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Abstract: In this paper, we introduce and analyze a discrete–time model of an epidemic spread in
a heterogeneous population. As the heterogeneous population, we define a population in which we
have two groups which differ in a risk of getting infected: a low–risk group and a high–risk group. We
construct our model without discretization of its continuous–time counterpart, which is not a common
approach. We indicate functions that reflect the probability of remaining healthy, which are based on
the mass action law. Additionally, we discuss the existence and local stability of the stability states that
appear in the system. Moreover, we provide conditions for their global stability. Some of the results are
expressed with the use of the basic reproduction number R0. The novelty of our paper lies in assuming
different values of every coefficient that describe a given process in each subpopulation. Thanks to
that, we obtain the pure population’s heterogeneity. Our results are in a line with expectations – the
disease free stationary state is locally stable for R0 < 1 and loses its stability after crossing R0 = 1.
We supplement our results with a numerical simulation that concerns the real case of a tuberculosis
epidemic in Poland.

Keywords: discrete–time systems; S IS model; local stability; global stability; population
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1. Introduction

In many diseases, one can indicate the group in the population with a higher susceptibility to in-
fection compared to the other groups. For that reason, while constructing an epidemic model, it is
natural to assume that the population consists of two subpopulations: with a low risk (LS ) and a high
risk (HS ) of getting infected. We called such population a heterogeneous one – in other words, the
heterogeneous population consists of two homogeneous populations. Moreover, while proposing an
epidemiological model, we must indicate stages through which an individual passes. The most popular
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class of models is the S IS (susceptible–infected–susceptible) class – in which a recovered individual
does not gain immunity and can become infected again. The author in [1] described and investigated
the exemplary S IS model. S IS models can be extended while including, for example, the E (exposed
– infected but firstly not infectious) or R (recovered) classes. The analyses of the obtained sample
S EIS , S IR, and S EIRS models are presented in [2–4]. However, for many diseases, a lack of data
often prevents us from doing such an extension.

A crucial thing in constructing the model is assuming whether biological processes are either con-
tinuous or discrete. Discrete–time epidemiological models are less analyzed than the continuous–
time models. The general approach in constructing discrete–time systems is the discretization of
continuous–time counterparts. Discretization methods range from simple, including the explicit Euler
method [5], to complicated ones such as non–standard discretization schemes [6], which is an idea
explained in [7]. However, applying any discretization method results in the occurrence of a step size
of the discretization method, thus being an additional parameter in a system. The step size has no clear
biological meaning. For that reason, it is better to construct a discrete–time epidemiological model on
the grounds of its biological description without creating its continuous–time counterpart, followed by
its discretization. The system obtained with this method is called an inherently discrete–time method.
Although this approach is rare, there are several papers related to this issue. In [8], the author proposed
discrete–time S IS and S EIR models and provided their analysis, thereby focusing on construction of
a disease transmission function and a local stability analysis of the stationary states that appeared in
the models. Paper [9] deals with an investigation of chaotic behavior, including bifurcation, in the S IS
model. In [10], the author studies an effect of seasonal diseases and trends on behavior S IS of the
S IS model. An interesting approach to discrete–time epidemic modeling can be found in the recent
paper [11]. The author constructed epidemic discrete–time models with two time scales. He consid-
ered two cases: when dynamics of the epidemic was either slower or faster compared to the dynamics
of the other processes. Later, the author reduced the proposed systems to S IS models and conducted
a local stability analysis.

The mentioned papers concern the case of a homogeneous population. Our paper aims to construct
and analyze a discrete–time S IS model for a heterogeneous population without the discretization of
its continuous–time counterpart. The case of population heterogeneity makes a model analysis com-
plicated. However, the heterogeneity is crucial for the proper investigation of epidemic dynamics,
which was previously proven medically [12]. What is important is that we assume that the values
of every parameter are different for each subpopulation; this assumption makes the population purely
heterogeneous.

Our paper continues our previous work [13], where we proposed a similar model. However, in our
previous work, we proposed the functions reflect the probability of staying healthy of type G

(
β I(t)

N(t)

)
,

where β is a transmission coefficient, I(t) is a number of infected people from a given subpopulation
at time t, and N(t) is a number of the whole given subpopulation. This type of function was proposed
in [8]. In this paper, we introduced a simple form of function G

(
βI(t)

)
, which, in some sense, relied on

the mass action law. Here and in [13], we assume that the disease is spread among each subpopulation
separately and from HS to LS . In many cases, people from HS tend to infect themselves in their
community, for example, highly sexually active people with sexually transmitted diseases or people
living in poor conditions in the context of airborne infections. For that reason, we reasonably neglect
the pathogen spread from LS to HS . The components of models in [13] and in this paper, which
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describe particular biological phenomena, are analogical to those from our previous paper [14], where
we proposed the continuous–time system and conducted a subsequent analysis.

We complement our results with a numerical simulation that concerns the case of a tuberculo-
sis (T B) spread in the Warmian–Masurian Province in Poland between 2000–2023. As LS and HS ,
we consider non–homeless and homeless people, respectively. The choice of the Warmian–Masurian
Province is motivated by the implementation of Active Case Finding (ACF) programs among homeless
people therein. These programs caused a decrease in the incidences of T B in both the homeless and
non–homeless communities in the region.

This paper is organized as follows. The next section describes the assumption of the model and
presents its form. In Section 3, we investigate the existence of stationary states of the systems. The
next two sections concern the local and global stability analyses of the states. Section 6 contains com-
putations which yield the basic reproduction of our model. Then, we conduct a numerical simulation
of the T B case mentioned earlier. We conclude our results in Section 8.

