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Abstract: Control and prevention strategies are indispensable tools for managing the spread of in-
fectious diseases. This paper examined biological models for the post-vaccination stage of a viral
outbreak that integrate two important mitigation tools: social distancing, aimed at reducing the disease
transmission rate, and vaccination, which boosts the immune system. Five different scenarios of epi-
demic progression were considered: (i) the “no control” scenario, reflecting the natural evolution of a
disease without any safety measures in place, (ii) the “reconstructed” scenario, representing real-world
data and interventions, (iii) the “social distancing control” scenario covering a broad set of behav-
ioral changes, (iv) the “vaccine control” scenario demonstrating the impact of vaccination on epidemic
spread, and (v) the “both controls concurrently” scenario incorporating social distancing and vaccine
controls simultaneously. By comparing these scenarios, we provided a comprehensive analysis of var-
ious intervention strategies, offering valuable insights into disease dynamics. Our innovative approach
to modeling the cost of control gave rise to a robust computational algorithm for solving optimal con-
trol problems associated with different public health regulations. Numerical results were supported by
real data for the Delta variant of the COVID-19 pandemic in the United States.
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1. Introduction

Control and elimination of infectious diseases have been a focus of public health officials since the
early 1950s. As antibiotics [1, 2], sanitation [3], and vaccinations [4–6] were introduced, eradicating
diseases became more feasible [7, 8]. Nevertheless, several factors have led to the emergence of new
infectious diseases and the reemergence of existing ones, including resistance of microorganisms to
medication [9–11], demographic evolution [12], urbanization [13,14], and increased travel [15]. These
diseases include Lyme disease in 1975 [16], Legionnaires disease in 1976 [17], toxic shock syndrome
in 1978 [18], Hepatitis C in 1989 [19], Hepatitis E in 1990 [20], and Hantavirus in 1993 [21]. HIV
(human immunodeficiency virus) emerged in 1981 as one of the most alarming sexually transmitted
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diseases in the world [22, 23]. As the result of antibiotic resistance, tuberculosis, pneumonia, and
gonorrhea are reemerging [24]. Because of climate change, malaria, dengue, and yellow fever have
also reemerged and are spreading into new areas [25]. Moreover, it is not unusual for diseases such as
plague and cholera to erupt from time to time [26]. The reemergence of the Ebola virus disease (EVD)
in 2013 has puzzled the world [27]. Fifteen million deaths are directly related to the reemergence of
infectious diseases every year, which remains a serious medical burden around the globe [28, 29].

In the field of epidemiology, the application of optimal control strategies has proven to be a critical
tool in managing and mitigating the spread of infectious diseases [30–32]. Optimal control theory pro-
vides a robust framework that allows one to incorporate one or more time-dependent control functions
into a nonlinear dynamic system to achieve the best possible outcome for a specified objective [33,34].
It uses mathematical and computational techniques aimed at identifying the most effective interven-
tions, such as vaccination [35], treatment plans [36], quarantines, and social distancing [37], while op-
timizing the use of resources [38, 39]. By integrating optimal control into disease models, researchers
can predict and influence the progression of an outbreak, ultimately reducing morbidity, mortality, and
economic impact [40–42].

Optimal control problems have been extensively studied across various infectious diseases. For
instance, during the 2014–2016 Ebola outbreak in West Africa, optimal control models were devel-
oped to evaluate the effectiveness of different intervention strategies, including isolation [43], contact
tracing [44], and public health campaigns [45, 46]. Dengue fever, a mosquito-borne viral disease, also
presents a significant public health challenge in tropical and subtropical regions [47]. Optimal control
strategies for dengue have focused on reducing mosquito populations and limiting human exposure
through targeted insecticide use [48], environmental management [49], and vaccination [50, 51]. The
COVID-19 pandemic has brought the application of optimal control strategies to the forefront of public
health efforts globally [34,52]. Researchers have developed models to determine the best combination
of non-pharmaceutical interventions (NPIs) such as social distancing [53], lockdowns [54], and mask-
wearing [55], alongside vaccination rollouts [54,56]. These models have been instrumental in guiding
policy decisions, helping to balance the trade-offs between controlling the virus and minimizing soci-
etal disruption [57–59]. Other diseases, such as influenza [60,61], malaria [62], Zika virus [63], various
types of cancer, and HIV [64], have also been the focus of optimal control studies, each contributing
to the development of a robust framework for disease management [65, 66].

In this paper, we develop a robust optimal control algorithm to simulate five epidemic scenarios:
“no control”, “reconstructed”, “social distancing control”, “vaccine control”, and “both controls con-
currently”, using biological models for the post-vaccination stage of a viral outbreak. For numerical
validation, we employ real data for the SARS-CoV-2 Delta variant in different regions of the United
States of America from July 9, 2021 to November 25, 2021. By comparing several control scenar-
ios, we provide an overarching study of crucial intervention strategies, offering valuable insights into
disease transmission. Our innovative approach to modeling the cost of control gives rise to a fast
trust-region optimization procedure for solving a broad range of nonlinear control problems.

The paper is organized as follows: Section 2 outlines mathematical preliminaries essential to our
analysis. We introduce and examine the social distancing control strategy in Section 3. In Section 4,
the vaccine control is investigated, and Section 5 is dedicated to the combined implementation of social
distancing and vaccination controls. In Section 6, we compare the aforementioned scenarios and assess
their efficiency. Additional figures and tables are presented in the Appendix.
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2. Mathematical preliminaries

Mathematical models have been extensively used to analyze the spread of infectious diseases, such
as Ebola, dengue, plague, influenza, and COVID-19, and to forecast their impact [67, 68]. Disease
models range in complexity from basic Susceptible - Exposed - Infectious - Recovered (SEIR) ODE
systems with few parameters to more sophisticated models that include numerous compartments and
parameters to account for isolation [69], hospitalization, testing, contact tracing [70], social distanc-
ing [71, 72], vaccination [73], and others [74, 75]. In this study, we consider the Ŝ uŜ v Îu ÎvR̂D̂ compart-
mental model that was first introduced in [76] and further studied in [77]:

dŜ u

dt
= −ζ(t)

Ŝ u(t)
N − D̂(t)

(Îu(t) + Îv(t)) − µŜ u(t) + δrR̂(t) + δvŜ v(t),

dŜ v

dt
= −(1 − α)ζ(t)

Ŝ v(t)
N − D̂(t)

(Îu(t) + Îv(t)) + µŜ u(t) − δvŜ v(t),

dÎu

dt
= ζ(t)

Ŝ u(t)
N − D̂(t)

(Îu(t) + Îv(t)) − (γu,r + γu,d)Îu(t),

dÎv

dt
= (1 − α)ζ(t)

Ŝ v(t)
N − D̂(t)

(Îu(t) + Îv(t)) − (γv,r + γv,d)Îv(t),

dR̂
dt
= γu,r Îu(t) + γv,r Îv(t) − δrR̂(t),

dD̂
dt
= γu,d Îu(t) + γv,d Îv(t).

(2.1)

This model incorporates the vaccination status of both susceptible and infected individuals, as well
as the possibility of losing immunity and becoming infected among both vaccinated and unvaccinated
populations [76]. Epidemic model (2.1) has 6 compartments: Susceptible unvaccinated (Ŝ u), Suscepti-
ble vaccinated (Ŝ v), Infected unvaccinated (Îu), Infected vaccinated (Îv), Recovered (R̂), and Deceased
(D̂). In (2.1), the time-dependent parameter, ζ(t), is the disease transmission rate, µ is the average
vaccination rate, δr is the rate at which individuals lose immunity after acquiring the virus, δv is the
waning vaccine immunity rate, and γu,r and γv,r are the recovery rates for unvaccinated and vaccinated
individuals, respectively. The virus death rates for unvaccinated and vaccinated humans are denoted by
γu,d and γv,d, and α (0 < α < 1) is the measure of vaccine efficacy for the current strain. In the above,
t ∈ [0,T ], where T is the length of the study period.

