
http://www.aimspress.com/journal/mbe

MBE, 21(11): 7621–7647.
DOI: 10.3934/mbe.2024335
Received: 28 June 2024
Revised: 01 November 2024
Accepted: 11 November 2024
Published: 25 November 2024

Research article

Agent-based modeling for the tumor microenvironment (TME)

Hasitha N. Weerasinghe1,*, Pamela M. Burrage1, Dan V. Nicolau Jr.2 and Kevin Burrage1,3

1 School of Mathematical Sciences, Queensland University of Technology, Queensland, Brisbane,
Australia

2 School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
3 Department of Computer Science, University of Oxford, United Kingdom

* Correspondence: Email: h.weerasinghe@qut.edu.au.

Abstract: Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in
an organ and their subsequent spread into other parts of the body. If tumor cells spread to surround-
ing tissues or other organs, then the disease is life-threatening due to limited treatment options. This
work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor
progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix
(ECM) interactions affect tumor cell behavior. Additionally, the model suggests that low initial healthy
cell densities and ECM protein densities promote tumor progression, cell motility, and invasion. Fur-
thermore, high ECM breakdown probabilities of tumor cells promote tumor invasion. Understanding
the intra-tumoral communication under cellular stress can potentially lead to the design of successful
treatment strategies for cancer.
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1. Introduction

Cancer is a disease that involves uncontrolled abnormal (tumor) cell growth. Due to this uncon-
trolled growth, the tumor cell density increases, which leads to a cell mass known as a tumor. The
disease is usually incurable if the tumor cells spread to the surrounding tissues (invasion) or other
organs (metastasis) (see Figure 1).

The tumor microenvironment (TME) is the environment that surrounds a tumor and consists of
different types of cells such as cancer associated fibroblasts (CAF), cancer associated macrophages
(CAM), T-cells, B-cells, pericytes, tumor cells, and the extracellular matrix (ECM) [1, 2] (see Figure
2). Various components of the TME promote tumor progression, invasion, and metastasis [3–8]. Un-
derstanding how tumor cells adapt to their environment is one of the biggest challenges in developing
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successful cancer treatments. This research study seeks to understand the tumor cell behavior in the
TME by investigating cell-cell and cell-ECM interactions through an agent-based model.

Figure 1. Cancer progression: Due to genetic changes, tumor cells can grow in a tissue. Tu-
mor cells cannot control their cell growth and can spread to the surrounding tissues and other
organs through blood vessels or lymph nodes. Healthy cells and tumor cells are represented
in blue and red colors, respectively. The free form lines show the location and formation of
new blood vessels, including the possible movement of tumor cells through the blood vessels
in metastasis.

Figure 2. The tumor microenvironment (TME): The TME consists of different types of cells
such as cancer-associated fibroblasts (CAF), cancer-associated macrophages (CAM), T-cells,
B-cells, pericytes, tumor cells, the surrounding membrane, and the interstitial matrix. This
figure displays a more detailed representation of the tumor mass.
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The physical barrier for all cells in the TME is the ECM. It contains angiogenic factors and
chemokines, which give each tissue its tensile, comprehensive strength and elasticity [9]. Different
proteins in the ECM make a surrounding membrane and an interstitial matrix [10–13]. Cell-ECM ad-
hesion is most important for cell movement through the TME. ECM stiffness interrupts drug delivery
and promotes metastasis [10, 14]. When a tumor cell attaches to an ECM component, the tumor cells
secrete collagenase proteases called matrix metalloproteinases (MMPs), which break down the ECM
component [15–18]. The ECM stores pro-angiogenic growth factors that support the formation of new
blood vessels close to the tumor cells [19, 20].

Restricted nutrient or oxygen supply in the TME promotes resource competition between cells. Tu-
mor cells follow different strategies such as scavenging ECM proteins via integrins, receptor-mediated
albumin uptake, catabolism, macropinocytosis consumption of multiple components of the TME, and
engulfment and degradation of entire live cells via entosis to increase their nutrient supply [21, 22].
The metabolic reprogramming mechanism called the Warburg effect increases the energy of tumor
cells more than healthy cells [23–27].

Cell competition can occur through the competition for nutrients or growth factors and the compe-
tition for space through mechanisms such as cell fitness sensing [28–32]. The fitness level of a cell
determines the proliferation and apoptosis of a cell. Super competition is the process of eliminating
healthy wild-type cells with tumor cells. Myelocytomatosis (MYC) protein and Yes-associated pro-
teins (YAP) are two proteins that turn cells into so-called super competitors [33]. In MYC-mediated
cell competition, the losers with a low level of MYC are killed by the winners with a high level of
MYC [34]. Tumor cells with metabolic winner phenotypes compete with immune cells and escape
from the TME [35]. Hence, cell competition promotes tumor progression by killing less fit cells in the
TME.

An epithelial to mesenchymal transition (EMT) occurs due to the disruption of cell-cell adhesion
and cellular polarity, remodeling of the cytoskeleton, and changes in the cell-matrix adhesion [3]. In
the deleterious adaptation of cells, cell-cell adhesion can influence how cells either escape or remain
restricted to certain domains [36–39].

Clinical experiments are time-consuming, expensive, and have issues capturing the system dynam-
ics. However, some advantages of mathematical modeling are the ability to identify critical factors and
the most sensitive parameters of a system, the ability to modify the model according to the objectives
of the study, and the ability to predict the behavior of a system. Additionally, mathematical models
can capture the dynamics of systems in time and space, thus enabling us to make sound analyses and
predictions on which new treatment strategies can be developed.

Different mathematical models have been developed in the literature to analyze tumor growth, can-
cer metabolism, vasculature, tumor immunity, tumor microenvironment and heterogeneity, invasion,
metastasis, and cancer treatments [40–43]. Basically, three modeling techniques have been used to
understand cancer dynamics: discrete (agent-based), continuum, and hybrid. Agent-based models
track and update individual cells according to a set of biological rules [44, 45]. Through an agent-
based model, one can link tumor heterogeneity to a cellular response. Furthermore, we can study
how molecular signaling, cellular metabolism, mutation-induced phenotypic changes, angiogenesis,
metastasis, immune response, and cancer treatments affect cancer progression [46, 47]. Continuum
models consider the tumor tissue as a continuous medium, and differential equations are used for
modeling [48–53]. Diffusion models for tumors have been developed under different mechanisms
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such as negative feedback [54], discontinuous switches [55, 56], non-uniformly distributed mitotic in-
hibitors [57, 58], and through the effects of a necrotic core [59]. Compared to discrete models, it is
easier to estimate parameters for continuum models based on laboratory experiments. On the other
hand, some assumptions used in continuum modeling can be too simplistic. A hybrid model combines
the benefits of discrete and continuous modeling and techniques and describes chemical reactions and
tissue landscapes in a single model [60, 61]. Hybrid or continuum-discrete models can bridge the gap
between the cellular scale and the tumor scale. In the hybrid approach, tumor tissue is modeled, and
contains discrete and continuum elements. Oxygen, nutrient, drug, growth factors, and certain tissue
features are described as continuum fields, and cells are described as discrete elements.