2. Mathematical model and its description

Now, we introduce the components of our model. If a variable or a parameter has a lower subscript
equal to 1 or 2, it refers to LS or HS , respectively. For the lower subscript expressed by i, we have
i ∈ {1, 2}. The variables S 1 and S 2 represent the size of LS and HS , respectively. The number of
infected people are denoted by I1 and I2, respectively. By Ni := S i + Ii, we clearly define the size
of the i–th subpopulation. The new individuals move into healthy groups in each population with an
inflow Ci. By γi and αi, we denote the rates of recovery and disease–related deaths, respectively. Every
individual survives with the probability ri.

A healthy individual from class S i can move to class Ii because of contact with an infected person.
The efficiency of the diseases transmission in the sole i–th subpopulation is expressed by βi and β
reflects efficiency of the transmission from HS to LS . As we stated in the introduction, we omit
the case of the pathogen transmission from the I1 to S 2 classes. Because of this omission, we must
introduce two different functions which reflect the probability of remaining healthy in both LS and HS.
We denote these functions by G and H. We assume that G(x) has the following properties:

G(x) : [0,∞)→ [0, 1], G(0) = 1, lim
x→∞

G(x) = 0, G′(x) < 0, G′′(x) > 0.

Analogically, for H, we have the following:

H(x) : [0,∞)→ [0, 1], H(0) = 1, lim
x→∞

H(x) = 0, H′(x) < 0, H′′(x) > 0.

After recovery, the individuals from class Ii return to class S i.
Our proposed model reads as follows:

S (1)
n+1 = C1 + r1S (1)

n G
(
β1I(1)

n + βI
(2)
n

)
+ (r1 − α1)γ1I(1)

n , (2.1a)

I(1)
n+1 = r1S (1)

n

(
1 −G

(
β1I(1)

n + βI
(2)
n

))
+ (r1 − α1)(1 − γ1)I(1)

n , (2.1b)

S (2)
n+1 = C2 + r2S (2)

n H
(
β2I(2)

n

)
+ (r2 − α2)γ2I(2)

n , (2.1c)

I(2)
n+1 = r2S (2)

n

(
1 − H

(
β2I(2)

n

))
+ (r2 − α2)(1 − γ2)I(2)

n , (2.1d)
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where S (i)
n and I(i)

n are the values of variables at the n–th node of the discrete time scale. The parameters
are fixed and positive. Because of their meaning, we assume that ri, γi, β1, β ∈ (0, 1), and αi ∈ (0, ri).

Thanks to the inherent discretization, there is no need to include a step size of the discretization
method in the system. Moreover, System (2.1) has no negative terms that occur during the discretiza-
tion of a continuous–time one (cf. [5]).

In order to make the form of System (2.1) more transparent, we define the following:

S +i := S (i)
n+1, S i := S (i)

n , I+i := I(i)
n+1, Ii := I(i)

n , N+i := N(i)
n+1, Ni := N(i)

n , i = 1, 2,

and we rewrite System (2.1) as follows:

S +1 = C1 + r1S 1G (β1I1 + βI2) + (r1 − α1)γ1I1, (2.2a)

I+1 = r1S 1

(
1 −G(β1I1 + βI2)

)
+ (r1 − α1)(1 − γ1)I1, (2.2b)

S +2 = C2 + r2S 2H (β2I2) + (r2 − α2)γ2I2, (2.2c)

I+2 = r2S 2

(
1 − H (β2I2)

)
+ (r2 − α2)(1 − γ2)I2. (2.2d)

For the sake of simplification, if it does not yield ambiguity, we will use the following notation:

G = G (β1I1 + βI2) , H = H (β2I2) .

Observe that for a initial condition(
S (1)

0 , I
(1)
0 , S

(2)
0 , I

(2)
0

)
, S (1)

0 , I
(1)
0 , S

(2)
0 , I

(2)
0 ≥ 0,

we have S (1)
n , S

(2)
n > 0, and I(1)

n , I
(2)
n ≥ 0 for any n ∈ N.

3. Existence of stationary states

Let us indicate the stationary states which appear in System (2.2). For every stationary state, the
system reads as follows:

S 1 = C1 + r1S 1G (β1I1 + βI2) + (r1 − α1)γ1I1, (3.1a)

I1 = r1S 1

(
1 −G (β1I1 + βI2)

)
+ (r1 − α1)(1 − γ1)I1, (3.1b)

S 2 = C2 + r2S 2H (β2I2) + (r2 − α2)γ2I2, (3.1c)

I2 = r2S 2

(
1 − H (β2I2)

)
+ (r2 − α2)(1 − γ2)I2. (3.1d)

Adding either Eqs (3.1a) and (3.1b) or Eqs (3.1c) and (3.1d) yields the following:

Ni = Ci + riS i + (ri − αi)Ii = Ci + riNi − αiIi, (3.2)

giving

Ni =
Ci − αiIi

1 − ri
. (3.3)
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From Eq (3.2), we obtain the following:

S i =
Ci − σiIi

1 − ri
, (3.4)

where σi := 1−ri+αi. Clearly, 0 < σi < 2. Taking Ii = 0 leads to the following disease–free stationary
state:

Ed f := (S 1, I1, S 2, I2) =
(

C1

1 − r1
, 0,

C2

1 − r2
, 0

)
.

This state always exists. If Ii , 0, then from (3.4), we obtain positivity of S 1 for

Ii <
Ci

σi
(3.5)

and we have positivity of Ii > 0 for

S i <
Ci

1 − ri
. (3.6)

Observe that σi is separated from 0, hence Ci
σi

is finite. Moreover, thanks to Eq (3.5), we can restrict the
domains of the functions G and H to accordingly[

0, β1
C1

σ1
+ β

C2

σ2

]
and

[
0, β2

C2

σ2

]
. (3.7)

Additionally, we can assume the following:

G
(
β1

C1

σ1
+ β

C2

σ2

)
= 0, H

(
β2

C2

σ2

)
= 0. (3.8)

Therefore, G and H are surjections. Because G and H are injections, we conclude that G and H are
invertible.