In model (2.1), it is assumed that the duration of each virus strain is relatively short compared to
the time it takes for the population to change due to birth, migration, death of causes rather than the
virus, etc. Therefore natural birth and death are omitted in the model, and we assume that at any
given time, t, the population of the region is N − D(t), where N is the population at t = 0, that is,
N = Ŝ u(0) + Ŝ v(0) + Îu(0) + Îv(0) + R̂(0) + D̂(0). We also assume that vaccination is applied only
to susceptible individuals, and infected and recovered individuals are not vaccinated until they lose
immunity and move back to the susceptible class. So, this model does not account for asymptomatic
infected individuals that can be vaccinated while still infected or in the recovered stage. According
to model (2.1), the loss of immunity after infection is the same for both vaccinated and unvaccinated
individuals.
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In ODE system (2.1), ζ(t) is a time-dependent parameter that accounts for real-life nonmedical pre-
ventive measures (social distancing, bans on travel and large gatherings, handwashing, etc.) aimed at
bringing down the disease transmission. In our numerical simulations, ζ(t) is reconstructed for indi-
vidual states from real data on new incidence cases and daily deaths [78] using the algorithm proposed
in [77]. Another important parameter, µ, is the average vaccination rate, which is pre-estimated based
on CDC reports [76, 79] (for individual states) by dividing the change in the percentage of vaccinated
people at the start and at the end of the study window by the length of this window. As proposed
in [76, 80, 81], we assume that susceptible unvaccinated individuals move to the susceptible vacci-
nated class at the rate proportional to the current number of susceptible unvaccinated individuals. By
estimating ζ(t) and µ in this manner, we analyze the actual disease progression (what is called the
“reconstructed” scenario in our experiments).

The goal of the optimal control problem is to see how much the real-life scenario can be improved
through the implementation of control strategies that optimize a specific objective functional. To that
end, in the “real-life” model (2.1), we replace ζ(t) with β(1 − u1(t)), where β is the original disease
transmission rate and u1(t) is the social distancing control that we aspire to optimize. Clearly, one has
β ≥ maxt∈[0,T ] ζ(t) since ζ(t) = β(1 − ũ1(t)), where ũ1(t) is a “real-life” non-optimal social distancing
control (0 ≤ ũ1(t) < 1 for t ∈ [0,T ]). In order to facilitate the vaccination strategy, we replace µ with
νu2(t), where ν > µ is the capacity of vaccination and u2(t) is the vaccination control. The feasible set
for u1(t) and u2(t) is

U =
{
ui ∈ L

1[0,T ], 0 ≤ ui(t) < 1, i = 1, 2
}
. (2.2)

To simplify the biological model, we normalize the state variables, S u := Ŝ u
N , S v := Ŝ v

N , Iu := Îu
N , Iv := Îv

N ,

R := R̂
N , and D := D̂

N , and arrive at the following controlled system of differential equations:

dS u

dt
= −β(1 − u1(t))

S u(t)
1 − D(t)

(Iu(t) + Iv(t)) − νu2(t)S u(t) + δrR(t) + δvS v(t),

dS v

dt
= −(1 − α)β(1 − u1(t))

S v(t)
1 − D(t)

(Iu(t) + Iv(t)) + νu2(t)S u(t) − δvS v(t),

dIu

dt
= β(1 − u1(t))

S u(t)
1 − D(t)

(Iu(t) + Iv(t)) − (γu,r + γu,d)Iu(t),

dIv

dt
= (1 − α)β(1 − u1(t))

S v(t)
1 − D(t)

(Iu(t) + Iv(t)) − (γv,r + γv,d)Iv(t),

dR
dt
= γu,rIu(t) + γv,rIv(t) − δrR(t),

dD
dt
= γu,dIu(t) + γv,dIv(t).

(2.3)

The two control functions, u1(t) and u2(t), are intended to lower the normalized force of infection,
β(1−u1(t))S u(t)+(1−α)S v(t)

1−D(t) (Iu(t)+ Iv(t)), while keeping the costs at bay. The costs of control are understood
in a general sense, which includes a negative impact on the economy, mental health, education, and
other aspects of life [82]. With that in mind, we propose the following objective functional

J(x,u) =
∫ T

0

{
β(1 − u1(t))

S u(t) + (1 − α)S v(t)
1 − D(t)

(Iu(t) + Iv(t)) + λ⊤c(u(t))
}

dt
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= (S u + S v)(0) − (S u + S v)(T ) +
∫ T

0

{
λ⊤c(u(t)) + δrR(t)

}
dt, (2.4)

where x(t) := [S u(t), S v(t), Iu(t), Iv(t),R(t),D(t)]⊤ combines all normalized state variables of the model,
u(t) := [u1(t), u2(t)]⊤ represents the two control strategies, c(u) := [c1(u1), c2(u2)]⊤ stands for the vector
of cost functions associated with u1(t) and u2(t), respectively, and λ := [λ1, λ2]⊤ is the weight vector
for the cost functions, ci(ui), i = 1, 2. Thus, the optimal control problem for what we call the “both
controls concurrently” scenario is to minimize objective functional (2.4) subject to ODE system (2.3).

In the next two sections, we will also introduce two special cases, “social distancing control” (i.e.,
social distancing control only) and “vaccine control” (i.e., vaccine control only), with functional (2.4)
and model (2.3) adjusted accordingly. Numerical results for these three control problems will be com-
pared with the aforementioned “reconstructed” scenario (2.1) and with the “no control” scenario, de-
scribed by S uIuRD model (2.5) below. To introduce the “no control” disease progression, we assume
that neither social distancing nor vaccination control is enforced, that is, the epidemic is running its
course. Hence, the disease transmission rate is constant (and equal to β) and there are no vaccinated
compartments for either susceptible or infected humans:

dS u

dt
= −β

S u(t)Iu(t)
1 − D(t)

+ δrR(t),

dIu

dt
= β

S u(t)Iu(t)
1 − D(t)

− (γu,r + γu,d)Iu(t),

dR
dt
= γu,rIu(t) − δrR(t),

dD
dt
= γu,dIu(t).

(2.5)

According to Pontryagin’s Minimum Principle [33, 83], if u ∈ U is an optimal control strategy with
respect to the objective functional J(x,u) = h(x(T )) +

∫ T

0
L(x(t),u(t)) dt and the system of equations

ẋ = f (x,u), x(0) = x0, then there is a trajectory p(t) such that

ṗ(t) = −∂xH(x,u,p)⊤
∣∣∣
x(t),u(t),p(t)

, p(T ) = ∂xh(x)⊤
∣∣∣
x(T )

, (2.6)

u(t) = arg min
v∈U

H(x(t), v(t),p(t)), H(x, v,p) := L(x, v) + p⊤ f (x, v). (2.7)

Therefore, solving the optimal control problems for the “social distancing control”, “vaccine control”,
and “both controls concurrently” scenarios comes down to minimizing the Hamiltonian, H(x,u,p),
with respect to u subject to costate system (2.6) and the biological model ẋ = f (x,u), x(0) = x0. The
complexity of this minimization problem largely depends on the choice of the cost function, c(u), in
the objective functional (2.4). In our algorithms, we employ a twice continuously differentiable cost
function, c(u) := [c1(u1), c2(u2)]⊤, with the following key properties [82]:

• ci(u), i = 1, 2, are defined inDi ⊇ [0, 1) ensuring that each domain contains the feasible set;
• ci(0) = 0, i = 1, 2, implying zero cost when no control is applied;
• limu→1− ci(u) = ∞, guaranteeing that the cost becomes prohibitive as u approaches the upper

bound of the control range;
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• c′i(u) > 0 when u > 0, and c′i(u) < 0 when u < 0, suggesting that ci(u) is increasing for positive
control values and preventing u from becoming negative;
• c′′i (u) > 0 for all u ∈ Di, indicating that ci(u) is strictly convex, i = 1, 2.

Note that ci(u), i = 1, 2, satisfying the above conditions, are necessarily nonnegative in their respective
domains, Di. In the numerical simulations presented in this paper, for different control scenarios, we
consider the following four cost functions, i = 1, 2 [84]:

ci,1(u) = −u − ln(1 − u), ci,2(u) = u2, ci,3(u) = − ln(1 − u2), ci,4(u) = −u ln(1 − u). (2.8)

It is important to mention that for ci,2(u) = u2 [85,86], which is often used in optimal control problems
(or for a more general function, ci,2(u) = w1u + w2u2 [87, 88]), the requirement limu→1− ci(u) = ∞ is
not met. In our experimental framework, ci,2(u) = u2, i = 1, 2, is used for comparison to highlight
the importance of the property limu→1− ci(u) = ∞. For ci,1, ci,3, and ci,4, all assumptions listed above
are fulfilled and, as our experiments show, all candidates for the global minimum of H(x,u,p) with
respect to u subject to the state and costate systems are feasible, i.e., inequality constraints, ui ≥ 0 and
ui < 1 (or control-specific constraint, ui < bi [87, 88]), do not have to be enforced in the optimization
algorithm. This is not the case with ci,2(u) = u2. For this cost function, one or both coordinates of the
global minimum are often greater than 1, especially for small values of λi. The details are presented in
Sections 3–5.

Figure 1. The graph of cost functions ci, j, j = 1, 2, 3, 4, where c1, j stands for the cost of
social distancing control, u1(t), and c2, j refers to the cost of vaccination control, u2(t).