Numerous agent-based models have been developed for cancer modeling, thereby incorporating a
wide range of features such as proliferation, cytotoxic behaviors, mechanical pressure, cell death, cell
movement, treatments, mutations, angiogenic factors, immune system response, and energy availability
[18, 46, 62–86]. For instance, Lettort et al. introduced an open-source package called PhysiBoss [87,
88], which integrated intracellular signaling via Boolean modeling (MaBoss) [89] with multicellular
behavior through agent-based modelling (PhysiCell) [90]. This approach is particularly advantageous
to study the responses of heterogeneous cell populations to treatments, mutation effects, and different
modes of invasion or isomorphic morphogenesis events [91]. However, this model does not account
for ECM interactions within the tumor microenvironment (TME).

Previously developed agent-based models often only consider a few features of the TME. In order
to understand the role of the TME in a greater depth, we focus on the eight hallmarks in our model
suggested by Hanahan and colleagues [92–94]. The key hallmarks are given as follows:

• Sustaining proliferative signaling: Tumor cells can continuously signal themselves to grow,
thus bypassing the normal regulatory mechanisms.
• Evading growth suppressors: Tumor cells can evade the growth-suppressing signals that would

normally inhibit uncontrolled cell division.
• Enabling replicative immortality: Tumor cells maintain their telomeres, thus allowing them to

divide indefinitely, unlike healthy cells that have a limited number of divisions.
• Resisting cell death: Tumor cells develop mechanisms to avoid programmed cell death, enabling

their survival and proliferation.
• Deregulating cellular energy: Tumor cells reprogram their energy production to fuel rapid

growth and adapt to the tumor microenvironment.
• Avoiding immune destruction: Tumor cells develop mechanisms to evade immune detection

and destruction.
• Inducing angiogenesis: Tumors can stimulate the growth of new blood vessels to supply nutri-

ents and oxygen, which are critical for their continued growth.
• Invasion and metastasis: Tumor cells can invade surrounding tissues and spread to distant or-

gans, thus forming secondary tumors.

Figure 3 shows features of the model related to each cancer hallmark. In this study, we develop an
agent-based model to study interactions between the tumor cells and the TME according to a set of
biological rules. We emphasise that our model does not account for the formation of blood vessels. We
acknowledge that the existence of blood vessels can play an important role in the tumor spread to the
boundary of an organ and that the location of the tumor in the body is important; however, since we do
not account for the blood vessel location, this important issue is beyond the scope of our model. Our
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aim is to keep the model simple but insightful. Furthermore, we observe the time that the first tumor
cell exits the TME under various environmental conditions. This first cell exit time measures how long
a tumor takes to spread to the surrounding tissues and other organs, and this information can help in
the development of successful treatment strategies, as cancers are life-threatening when they invade or
metastasize.

Figure 3. Features of the agent-based model to capture each hallmark of cancer that is
described in [93].

In Section 2, we describe the agent-based model that we developed to study the tumor cell behavior
at the cellular level. Simulation results of this agent-based model are described in Section 3. Section 4
provides a discussion, and conclusions are provided in Section 5.

2. Agent-based model description

This model represents a two-dimensional tissue section that consists of healthy cells, tumor cells,
and ECM proteins. The domain is a 100 × 100 grid with two regions (inner and outer regions). The
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outer region of the domain represents the invasive margin of the tissue. We assume that the domain is
initially a healthy tissue (see Figure 4).

Figure 4. The model represents a two-dimensional domain with 100 × 100 grid positions.
At time zero, the domain is a healthy tissue that consists of healthy cells and ECM proteins.
Blue nodes and black nodes represent healthy cells and ECM proteins, respectively. The
boundary of the domain represents the surrounding membrane of the ECM. The boundary is
fully fenced (i.e., there are no gaps) at time zero.

This tissue section develops into a tumor due to a series of mutations of a healthy cell. We assume
that healthy cells are only located in the inner region and their movements are negligible as adhesion
molecules keep the healthy cells in their intended locations [37,95]. We randomly locate ECM proteins
in the domain and assume that they cannot move. Furthermore, tumor cells cannot occupy a grid
position of an ECM protein. The boundary of the domain has no gaps, is said to be fully fenced at
time zero, and represents the surrounding membrane of the tissue. The maximum population in the
environment is 10, 000, as we have a total of 10, 000 grid positions in the domain.

The input parameters and the calculated output variables for the agent-based model are listed in
Table 1.

This agent-based model observes the effect of different factors of the TME on tumor progression,
plasticity, and invasion. The output variables N(t) and A(t) (healthy and tumor cell densities, respec-
tively, at time t) measure tumor progression under different circumstances. We consider two output
variables, S̄ (t) and J̄(t), to represent the effect of the tumor microenvironmental factors on the tumor
cell plasticity. To measure the effect of different factors of the TME for tumor invasion, we use the two
output variables, E(t) and f (t) - see Table 1.
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Table 1. Input parameters and output variables.

Input parameter/Output variable Description

Healthy Cell Density (N(t)) Division of the healthy cell population at
time t by total of 10, 000 grid positions

Tumor Cell Density (A(t)) Division of the tumor cell population at
time t by total of 10, 000 grid positions

Cell Stickiness (S i) Stickiness value of cell i to stick
with neighboring cells

Change in Stickiness (µs) When a cell mutates, the stickiness of that cell
is a uniformly distributed value between S m − µs and S m + µs,

where S m is the stickiness of the mother cell

Jump Radius (Ji) Measures cell movement and represents the
number of steps a cell can move at a time

Change in Jump Radius (µ j) When a cell mutates, the Jump Radius of that cell
is a uniformly distributed value between Jm − µ j and Jm + µ j,

where Jm is the jump radius of the mother cell

Maximum Divisions of a Healthy Cell (K) Healthy cells can divide only K number of times

Number of Divided Times of a Cell (Di(t)) The total number of divisions of cell i until
time t. For a healthy cell, Di(t) ≤ K

Cell Age (ai(t)) The age of cell i at time t

Division age (L) A cell can divide when the age of that cell is
greater than the division age

Competition Rate (Ci) If i is a healthy cell, then Ci = n/K, where n is the number of
remaining cell divisions. If i is a tumor cell, then choose a random
number Ci ∈ [0.5, 1], as they are super-competitive.

Probability of Dividing (Pd) If the age of a cell reaches the cell division age, then Pd

determines whether that cell divides or not at that time

Probability of Death (Pa) The chance of a cell death

Probability of Cell Movement (Pm(i, t)) If the stickiness of a cell i is S and
the number of cells and obstacles in the
neighborhood is n, then Pm(i, t) = (1 − S )n

Obstacle Density (R) Division of the total number of ECM proteins by the
total of 10, 000 grid positions

ECM Break Down Probability (Pb) The chance that a tumor cell breaks down
a fence component

Number of Exit Cells (E(t)) Total number of tumor cells that escaped the domain
from time 0 to t

Fence Density ( f (t)) Division of the number of ECM components at time t by
the number of ECM components at time 0

Average Stickiness S̄ (t) The average of the stickiness of the tumor cells
at time t

Average Jump Radius J̄(t) The average of the jump radius of the tumor cells
at time t
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Figure 5. Flow of control in the agent-based model.

