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Abstract: This paper presents a mathematical model to describe the spread of flavescence dorée,
a disease caused by the bacterium Candidatus Phytoplasma vitis, which is transmitted by the insect
vector Scaphoideus titanus in grapevine crops. The key contribution of this work is the derivation of
conditions under which positive periodic solutions exist. These conditions are based on the assumption
that key factors such as recruitment rates, disease transmission, and vector infectivity vary periodically,
thus reflecting seasonal changes. The existence of these periodic solutions is proven using the degree
theory, and numerical examples are provided to support the theoretical findings. This model aims to
enhance the understanding of the epidemiological dynamics of flavescence dorée and contribute to
developing better control strategies to manage the disease in grapevines.
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1. Introduction

1.1. Scope

In recent decades, agricultural exports have become a critical driver of economic growth for many
countries, with the wine industry being one of its crucial components [1–5]. It is well-known that
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the wine industry, along with businesses and grape agriculture, involves many stakeholders and has
attracted diverse perspectives from science and technology. Approaches related to climate change,
organic production, and sustainability have increasingly shaped practices in the wine industry [6–8].
Furthermore, vineyards contribute to wine production and serve as a source of income for the tourism
sector, thus creating employment and fostering economic development in rural areas where vineyards
are located. Overall, vineyards hold a significant role in global agriculture, thereby offering economic,
cultural, and social benefits across various regions of the world. These facts underscore the importance
of research and innovation to ensure the sustainability of the industry [9, 10]. In this work, we focus
specifically on diseases that affect vineyards, as understanding the dynamics of these diseases is crucial
for sustainable production and reducing pesticide use, which, in turn, minimizes the environmental im-
pact and production costs [11–15]. Epidemiology, traditionally seen as a descriptive science focused on
the ecological factors of diseases, has evolved significantly in recent years. Now, it incorporates more
advanced analytical methods, among which mathematical modeling plays a key role [16]. The mod-
eling of infectious disease transmission in human populations has been extensively studied [17–21],
and its importance became even more apparent during the COVID-19 pandemic, which highlighted the
need for models to inform immediate public health measures [20]. The methodologies used to model
human diseases can be generalized to other populations, including animals and plants [16, 19, 22].

A commonly used approach is the compartmental model, which divides the total population into
sub-populations (often susceptible, infected, and recovered classes) and uses the laws of interaction
and mass conservation to describe the system [23–27]. This methodology can be adapted to model the
interaction between two populations, such as animals and plants, to study diseases caused by pathogens
such as bacteria, viruses, fungi, and other microscopic organisms [28–33]. In the context of plant
diseases, the spread is often modeled through vector-host interactions, where the vector transmits the
disease between hosts, as is the case with many vector-borne diseases [28, 29, 34].

In this study, we focus on one such vector-borne disease that affects grapevines: flavescence dorée,
that affects caused by the bacterium Candidatus Phytoplasma vitis and transmitted by the insect vector
Scaphoideus titanus. The role of Scaphoideus titanus in transmitting flavescence dorée was first pro-
posed in [34], and has since been confirmed in various studies [30]. This leafhopper feeds on the sap of
grapevines, acquiring the bacteria from infected plants and transmitting it to healthy ones, thus facili-
tating the spread of the disease. Flavescence dorée severely impacts the grapevine health and yield, that
affects presenting symptoms such as leaf yellowing, stunted growth, and wilting of the grape clusters.
Over time, it can also damage the wood tissue of grapevines, thus leading to a significant reduction in
grape production.

1.2. Mathematical model for flavescence dorée in grapevines with seasonality

In order to introduce the results of the paper, we first provide the assumptions and the mathematical
model. We consider the interaction of two populations: grapevines and vectors, with the total popula-
tions denoted by P and V , respectively. The grapevine population is divided into three compartments:
Ps, Pe, and Pi, which represent the number of grapevines that are susceptible to infection, exposed to
the bacterium via the vector but not yet infective, and infected and infective, respectively. The vector
population, denoted by V , is subdivided into three compartments: susceptible, exposed, and infected,
denoted by Vs, Ve, and Vi, respectively. We assume that the total grapevine population, P = Ps+Pe+Pi,
remains constant throughout the epidemic, as grapevines have a much longer life cycle than the vec-
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Table 1. Description of variables and parameters in the mathematical model (1.1)–(1.6).

