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Abstract: A vegetation model composed of water and plants was proposed by introducing a weighted
graph Laplacian operator into the reaction-diffusion dynamics. We showed the global existence and
uniqueness of the solution via monotone iterative sequence. The parameter space of Turing patterns
for plant behavior is obtained based on the analysis of the eigenvalues of the Laplacian of weighted
graph, while the amplitude equation determining the stability of Turing patterns is obtained by weakly
nonlinear analysis. We also show that the optimal rainfall is only determined by the density of the
water. By some numerical simulations, we examine the individual effect of diffusion term on the
formation of regular Turing patterns. We show that the large diffusion induces stable Turing patterns.
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1. Introduction

The phenomenon of vegetation patterns has been found in a great many semiarid areas in recent
decades [1–4]. Klausmeier [5] has proposed a semiarid vegetation model to explain the formation of
striped vegetable patterns from the Turing instability and pointed out that the regular pattern would
be self-organized from an irregular initial state. Klausmeier also showed that the diffusion induced
by Brownian movement can act on the formation of regular patterns of plant vegetation. In addition,
some more complicated spatiotemporal patterns were founded in the semiarid vegetation systems (see
for example [6–8]). Some partial diferential equations mathematical modles were used to describe the
vegetation patterns (see for example [9–11]). The stable steady solution were studied to demonstrate
the pattern formation in [12, 13]. Some frameworks of analysise were proposed to investigate the
vegetation phenomena (see for example [14–16]). Recently, in [17, 18], semiarid vegetation models
have been characterized by fractional diffusion equations. In [19–22], the modified Klausmeier models
were investigated by hyperbolic equations.
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However, most of the research involved a reaction-diffusion system with plant seeds spreading
through a continuous space. Frequent human activities have divided the space into many fine-scale
habitats that form a network connected with spreading seeds in reality. The network can be depicted
by a weighted graph. The graph is denoted by G = (V, E), including the vertices V = {1, 2, · · · , n} and
the edges E. If the vertex y is adjacent to the vertex x, then we set y ∼ x. If every adjacent x and y is
given by a weight function ω, then we get a weighed graph. Here ω : V × V → [0,∞) is a positive
function satisfying ω(x, y) = ω(y, x) and ω(x, y) > 0 only when x ∼ y. Hence, the degree of vertex x is
Dω(x) =

∑
y∼x,y∈V ω(x, y). The weighted graph Laplacian operator is defined as follows:

∆ωu(x) =
∑

y∼x,y∈V

(u(y) − u(x))ω(x, y).

Recent research work of pattern formation for the networked dynamics in physics illustrates that
Turing patterns can occur with the large network [23]. The further recent research work exhibits that
Turing-like waves can take place in a networked one-species spatiotemporal dynamics with delay [24],
which is different from the convectional theory that Turing instability can only take place in the two-
component spatiotemporal dynamics [25, 26]. We focus on unexplored Turing patterns that occur in
the weighed networked semiarid vegetation models representing fragmented habitats.

We consider the vegetation dynamics with the following weighted network:
∂U
∂t = A − LU − RUV2 + B∆ωU, (x, t) ∈ V × (0,∞),
∂V
∂t = RJUV2 − MV + D∆ωV, (x, t) ∈ V × (0,∞),
U(x, 0) = U0(x), V(x, 0) = V0(x), x ∈ V,

where U and V represent densities of water and plants, respectively. Water is supplied at the rate of
A uniformly and loses at the rate of LU because of evaporation. Plants absorb water at the rate of
RU2V . J is the amount of plants biomass per unit of water consumed. Plants lose at the mortal rate of
MV . The diffusion of water and plants are constructed by the graph Laplacian diffusion coefficient B
and D, respectively. The original Klausmeier model [5] contains the sloped terrain, while our model,
a modified Klausmeier model, only studies flat terrain. Various techniques were proposed to show
the existence and uniqueness of solutions for graph Laplacian equations (see for example [27–30]).
In [31, 32], the Lyapunov functions were constructed to show the global stability of reaction-diffusion
systems where the space was confined in a graph. In [33–35], the method of stablity analysis were
developed to deal with the networked reaction-diffusion systems. In [36,37], the pattern formation was
investigated to describe the complex dynamical behavior of graph Laplacian equations.

For the sake of simplicity, scaling the variables u = R1/2L−1/2JU, v = R1/2L−1/2V, t̃ = Lt and then
dropping the tildes, the dimensionless, weighted networked spatiotemporal dynamics can be taken as:

∂u
∂t = a − u − uv2 + c∆ωu, , (x, t) ∈ V × (0,∞),
∂v
∂t = uv2 − bv + d∆ωv, (x, t) ∈ V × (0,∞),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ V,

(1.1)

where a = AJR1/2L−3/2, b = M/L, c = BJR1/2L−3/2 and d = DJR1/2L−3/2.
This paper is organized as follows. In Section 2, we show the global existence of solutions to the

system (1.1). In Section 3, we obtain the Turing parameter space from the analytic results of the linear
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stability of the positive equilibrium and ensure that the Turing bifurcation takes place before Hopf
bifurcation. In Section 4, an amplitude equations near the Turing instability critical point is derived by
a weakly nonlinear analysis. Further, the stability of Turing patterns are considered by analyzing the
amplitude equations. In Section 5, we establish the framework for deriving optimal control strategies
of rainfall by deriving the adjoint equations and employing optimal control theory. In Section 6, some
numerical simulations are presented to verify the theoretical analysis and explored the effects of the
graph Laplacian diffusion on Turing patterns. Finally, some discussions and conclusions are given in
Section 7.