Figure 5 represents the flow diagram of the model and we describe the set of rules associated with
the agent-based model. We select a tumor cell in the domain and check the number of divisions of the
cell. When a tumor cell has completed the maximum number of cell divisions of a healthy cell (K), it
has a chance of dying. If a cell dies, then the grid position that the cell occupied becomes empty. If
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the cell’s age is greater than the division age, then that cell has a chance to proliferate. When a cell
proliferates, the daughter cell is placed in the first empty grid position in a clockwise direction starting
from the North (using a Moore neighborhood). If all neighboring grid positions are occupied, then the
mother cell competes with the weakest cell in the neighborhood determined by the competition rate,
and that position is used by the daughter cell (see Figure 6). At any age, a cell can move to a new
position depending on the number of cells and/or obstacles in the neighborhood and the cell stickiness.
We assume that a tumor cell can move North, East, South or West (movement is restrained to a Von
Neumann neighborhood). A detailed description of the model parameters, output variables, and rules
is given in the Appendix.

The results of this agent-based model provide a good understanding of the individual tumor cell
behavior under different conditions of the TME. Through this study, we can attempt to identify the
most influential tumor microenvironmental factors that affect the tumor progression, cell plasticity,
and invasion.

Figure 6. Tumor cell division. If there are empty grid positions in the neighborhood, then
the daughter cell moves to the first empty position from a clockwise direction. If the neigh-
borhood is filled with cells and obstacles, then the mother cell competes with the surrounding
cells to obtain a position for the daughter cell. As a result, a weaker cell in the neighborhood
dies, and the daughter cell moves to that position.

3. Simulation results of the agent-based model

To study tumor cell behavior in the TME, we perform numerical simulations of the agent-based
model using the MATLAB programming language. The relevant program codes can be accessed
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through https://github.com/Hasi1988/abm for TME. We observe the changes of the cell densities, av-
erage cell stickiness, average jump radii and fence densities with time. Furthermore, we observe the
total number of tumor cells that exit from the domain. In this study, we also observe the effect of
three factors on the TME: the initial healthy cell densities (N(0)), ECM protein densities (R) and ECM
breakdown probabilities (Pb). We explore tumor progression, tumor plasticity, and tumor invasion
under changes in each of these three factors. For each scenario, we perform 500 simulations. To inves-
tigate the effect of a factor, we change just that factor and keep the other parameter values, as in Table
2. For example, to investigate the effect of N(0), we only consider N(0) = 0.243, 0.324, and 0.405,
while keeping R = 0.1 and Pb = 0.5. Other scenarios consider values of 0.25 and 0.75 as the ECM
breakdown probabilities, and values of 0.05 and 0.2 as the obstacle densities.

Table 2. Parameter values of the agent-based model.

Parameter Value
Initial healthy cell density (N(0)) 0.324
ECM breakdown probability (Pb) 0.5
Obstacle/Protein density (R) 0.1
Healthy cell stickiness (S i) 0.9
Change in stickiness (µs) 0.1
Healthy cell jump radius (Ji) 1
Change in jump radius (µ j) 1
Maximum number of cell divisions of healthy cells (K) 10
Division age (L) 20
Probability of Dividing (Pd) 0.6
Probability of Death (Pa) 0.001

We assume that the healthy cells are only located in the inner region that consists of 81 × 81 grid
positions. We consider that the degradation of the ECM by a tumor cell can be equally likely to either
occur or not to occur by assuming the ECM breakdown probability as 0.5. Since the protein density
differs from tissue to tissue [96], our model assumes that the ECM protein density is 0.1. Due to
adhesion molecules, the healthy cells have a high stickiness and a low motility [37]. Hence, we assume
that the cell stickiness and jump radius of healthy cells are 0.9 and 1, respectively. In 1965, Hayflick
suggested that healthy cells can only divide a limited number of times by observing the division times
of human diploid fibroblast cells [97]. However, damage signals such as DNA-damaging agents and
oxidative stress can affect the early cessation of the division of cells [98]. Since the TME is a hypoxic
environment, we assume that a healthy cell can divide a maximum of 10 times. Our model does not
account for the formation of blood vessels, so whether angiogenesis has occurred is not relevant for our
model. We wish to keep our model as simple as possible. We consider a dimensionless time from 0 to
24 by dividing this into 1800 sub-intervals. Hence, the time step length is 0.0133(24/1800). We assume
that the age of each cell increases by 1 at each time step and the division age of a cell is 20. Since
tumor cells can proliferate uncontrollably, we assume a high probability rate (0.6) for cell division.
Furthermore, we assume a significantly small probability of death (0.001) due to the resistance to
death of tumor cells [93]. Since the complexity of the TME and the condition of the environment can
differ from patient to patient, the parameter values can vary according to the condition of the TME.
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Figure 7 represents the progression of a tumor in healthy tissue. With uncontrolled growth, the
tumor cell density increases by creating a crowded environment. Due to the lack of nutrients and
space, tumor cells compete with the surrounding cells. Since the energy of healthy cells decreases
with the number of divisions [99, 100], most healthy cells are not strong enough to compete with
super-competitive tumor cells. Hence, many healthy cells in the environment die and provide space
for tumor cells. Moreover, tumor cells regulate the escape mechanisms to move from this crowded,
stressful environment. By secreting MMPs, aggressive tumor cells degrade the ECM components in
the boundary. At the next step, malignant tumor cells escape through the boundary and invade the
surrounding tissues.

Subsections 3.1–3.3 describe the scenario outcomes when varying the initial healthy cell density,
the ECM protein density, and the ECM breakdown probability for the tumor progression, plasticity,
and invasion, respectively.

Figure 7. Tumor progression: Blue and red nodes represent healthy and tumor cells, re-
spectively. Black nodes represent ECM proteins (obstacles) in the domain. Starting with
one tumor cell, the tumor cell population increases, and the healthy cell population decreases
with time.

3.1. Tumor progression under the effect of N(0), R and Pb

When a tumor develops, the healthy cell density of the environment decreases and the tumor cell
density increases. We observe the healthy and tumor cell densities for each scenario to investigate the
tumor progression.