For the sake of simplification, we will use the following parameter in the latter part of this
work:

κi := 1 − (ri − αi)(1 − γi).

Clearly, κi ∈ (0, 1).
Observe that because of the lack of disease transmission from LS to HS , the dynamics of growth

of HS is independent of the dynamics of growth of LS . Hence Eqs (2.2c) and (2.2d) constitute an
autonomous system and can be solely investigated.

Let us analyse a case when I2 > 0. We obtain the following theorem:

Theorem 1. System (2.2c) and (2.2d) has a positive stationary state (S 2, I2) = (S 2, I2), where S 2 reads

S 2 =
C2 − σ2I2

1 − r2
(3.9)

and I2 is a solution of an equation

κ2(1 − r2)
r2

I2

C2 − σ2I2
= 1 − H (β2I2) (3.10)
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under a condition
I2 <

C2

σ2
. (3.11)

This state exists if

−H′(0) ≥
κ2(1 − r2)

C2r2β2
. (3.12)

Proof. The form of S 2 in Eq (3.9) results from Eq (3.4).

Now we substitute S 2 = N2 − I2 into (3.1d) and obtain the following:

I2 = r2(N2 − I2)
(
1 − H (β2I2)

)
+ (r2 − α2)(1 − γ2)I2,

κ2I2 = r2(N2 − I2)
(
1 − H (β2N2)

)
. (3.13)

From Eqs (3.4) and (3.5), we have

N2 − I2 =
C2 − σ2I2

1 − r2
(3.14)

and Eq (3.11), accordingly. Considering Eq (3.14) in Eq (3.13) gives the following:

κ2I2 = r2

(
C2 − σ2I2

1 − r2

) (
1 − H(β2I2)

)
, (3.15)

what can be transformed to Eq (3.10).

Now, let us analyze the left–hand side of Eq (3.10) as the following function:

F(I2) :=
κ2(1 − r2)

r2

I2

C2 − σ2I2
.

This function is continuous in
[
0, C2
σ2

)
. We have F(0) = 0 and

lim
I2→

C2
σ2

F(I2) = ∞.

Moreover, for I2 ∈
[
0, C2
σ2

)
, we have

F′(I2) =
κ2(1 − r2)

r2

C2

(C2 − σ2I2)2 > 0 (3.16)

and
F′′(I2) =

κ2(1 − r2)
r2

2σ2C2

(C2 − σ2I2)3 > 0

Additionally, we define the following auxiliary function:

F̃(I2) := 1 − H (β2I2) . (3.17)

and investigate the intersection point of functions F(I2) and F̃(I2) for I2 ∈
[
0, C2
σ2

)
. H is decreasing

and convex, so F̃ is increasing and concave. Moreover, F̃(0) = 0. Clearly, F and F̃ intersect at 0.
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Furthermore, the properties of these functions yield the second unique intersection point I2 > 0 if and
only if

F′(0) ≤ F̃′(0). (3.18)

From Eq (3.16), we have the following:

F′(0) =
κ2(1 − r2)

C2r2
. (3.19)

From Eq (3.17), we obtain the following:

F̃′(0) = −β2H′ (0) . (3.20)

Considering Eqs (3.19) and (3.20) in Eq (3.18) gives Eq (3.12).

Now, we focus on the case I2 = 0, giving S 2 =
C2

1−r2
. Under these equalities, we expect to obtain

a stationary state of (2.2) with S 1, I1 > 0. If we take (S 2, I2) =
(

C2
1−r2
, 0

)
in Eqs (3.1a) and (3.1b), then

the reasoning for the pair (S 1, I1) is analogical to this from the proof of Theorem 1. We obtain an
equation, analogical to Eq (3.10), that reads as follows:

κ1(1 − r1)
r1

I1

C1 − σ1I1
= 1 −G (β1I1) . (3.21)

It has one positive unique solution I1 = Î1. We formulate the following corollary analogical to Theorem
1:

Corollary 1. In System (2.2), there exists a stationary state

E1 :=
(
Ŝ 1, Î1,

C2

1 − r2
, 0

)
with

Ŝ 1 =
C1 − σ1 Î1

1 − r1
> 0 (3.22)

and 0 < Î1 <
C1
σ1

being a solution of Eq (3.21). This state exists if

−G′(0) ≥
κ1(1 − r1)

C1r1β1
. (3.23)

Now, let us investigate the existence of a postulated positive stationary state.

Theorem 2. In System (2.2), there is a positive (endemic) stationary state Ee :=
(
S 1, I1, S 2, I2

)
, where

I1 is a solution of
κ1(1 − r1)

r1

I1

C1 − σ1I1
= 1 −G

(
β1I1 + β2I2

)
, (3.24)

held for

I1 <
C1

σ1
. (3.25)

This state exists if (3.12) and

−G′
(
βI2

)
≥
κ1(1 − r1)

C1r1β1
. (3.26)
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Proof. It is clear the pair (S 2, I2), being the stationary state of System (2.2c) and (2.2d), defined in
Theorem 1, constitute the values of coordinates (S 2, I2) in the whole System (2.2). The proof of that
theorem yields condition (3.12).

We repeat the approach from that proof. Considering (S 2, I2) in Eq (3.1b) yields Eq (3.24) under
condition (3.25). We introduce the following functions:

F(I1) :=
κ1(1 − r1)

r1

I1

C1 − σ1I1
, F̃(I1) := 1 −G

(
β1I1 + βI2

)
, where I1 ∈

[
0, C1
σ1

)
.