2. Existence and uniqueness of solutions

In this section, we derive the existence and uniqueness result for the solution of system (1.1) by
constructing the monotone iterative sequence. We need to give the definition of coupled upper and
lower solutions, which was initially proposed by [38].

Definition 2.1. If ũ, û, ṽ, v̂ ∈ C[0,T ] are differentiable in (0,T ], then pair of functions ũ = (ũ, ṽ) and
û = (û, v̂) are called coupled upper and lower solutions of (1.1) if ũ ≥ û ≥ 0 and if

∂ũ
∂t − c∆ωũ ≥ a − ũ − ũv̂2, (x, t) ∈ V × (0,∞),
∂ṽ
∂t − d∆ωṽ ≥ ũṽ2 − bṽ, (x, t) ∈ V × (0,∞),
∂û
∂t − c∆ωû ≤ a − û − ûṽ2, (x, t) ∈ V × (0,∞),
∂v̂
∂t − d∆ωv̂ ≤ ûv̂2 − bv̂, (x, t) ∈ V × (0,∞),
û(x, 0) ≤ u0(x) ≤ ũ(x, 0), x ∈ V,

v̂(x, 0) ≤ v0(x) ≤ ṽ(x, 0), x ∈ V.

(2.1)

Since the reaction terms of system (1.1) are Lipschitz continuous, we denote K as the Lipschitz
constant. By setting u(0)

= ũ and u(0) = û as the initial iterations, we construct the sequences u(m) and
u(m) from the following iteration system:

∂u(m)

∂t − c∆ωu(m)
+ Ku(m)

= Ku(m−1)
+ a − u(m−1)

− u(m−1)(v(m−1))2, (x, t) ∈ V × (0,∞),
∂v(m)

∂t − d∆ωv(m)
+ Kv(m)

= Kv(m−1)
+ u(m−1)(v(m−1))2 − bv(m−1), (x, t) ∈ V × (0,∞),

∂u(m)

∂t − c∆ωu(m) + Ku(m) = Ku(m−1) + a − u(m−1) − u(m−1)(v(m−1))2, (x, t) ∈ V × (0,∞),
∂v(m)

∂t − d∆ωv(m) + Kv(m) = Kv(m−1) + u(m−1)(v(m−1))2 − bv(m−1), (x, t) ∈ V × (0,∞),
u(m)(x, 0) = u(m)(x, 0) = u0(x), x ∈ V

v(m)(x, 0) = v(m)(x, 0) = v0(x), x ∈ V.

(2.2)

Here u(m)
= (u(m), v(m)) and u(m) = (u(m), v(m)). Since system (2.2) is a scalar, ordinary differential

equation, the sequences u(m) and u(m) exist and are unique for some T . We have obtained the following
monotonic properties of these sequences.

Lemma 2.1. If u(m) and u(m) are defined by (2.2), then the following holds:

û ≤ u(m) ≤ u(m+1) ≤ u(m+1)
≤ u(m)

≤ ũ. (2.3)

Moreover, u(m) and u(m) are coupled upper and lower solutions of (1.1) for each m = 1, 2, · · · .
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Proof. Considering system (2.2) is a monotone system, we can extend the method of monotone
semiflows in [38] to our graph Laplacian equations.

Let p(1) = u(1) − u(0). Then, by (2.2), for (x, t) ∈ V × (0,T ], p(1) satisfies

∂p(1)

∂t
− c∆ωp(1) + K p(1)

= Ku(0) + a − u(0) − u(0)(v(0))2 − (
∂u(0)

∂t
− c∆ωu(0) + Ku(0))

= a − û − ûṽ2 − (
∂û
∂t
− c∆ωû)

≥ 0,

where the last inequality comes from (2.1). Meanwhile, p(1)(x, 0) = 0 for x ∈ V . Using the maximum
principle (Lemma 2.1 in [39]), we have p(1)(x, t) ≥ 0 for (x, t) ∈ V × [0,T ]. Therefore, u(0)(x, t) ≤
u(1)(x, t) for (x, t) ∈ V × [0,T ].