We can observe from the scenarios exploring the tumor progression (see Figures 8, 9 and Table 3)
through the following aspects:

• A larger number of initial healthy cells slightly slows the increase in tumor cell density and results
in a slightly lower tumor cell density at equilibrium.
• The density of the healthy cells at equilibrium is reduced (due to tumor growth), but is closely

related to the initial number of healthy cells.
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• The density of obstacles (or proteins) in the ECM impacts the growth of the tumor. At equilibrium,
the tumor cell density is significantly less for an obstacle density of 0.2 compared to a density of
0.05.
• Accordingly, more healthy cells survive at equilibrium if the ECM has a higher density of obsta-

cles.
• It takes slightly longer for the tumor cell density to reach equilibrium for a larger initial healthy

cell density or for a larger density of obstacles.
• Tumor cells compete for space and nutrients, and kill weak healthy cells. An environment with

a low density of obstacles and a lower healthy cell density is advantageous for tumor cells. Con-
versely, the tumor progression is impacted in a crowded environment.
• Simulation results showed that the ECM breakdown probability does not significantly affect the

tumor progression. The graphs were omitted as they largely overlapped, thus indicating min-
imal variation and a negligible impact on the tumor progression. This suggests that the ECM
breakdown probability does not play a critical role in the progression of the tumor.
• Low variations at early times and after equilibrium show the homogeneous state of the environ-

ment. The high variation in the cell densities during the middle period suggests that the system is
undergoing significant changes.
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Figure 8. Average tumor cell density for various initial healthy cell densities (a) and obstacle
densities (b) (top). Average healthy cell density for various initial healthy cell densities (c)
and obstacle densities (d) (bottom).
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Figure 9. Error bars of tumor cell densities with N(0) = 0.324, Pb = 0.5 and different
R: (a) R = 0.05, (b) R = 0.1, and (c) R = 0.2. Error bars of healthy cell densities with
N(0) = 0.324, Pb = 0.5 and different R: (d) R = 0.05, (e) R = 0.1, and (f) R = 0.2.

Table 3. Equilibrium values of tumor cell densities and healthy cell densities under various
conditions of the TME. N(0),R, and Pb represent the initial healthy cell density, the obstacle
density, and the ECM breakdown probability, respectively.

Parameter values Equilibrium of Equilibrium of
healthy cell density tumor cell density

N(0) = 0.243,R = 0.1, Pb = 0.5 0.0435 0.8499
N(0) = 0.324,R = 0.1, Pb = 0.5 0.0537 0.8444
N(0) = 0.405,R = 0.1, Pb = 0.5 0.0648 0.8318
N(0) = 0.324,R = 0.1, Pb = 0.25 0.0547 0.8415
N(0) = 0.324,R = 0.1, Pb = 0.75 0.0547 0.8414
N(0) = 0.324,R = 0.05, Pb = 0.5 0.0442 0.8995
N(0) = 0.324,R = 0.2, Pb = 0.5 0.0772 0.7227

3.2. Tumor cell plasticity under the effect of N(0), R and Pb

We investigate the ability of tumor cells to change their phenotypes according to their environment.
In particular, we observe the change in the average cell stickiness and the average jump radius of the
tumor cells. In these simulations, the initial stickiness value for a healthy cell is 0.9. The stickiness
of a tumor cell differs depending on the change in stickiness and the stickiness of the mother cell -
see Table 1. We neglect the movements of the healthy cells, as they have a high stickiness and a low
motility. The jump radius of a tumor cell changes according to the jump radius of the mother cell and
the change in jump radius - again see Table 1. Figure 10 and Table 4 show the average stickiness of
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tumor cells. From Tables 3 and 4 and Figures 9 and 10, we can make the following comments:
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Figure 10. Average stickiness of tumor cells for different initial healthy cell densities (a)
and obstacle densities (b) (top). Average jump radius of the tumor cells for different initial
healthy cell densities (c) and obstacle densities (d) (bottom).

• The average cell stickiness of the tumor cells reduces over time and is lower for increasing initial
healthy cell densities. This stickiness value reduces to a lower value for higher values of obstacle
densities.
• If the environment is crowded, then the tumor cells will lose their stickiness; hence, they will not

be as likely to collectively move in a group, and this slows down the tumor progression.
• The average jump radius of the tumor cells increases more rapidly for lower initial healthy cell

densities, although it approaches a similar equilibrium value regardless of N(0).
• The average jump radius of the tumor cells increases more rapidly and approaches a higher equi-

librium value when the obstacle density is lower.
• Tumor cells regulate the cell plasticity mechanisms according to the various conditions of the

TME. In a crowded environment, the tumor cells can reduce their stickiness and increase their
jump radius, which affects their ability to move. Hence, the tumor cells promote cell plasticity.
• The initial healthy cell density and the ECM protein density influence the tumor cell plasticity

regulations. The results suggest that if there are many environmental barriers, then the tumor
cells try to migrate as individual cells by reducing their stickiness at a high rate. Otherwise, they
may escape the environment as a collection of cells. Hence, the invasive pattern of the cells may
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differ according to the tumor microenvironmental conditions.
• The tumor cells have high motility rates under low initial healthy cell densities and ECM protein

densities. Furthermore, they may try to move as a collection of cells under those conditions.
Hence, the high initial healthy cell densities and ECM protein densities in the TME slow down
the motility rates of the tumor cells.
• The simulation results showed that the ECM breakdown probability did not significantly affect the

tumor cell plasticity. The graphs were omitted as they are similar to results already presented. This
indicates a minimal variation and a negligible impact on the tumor cell plasticity. This suggests
that the ECM breakdown probability does not play a critical role in the tumor cell plasticity.

Table 4. Equilibrium values of average cell stickiness and jump radius under various con-
ditions of the TME. N(0),R, and Pb represent the initial healthy cell density, the obstacle
density, and the ECM breakdown probability, respectively.

Parameter Values Equilibrium of Equilibrium of
average cell stickiness average jump radius

N(0) = 0.243,R = 0.1, Pb = 0.5 0.6635 8.153
N(0) = 0.324,R = 0.1, Pb = 0.5 0.6543 8.189
N(0) = 0.405,R = 0.1, Pb = 0.5 0.6407 8.196
N(0) = 0.324,R = 0.1, Pb = 0.25 0.654 8.162
N(0) = 0.324,R = 0.1, Pb = 0.75 0.6541 8.158
N(0) = 0.324,R = 0.05, Pb = 0.5 0.6946 8.266
N(0) = 0.324,R = 0.2, Pb = 0.5 0.6099 7.833

3.3. Tumor cell invasion under the effect of N(0), R and Pb

We investigate the effects of the tumor microenvironmental factors that lead to an increased likeli-
hood of tumor invasion. We measure this by determining the number of tumor cells that exit the tumor
microenvironment, as well as the degradation of the fence density that provides greater chances of
tumor invasion. See Figure 11 and average first cell exit times given in Table 5. We note the following:

• More tumor cells exit the TME when there is a reduced initial healthy cell density, as these
conditions lead to faster tumor progression.
• More tumor cells exit the TME when the probability of a breakdown in the fence density of the

ECM (Pb) increases.
• The density of the ECM proteins (R) impacts the tumor cell exit. More tumor cells exit the TME

for an obstacle rate of 0.05 compared to a rate of 0.2.
• Accordingly, a lesser number of tumor cells exit for increased initial healthy cell densities, in-

creased ECM proteins, and low ECM breakdown probabilities.
• A reduction of the fence density is slow for high initial healthy cell densities, low ECM breakdown

probabilities, and high ECM protein densities.
• As the stickiness of a cell reduces to a lower value for the higher values of the initial healthy

cell densities and obstacle densities (see Figure 10), many cells may individually exit the TME
through existing gaps without degrading new fence components under these conditions.
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• The first cell exit time is influenced by the density of the ECM obstacles/proteins; a lower density
leads to an earlier first exit time.
• The breakdown probability does not have much influence on the first exit time, neither does the

initial healthy cell density.
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Figure 11. Average number of exit cells for various initial healthy cell densities (a), ECM
Breakdown Probabilities (b), and obstacle densities (c) (top). Fence density for various ini-
tial healthy cell densities (d), ECM Breakdown Probabilities (e), and obstacle densities (f)
(bottom).