We have F′, F′′, F̃′ > 0, and F̃′′ < 0. There is a unique positive intersection point I1 of the functions
F(I1) and F̃(I1) if and only F′(0) ≤ F̃′

(
βI2

)
, which can be written as (3.26).

Let us focus on coordinates Î1 and I1 from states E1 and Ee. Accordingly, they are positive unique
solutions of (3.21) and (3.24). From the properties of function G, we have the following:

G (β1I1) > G
(
β1I1 + βI2

)
=⇒ 1 −G (β1I1) < 1 −G

(
β1I1 + βI2

)
.

Hence, we get that Î1 < I1.
Now, we compare Eqs (3.23) and (3.26) that appear in Corollary (1) and Theorem (2), which state

the existence of E1 and Ee, respectively. Because of the properties of function G, we have G′(0) <
G′

(
βI2

)
< 0. Clearly, Equation (3.26) is stricter than Eq (3.23). Thus, without considering Eq (3.12),

we state that the Ee existence occurs for smaller ranges of the parameter values in comparison to the
existence of E1. This fact is naturally eligible from the medical point.

4. Stability of the stationary states

Now, let us investigate the local stability of the obtained stationary states. The Jacobian matrix for
System (2.2) reads as follows:

J(S 1, I1, S 2, I2) =


r1G r1β1S 1G′ + (r1 − α1)γ1 0 βr1G′

r1(1 −G) −r1β1S 1G′ + 1 − κ1 0 −βr1G′

0 0 r2H r2β2S 2H′ + (r2 − α2)γ2

0 0 r2(1 − H) −r2β2S 2H′ + 1 − κ2

 ,

This matrix can be written as a block matrix J =
(
J1 J∗

0 J2

)
, where

J1 =

(
r1G r1β1S 1G′ + (r1 − α1)γ1

r1(1 −G) −r1β1S 1G′ + 1 − κ1

)
, J2 =

(
r2H r2β2S 2H′ + (r2 − α2)γ2

r2(1 − H) −r2β2S 2H′ + 1 − κ2

)
.

In order to investigate the stability from the eigenvalues of J, it is sufficient to consider the eigenvalues
of the matrices J1 and J2.
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4.1. Local stability of the disease–free state

We start from the local stability analysis for Ed f .

Theorem 3. The state Ed f of System (2.2) is locally stable if

−G′(0) <
κ1(1 − r1)

C1β1r1
(4.1)

and

−H′(0) <
κ2(1 − r2)

C2β2r2
. (4.2)

Proof. Since G(0) = 1 and H(0) = 1, we write the following:

J1(Ed f ) =
(
r1 r1β1

C1
1−r1

G′(0) + (r1 − α1)γ1

0 −r1β1
C1

1−r1
G′(0) + 1 − κ1

)
, J2(Ed f ) =

(
r2H r2β2

C2
1−r2

H′(0) + (r2 − α2)γ2

0 −r2β2
C2

1−r2
H′(0) + 1 − κ2

)
.

From both matrices, we obtain the following eigenvalues:

λ1 = r1, λ2 = −r1β1
C1

1 − r1
G′(0) + 1 − κ1, λ3 = r2, λ4 = −r2β2

C2

1 − r2
H′(0) + 1 − κ2.

Because of the meaning of ri, we get |λ1,3| < 1. Condition |λ2| < 1 can be expressed as follows

−2 < −r1β1
C1

1 − r1
G′(0) − κ1 < 0.

This inequality can be split into two separates ones:

κ1 − 2 < −r1β1
C1

1 − r1
G′(0) (4.3)

and

−r1β1
C1

1 − r1
G′(0) − κ1 < 0. (4.4)

The meaning of κ1 yields negativity of the left–hand side of Eq (4.3). Clearly, its right–hand size is
always positive. Therefore, Equation (4.3) is always true. The fulfillment of |λ2| < 1 is determined by
Eq (4.4), which can be expressed as Eq (4.1). For condition |λ4| < 1, we conduct analogical reasoning
as for |λ2| < 1 to obtain Eq (4.2).

For Eq (3.23), we determine the condition for the E1 existence. It stays on the contrary to Eq (4.1),
which is one of the conditions for the Ed f stability. Hence, we conclude the following:

Corollary 2. If the state E1 exists, the state Ed f loses its stability.
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4.2. Local stability of the state with the infection

Now, we focus on the local stability of E1. In the next theorem and its proof, we will use the
following notations:

Ĝ = G
(
β1 Î1

)
, ϑ1 = r1β1Ŝ 1, η1 := r1 − α1.

We are interested in the long–time dynamics of epidemics, thus η1 > 0. In the proof, I represents an
identity matrix.

Theorem 4. The existing state E1 of System (2.2) is locally stable if (4.2),

Ĝ < γ1, (4.5)

2 − r1Ĝ + ϑ1Ĝ′ > η1(1 − γ1) (4.6)

and (
1 − γ1(1 − r1)

)
η1 + r1Ĝ(1 − η1) − (1 − r1)ϑ1Ĝ′ < 1. (4.7)

Proof. The proof is conducted under the E1 existence. Observe that for this state, we have J2(E1) =
J2(Ed f ), which yields condition (4.2). If we add the first row to the second one of the determinant
|J1(E1) − λI|, we obtain the following:

|J1(E1) − λI| =

∣∣∣∣∣∣r1Ĝ − λ ϑ1Ĝ′ + η1γ1

r1 − λ η1 − λ

∣∣∣∣∣∣ .
The characteristic polynomial of J1(E1) reads as follows:

P(λ) := λ2 − bλ + c := λ2 − λ
(
r1Ĝ + η1(1 − γ) − ϑ1Ĝ′

)
+ r1

( (
Ĝ − γ1

)
η1 − ϑ1Ĝ′

)
.