Let q(1) = v(1) − v(0). Then, by (2.2), for (x, t) ∈ V × (0,T ], q(1) satisfies

∂q(1)

∂t
− d∆ωq(1) + Kq(1)

= Kv(0) + u(0)(v(0))2 − bv(0) − (
∂v(0)

∂t
− d∆ωv(0) + Kv(0))

= ûv̂2 − bv̂ − (
∂v̂
∂t
− d∆ωv̂)

≥ 0,

where the last inequality comes from (2.1). Meanwhile q(1)(x, 0) = 0 for x ∈ V . Using the maximum
principle (Lemma 2.1 in [39]), we have q(1)(x, t) ≥ 0 for (x, t) ∈ V × [0,T ]. Therefore, v(0)(x, t) ≤
v(1)(x, t) for (x, t) ∈ V × [0,T ].

Thus, we have

u(1)(x, t) ≥ u(0)(x, t), for (x, t) ∈ V × [0,T ]. (2.4)

By a similar argument as above, we also have

u(1)(x, t) ≤ u(0)(x, t), for (x, t) ∈ V × [0,T ]. (2.5)

Now, we set ϕ(1) = u(1)
− u(1). By (2.2), it follows that for (x, t) ∈ V × (0,T ],

∂ϕ(1)

∂t
− c∆ωϕ(1) + Kϕ(1)

= Ku(0)
+ a − u(0)

− u(0)(v(0))2 − (Ku(0) + a − u(0) − u(0)(v(0))2)
≥ Ku(0)

+ a − u(0)
− u(0)(v(0))2 − (Ku(0) + a − u(0) − u(0)(v(0))2),

where the last inequality comes from 0 ≤ v(0)(x, t) ≤ v(0)(x, t). Moreover, K is the Lipschitz constant
of (1.1). Hence, we have

∂ϕ(1)

∂t
− c∆ωϕ(1) + Kϕ(1) ≥ 0.
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The initial condition is ϕ(1)(x, 0) = 0 for x ∈ V . Applying the maximum principle (Lemma 2.1
in [39]) yields that u(1)

≥ u(1). By a similar argument for v, we have v(1)
≥ v(1). Therefore,

u(1)(x, t) ≤ u(1)(x, t), for (x, t) ∈ V × [0,T ]. (2.6)

Combining (2.4)–(2.6) yields that

u(0) ≤ u(1) ≤ u(1)
≤ u(0)

. (2.7)

Then, we show that u(1) and u(1) are coupled upper and lower solutions of (1.1). It remains to show
that u(1) and u(1) satisfy (2.1). By (2.2) and (2.7), for (x, t) ∈ V × (0,T ], we have

∂u(1)

∂t
− c∆ωu(1)

+ Ku(1)

= Ku(0)
+ a − u(0)

− u(0)(v(0))2

≥ Ku(0)
+ a − u(0)

− u(0)(v(1))2

≥ Ku(1)
+ a − u(1)

− u(1)(v(1))2,

where the last inequality holds because K is defined in (1.1). In a similar argument, we obtain that u(1)

and u(1) are coupled upper and lower solutions of (1.1).
By an induction method, we extend the above result to some arbitrary m. We choose ũ = u(1) and

û = u(1). After the above process, we have

u(1) ≤ u(2) ≤ u(2)
≤ u(1)

.

Thus, we can obtian (2.3).

Theorem 2.1. If ũ and û are a pair of coupled upper and lower solutions of system (1.1), then there
exists u∗ in < û, ũ > the unique solution of system (1.1) for t ∈ [0,T ].

Proof. In terms of Lemma 2.1, the sequences u(m) and u(m) are convergent for t ∈ [0,T ]. We set

lim
m→∞

u(m)
= u, lim

m→∞
u(m) = u.

We directly solve the solution of system (2.2) as follows:

u(m)(x, t) = u0(x) +
∫ t

0
(c∆ωu(m)

− Ku(m)
+ Ku(m−1)

+a − u(m−1)
− u(m−1)(v(m−1))2)ds,

u(m)(x, t) = u0(x) +
∫ t

0
(c∆ωu(m) − Ku(m) + Ku(m−1)

+a − u(m−1) − u(m−1)(v(m−1))2)ds.

Since u(m) and u(m) are bounded in < û, ũ >, by the dominated convergence theorem, it follows that
u(x, t) and u(x, t) satisfy

u(x, t) = u0(x) +
∫ t

0
(c∆ωu + a − u − uv2)ds,
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u(x, t) = u0(x) +
∫ t

0
(c∆ωu + a − u − uv2)ds.

Since K is the Lipschitz constant, we obtain

u − u ≤
∫ t

0
(c∆ω(u − u) + K(u − u) + K(v − v))ds.

By (2.2), it follows that

v(m)(x, t) = v0(x) +
∫ t

0
(d∆ωv(m)

− Kv(m)
+ Kv(m−1)

+u(m−1)(v(m−1))2 − bv(m−1))ds,

v(m)(x, t) = v0(x) +
∫ t

0
(d∆ωv(m) − Kv(m) + Kv(m−1)

+u(m−1)(v(m−1))2 − bv(m−1))ds.