Table 5. Average first cell exit time and standard deviation under different representations of
the TME. Parameters N(0),R, and Pb represent initial healthy cell density, obstacle density
and ECM breakdown probability, respectively.

Parameter values Average first cell exit time Standard deviation
N(0) = 0.243,R = 0.1, Pb = 0.5 5.0262 1.2432
N(0) = 0.324,R = 0.1, Pb = 0.5 5.1932 1.291
N(0) = 0.405,R = 0.1, Pb = 0.5 5.3869 1.4773
N(0) = 0.324,R = 0.1, Pb = 0.25 5.289 1.3868
N(0) = 0.324,R = 0.1, Pb = 0.75 5.0695 1.3949
N(0) = 0.324,R = 0.05, Pb = 0.5 4.7101 1.3291
N(0) = 0.324,R = 0.2, Pb = 0.5 5.9631 1.4075

If a healthy tissue has many cells or ECM proteins, then the cell invasion speed is slow. Furthermore,
the tumor cell invasion can slow if the ECM breakdown probability of the tumor cells is low. Moreover,
the tumor cells start to exit the environment early for low initial healthy cell densities, high ECM
breakdown probabilities, and low obstacle densities. We observe that the tumor progression is high
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under these tumor microenvironmental conditions. Hence, the tumor cells try to exit early, as the
environment becomes quickly crowded under these conditions.

4. Discussion

In this paper, we explored how various components of the tumor microenvironment promote tu-
mor progression, invasion, and metastasis via a mathematical agent-based model. In this agent-based
model, we simulated cell-cell and cell-ECM interactions according to a set of biological rules, under-
pinned by the eight hallmarks of cancer suggested by Hanahan and colleagues [92–94]. This allowed
for a link between the tumor heterogeneity and the cellular response. Then, the output from the model
suggested lines of enquiry into the system dynamics, thus augmenting clinical experiments that are
often time-consuming and expensive. To get such insights into these dynamics (in time and space)
is invaluable to predict possible new treatment strategies. We re-emphasize that we did not calibrat-
ing our model against experimental results. Rather, we adopted a standard approach of using detailed
simulations to explore potential hypotheses.

Cancer is life-threatening if the tumor cells spread into the surrounding tissues and other organs. The
results suggest that the ECM protein density, the initial healthy cell density, and the ECM degradation
rate affect tumor cell invasion. Hence, by focusing on these three factors, we can explore the spread
of tumor cell invasion. For example, the tumor cell invasion spread is slow if there are many ECM
proteins and healthy cells in the domain. By using an agent-based model similar to the one described
here, biologists, clinicians, and modelers can work together to test different hypotheses that can offer
insights into the design of new therapies. In particular, this synergy between different groups allows
the researchers to eliminate scenarios that are not appropriate in designing new cancer therapies.

Our agent-based model represents a two-dimensional tissue section that consists of healthy cells,
tumor cells, and ECM proteins; the domain is a 100 × 100 grid that initially represents healthy tissue.
The simulation started with one healthy cell mutating, which allowed a tumor to grow. By setting
various parameters for the model (e.g., the density of the ECM proteins in the domain; the stickiness
of the cells that affects the tumor cell movement; and the density of the fence around the boundary
of the domain that affects the likelihood of a tumor cell exiting and spreading beyond the domain),
the simulation tracked the density of healthy cells and tumor cells over time and thus provides a link
between the parameters and tumor progression, invasion, and metastasis.

We observed that tumor progression was affected by the initial density of healthy cells in the domain
and the density of the ECM proteins. We observed tumor cell plasticity in terms of a reduction in the
tumor cell stickiness (that may be due to crowdedness of the environment) that influenced how the
tumor cells escaped the domain and spread; additionally, this is associated with the probability of the
ECM protein breakdown along the boundary of the domain.

Our model is a starting point to explore tumor growth, and a limitation is that it is only spatially
two-dimensional and is based on a regular mesh. Consequently, it only handles a limited complexity,
and there are still issues with how to associate the results from the simulations with clinical outcomes.
Furthermore, there is clearly a need to carry out a sensitivity analysis; however, due to the number
of parameters, this has not proved feasible in this present work. Additionally, it would be interesting
to compare our lattice-based approach with off-lattice models, though this is beyond the scope of this
present work.
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5. Conclusions

This paper explored the effects of the initial healthy cell density, the ECM protein density, and the
ECM breakdown probability for tumor progression, cell plasticity, and invasion using an agent-based
model. Although the model was based on a two-dimensional spatial domain, we are able to demon-
strate links between the initial healthy cell densities, the ECM protein densities, and the cell stickiness
with tumor progression, cell motility, and invasion. We can easily change the model parameters to
gain insights into the tumor cell behavior. Additionally, it is possible to modify the model to study
different treatment strategies, such as the effect of T-cells on cancer dynamics, which will be further
investigated at a later date. Incorporating T-cell effects can contribute to additional knowledge and
offer new insights into novel treatment protocols; therefore, the study in this paper can be considered
as an initial step in this direction.
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22. C. Garcı́a-Jiménez, C. R. Goding, Starvation and pseudo-starvation as drivers of cancer metastasis
through translation reprogramming, Cell Metab., 29 (2019), 254–267.