Ps Number of susceptible grapevines (α)−1 Average incubation time on grapevine
Pe Number of exposed grapevines (γ)−1 Average recovery time of infected grapevines
Pi Number of infected grapevines µ Mortality rate of vectors
Vs Number of susceptible vectors (θ)−1 Average incubation time in vector
Ve Number of Exposed Vectors (κ)−1 Average time of vector infection
Vi Number of infected vectors (ν)−1 Transmission rate of vectors
Λ Average insect vector birth rate P Total number of grapevines
β Infection rate of grapevines by vectors V Total number of vectors

tors. In contrast, the vector population, V = Vs +Ve +Vi, is variable. The dynamics and interactions of
these two populations are modeled based on the following assumptions:

(i) The birth and mortality rates of the vectors are given by Λ and µ(V) = µ1 + µ2V , respectively,
where (µ1)−1 is the average lifespan of a vector, and µ2V represents the mortality coefficient,
which is proportional to the number of vectors. Thus, V ′(t) = ΛV − µ(V)V describes the vector
population dynamics.

(ii) The infection force from the grapevine to the vector, denoted by ΦP, is defined as the rate at
which the susceptible vectors become infected per unit of time. It is the product of the number of
plants N visited by a vector per unit of time, the probability that a plant is infective (Pi/P), and
q, which represents the probability of transmission of the bacterium from the plant to the vector.
Hence, ΦP = NqPi/P, and the number of newly infected vectors per unit of time is given by
ΦPVs = qNVsPi/P.

(iii) The infection force from the vector to the grapevine, denoted byΦV , is defined as the rate at which
susceptible grapevines are infected per unit of time. It is determined by the number of vectors
which visit a plant per unit time, NV/P, the probability that a vector is infective (Vi/V), and q∗,
which represents the probability of transmission of the bacterium to the grapevine. Therefore,
ΦV = q∗(NV/P)(Vi/V), and the number of newly infected grapevines per unit of time is ΦV Ps =

q∗NViPs/P.
(iv) The parameters involved in the dynamics are α, γ, θ, and κ, which represents the rate at which

exposed grapevines become infective, the rate at which infected grapevines recover and become
susceptible again, the rate at which exposed vectors become infective, and the rate at which
infected vectors recover, respectively. We note that (α)−1 is the average incubation period of the
bacterium in the grapevine, (γ)−1 is the average infectious period of the grapevine, (θ)−1 is the
average incubation period of the bacterium in the vector, and (κ)−1 is the average recovery time of
the vector.

A schematic representation of the model is provided in Figure 1, and a summary of the notation
is given in Table 1. Additionally, it is well-established that climate has a significant impact on the
population dynamics of insects, which act as carriers for the bacterium Candidatus Phytoplasma vitis,
which is the causal agent of flavescence dorée disease [11, 35–38]. Consequently, the inclusion of
periodicity in the model allows us to account for seasonal variations that affect the spread of the disease,
which ultimately leads to more effective and precise strategies to manage grapevine crops. For this
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Figure 1. Schematic compartment diagram representation of the propagation of flavescence
dorée (vectors) in a grapevine crop (plants).

reason, we assume that the parameters β, α, Λ, ν, θ, µ, and κ vary over time, following a non-negative,
ω-periodic pattern.

According to the hypotheses and the previously notation introduced, the dynamics of flavescence
dorée propagation in a grapevine population can be modeled by the following system of non-linear
differential equations:

dPs(t)
dt

= −β(t)Vi(t)
Ps(t)

P
+ γ(t)Pi(t), (1.1)

dPe(t)
dt

= β(t)Vi(t)
Ps(t)

P
− α(t)Pe(t), (1.2)

dPi(t)
dt
= α(t)Pe − γ(t)Pi, (1.3)

dVs(t)
dt

= Λ(t)V(t) −
(
µ1(t) + µ2(t)V(t)

)
Vs(t) − ν(t)Vs(t)