Since v(m) are bounded in (v̂, ṽ) for (x, t) ∈ V × [0,T ], applying the dominated convergence theorem
yields that

v(x, t) = v0(x) +
∫ t

0
(d∆ωv + uv2

− bv)ds,

v(x, t) = v0(x) +
∫ t

0
(d∆ωv + uv2 − bv)ds.

In term of the definition of K, we have

v − v ≤
∫ t

0
(d∆ω(v − v) + K(u − u) + K(v − v))ds.

We now estimate the boundedness ofthe above inequality. We have

∆ω(u − u) ≤ 2n max
x∈V

Dω(x)||u − u||∞,

where n is the number of the vertices of graph. Thus, we have

||u − u||∞ ≤ tC1(||u − u||∞ + ||v − v||∞),
||v − v||∞ ≤ tC2(||u − u||∞ + ||v − v||∞), (2.8)

where C1 and C2 only depends on K, c, n, and maxx∈V Dω(x).
Thus, there exists a constant T0 := 1/2(C1 + C2) such that ||u − u||∞ = 0 and ||v − v||∞ = 0, that is

u ≡ u and v ≡ v hold for t ∈ (0,T0]. Since Ci does not depend on the initial value, we can extend T0 to
the time T . By setting u = u∗ and v = v∗, we obtainu∗(x, t) = u0(x) +

∫ t

0
(c∆ωu∗ + a − u∗ − u∗(v∗)2)ds, (x, t) ∈ V × [0,T ],

v∗(x, t) = v0(x) +
∫ t

0
(d∆ωv∗ + u∗(v∗)2 − bv∗)ds, (x, t) ∈ V × [0,T ].

Hence, (u∗, v∗) is the unique solution of system (1.1) for t ∈ [0,T ].
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Theorem 2.2. The solution of system (1.1) exists and is unique for all t ∈ [0,∞).

Proof. In view of Theorem 2.1, system (1.1) has an unique solution u∗ for t ∈ [0,T ]. In order to show
that T = ∞, we need to show a priori upped bound of the solution by the approach of upper and lower
solutions. We set (û, v̂) = (0, 0) and (ũ, ṽ). Thus,

ũ = max{||u0(x)||∞, a}, ṽ = max{||v0(x)||∞,
b
ũ
}.

Since they satisfy 
a − ũ − ũv̂2 ≤ 0,
a − û − ûṽ2 ≥ 0,
ũṽ2 − b≤̃0,
ûv̂2 − bv̂ ≥ 0,

(ũ, ṽ) and (û, v̂) are a pair of upper and lower solutions of system (1.1). By Theorem 2.1, the solution
of system (1.1) is the uniformly upper bounded. Hence, T = ∞.

3. Stability analysis

This section is devoted to obtaining the existence of the Turing bifurcation around the uniform
equilibrium of system (1.1). System (1.1) has three equilibria: E0, E1 and E2. Here E0 = (a, 0),
E1 = ( a+

√
a2−4b2

2 , 2b
a+
√

a2−4b2
), and E2 = ( a−

√
a2−4b2

2 , 2b
a−
√

a2−4b2
). Considering the biological significance of

the system (1.1), we only focus on the case of the positive equilibrium existing. Thus, the case a > 2b
always holds. By performing linear stability analysis, the second positive equilibrium E1 is an unstable
saddle. Therefore, we only consider the case of the third positive equilibrium E2 ≡ (us, vs) existing. In
what follows, we give the space decomposition of [L2(V)]2 with respect to graph Laplace.

Lemma 3.1. The eigenvalue problem −∆ωϕ(x) = λϕ(x), x ∈ V,∫
V
ϕ2(x)dx = 1,

(3.1)

for ∫
V
ϕ2(x)dx ≡

∑
x∈V

ϕ2(x),

admits eigenvalues

{λi}
n
i=1 : 0 = λ1 < λ2 ≤ · · · ≤ λn,

where the associated eigenfunctions are {ϕi}
n
i=1. Moreover, [L2(V)]2 space decomposition

[L2(V)]2 =

n⊕
i=1

Ei (3.2)

holds. Here, Ei := {c · ϕi : c ∈ R2}.
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Proof. Let λ and ϕ(x) be a solution of (3.1). By multiplying ϕ(x) and integrating it over V , we have

λ

∫
x∈V
ϕ2(x)dx = −

∫
x∈V
ϕ(x)∆ω(x)dx

=
∑
x,y∈V

(ϕ(y) − ϕ(x))2ω(x, y)dx.

We define a bilinear functional

F(u) =
∑
x,y∈V

(u(y) − u(x))2ω(x, y), (3.3)

the domain D(F) of F is D(F) := {u : u ∈ L2(V), ||u||L2(V) = 1}.
Step 1: Determine λ1. In light of the definition of F in (3.3) and (1.1), F is continuous in D(F) and

bounded from below, that is, there exists ϕ1 ∈ D(F) such that

λ1 := F(ϕ1) = inf
u∈D(F)

F(u). (3.4)

Here, λ1 and ϕ1 are a solution of the eigenvalue problem (3.1). By substituting λ1 = 0 and ϕ1(x) = 1
into (3.1), it easy to see that λ1 = 0 is the first eigenvalue. Moreover, λ1 is simple.