23. R. J. DeBerardinis, N. S. Chandel, Fundamentals of cancer metabolism, Sci. Adv., 2 (2016),
e1600200. https://doi.org/10.1126/sciadv.1600200

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7621–7647.

http://dx.doi.org/https://doi.org/10.2741/3613
http://dx.doi.org/https://doi.org/10.1016/j.imbio.2013.06.003
http://dx.doi.org/https://doi.org/10.1083/jcb.201102147
http://dx.doi.org/https://doi.org/10.1016/j.addr.2015.11.001
http://dx.doi.org/https://doi.org/10.1097/IJG.0000000000000108
http://dx.doi.org/https://doi.org/10.1038/s41392-021-00544-0
http://dx.doi.org/https://doi.org/10.1007/b103440
http://dx.doi.org/https://doi.org/10.1042/bse0380021
http://dx.doi.org/https://doi.org/10.1007/BF00124213
http://dx.doi.org/https://doi.org/10.1038/s41568-020-00329-7
http://dx.doi.org/https://doi.org/10.1006/jtbi.2001.2522
http://dx.doi.org/https://doi.org/10.1038/s41568-018-0030-7
http://dx.doi.org/https://doi.org/10.1038/s41568-018-0048-x
http://dx.doi.org/https://doi.org/10.1126/sciadv.1600200


7640

24. M. G. Vander Heiden, Targeting cancer metabolism: a therapeutic window opens, Nat. Rev. Drug
Discovery, 10 (2011), 671–684. https://doi.org/10.1038/nrd3504

25. B. Kalyanaraman, Teaching the basics of cancer metabolism: Developing antitumor strategies by
exploiting the differences between normal and cancer cell metabolism, Redox Biol., 12 (2017),
833–842. https://doi.org/10.1016/j.redox.2017.04.018

26. R. A. Cairns, I. S. Harris, T. W. Mak, Regulation of cancer cell metabolism, Nat. Rev. Cancer, 11
(2011), 85–95. https://doi.org/10.1038/nrc2981

27. C. A. Lyssiotis, A. C. Kimmelman, Metabolic interactions in the tumor microenvironment, Trends
Cell Biol., 27 (2017), 863–875. https://doi.org/10.1016/j.tcb.2017.06.003

28. S. Bowling, K. Lawlor, T. A. Rodrı́guez, Cell competition: the winners and losers of fitness selec-
tion, Development, 146 (2019), dev167486. https://doi.org/10.1242/dev.167486

29. A. Gutiérrez-Martı́nez, W. Q. G. Sew, M. Molano-Fernández, M. Carretero-Junquera, H. Herranz,
Mechanisms of oncogenic cell competition-paths of victory, Semin. Cancer Biol., 63 (2020), 27–
35. https://doi.org/10.1016/j.semcancer.2019.05.015

30. R. Levayer, Solid stress, competition for space and cancer: The opposing roles of mechan-
ical cell competition in tumour initiation and growth, Nat. Rev. Cancer, 63 (2020), 69–80.
https://doi.org/10.1016/j.semcancer.2019.05.004

31. E. Moreno, Is cell competition relevant to cancer?, Nat. Rev. Cancer, 8 (2008), 141–147.
https://doi.org/10.1038/nrc2252

32. M. Vishwakarma, E. Piddini, Outcompeting cancer, Nat. Rev. Cancer, 20 (2020), 187–198.
https://doi.org/10.1038/s41568-019-0231-8

33. T. M. Parker, V. Henriques, A. Beltran, H. Nakshatri, R. Gogna, Cell competition and tumor het-
erogeneity, Nat. Rev. Cancer, 63 (2020), 1–10. https://doi.org/10.1016/j.semcancer.2019.09.003

34. S. Di Giacomo, M. Sollazzo, D. De Biase, M. Ragazzi, P. Bellosta, A. Pession, et al., Human
cancer cells signal their competitive fitness through MYC activity, Sci. Rep., 7 (2017), 1–12.
https://doi.org/10.1038/s41598-017-13002-1

35. E. Madan, M. L. Peixoto, P. Dimitrion, T. D. Eubank, M. Yekelchyk, S. Talukdar, et al., Cell
competition boosts clonal evolution and hypoxic selection in cancer, Trends Cell Biol., 12 (2020),
967–978. https://doi.org/10.1016/j.tcb.2020.10.002

36. U. Cavallaro, G. Christofori, Cell adhesion in tumor invasion and metastasis: loss of the glue is not
enough, Biochim. Biophys. Acta, Rev. Cancer, 1552 (2001), 39–45. https://doi.org/10.1016/S0304-
419X(01)00038-5

37. M. Janiszewska, M. C. Primi, T. Izard, Cell adhesion in cancer: Beyond the migration of single
cells, J. Biol. Chem., 295 (2020), 2495–2505. https://doi.org/10.1074/jbc.REV119.007759

38. M. C. Moh, S. Shen, The roles of cell adhesion molecules in tumor suppression and cell migration:
a new paradox, Cell Adhes. Migr., 3 (2009), 334–336. https://doi.org/10.4161/cam.3.4.9246

39. H. Son, A. Moon, Epithelial-mesenchymal transition and cell invasion, Toxicol. Res., 26 (2010),
245–252. https://doi.org/10.5487/TR.2010.26.4.245

40. P. M. Altrock, L. L. Liu, F. Michor, The mathematics of cancer: integrating quantitative models,
Nat. Rev. Cancer, 15 (2015), 730–745. https://doi.org/10.1038/nrc4029

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7621–7647.

http://dx.doi.org/https://doi.org/10.1016/j.redox.2017.04.018
http://dx.doi.org/https://doi.org/10.1038/nrc2981
http://dx.doi.org/https://doi.org/10.1016/j.tcb.2017.06.003
http://dx.doi.org/https://doi.org/10.1242/dev.167486
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2019.05.004
http://dx.doi.org/https://doi.org/10.1038/nrc2252
http://dx.doi.org/https://doi.org/10.1038/s41568-019-0231-8
http://dx.doi.org/https://doi.org/10.1016/j.semcancer.2019.09.003
http://dx.doi.org/https://doi.org/10.1038/s41598-017-13002-1
http://dx.doi.org/https://doi.org/10.1016/j.tcb.2020.10.002
http://dx.doi.org/https://doi.org/10.1016/S0304-419X(01)00038-5
http://dx.doi.org/https://doi.org/10.1016/S0304-419X(01)00038-5
http://dx.doi.org/https://doi.org/10.1074/jbc.REV119.007759
http://dx.doi.org/https://doi.org/10.4161/cam.3.4.9246
http://dx.doi.org/https://doi.org/10.5487/TR.2010.26.4.245
http://dx.doi.org/https://doi.org/10.1038/nrc4029


7641

41. G. Jordão, J. N. Tavares, Mathematical models in cancer therapy, Biosystems, 162 (2017), 12–23.
https://doi.org/10.1016/j.biosystems.2017.08.007

42. V. Quaranta, A. M. Weaver, P. T. Cummings, A. R. Anderson, Mathematical modeling of
cancer: The future of prognosis and treatment, Clin. Chim. Acta, 357 (2005), 173–179.
https://doi.org/10.1016/j.cccn.2005.03.023

43. H. N. Weerasinghe, P. M. Burrage, K. Burrage, D. V. Nicolau Jr, Mathematical models of cancer
cell plasticity, J. Oncol., 2019 (2019), 2403483. https://doi.org/10.1155/2019/2403483

44. P. Macklin, M. E. Edgerton, Discrete cell modeling, in Multiscale Modeling of Cancer: an Inte-
grated Experimental and Mathematical Modeling Approach, Cambridge University Press, (2010),
88–122. https://doi.org/10.1017/CBO9780511781452

45. J. Metzcar, Y. Wang, R. Heiland, P. Macklin, A review of cell-based computational modeling in
cancer biology, JCO Clin. Cancer Inf., 2 (2019), 1–13. https://doi.org/10.1200/CCI.18.00069