Pi(t)
P
+ κ(t)Vi(t), (1.4)

dVe(t)
dt

= −
(
µ1(t) + µ2(t)V(t)

)
Ve(t) + ν(t)Vs(t)

Pi(t)
P
− θ(t)Ve(t), (1.5)

dVi(t)
dt
= −

(
µ1(t) + µ2(t)V(t)

)
Vi(t) + θ(t)Ve(t) − κ(t)Vi(t). (1.6)

The system (1.1)–(1.6) is supplemented by the following initial conditions:

Ps(0) = P0
s , Pe(0) = P0

e , Pi(0) = P0
i , Vs(0) = V0

s , Ve(0) = V0
e , Ve(0) = V0

i . (1.7)

The system (1.1)–(1.6) generalizes the model proposed in [28], where the case with constant coeffi-
cients was studied. It is important to note that P is constant, and V satisfies a logistic-type equation
with variable coefficients: V ′(t) =

[
Λ(t) −

(
µ1(t) + µ2(t)V(t)

)]
V(t).

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7554–7581.



7558

1.3. Main results of the paper

In this paper, we propose and prove three main results. First, we introduce sufficient conditions for
the existence of positive periodic solutions for the model (1.1)–(1.7) (see Theorem 1.1). Second, we
establish the existence of a solution for the operator equation (see Theorem 1.2). Finally, we present
numerical results to demonstrate the theoretical findings (see Section 5).

We begin by introducing the notation for the space of periodic functions. Specifically, we con-
sider the Banach space E, defined as the space of continuous and ω-periodic functions, defined as the
following set:

E =
{
x ∈ C0(R;R6) : x(t + ω) = x(t), ∥x∥ :=

6∑
i=1

max
t∈[0,ω]

|xi(t)| < ∞
}
. (1.8)

The following theorem provides the result for the existence of positive periodic solutions for the
system (1.1)–(1.7):

Theorem 1.1. Let E the space defined in (1.8). Assume that the initial conditions are posi-
tive

(
P0

s , P
0
e , P

0
i ,V

0
s ,V

0
e ,V

0
i

)
∈ R6

+, and the coefficients β, α, γ,Λ, µ1, µ2, θ, κ, and ν are non-negative
ω−periodic functions, with Λ and µ1 satisfying the relation (Λ − µ1)(t) ≥ 0 for t ∈ [0, ω]. Then, the
system (1.1)–(1.7) admits at least one ω−periodic solution.

The methodology used to prove Theorem 1.1 is based on the topological degree theory, specifically
Mawhin’s Continuation Theorem [39] (see also [40, 41] ). Applications of the topological degree
theory to epidemiology were recently conducted in [42–44]. If we define Dom (L) = E ∩ C1(R;R6)
and introduce the the operators L and N : Dom (L) ⊂ E → E by the following relations,

L(x) =
(
dx
dt

)
, (1.9)

N(x) =
(
− β(t)ex6 + γex3−x1 , β(t)ex6+x1−x2 − α, αex2−x3 − γ,

Λ(t)
(
ex4 + ex5 + ex6

)
e−x4 −

(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
− ν(t)ex3 + κex6−x4 ,

−
(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ ν(t)ex3+x4−x5 − θ,

−
(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ θex5−x6 − κ

)
, (1.10)

then we observe that the system (1.1)–(1.7) can be written as the following operator equation:

Lx = Nx. (1.11)

The rewritten version of (1.1)–(1.7) as the operator equation (1.11) is obtained by introducing x(t) =
(x1, . . . , x6)(t) by the following relation(

Ps, Pe, Pi,Vs,Ve,Vi

)
(t) =

(
Pex1(t), Pex2(t), Pex3(t), Pex4(t), Pex5(t), Pex6(t)

)
. (1.12)

More precisely, we have that the following three statements are true: (i) x is a solution of the oper-
ator equation (1.11) if and only if a solution of (Ps, Pe, PI ,Vs,Ve,Vi

)T
(t) is a solution of the system

(1.1)–(1.7); (ii) if the solution of (1.11) is ω−periodic, then the solution of system (1.1)–(1.7) is also
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ω−periodic; and (iii) if operator equation (1.11) has a solution, the system (1.1)–(1.7) has a positive
solution (see Appendix A). Thus, the analysis of the positive periodic solutions of (1.1)–(1.7) is re-
duced to obtain the existence of solutions of the operator equation (1.11), which will be performed by
applying the topological degree theory.