For the three optimal control problems “social distancing control”, “vaccine control”, and “both
controls concurrently”, investigated in Sections 3–5, respectively, we use c1, j(u) = c2, j(u), j = 1, 2, 3, 4.
However, in some applications, the cost functions associated with different controls may need to be
different. The computational algorithm can easily be adapted for that. The graphs of the cost functions,
ci, j(u), u ∈ [−1, 1), i = 1, 2, j = 1, 2, 3, 4, are shown in Figure 1.

3. Social distancing control

In this section, we consider an intervention scenario where only social distancing controls are im-
plemented. Similar to (2.5), there are no vaccinated compartments for either susceptible or infected
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humans, and the model with social distancing control, u1(t) ∈ U, takes the form:

dS u

dt
= −β(1 − u1(t))

S u(t)Iu(t)
1 − D(t)

+ δrR(t),

dIu

dt
= β(1 − u1(t))

S u(t)Iu(t)
1 − D(t)

− (γu,r + γu,d)Iu(t),

dR
dt
= γu,rIu(t) − δrR(t),

dD
dt
= γu,dIu(t).

(3.1)

A higher control value implies more strict social distancing measures, leading to a reduced transmis-
sion. On the other hand, u1(t) = 0 yields no social distancing and a disease transmission rate reaching
its full potential. With no vaccination control, the normalized force of infection is β(1 − u1(t)) S u(t)Iu(t)

1−D(t) ,
and one arrives at the following objective functional:

J(x, u1) =
∫ T

0

{
β(1 − u1(t))

S u(t)Iu(t)
1 − D(t)

+ λ1c1(u1(t))
}

dt

= S u(0) − S u(T ) +
∫ T

0
{λ1c1(u1(t)) + δrR(t)} dt, (3.2)

designed to achieve a balance between reducing the spread of the disease and managing the associated
mitigation costs over the period [0,T ]. In (3.2), x := [S u, Iu,R,D]⊤. Equations (2.7), (3.1), and (3.2)
give rise to the Hamiltonian:

H(x, u1,p) = λ1c1(u1) + δrR + p1

[
−β(1 − u1)

S uIu

1 − D
+ δrR

]
+ p2

[
β(1 − u1)

S uIu

1 − D
− (γu,r + γu,d)Iu

]
+ p3
(
γu,rIu − δrR

)
+ p4 γu,dIu, (3.3)

where p := [p1, p2, p3, p4]⊤. By Pontryagin’s Minimum Principle [33, 83], u1 = arg minv∈U H(x, v,p),
subject to state system (3.1) and costate system (2.6) in the form

dp1

dt
=
β(1 − u1(t))

1 − D(t)
Iu(t)(p1(t) − p2(t)),

dp2

dt
=
β(1 − u1(t))

1 − D(t)
S u(t)(p1(t) − p2(t)) + γu,r(p2(t) − p3(t)) + γu,d(p2(t) − p4(t)),

dp3

dt
= δr(p3(t) − p1(t) − 1),

dp4

dt
=
β(1 − u1(t))
(1 − D(t))2 S u(t)Iu(t)(p1(t) − p2(t)), p(T ) = [−1, 0, 0, 0]⊤.

(3.4)

This leads to the following 2
nd

-order numerical algorithm for nonlinear constrained minimization:
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Algorithm 1 Numerical method for solving the social distancing optimal control problem
Require: Cost function c1, j(u1), weight λ1, finite dimensional approximation u1[θ], initial guess θ.
Ensure: Optimal control u1[θ] with estimated θ.

repeat
Solve (3.1) for x forward in time.
Solve (3.4) for p backward in time.
θ ← θ − ϱ(J⊤(θ)J(θ) + ωkI)−1J⊤(θ)F(θ).

until converged.

In Algorithm 1, F(θ) is a discrete analog of the partial derivative of the Hamiltonian, H(x, u1,p),
with respect to u1, J(θ) is the Jacobian of F(θ), I is the identity matrix in the solution space, ϱ is the step
size, and ωk is the regularization sequence. The derivative of H(x, u1,p) with respect to u1 exists, since
c1, j(u), j = 1, 2, 3, 4, are twice continuously differentiable by our assumption. In all our experiments,
shifted Legendre polynomials were used to project the control function, u1(t), onto a finite dimensional
subspace with θ being a vector of expansion coefficients. MATLAB’s built-in function “ode15s” was
employed to solve both ODE systems, (3.1) and (3.4), while “lsqnonlin” implemented the Levenberg-
Marquardt optimization procedure.

Figure 2. State variables plotted over time for the “no control”, the “reconstructed”, and the
optimal “social distancing control” scenarios in the state of Alabama using λ1 = 0.01 and 4
distinct cost functions, c1, j(u1), as defined in (2.8).

To illustrate the efficiency of various control strategies, we use real data for the SARS-CoV-2 Delta
variant of the COVID-19 pandemic in Alabama and Maryland from July 9, 2021 to November 25,
2021 [78]. In this section, the “social distancing control” scenario is compared to what we call “re-
constructed” and “no control” scenarios. The “reconstructed” (or “real-life”) scenario is described by
system (2.1), where pre-estimated parameter values for the state of Alabama are set at N = 5, 031, 362,
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γu,r = (1−0.005)/10, γu,d = 0.005/18.5, γv,r = (1−0.005/12.7)/10, γv,d = 0.005/18.5/12.7, δr = 1/90,
δv = 0, α = 0.8, and µ = 0.0009143 [76,77], while the time-dependent transmission rate, ζ(t), and case
reporting rate, ψ, are reconstructed from CDC data [78] on daily new infections and deaths by regu-
larized optimization algorithm. The reconstructed value of ψ is equal to 0.154 (95%CI:[0.149,0.159])
[77]. The initial values for (2.1) are S u(0) = 3, 402, 668/N, S v(0) = 1, 626, 323/N, Iu(0) = 1584/N,
Iv(0) = 787/N, R(0) = 0, and D(0) = 0.

In the “reconstructed” or “real-life” scenario we assume that both social distancing and vaccination
controls are present, but their implementation is not optimal and mimics real-life interventions put in
place from 7/9/2021 to 11/25/2021. The hypothetical “no control” scenario is given by model (2.5),
where neither social distancing nor vaccination control is applied. The hypothetical “social distancing
control” scenario (3.1) represents the case where optimal social distancing control is implemented with
no vaccination available (see Algorithm 1). The initial values for the state variables in these two cases
are S u(0) = (3, 402, 668+1, 626, 323)/N, Iu(0) = (1584+787)/N, R(0) = 0, and D(0) = 0. In (2.5) and
(3.1), the constant transmission rate, β, is set to 0.416 = maxt∈[0,T ] ζ(t) since ζ(t) = β(1 − ũ1(t)), where
ũ1(t) is a “real-life” non-optimal social distancing control (0 ≤ ũ1(t) < 1 for t ∈ [0,T ]), as mentioned
in Section 2 above.

Figure 3. Optimal controls, u1(t), plotted over time for the “social distancing control” sce-
nario in the state of Alabama (left) and the convergence rate for the norm of the gradient of
the Hamiltonian with respect to u1 (right) for λ1 = 0.01 and 4 distinct cost functions, c1, j(u1),
as defined in (2.8).

Figure 2 shows that without any control measures in place, the daily number of infected people
would be quite alarming until the strain runs its natural course. The hypothetical number of deceased
individuals in the “no control” environment is dangerously high. On the other hand, with optimally en-
forced social distancing, even without vaccination, the daily number of infected and deceased humans
is very low (though some cases appear to be delayed rather than prevented). The figure underscores the
importance of social distancing in mitigating the impact of infectious disease outbreaks. The “recon-
structed” curves in Figure 2 illustrate that the real-life control measures in the state of Alabama, which
included both vaccination and social distancing, were very effective and saved many lives.

The first graph in Figure 3 demonstrates that optimal social distancing must be strictly enforced at
the early ascending stage of a new wave in order to contain the virus. However, toward the end of the
study period, the intensity of optimal control goes down due to its negative impact on the economy and
overall quality of life. The figure shows that, for this particular value of λ1 = 0.01, the control strategy
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for all four cost functions (2.8) remains within the feasible set the entire time, without inequality
constraints enforced. At the same time, according to the second graph in Figure 3, the control strategy
associated with c1,4 may not be a global minimum. One can see in Figure 1 that the cost of the 4th

control is the highest among all costs considered. Therefore, superior results for the 4th control, shown
in Figure 2, may be at the expense of the algorithm not sufficiently reducing the negative impact.

Figure 4. New incidence cases and daily deaths plotted over time for the hypothetical “social
distancing control” scenario using λ1 = 0.01 and 4 distinct cost functions, c1, j(u1), as defined
in (2.8) vs. real data for the state of Alabama from July 9, 2021 to November 25, 2021 [78].