Step 2: Determine λ2. In view of the continuous property of F, the second minimization problem
admits a solution, that is, ϕ2(x) ∈ L2(V) with ||ϕ2||L2(V) = 1 and ϕ2 ⊥ ϕ1 such that

λ2 := F(ϕ2) = inf
u∈L2(V)

{F(u) : ||u||L2(V) = 1, u ⊥ ϕ1}, (3.5)

where u ⊥ ϕ1 means that u and ϕ1 are orthogonal, that is,
∫

V
uϕ1dx = 0. By the definition of (3.5), we

have λ2 > λ1.
By performing the above steps n times, we can construct a sequence {λk}

n
k=1 whose associated

eigenfunction is {ϕk}
n
k=1. Owing to the finite nature of V , we find that n is finite.

Step 3: [L2(V)]2 space decomposition. We denote Ei as Ei := {c · ϕi : c ∈ R2}. Owing to the
orthogonality of F(ϕi) for each i = 1, 2, · · · , n, we obtain [L2(V)]2 =

⊕n
i=1 Ei.

Theorem 3.1. If

b < min{a/2, 1 + v2
s} (3.6)

holds, and (us, vs) is locally asymptotically stable.

Proof. The linearization of system (1.1) at the equilibrium (us, vs) is

∂U
∂t
= (J + D∆ω)U, U =

(
u − us

v − vs

)
(3.7)

with

J =
(
−1 − v2

s −2usvs

v2
s 2usvs − b

)
, D =

(
c 0
0 d

)
.
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In view of Lemma 3.1, the eigenvalue of (J+D∆ω) is equilivalent to the matrix (J− λiD). Then, we
can write the solution of (3.7) as follows:

U =
n∑

i=1

(
c1i

c2i

)
eσtϕi, (i = 1, 2, · · · , n), (3.8)

Substituting (3.8) into (3.7), we obtain

σeσtϕi

(
c1i

c2i

)
= Jeσtϕi

(
c1i

c2i

)
+ Deσtλiϕi

(
c1i

c2i

)
.

Since ϕi and eσt are nonzero vectors, we can obtain

(σI − λiD − J)
(

c1i

c2i

)
= 0. (3.9)

Hence, σ is sastified

det(σI − λiD − J) = 0. (3.10)

This leads to the characteristic polynomials of (1.1)

σ2 + giσ + hi = 0,

where gi = 1 + b + v2
s − 2usvs − cλi − dλi and hi = (1 + v2

s − cλi)(b − 2usvs − dλi) + 2usv3
s .

In view of (3.6), we obtain that gi > 0 and hi > 0. Hence, σ < 0. We conclude that (us, vs) is locally
asymptotically stable.

Theorem 3.2. System (1.1) presents a Turing bifurcation at b = 2usvs + dλi −
2usv3

s
1+v2

s−cλi
.

Proof. According to Theorem 3.1, the characteristic polynomial of (1.1) is

σ2 + giσ + hi = 0,

where gi = 1 + b + v2
s − 2usvs − cλi − dλi and hi = (1 + v2

s − cλi)(b − 2usvs − dλi) + 2usv3
s .

Turing bifurcation point refers to gi > 0 and hi = 0. Thus, the Turing bifurcation critical value bc is

bc = 2usvs + dλi −
2usv3

s

1 + v2
s − cλi

. (3.11)

Then, system (1.1) has a Turing bifurcation at b = 2usvs + dλi −
2usv3

s
1+v2

s−cλi
.

Remark 3.1. Although there were many standard techniques for Turing bifurcation of
reaction-diffusion equations in the past, our method is aimed at network diffusion equations, which is
a major advancement in bifurcation dynamics in network equations.
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4. Weakly nonlinear analysis

In this section, we investigate the bifurcation behavior in the area of the Turing bifurcation point bc

by using a weakly nonlinear analysis of system (1.1).

Theorem 4.1. If (3.6) and Γ+ 4vsρ2 + 2usρ
2
2 > 0 hold, the Turing bifurcation of system (1.1) is stable.

Proof. By transforming (us, vs) into (0, 0), we first rewrite the system (1.1) into the following form:

∂U
∂t
= (J + D∆ω)U + R(U), (4.1)

where

R(U) =
(
−2vsuv − usv2 − uv2

2vsuv + usv2 + uv2

)
.

We introduce the parameter ε satisfying ε2 = b−bc
bc

by the method of perturbation technique. Let
T = ε2t be the slow time of the Turing pattern bifurcation and expand U with respect to the parameter
ε as follows: (

u
v

)
= ε

(
u1

v1

)
+ ε2

(
u2

v2

)
+ ε3

(
u3

v3

)
+ · · · . (4.2)

Therefore, J is

J = Jc − (b − bc)M, (4.3)

where

Jc =

(
−1 − v2

s −2usvs

v2
s 2usvs − bc

)
, M =

(
0 0
0 1

)
.