The discriminator of P(λ) equals to the following:

∆ :=
(
r1Ĝ + η1(1 − γ) − ϑ1Ĝ′

)2
− 4

(
r1

(
Ĝ − γ1

)
η1 − ϑ1Ĝ′

)
.

If (4.5), then ∆ > 0 (we neglect the non-generic case ∆ = 0) and the polynomial’s eigenvalues are
always real and can be written as follows:

λ1,2 =
−b ∓

√
b2 − 4c

2
.

We investigate inequalities λ1 > −1 and λ2 < 1. The first one holds if
√

b2 − 4c < 2 − b. (4.8)

For 2 − b > 0, which can be written as (4.6), we raise both sides of Eq (4.8) to a square and eventually
get b < 1 + c. This inequality can be transformed to Eq (4.7). The condition λ2 < 1 provides√

b2 − 4c < 2 + b, which is a weaker condition than Eq (4.8).
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Now, we determine the stability of Ee. We use the following notations:

G = G
(
β1I1 + βI2

)
, H = H

(
β2I2

)
, θ1 = r1β1S 1, θ2 = r2β2S 2.

The determinant |J1(Ee) − λI| reads as follows:

|J1(Ee) − λI| =

∣∣∣∣∣∣ r1G − λ θ1G
′ + η1γ1

r1 (1 − G) −θ1G′ + η1(1 − γ1) − λ

∣∣∣∣∣∣ ,
what is similar to the determinant |J1(Ê1) − λI|. Additionally, we have the following:

|J2(Ee) − λI| =

∣∣∣∣∣∣ r2H − λ θ2H
′ + η2γ2

r2 (1 −H) −θ2H ′ + η2(1 − γ2) − λ

∣∣∣∣∣∣ .
The analysis of this determinant is analogical to the analysis of |J1(Ê1)− λI|. Hence, we can perform a
reasoning analogical to this for the local stability of E1. We conclude the following:

Corollary 3. The existing state Ee of System (2.2) is locally stable if G < γ1,H < γ2,

2 − r1G + θ1G
′ > η1(1 − γ1),

r1G(1 − η1) +
(
1 − γ1(1 − r1)

)
η1 − (1 − r1)θ1G′ < 1,

2 − r2H + θ2H
′ > η2(1 − γ2),

and
r2H(1 − η2) +

(
1 − γ2(1 − r2)

)
η2 − (1 − r2)θ2H ′ < 1.

4.3. Case of modified functions G and H

In the analysis of the stability of the stationary states of System (2.2), we refer to G′(0) and H′(0).
Let us introduce the explicit forms of functions G and H to obtain the explicit results. We aim to
provide straightforward results; hence, we want to apply as simple of functions as possible. For this
reason, we treat G and H as linear functions defined on domains from (3.7). The linear character of
the proposed functions implies the modification of the particular conditions for functions G and H.
Naturally, we must have G′′(x) = H′′(x) = 0. Moreover, we assume that G(0) = H(0) = 1 and (3.8).

Let us compute the value of slope aG of G. We obtain the following:

0 =
(
β1

C1

σ1
+ β

C2

σ2

)
aG + 1 =⇒ aG =

−1
β1

C1
σ1
+ βC2

σ2

. (4.9)

Analogically, we get that the value of the slope aH of H is as follows:

aH =
−σ2

β2C2
. (4.10)

Clearly, we have the following:
G′(0) = aG, H′(0) = aH. (4.11)

We formulate the lemma concerning the local stability of Ed f for System (2.2) with a linear G and H.
The conditions for the local stability of the other stationary states can be analogically obtained.
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Lemma 1. Assume that (4.11). Ed f is locally stable if

(1 − γ1)σ1 + r1 < 1 +
α1γ1

σ1
. (4.12)

and
(1 − γ2)σ2 + r2 < 1 +

α2γ2

σ2
, (4.13)

Proof. Considering Eq (4.11) in Eqs (4.1) and (4.2), we accordingly obtain the following:

−aG <
κ1(1 − r1)

C1β1r1
, (4.14)

−aH <
κ2(1 − r2)

C2β2r2
. (4.15)

From (4.14), we get the following:

1
β1

C1
σ1
+ βC2

σ2

<
κ1(1 − r1)

C1β1r1
.

When we introduce the definition of κ1, this can be transformed to the following:

(1 − γ1)σ1β1C1 + (1 − γ1)σ1β
C2

σ2
< (1 − r1)β1C1 + σ1β

C2

σ2
+ α1γ1

(
β1

C1

σ1
+ β

C2

σ2

)
.

Observe that it is enough to check the following two inequalities:

(1 − γ1)σ1β1C1 < (1 − r1)β1C1 + α1γ1β1
C1

σ1
, (4.16)

and
(1 − γ1)σ1β

C2

σ2
< σ1β

C2

σ2
+ α1γ1β

C2

σ2
. (4.17)

Equation (4.16) can be simplified to Eq (4.12). Equation (4.17) yields always true to the inequality
0 < γ1σ1 + α1γ1. Analogically, we obtain Eq (4.12).

5. Global stability of stationary states

In this section, we determine conditions for the global stability of the stationary states.

5.1. Global stability of the disease–free state

First, we focus on Ed f . We formulate the following theorem:

Theorem 5. The state Ed f of System (2.2) is globally stable if (4.2) and

−G′
(
β

C2

σ2

)
<
κ1(1 − r1)

C1β1r1
. (5.1)

Mathematical Biosciences and Engineering Volume 21, Issue 12, 7740–7759.