Figure 4 compares the actual number of new daily infections and deaths in the state of Alabama
from July 9, 2021 to November 25, 2021 [78], to new infections and deaths in the case of hypothetical
optimally controlled social distancing (for the four cost functions (2.8)). It also illustrates the model
fit with 100 bootstrapping iterations for uncertainty quantification [76, 77]. The figure supports our
earlier observation that optimal implementation of social distancing prevents a considerable number of
deaths. It illustrates that the daily number of newly infected people at the early stage of the cycle, where
the optimal social distancing control is strictly enforced, is close to zero. However, new incidence
cases and deaths increase toward the end of the study period, when the intensity of optimal control
goes down. The surge of new infections and deaths in the last 40 days of the interval underlines the
importance of a vaccination campaign for the prevention of cases. Optimal social distancing control is
very powerful initially, but it is not sustainable for a long time.

Figures 5–7 represent the “no control”, the “reconstructed”, and the optimal “social distancing
control” scenarios for the state of Maryland during the COVID-19 Delta variant from July 9, 2021
to November 25, 2021. By comparing Figures 2–4 to Figures 5–7, we can examine how regional
differences, such as varying population density, healthcare infrastructure, and socioeconomic factors,
influence the optimal control strategy [89, 90].

For the state of Maryland, the “reconstructed” scenario, described by system (2.1), illustrates the
efficiency of real-life interventions. In Maryland model (2.1), some parameters are the same as in
the case of Alabama and others are different (i.e., state-specific). The pre-estimated parameter values
for the state of Maryland are N = 6, 173, 205, δr = 1/90, γu,r = (1 − 0.005)/10, γu,d = 0.005/18.5,
γv,r = (1 − 0.005/12.7)/10, γv,d = 0.005/18.5/12.7, δv = 0, and µ = 0.0007286 [76, 77]. The time-
dependent transmission rate, ζ(t), and case reporting rate, ψ, are reconstructed from CDC data [78]
on daily new infections and deaths by a regularized optimization algorithm. The reconstructed value
of ψ for Maryland is equal to 0.182 (95%CI:[0.172,0.192]), see [77]. Pre-estimated initial values for
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the coordinates of x := [S u, S v, Iu, Iv,R,D]⊤ in (2.1) are S u(0) = 2, 727, 503/N, S v(0) = 3, 445, 221/N,
Iu(0) = 207/N, Iv(0) = 274/N, R(0) = 0, and D(0) = 0.

Figure 5. State variables plotted over time for the “no control”, the “reconstructed”, and the
optimal “social distancing control” scenarios in the state of Maryland using λ1 = 0.01 and 4
distinct cost functions, c1, j(u1), as defined in (2.8).

As before, the hypothetical “no control” scenario is given by model (2.5) with no control applied,
and the hypothetical “social distancing control” scenario (3.1) is the case where optimal social dis-
tancing control is employed with no vaccination available (see Algorithm 1). The initial values for
systems (2.5) and (3.1) are S u(0) = (3, 402, 668 + 1, 626, 323)/N, Iu(0) = (1584 + 787)/N, R(0) = 0,
and D(0) = 0. In (2.5) and (3.1), the transmission rate, β, is set to 0.477 = maxt∈[0,T ] ζ(t) since
ζ(t) = β(1 − ũ1(t)), where ũ1(t) is a “real-life” non-optimal social distancing control (0 ≤ ũ1(t) < 1 for
t ∈ [0,T ]).

As we look at Figures 2 and 5, it is important to keep in mind that at the start of the study period,
in the state of Alabama, the percentage of fully vaccinated people was 33.2%, while in the state of
Maryland it was 57%. At the end of the study period, these numbers were 46% and 67.2%, respectively.
Hence it comes at no surprise that the daily number of infected people in Alabama (the “reconstructed”
scenario) is higher than in Maryland. Figure 5, similar to Figure 2, underscores the importance of
disease control in epidemic management. The figure shows a frightening number of infected and
deceased people in a hypothetical uncontrolled environment. On the other hand, the “social distancing
control” curves in Figure 5 prove the efficiency of this nonmedical form of disease prevention. The
“reconstructed” scenario in Figure 5 convincingly shows that the real-life control measures in the state
of Maryland worked well.

Figure 6 for Maryland is consistent with what was observed for the state of Alabama in Figure 3. To
contain the spread of the virus, social distancing must be strictly enforced at the outset of a new strain.
However, this form of control is not sustainable in the long run as the cost begins to take its toll. More
than likely, the oscillating behavior of the social distancing control, u1(t), corresponding to the fourth
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cost function, c1,4, at the start of the interval is due to unavoidable instability of parameter estimation.
As evident from the second graph in Figure 6, similar to the case of Alabama, u1(t) associated with c1,4

may not be a global minimum. That is why it is so crucial to consider several cost functions to ensure
reliable practical recommendations.

Figure 6. Optimal controls, u1(t), plotted over time for the “social distancing control” sce-
nario in the state of Maryland (left) and the convergence rate for the norm of the gradient of
the Hamiltonian with respect to u1 (right) for λ1 = 0.01 and 4 distinct cost functions, c1, j(u1),
as defined in (2.8).

Figure 7 illustrates that in the state of Maryland, with optimal social distancing control, the number
of new cases and deaths would be significantly reduced during the first 100 days of the Delta strain.
However, in the last 40 days, the trend is the exact opposite. Again, this highlights the importance of
other control measures, such as vaccination and antiviral treatments, when social distancing inevitably
becomes less aggressive over time.

Figure 7. New incidence cases and daily deaths plotted over time for the hypothetical “social
distancing control” scenario using λ1 = 0.01 and 4 distinct cost functions, c1, j(u1), as defined
in (2.8) vs. real data for the state of Maryland from July 9, 2021 to November 25, 2021 [78].

4. Vaccination control

In this section, we define a mitigation scenario where only vaccination controls are employed, with-
out any social distancing interventions. To accurately capture this scenario, we employ the S uS vIuIvRD
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model with control u2(t) ∈ U factored into the vaccination rate. The higher the value of the control, the
stricter the vaccination measures, hopefully resulting in a lower number of cases and deaths. Without
a social distancing control, the disease transmission rate, β, is assumed to be at its maximum value,
defined as β = maxt∈[0,T ] ζ(t). Hence, the S uS vIuIvRD model with vaccination control, u2(t), is as
follows

dS u

dt
= −β

S u(t)
1 − D(t)

(Iu(t) + Iv(t)) − νu2(t)S u(t) + δrR(t) + δvS v(t),

dS v

dt
= −(1 − α)β

S v(t)
1 − D(t)

(Iu(t) + Iv(t)) + νu2(t)S u(t) − δvS v(t),

dIu

dt
= β

S u(t)
1 − D(t)

(Iu(t) + Iv(t)) − (γu,r + γu,d)Iu(t),

dIv

dt
= (1 − α)β

S v(t)
1 − D(t)

(Iu(t) + Iv(t)) − (γv,r + γv,d)Iv(t),

dR
dt
= γu,rIu(t) + γv,rIv(t) − δrR(t),

dD
dt
= γu,dIu(t) + γv,dIv(t).

(4.1)

In system (4.1), ν stands for the pre-estimated vaccination capacity, which is set to 1/7 in our experi-
ments implying that the entire population of the state can potentially be vaccinated in one week once
vaccine becomes available for the general population. Of course, in reality, it is impossible to vaccinate
everyone, which underlines the importance of the condition limu→1− ci, j(u) = ∞, guaranteeing that the
cost of control becomes prohibitive as u approaches the upper bound of the control range. Recall that
for the cost functions ci, j(u), i = 1, 2, defined in (2.8), the above assumption is fulfilled when j = 1, 3, 4.

Figure 8. State variables plotted over time for the “no control”, the “reconstructed”, and the
optimal “vaccine control” scenarios in the state of Alabama using λ2 = 0.01 and 4 distinct
cost functions, c2, j(u2), as defined in (2.8).
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In the “vaccine control” scenario, the normalized force of infection that one needs to minimize is
equal to β S u(t)+(1−α)S v(t)

1−D(t) (Iu(t) + Iv(t)), leading to the objective functional in the form:

J(x, u2) =
∫ T

0

{
β

S u(t) + (1 − α)S v(t)
1 − D(t)

(Iu(t) + Iv(t)) + λ2c2(u2(t))
}

dt

= (S u + S v)(0) − (S u + S v)(T ) +
∫ T

0
{λ2c2(u2(t)) + δrR(t)} dt, (4.2)

x = [S u, S v, Iu, Iv,R,D]⊤.