46. Z. Wang, J. D. Butner, V. Cristini, T. S. Deisboeck, Integrated PK-PD and agent-based modeling in
oncology, J. Pharmacokinet. Pharmacodyn., 42 (2015), 179189. https://doi.org/10.1007/s10928-
015-9403-7

47. C. K. Macnamara, Biomechanical modelling of cancer: Agent-based force-based models of solid
tumours within the context of the tumour microenvironment, Comput. Syst. Oncol., 1 (2021),
e1018. https://doi.org/10.1002/cso2.1018

48. J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, et al., Nonlinear mod-
elling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23 (2009), R1–R91.
https://doi.org/10.1088/0951-7715/23/1/R01

49. R. Sachs, L. Hlatky, P. Hahnfeldt, Simple ODE models of tumor growth and anti-angiogenic or ra-
diation treatment, Math. Comput. Modell., 33 (2001), 1297–1305. https://doi.org/10.1016/S0895-
7177(00)00316-2

50. H. Enderling, A. R. Anderson, M. A. Chaplain, A. J. Munro, J. S. Vaidya, Mathematical mod-
elling of radiotherapy strategies for early breast cancer, J. Theor. Biol., 241 (2006), 158–171.
https://doi.org/10.1016/j.jtbi.2005.11.015

51. H. Enderling, M. A. Chaplain, A. R. Anderson, J. S. Vaidya, A mathematical model of breast
cancer development, local treatment and recurrence, J. Theor. Biol., 246 (2007), 245–259.

52. V. Andasari, M. A. Chaplain, Intracellular modelling of cell-matrix adhesion during cancer cell
invasion, Math. Modell. Nat. Phenom., 7 (2012), 29–48. https://doi.org/10.1051/mmnp/20127103

53. J. C. Larsen, A mathematical model of adoptive T cell therapy, JP J. Appl. Math., 15 (2017), 1–33.

54. L. Glass, Instability and mitotic patterns in tissue growth, IFAC Proc. Vol., 6 (1973), 129–131.
https://doi.org/10.1016/S1474-6670(17)67989-8

55. R. Shymko, L. Glass, Cellular and geometric control of tissue growth and mitotic instability, J.
Theor. Biol., 63 (1976), 355–374. https://doi.org/10.1016/0022-5193(76)90039-4

56. M. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: The mathe-
matical modelling of the stages of tumour development, Math. Comput. Modell., 23 (1996), 47–87.
https://doi.org/10.1016/0895-7177(96)00019-2

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7621–7647.

http://dx.doi.org/https://doi.org/10.1016/j.cccn.2005.03.023
http://dx.doi.org/https://doi.org/10.1155/2019/2403483
http://dx.doi.org/https://doi.org/10.1017/CBO9780511781452
http://dx.doi.org/https://doi.org/10.1200/CCI.18.00069
http://dx.doi.org/https://doi.org/10.1007/s10928-015-9403-7
http://dx.doi.org/https://doi.org/10.1007/s10928-015-9403-7
http://dx.doi.org/https://doi.org/10.1002/cso2.1018
http://dx.doi.org/https://doi.org/10.1088/0951-7715/23/1/R01
http://dx.doi.org/https://doi.org/10.1016/S0895-7177(00)00316-2
http://dx.doi.org/https://doi.org/10.1016/S0895-7177(00)00316-2
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2005.11.015
http://dx.doi.org/https://doi.org/10.1051/mmnp/20127103
http://dx.doi.org/https://doi.org/10.1016/0895-7177(96)00019-2


7642

57. J. A. Adam, A simplified mathematical model of tumor growth, Math. Biosci., 81 (1986), 229–244.
https://doi.org/10.1016/0025-5564(86)90119-7

58. J. A. Adam, A mathematical model of tumor growth by diffusion, Math. Biosci., 94 (1989), 155.
https://doi.org/10.1016/0895-7177(88)90533-X

59. J. A. Adam, S. Maggelakis, Mathematical models of tumor growth. iv. effects of a necrotic core,
Math. Biosci., 97 (1989), 121–136. https://doi.org/10.1016/0025-5564(89)90045-X

60. T. S. Deisboeck, Z. Wang, P. Macklin, V. Cristini, Multiscale cancer modeling, Ann. Rev. Biomed.
Eng., 13 (2011), 127–155. https://doi.org/10.1201/b10407

61. E. Gavagnin, C. A. Yates, Stochastic and deterministic modeling of cell migration, in Handbook
of Statistics, 39 (2018), 37–91. https://doi.org/10.1016/bs.host.2018.06.002

62. A. S. Qi, X. Zheng, C. Y. Du, B. S. An, A cellular automaton model of cancerous growth, J. Theor.
Biol., 161 (1993), 1–12. https://doi.org/10.1006/jtbi.1993.1035

63. J. Smolle, R. Hofmann-Wellenhof, R. Kofler, L. Cerroni, J. Haas, H. Kerl, Computer simulations
of histologic patterns in melanoma using a cellular automaton provide correlations with prognosis,
J. Invest. Dermatol., 105 (1995), 797–801. https://doi.org/10.1111/1523-1747.ep12326559

64. S. F. Junior, M. Martins, M. Vilela, A growth model for primary cancer, Physica A, 261 (1998),
569–580. https://doi.org/10.1016/S0378-4371(98)00318-5

65. H. Hatzikirou, A. Deutsch, Cellular automata as microscopic models of cell migration in heteroge-
neous environments, Curr. Topics Dev. Biol., 81 (2008), 401–434. https://doi.org/10.1016/S0070-
2153(07)81014-3

66. B. Chopard, R. Ouared, A. Deutsch, H. Hatzikirou, D. Wolf-Gladrow, Lattice-gas cellular
automaton models for biology: from fluids to cells, Acta Biotheor., 58 (2010), 329–340.
https://doi.org/10.1007/s10441-010-9118-5

67. Y. Jiang, J. Pjesivac-Grbovic, C. Cantrell, J. P. Freyer, A multiscale model for avascular tumor
growth, Biophys. J., 89 (2005), 3884–3894. https://doi.org/10.1529/biophysj.105.060640

68. A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Popławski, M. Swat, J. A. Glazier,
3D multi-cell simulation of tumor growth and angiogenesis, PloS One, 4 (2009), e7190.
https://doi.org/10.1371/journal.pone.0007190
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Appendix

A description of input parameters and calculated output variables for the agent-based model

(1) Healthy Cell Density (N(t)) - We calculate N(t) by dividing the current healthy cell population by
total of 10, 000 grid positions.

(2) Tumor Cell Density (A(t)) - We calculate A(t) by dividing the tumor cell population at time t by
the total number of grid positions 10, 000.