7752

Proof. Substituting Eqs (3.3) and (3.4) in Eq (2.2d) gives the following:

I+2 = r2
C2 − σ2I2

1 − r2

(
1 − H(β2I2)

)
+ (r2 − α2)(1 − γ2)I2, (5.2)

Let us define a function Θ :
[
0, C2
σ2

)
→

[
0, 1 + C2

σ2

)
such that

Θ(I2) = r2
C2 − σ2I2

1 − r2

(
1 − H(β2I2)

)
+ (r2 − α2)(1 − γ2)I2. (5.3)

The function Θ(I2) can be treated as a reproduction function for the infected individuals from the high–
risk group. The set of iterates of Θ is equivalent to the set of the sequence, which is generated by Eq
(2.2d). After differentiation Θ with respect to I2, we obtain

Θ′(I2) = −r2
σ2

1 − r2
+ r2

σ2

1 − r2
H (β2I2) − r2β2

C2 − σ2I2

1 − r2
H′ (β2I2) + (r2 − α2)(1 − γ2)

and
Θ′′(I2) = 2r2β2

σ2

1 − r2
H′ (β2I2) − r2β

2
2C2

C2 − σ2I2

1 − r2
H′′ (β2I2) .

Observe that

Θ′(0) = −r2
σ2

1 − r2
+ r2

σ2

1 − r2
− r2β2

C2

1 − r2
H′(0) + (r2 − α2)(1 − γ2),

which can be simplified to

Θ′(0) = −
C2β2r2

1 − r2
H′(0) + 1 − κ2, (5.4)

From Eq (4.2), we have the following:

−H′(0)
C2β2r2

1 − r2
+ 1 − κ2 < 1. (5.5)

Combining Eqs (5.4) and (5.5), we obtain Θ′(0) < 1. Hence, a fixed point I2 = 0 is locally stable under
the Θ−iteration. Observe that the signs of Θ′(I2) and Θ′′(I2) do not explicitly depend on I2 ∈

[
0, C2
σ2

)
.

Remind that H′′(β2I2) > 0. Hence, Θ′′(I2) < 0. Combining it with the inequality Θ′(0) < 1 gives
Θ′(I2) < 1 and Θ(I2) < I2. Therefore, a sequence

(
I(2)
n

)∞
n=0

is strictly decreasing and bounded below by

zero. In the interval
[
0, C2
σ2

)
, this sequence converges to the only fixed point, that is I2 = 0. From Eq

(3.4), we obtain the following:

lim
n→∞

S (2)
n =

C2

1 − r2
.

Now, let us substitute Eqs (3.3) and (3.4) in Eq (2.2b) to obtain the following:

I+1 = r1
C1 − σ1I1

1 − r1
(1 −G) + (r1 − α1)(1 − γ1)I1. (5.6)

Because of its properties and Eq (3.5), function G can be assessed in a way

G
(
β1I1 + β

C2

σ2

)
≤ G (β1I1 + βI2) ,
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giving

1 −G
(
β1I1 + β

C2

σ2

)
≥ 1 −G (β1I1 + βI2) .

Instead of Eq (5.6), we will consider the following inequality:

I+1 ≤ r1
C1 − σ1I1

1 − r1

(
1 −G

(
β1I1 + β

C2

σ2

))
+ (r1 − α1)(1 − γ1)I1. (5.7)

For the sake of simplification, we replace (5.7) with the following analogical equality:

Y+1 = r1
C1 − σ1Y1

1 − r1

(
1 −G

(
β1Y1 + β

C2

σ2

))
+ (r1 − α1)(1 − γ1)Y1,

where we introduce a new variable Y1. Observe that the analysis of such an obtained equation is similar
to the analysis of Eq (5.2). We obtain Eq (5.1) and get that the sequence

(
Y (1)

n

)∞
n=0

is therefore strictly

decreasing and bounded below by zero. Hence, lim
n→∞

Y (1)
n = 0. Our aim is to analyze Eq (5.7), hence we

conclude that the sequence
(
I(1)
n

)∞
n=0
≤

(
Y (1)

n

)∞
n=0

is also therefore strictly decreasing and, because of the

definition of I1, bounded below by zero. Naturally, we get lim
n→∞

I(1)
n = 0 and lim

n→∞
S (1)

n =
C1

1−r1
. To sum up,

we obtain the following

lim
n→∞

(
S (1)

n , I
(1)
n , S

(2)
n , I

(2)
n

)
=

(
C1

1 − r1
, 0,

C2

1 − r2
, 0

)
,

which yields the global stability of Ed f .

Let us look at Eqs (4.1) and (5.1) which appear in Theorems 3 and 5, respectively. From the
properties of function G, we obtain that Eq (5.1) is stronger than Eq (4.1), which is expected.

5.2. Global stability of the states with the infection

Now, we discuss the global stability of E1.