Taking into account Eqs (2.7), (4.1), and (4.2), we arrive at the following Hamiltonian, which is a
critical component of the regularized numerical algorithm aimed at estimating the optimal vaccination
strategy, u2(t), for the “vaccine control” problem:

H(x, u2,p) = λ2c2(u2) + δrR + p1

[
−β

S u

1 − D
(Iu + Iv) − νu2S u + δrR + δvS v

]
+ p2

[
−(1 − α)β

S v

1 − D
(Iu + Iv) + νu2S u − δvS v

]
+ p3

[
β

S u

1 − D
(Iu + Iv)

− (γu,r + γu,d)Iu

]
+ p4

[
(1 − α)β

S v

1 − D
(Iu + Iv) − (γv,r + γv,d)Iv

]
+ p5
[
γu,rIu + γv,rIv − δrR

]
+ p6
[
γu,dIu + γv,dIv

]
, (4.3)

where p := [p1, p2, p3, p4, p5, p6]⊤. From Pontryagin’s Minimum Principle [33,83], one concludes that
u2 = arg minv∈U H(x, v,p), subject to state system (4.1) and costate system (2.6):

dp1

dt
=
β[Iu(t) + Iv(t)]

1 − D(t)
[p1(t) − p3(t)] + νu2(t)[p1(t) − p2(t)],

dp2

dt
=
β(1 − α)[Iu(t) + Iv(t)]

1 − D(t)
[p2(t) − p4(t)] + δv[p2(t) − p1(t)],

dp3

dt
=

βS u(t)
1 − D(t)

[p1(t) − p3(t)] + (1 − α)
βS v(t)

1 − D(t)
[p2(t) − p4(t)] + γu,r[p3(t) − p5(t)]

+ γu,d[p3(t) − p6(t)],
dp4

dt
=

βS u(t)
1 − D(t)

[p1(t) − p3(t)] + (1 − α)
βS v(t)

1 − D(t)
[p2(t) − p4(t)] + γv,r[p4(t) − p5(t)]

+ γv,d[p4(t) − p6(t)],
dp5

dt
= δr[p5(t) − p1(t) − 1],

dp6

dt
=
βS u(t)[Iu(t) + Iv(t)]

(1 − D(t))2 [p1(t) − p3(t)] + (1 − α)
βS v(t)[Iu(t) + Iv(t)]

(1 − D(t))2 [p2(t) − p4(t)],

(4.4)

and p(T ) = [−1,−1, 0, 0, 0, 0]⊤. Thus, for the “vaccine control” scenario, one obtains the following
2

nd
-order algorithm for nonlinear constrained minimization:
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Algorithm 2 Numerical method for solving the vaccination optimal control problem
Require: Cost function c2, j(u2), weight λ2, finite dimensional approximation u2[θ], initial guess θ.
Ensure: Optimal control u2[θ] with estimated θ.

repeat
Solve (4.1) for x forward in time.
Solve (4.4) for p backward in time.
θ ← θ − ϱ(J⊤(θ)J(θ) + ωkI)−1J⊤(θ)F(θ).

until converged.

In Algorithm 2, F(θ) is a discrete analog of the partial derivative of the Hamiltonian, H(x, u2,p),
with respect to u2, J(θ) is the Jacobian of F(θ), I is the identity matrix in the solution space, ϱ is the
step size, and ωk is the regularization sequence. The derivative of H(x, u2,p) with respect to u2 exists,
since c2, j(u), j = 1, 2, 3, 4, are twice continuously differentiable by our assumption. As in the previous
section, in all our experiments, shifted Legendre polynomials were used to project the control function,
u2(t), onto a finite dimensional subspace with θ being a vector of expansion coefficients. MATLAB’s
built-in function “ode15s” was employed to solve both ODE systems, (4.1) and (4.4), while “lsqnonlin”
implemented the Levenberg-Marquardt optimization procedure.

Figure 9. Optimal controls, u2(t), plotted over time for the “vaccine control” scenario in
the state of Alabama (left) and the convergence rate for the norm of the gradient of the
Hamiltonian with respect to u2 (right) for λ2 = 0.01 and 4 distinct cost functions, c2, j(u2), as
defined in (2.8).

In what follows, we present numerical results comparing the “no control”, the “reconstructed”,
and the “vaccine control” scenarios for managing the COVID-19 Delta variant in the states of Al-
abama and Maryland. The “reconstructed” (or “real-life”) scenario is described by system (2.1), where
pre-estimated parameter values for Alabama and Maryland are the same as in Section 3. In the “re-
constructed” or “real-life” scenario, we assume that both social distancing and vaccination controls are
present, but their implementation is not optimal and mimics real-life interventions put in place from
7/9/2021 to 11/25/2021. The hypothetical “no control” scenario is given by model (2.5), where nei-
ther social distancing nor vaccination control is applied. The hypothetical “vaccine control” scenario
(4.1) represents the case where optimal vaccination control is implemented in the absence of social
distancing measures (see Algorithm 2).

Figure 8 illustrates the disease progression in Alabama from July 9, 2021 to November 25, 2021,
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highlighting the significant impact of vaccination control throughout the study period. The results sug-
gest that the optimal vaccination strategy involves quickly vaccinating a large portion of the population
- over 90%. Numerical experiments demonstrate that vaccinating people early on leads to a substantial
decline in the daily number of infected individuals. This translates into a considerable reduction in
COVID-related deaths during the same period of time, which further confirms the benefits of early
vaccination.

Figure 10. New incidence cases and daily deaths plotted over time for the hypothetical
“vaccine control” scenario using λ2 = 0.01 and 4 distinct cost functions, c2, j(u2), as defined
in (2.8) vs. real data for the state of Alabama from July 9, 2021 to November 25, 2021 [78].

Figure 11. State variables plotted over time for the “no control”, the “reconstructed”, and the
optimal “vaccine control” scenarios in the state of Maryland using λ2 = 0.01 and 4 distinct
cost functions, c2, j(u2), as defined in (2.8).

Figure 8 also underscores that the “real-life” preventive measures, including social distancing and
vaccination, were very beneficial. At the same time, vaccinating a higher percentage of people before
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or right after the start of the Delta strain could have prevented even more infections and further depleted
the number of deaths. Figure 9 reinforces the message that optimal vaccine control must be applied
very early and nearly to its full capacity. Over time, the intensity of vaccine control, understandably,
needs to go down due to the lasting benefits of vaccination.

Figure 12. Optimal controls, u2(t), plotted over time for the “vaccine control” scenario in
the state of Maryland (left) and the convergence rate for the norm of the gradient of the
Hamiltonian with respect to u2 (right) for λ2 = 0.01 and 4 distinct cost functions, c2, j(u2), as
defined in (2.8).

All control strategies shown in Figure 9 adhere to feasible constraints (without these constraints
being imposed in the algorithm) for all values of t ∈ [0,T ], with the exception of u2(t), corresponding
to the cost function c2,2(u) = u2, for which both upper and lower bounds need to be enforced. Thus,
Figure 9, once again, demonstrates the importance of the condition limu→1− ci, j(u) = ∞. The second
graph in Figure 9 shows that control strategies associated with c1,2 and c1,4 are not likely to be global
minima. Similar to the case of “social distancing control”, advantages of the 4th control, seen in
Figure 8, may be due to insufficient cost reduction.

Figure 13. New incidence cases and daily deaths plotted over time for the hypothetical
“vaccine control” scenario using λ2 = 0.01 and 4 distinct cost functions, c2, j(u2), as defined
in (2.8) vs. real data for the state of Maryland from July 9, 2021 to November 25, 2021 [78].

Examining Figures 4 and 10, one can clearly see a major difference in disease dynamics for “social
distancing control” and “vaccine control” scenarios. In the case of optimal “social distancing control”
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(Figure 4), new COVID cases and deaths are surging toward the end of the study period calling for
immediate further interventions. However, the optimal “vaccine control” strategy (Figure 10) reliably
“flattens the curve” for the entire interval of time, demonstrating a lasting positive impact of prompt
early vaccination.

Figures 11 and 12 make essentially the same case for the optimal “vaccine control” scenario as
Figures 8 and 9, that is, for the best outcome, vaccination needs to be done early and it has to in-
clude as many people as possible. In terms of the algorithm, Figures 9 and 12 reiterate that condition
limu→1− ci, j(u) = ∞ is critical. For solution u2(t), corresponding to the cost function c2,2(u) = u2, to
generate a practically relevant control strategy, the bounds of the feasible set need to be enforced in
the course of optimization. Once again, the second graph in Figure 12 illustrates that control strategies
associated with c1,2 and c1,4 are not likely to be global minima.

The long-term efficiency of the optimal vaccination control is even more pronounced if one com-
pares Figures 7 and 13 for the state of Maryland. In Figure 7, showing the hypothetical social distancing
intervention, one can observe a catastrophic increase in daily new cases and deaths in the last 40 days of
the study interval. At the same time, for the “reconstructed” scenario in Maryland, in the last 40 days,
the epidemic is safely contained. Figure 13, contrasting the optimal “vaccine control” and the “recon-
structed” real-life progression, makes a convincing case for the optimal vaccination strategy, which is
clearly superior to the “reconstructed” and “social distancing” scenarios by a very large margin.