Expanding (4.1) with respect to different orders of ε, we can get three equations at orders ε j( j =
1, 2, 3):

O(ε) : (Jc + D∆ω)
(

u1

v1

)
= 0,

O(ε2) : (Jc + D∆ω)
(

u2

v2

)
= R1,

O(ε3) : (Jc + D∆ω)
(

u3

v3

)
=
∂

∂T

(
u1

v1

)
+ R2,

(4.4)

where

R1 =

(
2vsu1v1 + usv2

1
−2vsu1v1 − usv2

1

)
,

R2 =

(
2vsu1v2 + 2vsu2v1 + 2usv1v2 + u1v2

1
−2vsu1v2 − 2vsu2v1 − 2usv1v2 − u1v2

1 + bcv1

)
.
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Since (u1, v1)T is the linear combination of the eigenvector of system (3.9) associated σ = 0. Thus,
the solution at O(ε) is (u1, v1)T = ρA(T )ϕi, and ρ = (ρ1, ρ2)T = (1,−1+v2

s−cλi

2usvs
)T . Here, ϕi is the

eigenvector corresponding to λi and ϕi is the spatial wave function of Turing pattern. A(T ) is the
amplitude of the solution determined by the higher order perturbation term of ε and is still unknown.

Next, we have the equation associated O(ε2)

(Jc + D∆ω)
(

u2

v2

)
= A2ϕ2

i (2vsρ2 + usρ
2
2)

(
1
−1

)
.

As a result, we can obtain that(
u2

v2

)
= A2

(
ρ1

ρ2

)
+ A2ϕ2

i (2vsρ2 + usρ
2
2)

(
ρ3

ρ4

)
,

where ρ3 =
bc−λid
Θ

and ρ4 =
λic−1
Θ

, Θ = (1 + v2
s − λic)(bc − 2usvs − λid) + 2usv3

s .
Further, we consider O(ε3). The equation associated O(ε3) is written as follows:

(Jc + D∆ω)
(

u3

v3

)
=

dA
dT

(
ρ1

ρ2

)
ϕi +

(
(4vsρ2 + 2usρ

2
2)A3

bcA − (4vsρ2 + 2usρ
2
2)A3

)
ϕi + Γ

(
1
−1

)
A3ϕ3

i , (4.5)

where Γ = ρ2
2 + 2(2vsρ2 + usρ

2
2)(usρ2ρ4 + vsρ2ρ3 + vsρ4).

According to Fredholm solubility condition, (Jc+D∆ω) has the adjoint operator L+c , and the operator
L+c has the nontrivial kernel (1, (v2

s + 1 − cλi)/v2
s)

Tϕi. Multiplying (4.5) by (1, (v2
s + 1 − cλi)/v2

s)
Tϕi and

integrateing it on V , we can induce Turing bifurcation’s amplitude equation

dA
dT
= σA − LA3, (4.6)

where σ = −bcA(v2
s+1−cλi)
v2

s
, and L = 1−cλi

v2
s

(Γ + 4vsρ2 + 2usρ
2
2).

Therefore, the Turing bifurcation is stable if

Γ + 4vsρ2 + 2usρ
2
2 > 0 (4.7)

holds, which is called supercritical bifurcation.

5. The rainfall effect of system (1.1)

This section discusses the effect of rainfall on the networked system (1.1). We will study how
rainfall determine the dynamics of the networked structure. Hence, we involve the decreasing rainfall
due to climate change in system (1.1). We use the term W(t) to represent the probablity of decrease in
rainfall. When including the probablity of decreasing in rainfall W(t), the vegetation system takes the
following form: 

∂u
∂t = a − u − uv2 −W(t)u + c∆ωu, , (x, t) ∈ V × (0,∞),
∂v
∂t = uv2 − bv + d∆ωv, (x, t) ∈ V × (0,∞),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ V,

(5.1)
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thus, the objective functional is written as

J(W) =
∫ T

0

∫
V

(
Au(x, t) +W2(t)

)
dxdt, (5.2)

over the control set:

V = {W : [0,∞)→ R+, 0 ≤ W(t) ≤ 1, W ∈ C1(0,T )}. (5.3)

Here, we define the positive constant A to assign weight to the probablity of rainfall in the objective
function. The optimal rainfall control problem can be expressed as follows:

Find W∗ ∈ V such that

J(W∗) = inf
W∈V

J(W)

subject to system (5.1).
For the above optimal control problem, after a similar argument, it is easy to show the solution of

system (5.1) exists. To apply Pontryagin’s maximum principle [40], we need to establish the existence
of an optimal control.

Theorem 5.1. There exists an optimal control W∗, and corresponding solution (u∗, v∗) of system (5.1)
that minimizes J(W) defined by (5.2) over V.