Theorem 6. The existing state E1 of System (2.2) is globally stable if (4.2) and

−G′
(
β

C2

σ2

)
>
κ1(1 − r1)

C1β1r1
. (5.8)

Proof. We assume that E1 exists. For Eq (4.2), we repeat the reasoning from the proof of Theorem 5
and obtain the following:

lim
n→∞

(
S (2)

n , I
(2)
n

)
=

(
C2

1 − r2
, 0

)
. (5.9)

Now, we focus on the convergence of sequence I(1)
n . We again rely on the approach from the proof of

the previous theorem. We define the function as follows:

Ψ :
[
0,

C1

σ1

]
→

[
0, 1 +

C1

σ1

]
, Ψ(I1) = r1

C1 − σ1I1

1 − r1

(
1 −G(β1I1 + βI2)

)
+ (r1 − α1)(1 − γ1)I1. (5.10)
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In the above definition, we treat variable I2 as any constant from the interval
[
0, C2
σ2

]
. Differentiating Ψ

with respect to I1 at I1 = 0 gives the following:

Ψ′(0) = −
C1β1r1

1 − r1
G′(βI2) + 1 − κ1. (5.11)

Assume that
−G′(βI2) >

κ1(1 − r1)
C1β1r1

. (5.12)

Then, Ψ′(0) > 1 and point I1 = 0 cannot be reached for any iteration of Ψ. Let us denote the smallest
fixed point of Ψ from interval

[
0, C1
σ1

]
by I∗1. See that Ψ

(
C1
σ1

)
= (r1 − α1)(1 − γ1)C1

σ1
< C1
σ1

. From

the Intermediate Value Theorem, we get the existence of positive fixed point I∗1 ∈
(
0, C1
σ1

)
for which

Ψ(I∗1) = I∗1, Θ(I1) > I1 for I1 ∈ (0, I∗1); as a consequence, Ψ(I∗1) ≤ 1. Similarly, as for Θ′′(I2) in the proof
of Theorem 5, we have Ψ′′(I1) < 0, which implies that Ψ′(I1) < Ψ′(I∗1) ≤ 1 for I ∈

(
I∗1,

C1
σ1

)
. Clearly

for such I, we have Ψ(I1) < I1. Hence, there exists a unique positive fixed point I∗1 ∈
(
0, C1
σ1

)
of Ψ. It

is clear from the analysis of the existence of stationary states that appear in System (2.2) that I∗1 = Î1

from the E1 state. Thus, we can write lim
n→∞

I(1)
n = Î1 and, using Eq (3.22), lim

n→∞
S (1)

n = Ŝ 1. Combining
these convergences with Eq (5.9) yields the global stability of Ee under the fulfillment of Eqs (4.2) and
(5.12).

Observe that Eq (5.12) must hold for any I2 ∈
[
0, C2
σ2

]
. Therefore, from the properties of function G,

we replace this inequality with Eq (5.8).

Observe that Eq (5.8) is stronger than Eq (3.23), being conditions for the E1 existence. Hence, we
do not provide any additional constrain Eq (5.8). Now, compare Theorems 4 and 6. The latter one
provides less conditions for the global stability of E1 than Theorem 4 stating the local stability of E1.

The following theorem concerns global stability of Ee:

Theorem 7. The existing state Ee of System (2.2) is globally stable if (5.8) and

−H′(0) >
κ2(1 − r2)

C2β2r2
. (5.13)

Proof. Assuming the existence of Ee, we refer to the proof of Theorems 5 and 6. We use the function
Θ :

[
0, C2
σ2

]
→

[
0, 1 + C2

σ2

]
with the formula given by Eq (5.3) from the proof of Theorem 5. If (5.13),

then Θ′(0) > 1 and the fixed point I2 = 0 is unstable. We repeat the reasoning conducted for function
Ψ from the proof of Theorem 6 and obtain the following:

lim
n→∞

(
S (2)

n , I
(2)
n

)
= (S̄ 2, Ī2). (5.14)

Now, we again apply the function Ψ defined by (5.10) from the previous proof. Following the analysis
from that proof, we state that under Eq (5.8), being the strengthened condition (5.12) for any I2 ∈[
0, C2
σ2

]
, we have the following:

lim
n→∞

(
S (1)

n , I
(1)
n

)
= (S̄ 1, Ī1). (5.15)

Merging (5.14) and (5.15) provides the thesis of Theorem 7 for Eqs (5.13) and (5.8).

Mathematical Biosciences and Engineering Volume 21, Issue 12, 7740–7759.



7755

From properties of function G and Eq (3.11), we get that Eq (5.8) is stronger than Eq (3.26) for the
Ee existence. Hence, there is no need to restrict Eq (5.8) in Theorem 7.

Furthermore, by comparing that Corollary 3 and Theorem 7 yield the global stability of Ee, we get
less conditions than for the local stability of this state.

Now, let us compare the conditions for the local stability of the stationary states that appear in
Theorems 5–7. Equations (5.1) and (5.8) from Theorems 5 and 6, respectively, are contradictory. The
analogical conclusion holds for Eqs (4.2) and (5.13) from Theorems 6 and 7, respectively. Moreover,
each inequality from Theorem 5 has its opposite counterpart from Theorems 7. It concludes that one
stationary state is always globally stable at most, which is what we obviously expect. Moreover, if both
inequalities

−H′(0) >
κ2(1 − r2)

C2β2r2
, −G′

(
β

C2

σ2

)
<
κ1(1 − r1)

C1β1r1
,

hold, then there is no global stability in the System (2.2).

6. The basic reproduction number

Now, we compute the basic reproduction number R0 of System (2.2). As R0, we define a number
of new infections incidences produced by one infectious individual in a population at the disease-free
stationary state [15]. In order to compute R0, we will use of the next-generation approach, which
was introduced in that paper. We consider general forms of functions G and H with properties from
Section 2.

First, we arrange System (2.2) so that the first equations are for the infected variables. We obtain
the following:

I+1 = r1S 1 (1 −G) + (r1 − α1)(1 − γ1)I1, (6.1a)
I+2 = r2S 2 (1 − H) + (r2 − α2)(1 − γ2)I2, (6.1b)

S +1 = C1 + r1S 1G + (r1 − α1)γ1I1, (6.1c)
S +2 = C2 + r2S 2H + (r2 − α2)γ2I2, (6.1d)

with the disease–free equilibrium having the following form:

Ed f :=
(
0, 0,

C1

1 − r1
,

C2

1 − r2

)
.