(3) Cell Stickiness (S i) - Cells can secrete substances that allow cells to stick with neighboring cells.
The stickiness of cell i is represented by S i ∈ [0, 1]. In cell proliferation, healthy daughter cells
take the same stickiness as their mother cell. Otherwise, the stickiness of the daughter cell differs
from the mother cell, depending on the change in stickiness. The movement of a cell depends on
the stickiness of that cell. We assume that healthy cells have a high stickiness value [37].
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(4) Change in Stickiness (µs) - When a cell mutates, the stickiness of that cell changes according to
the stickiness of its mother cell. Assume that the change in stickiness is µs and the stickiness of
the mother cell is S , then the stickiness of the daughter cell can take a uniformly distributed value
between S − µs and S + µs.

(5) Jump Radius (Ji) - The jump radius of cell i is represented by Ji. It measures cell movement and
represents the number of steps a cell can move at a time. We assume that the movement direction
of a cell should be North, South, East or West. The jump radius of a tumor cell changes according
to the jump radius of its mother cell. We assume that the jump radius of the daughter cell can
increase by one, decrease by one or take the same jump radius as the mother cell, with a minimum
value of 1.

(6) Change in Jump Radius (µ j) - When a cell mutates, the jump radius of that cell changes according
to the jump radius of its mother cell. Assume that the change in jump radius is µ j and the jump
radius of the mother cell is J,then the jump radius of the daughter cell should take a positive integer
value chosen uniformly in the range [J − µ j, J + µ j]. In this model, we assume that µ j = 1.

(7) Maximum Divisions of a Healthy Cell (K) - Healthy cells can divide only a finite number of times.
Due to genetic changes, tumor cells have the potential to reproduce unlimited times [92]. However,
they have a slight chance of dying after completing the maximum number of cell divisions.

(8) Number of Divisions of a Cell (Di(t)) - The total number of divisions of cell i until time t is
represented by Di(t). For a healthy cell, Di(t) ≤ K. Since tumor cells can proliferate uncontrollably,
divisions of a tumor cell can take any positive integer value. However, tumor cells have a slight
chance of dying when they complete K cell divisions.

(9) Cell Age (ai(t)) - The age of cell i at time t is represented by ai(t). At each time step, the age of
each cell increases by one. When a cell reaches its reproduction age, it has a chance to proliferate.
When a cell proliferates, the age of the mother cell and the daughter cell initialise to zero, and the
number of divisions of that cell (Di(t)) increases by one.

(10) Division Age (L) - A cell can divide when the age of that cell is greater than the division age. The
duration of the cell cycle differs from organism to organism and cell to cell. In this model, we
assume that the division age of a cell is 20.

(11) Competition Rate (Ci) - The competition rate of cell i is represented by Ci. Each cell has a
competitive rate that depends on the metabolism of that cell (the metabolism level of a healthy cell
decreases with each cell division) [99, 100]. If the maximum number of cell divisions of a cell is
K and the number of remaining cell divisions of that cell is n, the competitive rate of that cell is
n/K. The range of values for the competition rate of healthy cells is [0, 1]. Since tumor cells have
super-competitive phenotypes with their genetic changes, we assume that tumor cells have highly
competitive rates. Hence, we choose a random competitive rate between [0.5, 1]. If a tumor cell
does not have enough space to proliferate, that cell competes with immediate neighboring cells. If
a cell in the neighborhood has a lower competition rate than the middle cell, that cell dies, and the
daughter cell occupies that grid position.
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(12) Probability of Dividing (Pd) - If the age of a cell reaches the cell division age, the probability
of dividing determines whether that cell divides or not at that time. Since healthy cells can con-
trol their cell growth, they only proliferate when they get signals to execute. Tumor cells have
a high probability of cell division because they sustain proliferative signalling and evade growth
suppressors.

(13) Probability of Death (Pa) - When a healthy cell completes its maximum number of cell divisions,
that cell has a higher chance to die. Since tumor cells resist their death, the probability of death of
tumor cells is small. When a cell dies, the grid position of that cell becomes empty.

(14) Obstacle Density (R) - The ECM provides a physical barrier for cell movements through proteins.
In this study, we include obstacles in the domain to represent ECM proteins. If the next chosen
grid position of a cell is occupied by an obstacle, the cell stays at its current position until it gets
another chance to move. We assume that tumor cells cannot destroy obstacles. Hence obstacle
density does not change with time.

(15) Probability of Cell Movement (Pm(i, t)) - The probability of cell movement depends on the num-
ber of cells or obstacles in the Moore neighborhood (eight surrounding grid positions) and the
stickiness of the cell. The probability of movement of cell i at time t is represented by Pm(i, t).
If the stickiness of a cell is S and the number of cells and obstacles in the neighborhood is n, the
probability of movement of that cell is (1 − S )n.

(16) Fence Density ( f (t)) - The boundary of the domain has a fence that represents ECM components
of the TME. Generally, cells cannot move through the surrounding membrane [16]. Hence we
assume that initially, the domain is fully fenced. Once tumor cells reach the boundary, they attach
to the fence components and secrete proteases to break down the fence components. This process
makes gaps in the boundary, and cells can move through these gaps.

(17) ECM Break Down Probability (Pb) - When a tumor cell attaches to the ECM, some tumor cells
secrete a high level of MMPs to break down the ECM component. Therefore some tumor cells
that reach the boundary escape from the domain by making gaps in the boundary with a certain
probability Pb.

(18) Number of Exit Cells (E(t)) - After reaching the boundary, tumor cells exit the domain through
gaps in the boundary. The number of Exit Cells (E(t)) represents the total number of tumor cells
that escaped the domain from time 0 to t.

(19) Average Stickiness (S̄ (t)) - The output variable S̄ (t) calculates the average stickiness of tumor
cells at time t.

(20) Average Jump Radius (J̄(t)) - The output variable J̄(t) calculates the average of jump radii of
tumor cells at time t.

A description about the flow chart that represents in Figure 5
If the cell survives or k ≤ K, we should check the age of that cell (ai). If ai ≥ L, the division age,

generate a uniformly distributed random number r2 ∈ [0, 1]. That cell can divide if r2 ≤ Pd. In the cell
division process, the mother cell stays at the same position, and the daughter cell takes an unoccupied
neighboring grid. The daughter cell placement can take a North, North-East, East, South-East, South,
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South-West, West or North-West grid, the first empty grid position in the clockwise direction starting
from the North. If all neighboring grid positions are occupied, the mother cell competes with surround-
ing cells, and the weakest cell in the neighborhood dies, and that position is taken by the daughter cell.
Figure 6 represents possible grid positions of the daughter cell after proliferation and how the position
of the daughter cell can be chosen according to the cells or obstacles in the neighborhood.

Any alive cell can move to a new grid position depending on the number of cells and obstacles in
the neighborhood, and cell stickiness. We generate a uniformly distributed random number r3 ∈ [0, 1]
and compare it with Pm(i) of that cell that depends on the number of cells in the neighborhood and
their stickiness. If r3 ≤ Pm(i), the cell moves to a new grid position. A tumor cell can move North,
East, South or West. If r3 > Pm(i), the cell stays at the same grid position. Moreover, cell movement
distance depends on the jump radius of that cell. The randomly selected new cell position should be an
empty grid position.
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