5. Both controls concurrently

In this section, we explore a general scenario where both social distancing and vaccination controls
are implemented concurrently. To model this optimal control problem, we employ the S uS vIuIvRD
system (2.3) introduced in Section 2. In system (2.3), a control u1(t) is factored into the transmission
rate to account for social distancing and a control u2(t) is factored into the vaccination rate to account
for movement of individuals between susceptible unvaccinated and vaccinated compartments. To bal-
ance the pros and cons of optimal controls, u1(t) and u2(t), we minimize the objective functional (2.4)
subject to system (2.3). As it follows from (2.7), (2.3), and (2.4), the Hamiltonian for the “both controls
concurrently” scenario is given by the equation:

H(x,u,p) = λ1c1(u1) + λ2c2(u2) + δrR

+ p1

[
−β(1 − u1)

S u

1 − D
(Iu + Iv) − νu2S u + δrR + δvS v

]
+ p2(t)

[
−(1 − α)β(1 − u1)

S v

1 − D(t)
(Iu + Iv) + νu2S u − δvS v

]
+ p3(t)

[
β(1 − u1)

S u

1 − D
(Iu + Iv) − (γu,r + γu,d)Iu

]
+ p4(t)

[
(1 − α)β(1 − u1)

S v

1 − D
[Iu + Iv] − (γv,r + γv,d)Iv

]
+ p5(t)

[
γu,rIu + γv,rIv − δrR

]
+ p6(t)

[
γu,dIu + γv,dIv

]
. (5.1)

Taking into account Pontryagin’s Minimum Principle [33, 83], we recall that the costate system of
equations, corresponding to our controlled biological model (2.3), satisfies

ṗ(t) = −∂xH(x,u,p)⊤
∣∣∣
x(t),u(t),p(t)

, p(T ) = ∂xh(x)⊤
∣∣∣
x(T )

.
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This gives rise to the following ODE system, p(T ) = [−1,−1, 0, 0, 0, 0]:

dp1

dt
=
β(1 − u1(t))[Iu(t) + Iv(t)]

1 − D(t)
[p1(t) − p3(t)] + νu2(t)[p1(t) − p2(t)],

dp2

dt
=
β(1 − α)(1 − u1(t))[Iu(t) + Iv(t)]

1 − D(t)
[p2(t) − p4(t)] + δv[p2(t) − p1(t)],

dp3

dt
=
βS u(t)(1 − u1(t))

1 − D(t)
[p1(t) − p3(t)] + (1 − α)

βS v(t)(1 − u1(t))
1 − D(t)

[p2(t) − p4(t)]

+ γu,r[p3(t) − p5(t)] + γu,d[p3(t) − p6(t)],
dp4

dt
=
βS u(t)(1 − u1(t))

1 − D(t)
[p1(t) − p3(t)] + (1 − α)

βS v(t)(1 − u1(t))
1 − D(t)

[p2(t) − p4(t)]

+ γv,r[p4(t) − p5(t)] + γv,d[p4(t) − p6(t)],
dp5

dt
= δr[p5(t) − p1(t) − 1],

dp6

dt
=
βS u(t)(1 − u1(t))[Iu(t) + Iv(t)]

(1 − D(t))2 [p1(t) − p3(t)]

+ (1 − α)
βS v(t)(1 − u1(t))[Iu(t) + Iv(t)]

(1 − D(t))2 [p2(t) − p4(t)].

(5.2)

To minimize (5.1) subject to Eqs (2.3) and (5.2), we propose the Levenberg-Marquardt optimization
algorithm:

Algorithm 3 Numerical method for solving the optimal control problem with social distancing and
vaccination controls implemented concurrently
Require: Cost function c(u), weight λ, finite dimensional approximation u[θ], initial guess θ.
Ensure: Optimal control u[θ] with estimated θ.

repeat
Solve (2.3) for x forward in time.
Solve (5.2) for p backward in time.
θ ← θ − ϱ(J⊤(θ)J(θ) + ωkI)−1J⊤(θ)F(θ).

until converged.

In Algorithm 3, F(θ) is a discrete analog of ∂uH(x,u,p), J(θ) is the Jacobian of F(θ), I is the identity
matrix in the solution space, ϱ is the step size, and ωk is the regularization sequence. We point out that
∂uH(x,u,p) exists, since ci, j(u), i = 1, 2, j = 1, 2, 3, 4, are twice continuously differentiable by our
assumption. In all our experiments, shifted Legendre polynomials were used to project the control
function, u, onto a finite dimensional subspace with θ being a vector of expansion coefficients. Matlab
built-in function “ode15s” was employed to solve both ODE systems, (2.3) and (5.2), while “lsqnonlin”
implemented the trust-region optimization procedure.

To illustrate the efficiency of the “both controls concurrently” intervention strategy, we present nu-
merical experiments with real data for the SARS-CoV-2 Delta variant of the COVID-19 pandemic in
Alabama and Maryland from July 9, 2021 to November 25, 2021 [78]. In this section, the “both con-
trols concurrently”, “reconstructed”, and “no control” scenarios are compared. In the “reconstructed”
or “real-life” scenario (2.1) we assume that both social distancing and vaccination controls are present,
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but their implementation is not optimal and mimics real-life interventions put in place from 7/9/2021
to 11/25/2021. The hypothetical “both controls concurrently” scenario (2.3), represents the case where
social distancing and vaccination controls are optimized in the sense of the objective functional (2.4).

Figure 14. State variables plotted over time for the “no control”, the “reconstructed”, and the
optimal “both controls concurrently” scenarios in the state of Alabama using λ1 = λ2 = 0.01,
and c1, j(u1) = c2, j(u2), j = 1, 2, 3, 4, as defined in (2.8).

Figure 15. Optimal controls, u(t), plotted over time for the “both controls concurrently” sce-
nario in Alabama (left) and the convergence rate for the norm of the gradient of the Hamil-
tonian with respect to u (right) for λ1 = λ2 = 0.01 and c1, j(u1) = c2, j(u2), j = 1, 2, 3, 4, as
defined in (2.8).

The pre-estimated parameters for Alabama in these two cases are N = 5, 031, 362, δr = 1/90,
γu,r = (1−0.005)/10, γu,d = 0.005/18.5, γv,r = (1−0.005/12.7)/10, γv,d = 0.005/18.5/12.7, δv = 0, and
α = 0.8 [76, 77], while the time-dependent transmission rate, ζ(t), for (2.1) and case reporting rate, ψ,
are reconstructed from CDC data [78] on daily new infections and deaths by a regularized optimization
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algorithm. The reconstructed value of ψ is equal to 0.154 (95%CI:[0.149,0.159]) [77]. In (2.1), for the
state of Alabama, the average vaccination rate, µ, is equal to 0.0009143, while the vaccination capacity,
ν, in (2.3) is set to 1/7. The initial values for systems (2.3) and (2.1) are S u(0) = 3, 402, 668/N,
S v(0) = 1, 626, 323/N, Iu(0) = 1584/N, Iv(0) = 787/N, R(0) = 0, and D(0) = 0.

The hypothetical “no control” scenario is given by model (2.5), where neither social distancing nor
vaccination control is applied. The initial values in this case are S u(0) = (3, 402, 668 + 1, 626, 323)/N,
Iu(0) = (1584 + 787)/N, R(0) = 0, D(0) = 0. In (2.5) and (3.1), the constant transmission rate, β, is
set to 0.416 = maxt∈[0,T ] ζ(t) since ζ(t) = β(1 − ũ1(t)), where ũ1(t) is a “real-life” non-optimal social
distancing control (0 ≤ ũ1(t) < 1 for t ∈ [0,T ]), as mentioned in Section 2 above.

Figure 16. New incidence cases and daily deaths plotted over time for the hypothetical “both
controls concurrently” scenario using λ1 = λ2 = 0.01 and c1, j(u1) = c2, j(u2), j = 1, 2, 3, 4,
as defined in (2.8) vs. real data for the state of Alabama from July 9, 2021 to November 25,
2021 [78].

Figure 14, showing disease progression in the state of Alabama, illustrates superior efficiency of
the hypothetical optimal “both controls concurrently” strategy. A comparison of Figures 9 and 15
demonstrates that in the presence of social distancing mitigation measures, the vaccination campaign
at the start of the strain can be less rigorous. Figures 10 and 16 underscore that, in combination, optimal
social distancing and vaccination controls achieve better results than “vaccine control” without either
control being enforced too aggressively. Figures 9 and 15 show that after the initial push, which keeps
the epidemic reliably contained, both social distancing and vaccination controls can be scaled down
very quickly saving considerable resources. This highlights the importance of simultaneously applying
multiple control strategies to combat disease outbreaks and to minimize their negative consequences.