Theorem 1.2. Consider that the hypotheses of Theorem 1.1 are satisfied, and let L and N be the
operators defined in (1.9) and (1.10), respectively. Let Ω ⊂ E denote the open ball in E centered at
0 ∈ E with radius σ. That is, Ω is the following set:

Ω =
{
x ∈ E : ∥x∥ < σ

}
. (1.13)

Then, there exists a solution to the operator equation (1.11).

We note that the radius σ will be defined in terms of the bounds of the coefficients in the mathemat-
ical model (1.1)–(1.7).

In the other part of the main results, we consider parameters that arise from experimental data and
introduce numerical simulations in which the coefficients are treated as periodic functions.

1.4. Organization of the paper

The article is organized as follows. In Section 2, we recall the definitions and results of Mawhin’s
degree of coincidence theory, using the framework presented in [39, 40]. In Sections 3 and 4, we
present the proofs of Theorems 1.2 and 1.1, respectively. In Section 5, we provide numerical examples.
In Section 6, we present the conclusions and outline some directions for future work. Moreover, in
Appendix A , we provide the details of the reformulation of the system (1.1)–(1.7) as operator equation,
and prove some properties of the operators L and N defined in (1.9) and (1.10), respectively.

2. Preliminaries

In this section, we introduce the notation, terminology, and relevant results of the topological degree
theory that are necessary for proving Theorem 1.1 through the application of Mawhin’s Continuation
Theorem [39–41]. Moreover, we present some properties of operators the L and N defined in (1.9)
and (1.10), respectively.

Let us consider X and Z, which are two Banach spaces with norms ∥ · ∥X and ∥ · ∥Y , respectively;
L : Dom (L) ⊂ X → Z and L : X → Z be two operators; and Ω ⊂ E be an open bounded set.
We assume that L is a linear Fredholm operator of index zero, namely, Im (L) is closed in Z and
dim( Ker (L)) = codim( Im (L)) < ∞. It is well-known that there exists the continuous projectors P :
X → X and Q : Z → Z such that the following assertions are satisfied

Im (P) = Ker (L), Im (L) = Ker (Q) = Im (I − Q),
there exists KP : Im (L)→ Dom (L) ∩ Ker (P) such that

LKpx = x for all x ∈ Im (L) and PKp = 0,
there exists an isomorphism J : Im (Q)→ Ker (L).

 (2.1)

Meanwhile, we consider that the operator N : E → F is L−compact onΩ (i.e., N is continuous, QN(Ω)
is bounded, and KP(I − Q)N is compact on the set Ω).
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On the other hand, we recall the definition of the degree of a function. Let U ⊂ Rn be an open and
bounded set, f : U → Rn be a given function, and define the set N f = {x ∈ U : J f (x) = 0}, where J f (x)
denotes the Jacobian of f at x. If f ∈ C1(U,Rn) ∩C(U,Rn) and y ∈ Rn\ f (∂U ∪ N f ), then

deg{ f ,U, y} =
{ ∑

x∈ f −1(y) sgnJ f (x), f −1(y) , ∅,
0, f −1(y) = ∅,

(2.2)

defines the degree of f on U at y.
The following theorem, often referenced as Mawhin’s Continuation Theorem, establishes the spe-

cific assemblage of properties of the operators L and N, which are needed to prove the existence of the
solution of the operator equation (1.11).

Theorem 2.1. Assume that X and Y are Banach spaces,Ω ⊂ X is and open bounded set, L : Dom (L) ⊂
X → Y is a Fredholm mapping of index zero, and N : X → Y is a L−compact operator on Ω. If the
following hypotheses are met:

(C1) For each (λ, x) ∈ (0, 1) × (∂Ω ∩ Dom (L)), the relation Lx , λNx is satisfied.