Proof. We refer to the conditions described in Theorem III.4.1 by Fleming and Rishel [41]. The
requirements on the set of admissible controls V and on the set of end conditions are clearly satisfied
here. Moreover, for any function W(t) in V given in (5.3), using a similar argument in Theorem 2.2,
there exists a unique solution (u, v) of system (5.1). It remains to show that (u, v) and W(t) are
globally existing.

After an argument similar to the proof of 2.1, we have

u(m)(x, t) = u0(x) +
∫ t

0
(c∆ωu(m)

− Ku(m)
+ Ku(m−1)

+a − u(m−1)
− u(m−1)(v(m−1))2 −W(t)u(m−1))ds,

u(m)(x, t) = u0(x) +
∫ t

0
(c∆ωu(m) − Ku(m) + Ku(m−1)

+a − u(m−1) − u(m−1)(v(m−1))2 −W(t)u(m−1))ds.

By using the dominated convergence theorem, it follows that for t ∈ [0,T ] the limits u(x, t) and
u(x, t) satisfy

u(x, t) = u0(x) +
∫ t

0
(c∆ωu + a − u − uv2 −W(t)u)ds,

u(x, t) = u0(x) +
∫ t

0
(c∆ωu + a − u − uv2

−W(t)u)ds.

Since K satisfies the Lipschitz condition, we have

u − u ≤
∫ t

0
(c∆ω(u − u) + K(u − u) + K(v − v) −W(t)(u − u))ds.
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In a similar way, we have

v − v ≤
∫ t

0
(d∆ω(v − v) + K(u − u) + K(v − v))ds.

In terms of the definition of weighed Laplacian operator, we have

∆ω(u − u) ≤ 2n max
x∈V

Dω(x)||u − u||∞.

Since 0 ≤ W(t) ≤ 1, we have

||u − u||∞ ≤ tC1(||u − u||∞ + ||v − v||∞),
||v − v||∞ ≤ tC2(||u − u||∞ + ||v − v||∞), (5.4)

where C1 and C2 only depends on K, c, n, and maxx∈V Dω(x).
Thus, there exists a constant T0 := 1/2(C1 + C2) such that ||u − u||∞ = 0 and ||v − v||∞ = 0, that is,

u ≡ u and v ≡ v hold for t ∈ (0,T0]. Since Ci is independent on the initial value, we can extend T0 to
T . Thus, (u, v) and W(t) are globally existing.

Theorem 5.2. If the optimal control W∗ and corresponding solution (u∗, v∗) of system (5.1) minimize
the objective functional (5.2), then there eixsts adjoint variables λ1 and λ2 satisfying

∂λ1

∂t
= −A + λ1(1 + v2 +W(t)) − λ2v2, x ∈ V, t ∈ [0,T ),

∂λ2

∂t
= 2λ1uv − 2λ2uv + bλ2, x ∈ V, t ∈ [0,T ),

∂λ1

∂x
(t, 0) =

∂λ2

∂x
(t, 0) = 0, t ∈ [0,T ),

λ1(t, h(t)) = λ2(t, h(t)) = 0, t ∈ [0,T ),

λ1(T ) = λ2(T ) = 0.

(5.5)

Furthermore, this optimal control is characterized by

W∗ = max
(
min

(
1,
λ1u
2

)
, 0

)
. (5.6)

Proof. We shall use Pontryagin’s minimum principle [40] to complete the proof. We define the
following Hamiltonian:

H(u, v, λ1, λ2) = Au +W2(t) + λ1

[
a − u − uv2 −W(t)u + c∆ωu

]
+ λ2

[
uv2 − bv + d∆ωv

]
. (5.7)

It is easy to check that ∂
2H
∂W2 = 2 > 0. Thus, the critical point W∗ is indeed a minimum. By applying

Pontryagin’s minimum principle [40], the adjoint equations are given by

∂λ1

∂t
= −
∂H
∂u
,
∂λ2

∂t
= −
∂H
∂v
, (5.8)
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and must satisfy transversality condition λi(T ) = 0 for i = 1, 2. Hence, (5.5) holds.
Next, since W∗ is a critical point of the Hamiltonian, it follows that ∂H

∂W = 0 at W∗. This yields the
following condition on the optimal control:

W∗ =
λ1u
2
.

Since W∗ must belong to W, we have W∗ = max
(
min

(
1, λ1u

2

)
, 0

)
.

Remark 5.1. The biological interpretation of the optimal rainfall W∗ in (5.6) is read as: When W(t)
satisfies 0 < W(t) < 1, then the optimal rainfall W∗ = λ1u

2 . The optimal rainfall probability is
determined only by the density of water, not by the density of plants.