The state-specific parameters for the Maryland “reconstructed” scenario, described by system (2.1),
are N = 6, 173, 205 and µ = 0.0007286 [76, 77]. The time-dependent transmission rate, ζ(t), and
case reporting rate, ψ, are estimated from CDC data [78] on daily new infections and deaths by a
regularized optimization algorithm. The reconstructed value of ψ for Maryland is equal to 0.182
(95%CI:[0.172,0.192]). In ODE systems (2.1) and (2.3), the initial values for the coordinates of
x := [S u, S v, Iu, Iv,R,D]⊤ in the state of Maryland are S u(0) = 2, 727, 503/N, S v(0) = 3, 445, 221/N,
Iu(0) = 207/N, Iv(0) = 274/N, R(0) = 0, and D(0) = 0. [77]. As before, the hypothetical “no con-
trol” scenario is given by model (2.5) with no control applied. The initial values for the variables of
x := [S u, Iu,R,D]⊤ are S u(0) = (3, 402, 668 + 1, 626, 323)/N, Iu(0) = (1584 + 787)/N, R(0) = 0, and
D(0) = 0. In (2.3) and (2.5), the constant transmission rate, β, is set to 0.477 = maxt∈[0,T ] ζ(t).
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Figures 17–19 emphasize that applying social distancing and vaccine controls in combination is
the most powerful way to contain the outbreak. By comparing “both controls concurrently” scenarios
for Alabama and Maryland in Figures 15 and 18, respectively, one can notice that in both states,
more emphasis is placed on vaccination than on social distancing. However, the two controls quickly
decrease at a near-exponential rate due to a sustainable positive effect of vaccination.

Figure 17. State variables plotted over time for the “no control”, the “reconstructed”, and the
optimal “both controls concurrently” scenarios in the state of Maryland using λ1 = λ2 = 0.01,
and c1, j(u1) = c2, j(u2), j = 1, 2, 3, 4, as defined in (2.8).

Figure 18. Optimal controls, u(t), plotted over time for the “both controls concurrently”
scenario in Maryland (left) and the convergence rate for the norm of the gradient of the
Hamiltonian with respect to u (right) for λ1 = λ2 = 0.01 and c1, j(u1) = c2, j(u2), j = 1, 2, 3, 4,
as defined in (2.8).

As in all previous cases, the 4th control may not be a global minimum of the Hamiltonian as sug-
gested by the second graphs in Figures 15 and 18. The first three controls, including the one that
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corresponds to c1,2(u) = c2,2(u) = u2, appear to be global minima, and no bounds need to be enforced
by the optimization algorithm.

Figure 19. New incidence cases and daily deaths plotted over time for the hypothetical “both
controls concurrently” scenario using λ1 = λ2 = 0.01 and c1, j(u1) = c2, j(u2), j = 1, 2, 3, 4, as
defined in (2.8) vs. real data for Maryland from July 9, 2021 to November 25, 2021 [78].

6. Conclusions and future plans

Control and prevention strategies are indispensable tools for managing the spread of infectious dis-
eases. This paper examines biological models for the post-vaccination stage of a viral outbreak that
integrate two important mitigation tools: social distancing, aimed at reducing the disease transmission
rate, and vaccination, which boosts the immune system. Five different scenarios of epidemic progres-
sion are considered: (i) the “no control” scenario, reflecting the natural evolution of a disease without
any safety measures in place, (ii) the “reconstructed” scenario, representing real-world data and inter-
ventions, (iii) the “social distancing control” scenario covering a broad set of behavioral changes, (iv)
the “vaccine control” scenario demonstrating the impact of vaccination on epidemic spread, and (v) the
“both controls concurrently” scenario incorporating social distancing and vaccine controls simultane-
ously. By investigating these scenarios, we provide a comprehensive analysis of various intervention
strategies, offering valuable insights into disease dynamics.

Figures A1–A8 in the Appendix section compare the evolution of state variables, Ŝ u, Ŝ v, Îu, Îv,
R̂, D̂, for “social distancing control”, “vaccine control”, and “both controls concurrently” mitigation
frameworks in Alabama and Maryland versus the corresponding state variables reconstructed from real
data from July 9, 2021 to November 25, 2021 [78]. Tables A1–A8 in the Appendix compare the daily
number of infected people, Îu + Îv, for the same controls and over the same period of time. The main
findings of our numerical study are as follows:

• Strict social distancing at the early ascending stage of a new virus wave has immediate positive
impact and saves a lot of lives. Early on, optimal social distancing is more efficient than optimal
vaccination. However, social distancing is not sustainable in the long run since the cost of this
extreme control measure eventually takes its toll. Thus, the intensity of social distancing control
begins to slow down after about three months. When social distancing policies are relaxed, new
incidence cases and daily new deaths surge. This hypothetical surge is particularly noticeable in
Maryland as compared to real data (see Figure 7).
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• The positive impact of optimal vaccination is not immediate. But once vaccination takes effect, it
works exceptionally well. Experiments show that vaccine control can be safely scaled down after
the initial rapid action without any risk of cases increasing or more people dying toward the end
of the study window.
• Given the unique individual properties of social distancing and vaccination, the best outcome is

achieved when the two controls are applied concurrently. Together, these interventions comple-
ment each other. They quickly “flatten the curve” and prevent infections from rebounding in the
last 40 days. After prompt early response, both controls quickly decrease at a near-exponential
rate due to the sustainable positive effect of vaccination. In all scenarios considered, the results
obtained with ci,4(u) = −u ln(1 − u) should be taken with a grain of salt, since the corresponding
control function may not be a global minimum of the Hamiltonian.
• To reconstruct unknown parameters for the optimal control problem, quantification of uncertainty

related to noise in the reported data was carried out by refitting model (2.1) to M = 100 additional
data sets assuming a Poisson error structure. The resulting M best-fit parameter sets were used
to find the 95% confidence intervals and to estimate the mean values [76, 77]. In our future
work, we plan to replace system (2.1) with a stochastic compartmental model governed by Wiener
processes, which takes into account the uncertainty of the disease transmission, incubation period,
and variability of detection.
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Appendix

Figure A1. Comparison of “social distancing control”, “vaccine control”, and “both controls
concurrently” scenarios in Alabama using λ1 = 0.01 and ci,1(u), i = 1, 2, as defined in
(2.8) vs. the corresponding state variables reconstructed from real data from July 9, 2021 to
November 25, 2021 [78].

Table A1. Comparison of Îu + Îv for “no control”, “social distancing control”, “vaccine
control”, “both controls concurrently”, and “reconstructed” scenarios in the state of Alabama
using λ1 = 0.01 and ci,1(u), i = 1, 2, as defined in (2.8).

Time No control Social distancing Vaccine control Both controls Reconstructed
1 2371 2371 2371 2371 2371
10 40,696 2765 13,973 5136 12,931
20 727,429 3287 28,523 8069 57,315
30 2,141,225 3924 36,564 9924 146,430
40 1,339,108 4709 39,028 10,686 232,932
50 705,677 5684 38,244 10,701 284,223
60 415,208 6916 35,889 10,302 300,622
70 289,554 8512 32,910 9717 278,744
80 240,857 10,629 29,829 9085 223,886
90 235,218 13,525 26,908 8482 159,736
100 259,258 17,694 24,275 7948 107,825
110 304,815 24,126 21,979 7502 73,895
120 363,137 35,093 20,028 7155 54,193
130 412,240 57,058 18,410 6911 45,048
140 437,274 121,705 17,105 6774 45,207
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Figure A2. Comparison of “social distancing control”, “vaccine control”, and “both controls
concurrently” scenarios in Maryland using λ1 = 0.01 and ci,1(u), i = 1, 2, as defined in
(2.8) vs. the corresponding state variables reconstructed from real data from July 9, 2021 to
November 25, 2021 [78].

Table A2. Comparison of Îu + Îv for “no control”, “social distancing control”, “vaccine
control”, “both controls concurrently”, and “reconstructed” scenarios in the state of Maryland
using λ1 = 0.01 and ci,1(u), i = 1, 2, as defined in (2.8).

Time No control Social distancing Vaccine control Both controls Reconstructed
1 481 481 481 481 481
10 14,918 649 4245 1507 1985
20 560,240 905 11,361 3145 6593
30 2,909,568 1263 17,781 4779 14,952
40 1,761,357 1765 22,409 6090 28,291
50 894,572 2470 25,516 7028 45,862
60 523,511 3469 27,536 7667 61,363
70 372,472 4902 28,818 8105 69,079
80 321,317 6987 29,623 8420 70,707
90 326,022 10,070 30,135 8687 70,354
100 368,754 14,801 30,493 8967 68,577
110 434,214 22,503 30,811 9313 63,308
120 499,860 36,206 31,185 9779 54,496
130 541,285 64,797 31,699 10,422 45,721
140 547,813 153,529 32,442 11,322 40,418
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Figure A3. Comparison of “social distancing control”, “vaccine control”, and “both controls
concurrently” scenarios in Alabama using λ1 = 0.01 and ci,2(u), i = 1, 2, as defined in
(2.8) vs. the corresponding state variables reconstructed from real data from July 9, 2021 to
November 25, 2021 [78].