(C2) For each x ∈ ∂Ω ∩ Ker (L), the relation QNx , 0 is satisfied.

(C3) deg(JQN,Ω ∩ Ker (L), 0) , 0.

then there exists at least one x ∈ Dom (L) ∩Ω satisfying the operator equation Lx = Nx.

Let us consider that X = Y = F and L and N are the operators defined in (1.9) and (1.10). We
observe that L and N satisfy the hypotheses of Theorem 2.1. More precisely, we have the following
Lemma (for details of the proof see Appendix B).

Lemma 2.1. Let us consider the operators L and N give by the relations on (1.9) and (1.10), respec-
tively, with X = Y = F defined in (1.8) and Ω be the set given in (1.13). Then, the following assertions
are satisfied

(a) L is a Fredholm operator of index zero with Ker L � R6 and Im (L) =
{
y ∈ F :

∫ ω

0
y(τ)dτ = 0

}
.

(b) N is a continuous operator.

(c) Let P : F → F defined by P (x) = ω−1
∫ ω

0
x(τ)dτ. Then, the relations (2.1) are satisfied if we select

P = Q.

(d) If the assumptions of Theorem 1.1 are fulfilled, then the operator N is L-compact on Ω.

3. Proof of Theorem 1.2

3.1. Some previos results

Hereinafter, we use the notation ∥ · ∥∞ for ∥ · ∥L∞([0,ω]).

Proposition 3.1. Let L and N be the operators defined in (1.9) and (1.10), respectively, and consider
the following notation:

V =
V0

s + V0
e + V0

i

P
[(

V0
s + V0

e + V0
i

)
exp

(
∥Λ − µ1∥∞ω

)
∥µ2∥∞ω + 1

] , (3.1)
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V =
V0

s + V0
e + V0

i

P
exp

(
∥Λ − µ1∥∞ω

)
∥µ2∥∞ω. (3.2)

If λ ∈ (0, 1) and the assumptions of Theorem 1.1 are satisfied, then the following relations

ex1(t) + ex2(t) + ex3(t) = 1, ex4(t) + ex5(t) + ex6(t) ∈ [V ,V], t ∈ [0,Ω] (3.3)

are satisfied for any x solution of the system Lx(t) = λNx(t).

Proof. In order to prove (3.3), we multiply each equation of the system Lx(t) = λNx(t) by exi(t); by
regrouping and adding the resulting equations, we deduce the following

d
dt

(
ex1 + ex2 + ex3

)
= 0, (3.4)

d
dt

(
ex4 + ex5 + ex6

)
= λ(Λ − µ1)(t)

(
ex4 + ex5 + ex6

)
− λµ2(t)P

(
ex4 + ex5 + ex6

)2
. (3.5)

From (3.4) and the integration on [0, t], we deduce the first relation in (3.3), since

ex1(t) + ex2(t) + ex3(t) = ex1(0) + ex2(0) + ex3(0) =
P0

s

P
+

P0
e

P
+

P0
i

P
=

P0
s + P0

e + P0
i

P
= 1.

Similarly, by integration of (3.5) as a Bernoulli equation, we obtain the following

ex4(t) + ex5(t) + ex6(t) =

(
ex4(0) + ex5(0) + ex6(0)

)
exp

( ∫ t

0
λ(Λ − µ1)(s)ds

)
(
ex4(0) + ex5(0) + ex6(0)

)
Pλ

∫ t

0
exp

( ∫ s

0
λ(Λ − µ1)(τ)dτ

)
µ2(s)ds + 1

=

(
V0

s + V0
e + V0

i

)
exp

( ∫ t

0
λ(Λ − µ1)(s)ds

)
P

[(
V0

s + V0
e + V0

i

)
λ
∫ t

0
exp

( ∫ s

0
λ(Λ − µ1)(τ)dτ

)
µ2(s)ds + 1

] · (3.6)

From the hypothesis of Theorem 1.1, we have that 0 ≤ mint∈[0,ω] λ(Λ − µ1)(t) ≤ λ(Λ − µ1)(t) ≤
∥Λ − µ1∥∞ for t ∈ [0, ω]. Then, using the increasing behavior of the exponential function and the fact
that λ ∈ (0, 1), we obtain the following inequality:

1 ≤ exp
(

min
t∈[0,ω]

λ(Λ − µ1)(t)
)
≤ exp

( ∫ t

0
λ(Λ − µ1)(s)ds

)
≤ exp

(
∥Λ − µ1∥∞ω

)
, t ∈ [0, ω]. (3.7)

Considering s instead of t in the upper limit of the integral given on the estimate (3.7), and multiplying
by µ2(s) and integrating on [0, t] ⊂ [0, ω], we deduce the following:

0 ≤ t min
t∈[0,ω]

µ2(t) ≤ t min
t∈[0,ω]

µ2(t) exp
(

min
t∈[0,ω]

λ(Λ − µ1)(t)
)
≤ λ

∫ t

0
exp

( ∫ s

0
λ(Λ − µ1)(τ)dτ

)
µ2(s)ds

≤ exp
(
∥Λ − µ1∥∞ω

)
∥µ2∥∞ω, t ∈ [0, ω],

which implies the following estimates

1 ≤
(
V0

s + V0
e + V0

i

)
λ

∫ t

0
exp

( ∫ s

0
λ(Λ − µ1)(τ)dτ

)
µ2(s)ds + 1

≤
(
V0

s + V0
e + V0

i

)
exp

(
∥Λ − µ1∥∞ω

)
∥µ2∥∞ω + 1, t ∈ [0, ω]. (3.8)

From (3.7) and (3.8) in (3.6), we deduce the second relation in (3.3).
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Proposition 3.2. [42] Let Ψ : [0, ω] ⊂ R+ → R be a function such that is absolutely continuous and
satisfies the following differential inequality:

d
dt
Ψ(t) + m(t)Ψ(t) ≥ 0, ∀t ∈ [0, ω], (3.9)

for a function m ∈ L1([0, ω]) which is bounded on [0, ω] (i.e., there exists m1,m2 ∈ R+ such that
0 < m1 ≤ m(t) ≤ m2 for all t ∈ [0, ω]). Then, the assumption Ψ(0) > 0 implies the estimate Ψ(t) ≥
Ψ(0) exp(−m2ω) > 0 for all t ∈ [0, ω].

3.2. A priori estimates

Lemma 3.1. Assume that the hypotheses of Lemma 2.1 and Theorem 1.1 are satisfied. Additionally, if
(λ, x) ∈ (0, 1)× (∂Ω ∩ Dom (L)) is a solution of the operator equation Lx = λNx. Then, there exist the
positive constants ρk, dk, and δk such that the following inequalities

0 < ln(δk) < xk(t) < ln
(
ρk

ω

)
+ dk, k = 1, 6, (3.10)

are satisfied for t ∈ [0, ω] .

Proof. The proof is constructive. First we find the definition of the constant δk, and subsequently the
constants ρkand dk. In order to obtain δk, we arbitrarily chose x ∈ Dom (L) such that Lx = λNx. By
multiplying each equation of the system (Lx)T (t) = λ(Nx)T (t) and rearranging the result appropriately,
we deduce the following:

dex1

dt
+

[
λβ(t)ex6

]
ex1 = λγ(t)ex3 > 0, (3.11)

dex2

dt
+ λα(t)ex2 = λβ(t)ex6+x1 > 0, (3.12)

dex3

dt
+ λγ(t)ex3 = λα(t)ex2 > 0, (3.13)

dex4

dt
+

[
λ
(
µ1(t) + µ2(t)P

(
ex4 + ex5 + ex6

))
+ λν(t)ex3

]
ex4 = λΛ(t)

(
ex4 + ex5 + ex6

)
+ λκex6 > 0, (3.14)

dex5

dt
+

[
λ
(
µ1(t) + µ2(t)P

(
ex4 + ex5 + ex6

))
+ λθ(t)

]
ex5 = λν(t)ex3+x4 > 0, (3.15)

dex6

dt
+

[
λ
(
µ1(t) + µ2(t)P

(
ex4 + ex5 + ex6

))
+ λκ(t)

]
ex6 = λθ(t)ex5 > 0. (3.16)