The Jacobian matrix of System (6.1) at Ed f reads as follows:

J(Ed f ) :=


−r1β1

C1
1−r1

G′(0) + 1 − κ1 −βr1G′(0) 0 0
0 −r2β2

C2
1−r2

H′(0) + 1 − κ2 0 0
r1β1

C1
1−r1

G′(0) + (r1 − α1)γ1 βr1G′(0) r1 0
0 r2β2

C2
1−r2

H′(0) + η2r2 0 r2

 .
We express J(Ed f ) as the following block matrix:

J(Ed f ) :=
(
F + T 0

J1 J2

)
,
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where F, T , J1, and J2 are 2 × 2 matrices. Matrix F concerns new infections and matrix T reflects the
other processes for the infective stages. We write them as follows:

F =
(
−r1β1

C1
1−r1

G′(0) −βr1G′(0)
0 −r2β2

C2
1−r2

H′(0)

)
, T =

(
1 − κ1 0

0 1 − κ2

)
.

The needed matrix is F · (I − T )−1 that reads as follows:

F(I − T )−1 =

−r1β1
κ1

C1
1−r1

G′(0) −ζ

κ2
G′(0)

0 −r2β2
κ2

C2
1−r2

H′(0)


We define ρ(M) as a spectral radius of a matrix M. In the next generation method, the inequalities
ρ(J2) < 1 and ρ(T ) < 1 must hold. They can be written as max(r1, r2) < 1 and max(1 − κ1, 1 − κ2) < 1,
respectively. Clearly, both equalities are always true. We eventually obtain the following:

R0 = ρ(F(I − T )−1) = max
(
−r1β1C1G′(0)
κ1(1 − r1)

,
−r2β2C2H′(0)
κ2(1 − r2)

)
.

Let us express Theorem 3 in the context of R0. We formulate the following corollary:

Corollary 4. Ed f of System (2.2) is locally stable if R0 < 1.

7. Numerical simulation

Here, we present a numerical simulation conducted for System (2.2). The simulation concerns the
case of T B described in Section 1. The values of the parameters besides those for the transmission
coefficients are included in Table 1. Each value is the arithmetical mean of the corresponding ones
for every year between the years 2000–2024. For computations, we used the annual data from [16].
The units of the parameters reflect the case of the corresponding continuous–time systems analyzed in
our previous paper [14]. Model (2.2) is the inherently discrete–time system and does not concern an
explicit change of values of the variables in time. Hence, the parameters in System (2.2) are dimen-
sionless.

Table 1. Values of the parameters of System (2.2) from the literature. The abbreviation ind
means individual.

Name Meaning Value Unit
C1 Inflow into LS 9783.49 ind · year −1

C2 Inflow into HS 52.64 ind · year −1

γ1, γ2 Recovery rate 0.8993 year −1

r1, r2 Survival rate 0.9904 year −1

α1, α2 Disease-related death rate 0.0899 year −1
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Table 2. Estimated values of the transmission coefficients of System (2.2). The abbreviation
ind means individual.

Name Type of transmission coefficient Value Unit
β1 Among LS 6.0405 · 10−7 ( ind · year )−1

β From HS to LS 2.8948 · 10−6 ( ind · year )−1

β2 Among HS 5.2789 · 10−6 ( ind · year )−1
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Figure 1. Comparison between simulated and real data for tuberculosis spread in in the
Warmian–Mazurian province over the years 2000–2024.

There is no explicit medical definition of the transmission coefficient. For this reason, there is a need
to estimate the values of these coefficients. For this purpose, we used the built–in lsqcurvefit function
in Matlab that is based on the Gauss–Newton algorithm [17]. The best–fitted values of the transmission
coefficients were obtained thanks to a comparison of simulated values to the actual data. Table 2 shows
the estimated values of these coefficients, which units reflect the analogical continuous–time system.

The simulated results and the associated actual data are shown in Figure 1. Observe that the simu-
lations and the actual data for years 2022–2024 show opposed courses. In the last years, we observe
the worldwide expansion of tuberculosis. However, the values of the epidemiological coefficients in
our paper reflect over a 20-year period.

8. Conclusions

In this paper, we introduced and analyzed the discrete–time system of an epidemic spread in a
heterogeneous population. In this population, we indicated two subpopulations: a low (LS ) risk and
a high (HS ) risk of getting infected. We constructed this system without the discretization of its
continuous–time counterpart. The proposed system is analogical to those analyzed in our previous
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paper [13]. The difference considers a different function regarding the probability of staying healthy.
In this paper, this function had a simpler form than previously used [13]. However, the chosen function,
as in [13], was still not given with a specific formula, which rendered our model general.

We first indicated stationary states that appeared in the system with the condition of their existence.
There are three states: disease–free (Ed f ), without infection in LS (E1), and endemic (Ee). We obtained
the condition for their local and global stabilities. Moreover, the basic reproduction number R0 of the
system was computed. In order to obtain explicit results, we also investigated the case when the
functions that reflected the probability of remaining healthy were linear. We want to emphasize that
we considered different values of the given parameter for each subpopulation in our analysis. This
assumption made the population entirely heterogeneous.

The mathematical analysis provided analogical results to those from [13], which were expected
from the epidemiological point. Ed f state was locally stable if R0 < 1 and lost its stability for R0 > 1.
Additionally, the conditions for the local stability of E1 and Ee were provided. Moreover, we managed
to provide conditions for the global stability of each stationary state.

Finally, we conclude that our model can be applied to the epidemiological modeling of a heteroge-
neous population for the discrete nature of epidemic dynamics. The structure of the model eliminates
the problem of the step size of the discretization method, which has no clear biological meaning.
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