponding
equilibrium variables T⋆, T⋆i , and V⋆.
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Table 3. Values for initial conditions and constant problem parameters for numerical simu-
lation of (1.1) where time t is measured in days and R0 < 1.

Constant Value

T0 10
cells
µL

Ti,0 0
cells
µL

V0 10−6 virions
µL

r 0.17
cells
µL · day

β 6.5 · 10−4 µL
virions · day

d 0.1
1

day

δ 0.39
1

day

π 850
virions

cells · day

c 3
1

day

4. Conclusions and outlook

In this work, we examined and re-investigated analytical properties of the classical target cell limited
dynamical within-host HIV model (1.1). Here, we focused on important facts such as non-negativity,
boundedness, global existence and global uniqueness in time for all solution components. These are
all important properties regarding biological relevance of model (1.1). Furthermore, we showed that
the virus-free equilibrium point and the plateau-phase disease equilibrium point of (1.1) are locally
asymptotically stable. We proved that they can be distinguished by the basic reproduction number

R0 :=
β · π · r
c · d · δ

. Finally, we highlighted our thereotical findings by numerical simulations, based on
Runge–Kutta time stepping methods, and demonstrated that our results hold true in both cases R0 < 1
and R0 > 1.

We want to remark that our basic model (1.1) does not include more complex factors of HIV infec-
tions such as different virus strains, immune responses, or other cells such as CD8+ T cells. Hence, it
could be of interest to examine the analytical properties of more complex models [5, 17] that include
additional aspects of HIV infections. The model in the work by Kirschner [5] is better suited for long-
time modeling of HIV infection, since it also includes the rapid decline of CD4+ T cells approximately
ten years after infection. It is also worth noting that classical explicit time stepping schemes do not
preserve boundedness or non-negativity [30,42]. These methods are based on a methodology proposed
by Mickens [43]. Hence, the development of non-negativity-preserving time integration methods for
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model (1.1) might be a future research direction, adding to this research article, where we mainly
focused on analytical aspects.
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