From the estimates in (3.3) and the assumptions of Theorem 1.1, we have the following inequalities

0 < min
t∈[0,ω]

[
λ
(
µ(t) + µ2(t)PV

)
+ λθ(t)

]
≤ λ

(
µ1(t) + µ2(t)P

(
ex4 + ex5 + ex6

))
+ λθ(t)

≤ ∥µ1∥∞ + ∥µ2∥∞PV + ∥θ∥∞, t ∈ [0, ω],

0 < min
t∈[0,ω]

[
λ
(
µ1(t)µ2(t)PV

)
+ λκ(t)

]
≤ λ

(
µ1(t) + µ2(t)P

(
ex4 + ex5 + ex6

))
+ λκ(t)

≤ ∥µ1∥∞ + ∥µ2∥∞PV + ∥κ∥∞, t ∈ [0, ω].
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By using the fact that ex5(0) = V0
e /P and ex6(0) = V0

i /P, and applying Proposition 3.2 to (3.15) and
(3.16), we deduce the following estimates:

ex5(t) ≥
V0

e

P
exp

(
−

[
∥µ1∥∞ + ∥µ2∥∞PV + ∥θ∥∞

]
ω
)

:= δ5, t ∈ [0, ω], (3.17)

ex6(t) ≥
V0

i

P
exp

(
−

[
∥µ1∥∞ + ∥µ2∥∞PV + ∥κ∥∞

]
ω
)

:= δ6, t ∈ [0, ω]. (3.18)

We notice that (3.3) and (3.18) imply the following inequalities:

0 < min
t∈[0,ω]

[
λβ(t)

]
δ6 ≤ λβ(t)ex6(t) ≤ ∥β∥∞V , t ∈ [0, ω],

0 < λ min
t∈[0,ω]

α(t) ≤ λα(t) ≤ ∥α∥∞, t ∈ [0, ω],

0 < λ min
t∈[0,ω]

γ(t) ≤ λγ(t) ≤ ∥γ∥∞, t ∈ [0, ω].

Then, the application of Proposition 3.2 to (3.11), (3.12), and (3.13) implies the following:

ex1(t) > ex1(0) exp
(
− ∥β∥∞Vω

)
=

P0
s

P
exp

(
− ∥β∥∞Vω

)
:= δ1, t ∈ [0, ω], (3.19)

ex2(t) > ex2(0) exp
(
− ∥α∥∞ω

)
=

P0
e

P
exp

(
− ∥α∥∞ω

)
:= δ2, t ∈ [0, ω], (3.20)

ex3(t) > ex3(0) exp
(
− ∥γ∥∞ω

)
=

P0
i

P
exp

(
− ∥γ∥∞Vω

)
:= δ3, t ∈ [0, ω]. (3.21)

Similarly, from (3.3) and (3.21), we deduce the following:

0 < min
t∈[0,ω]

[
λ
(
µ1(t) + µ2(t)PV

)
+ λν(t)δ3

]
≤ λ

[
µ1(t) + µ2(t)P

(
ex4(t) + ex5(t) + ex6(t)

)]
+ λν(t)ex3(t)

≤ ∥µ1∥∞ + ∥µ2∥∞PV + ∥ν∥∞, t ∈ [0, ω],

and by the initial condition ex4(0) = V0
s /P and Proposition 3.2, we obtain the following:

ex4(t) >
V0

s

P
exp

(
− ∥β∥∞

[
∥µ1∥∞ + ∥µ2∥∞PV + ∥ν∥∞

]
ω
)

:= δ4, t ∈ [0, ω]. (3.22)

The relations (3.17)–(3.22) prove the following estimate:

0 < ln(δk) < xk(t), k = 1, . . . , 6, t ∈ [0, ω]. (3.23)

The construction of ρk for any x ∈ Dom (L) which satisfies the operator equation Lx = λNx can be
developed as follows. From Proposition 3.1, we deduce that the following:

0 <
∫ ω

0
(exk) dt ≤

∫ ω

0

(
ex1(t) + ex2(t) + ex3(t)

)
dt =

∫ ω

0
dt = ω := ρk, k = 1, 2, 3, (3.24)