Table A3. Comparison of Îu + Îv for “no control”, “social distancing control”, “vaccine
control”, “both controls concurrently”, and “reconstructed” scenarios in the state of Alabama
using λ1 = 0.01 and ci,2(u), i = 1, 2, as defined in (2.8).

Time No control Social distancing Vaccine control Both controls Reconstructed
1 2371 2371 2371 2371 2371
10 40,696 2274 11,635 4847 12,931
20 727,429 2224 20,152 7737 57,315
30 2,141,225 2237 24,705 9759 146,430
40 1,339,108 2317 26,414 10,879 232,932
50 705,677 2465 26,429 11,338 284,223
60 415,208 2702 25,487 11,367 300,622
70 289,554 3072 24,044 11,150 278,744
80 240,857 3640 22,412 10,819 223,886
90 235,218 4519 20,809 10,464 159,736
100 259,258 5958 19,350 10,129 107,825
110 304,815 8556 18,065 9846 73,895
120 363,137 13,951 16,961 9643 54,193
130 412,240 28,069 16,043 9538 45,048
140 437,274 90,177 15,304 9547 45,207
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Figure A4. Comparison of “social distancing control”, “vaccine control”, and “both controls
concurrently” scenarios in Maryland using λ1 = 0.01 and ci,2(u), i = 1, 2, as defined in
(2.8) vs. the corresponding state variables reconstructed from real data from July 9, 2021 to
November 25, 2021 [78].

Table A4. Comparison of Îu + Îv for “no control”, “social distancing control”, “vaccine
control”, “both controls concurrently”, and “reconstructed” scenarios in the state of Maryland
using λ1 = 0.01 and ci,2(u), i = 1, 2, as defined in (2.8).

Time No control Social distancing Vaccine control Both controls Reconstructed
1 481 481 481 481 481
10 14,918 560 3433 1434 1985
20 560,240 666 7565 2988 6593
30 2,909,568 802 11,214 4593 14,952
40 1,761,357 975 14,142 6019 28,291
50 894,572 1201 16,439 7219 45,862
60 523,511 1501 18,293 8214 61,363
70 372,472 1919 19,827 9056 69,079
80 321,317 2524 21,106 9809 70,707
90 326,022 3441 22,189 10,538 70,354
100 368,754 4917 23,184 11,298 68,577
110 434,214 7601 24,205 12,144 63,308
120 499,860 13,299 25,293 13,153 54,496
130 541,285 28,853 26,441 14,407 45,721
140 547,813 106,619 27,738 16,011 40,418
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Figure A5. Comparison of “social distancing control”, “vaccine control”, and “both controls
concurrently” scenarios in Alabama using λ1 = 0.01 and ci,3(u), i = 1, 2, as defined in
(2.8) vs. the corresponding state variables reconstructed from real data from July 9, 2021 to
November 25, 2021 [78].

Table A5. Comparison of Îu + Îv for “no control”, “social distancing control”, “vaccine
control”, “both controls concurrently”, and “reconstructed” scenarios in the state of Alabama
using λ1 = 0.01 and ci,3(u), i = 1, 2, as defined in (2.8).

Time No control Social distancing Vaccine control Both controls Reconstructed
1 2371 2371 2371 2371 2371
10 40,696 2803 13,971 5378 12,931
20 727,429 3379 28,783 8922 57,315
30 2,141,225 4089 37,551 11,494 146,430
40 1,339,108 4971 40,905 12,892 232,932
50 705,677 6072 40,915 13,397 284,223
60 415,208 7470 39,159 13,344 300,622
70 289,554 9291 36,585 12,989 278,744
80 240,857 11,721 33,758 12,500 223,886
90 235,218 15,064 30,992 11,983 159,736
100 259,258 19,865 28,452 11,507 107,825
110 304,815 27,365 26,223 11,111 73,895
120 363,137 40,312 24,336 10,823 54,193
130 412,240 66,979 22,795 10,658 45,048
140 437,274 150,695 21,595 10,634 45,207
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Figure A6. Comparison of “social distancing control”, “vaccine control”, and “both controls
concurrently” scenarios in Maryland using λ1 = 0.01 and ci,3(u), i = 1, 2, as defined in
(2.8) vs. the corresponding state variables reconstructed from real data from July 9, 2021 to
November 25, 2021 [78].

Table A6. Comparison of Îu + Îv for “no control”, “social distancing control”, “vaccine
control”, “both controls concurrently”, and “reconstructed” scenarios in the state of Maryland
using λ1 = 0.01 and ci,3(u), i = 1, 2, as defined in (2.8).

Time No control Social distancing Vaccine control Both controls Reconstructed
1 481 481 481 481 481
10 14,918 656 4232 1562 1985
20 560,240 925 11,383 3411 6593
30 2,909,568 1306 18,083 5400 14,952
40 1,761,357 1846 23,243 7153 28,291
50 894,572 2611 27,017 8568 45,862
60 523,511 3703 29,746 9689 61,363
70 372,472 5284 31,731 10,596 69,079
80 321,317 7605 33,208 11,366 70,707
90 326,022 11,066 34,365 12,084 70,354
100 368,754 16,401 35,352 12,827 68,577
110 434,214 25,165 36,301 13,671 63,308
120 499,860 40,981 37,331 14,692 54,496
130 541,285 74,655 38,555 15,985 45,721
140 547,813 186,325 40,086 17,671 40,418

Mathematical Biosciences and Engineering Volume 21, Issue 12, 7650–7687.



7686

Figure A7. Comparison of “social distancing control”, “vaccine control”, and “both controls
concurrently” scenarios in Alabama using λ1 = 0.01 and ci,4(u), i = 1, 2, as defined in
(2.8) vs. the corresponding state variables reconstructed from real data from July 9, 2021 to
November 25, 2021 [78].

Table A7. Comparison of Îu + Îv for “no control”, “social distancing control”, “vaccine
control”, “both controls concurrently”, and “reconstructed” scenarios in the state of Alabama
using λ1 = 0.01 and ci,4(u), i = 1, 2, as defined in (2.8).

Time No control Social distancing Vaccine control Both controls Reconstructed
1 2371 2371 2371 2371 2371
10 40,696 2439 12,420 4515 12,931
20 727,429 2504 22,394 6729 57,315
30 2,141,225 2638 27,163 8090 146,430
40 1,339,108 2860 28,380 8646 232,932
50 705,677 3108 27,669 8664 284,223
60 415,208 3427 26,027 8388 300,622
70 289,554 3932 24,013 7978 278,744
80 240,857 4698 21,931 7531 223,886
90 235,218 5721 19,936 7097 159,736
100 259,258 7158 18,113 6695 107,825
110 304,815 9768 16,497 6372 73,895
120 363,137 15,072 15,100 6139 54,193
130 412,240 25,394 13,915 5961 45,048
140 437,274 73,684 12,927 5894 45,207
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Figure A8. Comparison of “social distancing control”, “vaccine control”, and “both controls
concurrently” scenarios in Maryland using λ1 = 0.01 and ci,4(u), i = 1, 2, as defined in
(2.8) vs. the corresponding state variables reconstructed from real data from July 9, 2021 to
November 25, 2021 [78].

Table A8. Comparison of Îu + Îv for “no control”, “social distancing control”, “vaccine
control”, “both controls concurrently”, and “reconstructed” scenarios in the state of Maryland
using λ1 = 0.01 and ci,4(u), i = 1, 2, as defined in (2.8).

Time No control Social distancing Vaccine control Both controls Reconstructed
1 481 481 481 481 481
10 14,918 716 3746 1345 1985
20 560,240 835 8772 2655 6593
30 2,909,568 1075 12,890 3917 14,952
40 1,761,357 1312 15,846 4928 28,291
50 894,572 1574 17,903 5672 45,862
60 523,511 1991 19,336 6206 61,363
70 372,472 2623 20,347 6606 69,079
80 321,317 3422 21,076 6932 70,707
90 326,022 4450 21,625 7228 70,354
100 368,754 6172 22,074 7538 68,577
110 434,214 9392 22,491 7909 63,308
120 499,860 15,181 22,941 8389 54,496
130 541,285 28,291 23,468 9022 45,721
140 547,813 83,997 24,124 9914 40,418
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