6. Numerical simulations

In this section, we shall carry out some numerical simulations to validate and extend analytical
results of supercritical Turing patterns. In view of the conditions (3.6) and (4.7) determining the
stability of the Turing bifurcation, we take the following set of parameters coming from the semiarid
vegetation model [5]:

a = 2, b = 0.45, c = 1, d = 242.5. (6.1)

We show the real part of the eigenvalue characteristic polynomials (3.9) corresponding to the wave
number λi in Figure 1. When the solid line is above the dashed line, Turing bifurcation occurs. In
addition, we describe that the behavior of system (1.1) is determined by the input rate of water a
and the death rate of plants b. By using bc as the critical value of the Turing bifurcation, when the
plant Laplacian diffusion coefficient d = 242.5, the Turing parameter space is shown in Figure 2.
Considering the decrease of water input or the increase of plants loss, a transition from homogeneous
vegetation to no vegetation is predicted in Figure 2.

0 0.2 0.4 0.6 0.8 1

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Figure 1. Eigenvalues of system (1.1). Other parameters are a = 2, b = 0.45, c = 1, and
d = 242.5.
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0.6
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1

1.2

1.4

1.6

1.8

No vegetation

Turing pattern vegetation

Homogeneous vegetation

Figure 2. Turing parameter space of system (1.1). Other parameters are a = 2, b = 0.45,
c = 1, and d = 242.5.

Furthermore, we construct a Watts-Strogatz network consisting of a ring grid with 100 vertices
connected to the nearest 4 neighbors from the left and right directions. In view of the fact that the
motion of water usually obeys random walk, we add edges to the graph to satisfy the edge with a
rewired probability of 0.15 for each pair of vertices. Through the use of numerical approximation, we
obtain the solution of u and v. Figure 3 displays the plant density with network at different time. We
describe the initial plant density with a small perturbation near the equilibrium, which can not effect
the formation of spatiotemporal patterns as shown on the first panel of Figure 3. By means of the
time integration of Runge-Kutta scheme, we exhibit the evolution of the spatial density of the plant
with network at t = 50, 75, and 100 as shown in the 2nd, 3rd and 4th panels of Figure 3, respectively.
From Figure 3, we can see that as the time t increases, the density of plant exhibits different value
for each fixed vertex, that is, the system shows that a Turing pattern occurs under Turing parameter
space a = 2 and b = 0.45. Though spatial patterns for different time are illustrated in these figures,
we can not get the asymptotic behavior of the plant density for each vertex. Therefore, we describe
that the asymptotic behavior converges to the temporal solution of system (1.1) for each vertex, where
each node is arranged in a vertical column without considering the network structure. In Figure 4, the
Turing pattern is stable and the solution converges to the temporally homogeneous behavior for each
node in the left panel, the average density of plant converges to a constant with time in the middle
panel, and the average density of plant over time is inhomogenous with respect to each node in the
right panel. Hencen Figure 4 illustrates that the Turing pattern has a stable dynamical behavior under
a large diffusion rate d = 242.5.

In Figure 5, we plot the 2-dimensional continuous spatial Turing pattern for the plant density, the
solution of which has generated a spatial regular pattern based on a self-organizational continuous
diffusion mechanism. In its right panel, the average density of plants over continuous space converges
to a constant with time. Comparing to the different spatial type, we find that the speed of the Turing
self-organizational process is not different. The 2-dimensional continuous spatial system (middle panel
of Figure 4) is faster than the networked system (right panel of Figure 5).

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7601–7620.



7616

Figure 3. Plants densities at different time instants with the network. The node degree is
measured by the node size. Parameters are listed in (6.1).
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Figure 4. Turing patterns of plants at different nodes. Parameters are listed in (6.1).
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Figure 5. Turing patterns of plants over 2-dimensional continuous space. Parameters are
listed in (6.1).

7. Discussions

The reaction-diffusion system of a semiarid vegetation model is studied in this paper with a network
considering the fragmented habitats due to the dispersion of plant seeds. The existence and uniqueness
of solutions are shown by the monotone iterative technique. The stability of the Turing bifurcation is
studied by the technique of weakly nonlinear analysis, which brought about the occurrence of the stable
Turing patterns. We also propose a nonstandard finite difference method for the numerical solution.
Furthermore, we demonstrate that the graph Lapacian diffusion plays an important role in the pattern
formation.

Our results indicate that both the plant loss and rainfall have an impact on the Turing parameter
space of a semiarid vegetation model with weighted networks. By Theorem 2.2, we have shown that
the system with weighted networks admits an unique global solution. Theorems 3.1 and 3.2 indicate
that if the plant loss b crosses to bc, the positive equilibrium of the system has a different dynamical
behavior, which generates Turing instability. Theorem 4.1 indicates that when the Turing instability
occurs, the Turing pattern is asymptotic stable.

It is shown that optimal rainfall probability is determined only by the density of water, not by the
density of plants. Moreover, we have performed the numerical simulations to find the difference
between these two self-organizational Turing patterns. The reaction-diffusion system has a
self-organizational speed faster than that of the graph Laplacian diffusion model. In summary, this
paper has proposed a new way to depict the movement of surface water and biomass with the graph
Laplacian diffusion term defined in the semiarid vegetable model.
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