0 <
∫ ω

0
(exℓ) dt ≤

∫ ω

0

(
ex4(t) + ex5(t) + ex6(t)

)
dt =

∫ ω

0
Vdt = Vω := ρℓ, ℓ = 4, 5, 6. (3.25)
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Applying the Mean Value Theorem for integrals to the function exk for k = 1, . . . , 6 over [0, ω], we
follow that there exists ξk ∈ [0, ω] such that exk(ξk) = ω−1

∫ ω

0
exkdt, and consequently

there exists ξk ∈ [0, ω] such that xk(ξk) = ln
(
ρk

ω

)
, k = 1, . . . , 6. (3.26)

Integrating the system (Lx)T (t) = λ(Nx)T (t) over [0, ω] and the ω−periodic behavior of x, we obtain
the following:∫ ω

0
λ
(
−βex6 + γex3−x1

)
dt = 0,

∫ ω

0
λ
(
βex1+x6−x2 − α

)
dt = 0,

∫ ω

0
λ
(
αex2−x3 − γ

)
dt = 0,∫ ω

0
λ
(
Λ
(
ex4 + ex5 + ex6

)
e−x4 −

(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
− ν(t)ex3 + κ(t)ex6−x4

)
dt = 0,∫ ω

0
λ
(
−
(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ νex3+x4−x5 − θ(t)

)
dt = 0,∫ ω

0
λ
(
−
(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ θ(t)ex5−x6 − κ(t)

)
dt = 0,

which implies that∫ ω

0
e(x3−x1)(t)dt ≤

∥β∥∞Vω
mint∈[0,ω] γ(t)

,

∫ ω

0
e(x1+x6−x2)(t)dt ≤

∥α∥∞ω

mint∈[0,ω] β(t)
,

∫ ω

0
e(x2−x3)(t)dt ≤

∥γ∥∞ω

mint∈[0,ω] α(t)
,

∫ ω

0
e−x4(t)dt ≤

(
∥µ1∥∞ + ∥µ2∥∞PV + ∥ν∥∞

)
ω

V mint∈[0,ω]Λ(t)
,

∫ ω

0
e(x6−x4)(t)dt ≤

(
∥µ1∥∞ + ∥µ2∥∞PV + ∥ν∥∞

)
ω

mint∈[0,ω] κ(t)
,

∫ ω

0
e(x4+x3−x5)(t)dt ≤

(
∥µ1∥∞ + ∥µ2∥∞PV + ∥θ∥∞

)
ω

mint∈[0,ω] ν(t)
,

∫ ω

0
e(x5−x6)(t)dt ≤

(
∥µ1∥∞ + ∥µ2∥∞PV + ∥κ∥∞

)
ω

mint∈[0,ω] θ(t)
.

Then, taking the absolute value of the system (Lx)T (t) = λ(Nx)T (t) and integrating over [0, ω], we
obtain the following upper bounds:∫ ω

0

∣∣∣∣∣dx1

dt

∣∣∣∣∣ dt ≤
∫ ω

0

(
βex6 + γex3−x1

)
(t)dt ≤ ∥β∥∞Vω

(
1 +

∥γ∥∞
mint∈[0,ω] γ(t)

)
:= d1, (3.27)∫ ω

0

∣∣∣∣∣dx2

dt

∣∣∣∣∣ dt ≤
∫ ω

0

(
βex6+x1+x2 + α

)
(t)dt ≤ ∥α∥∞ω

(
1 +

∥β∥∞
mint∈[0,ω] β(t)

)
:= d2, (3.28)∫ ω

0

∣∣∣∣∣dx3

dt

∣∣∣∣∣ dt ≤
∫ ω

0

(
αex2−x3 + γ

)
(t)dt ≤ ∥γ∥∞ω

(
1 +

∥α∥∞
mint∈[0,ω] α(t)

)
:= d3, (3.29)∫ ω

0

∣∣∣∣∣dx4

dt

∣∣∣∣∣ dt ≤
∫ ω

0

[
Λ
(
ex4 + ex5 + ex6

)
e−x4 +

(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ νex3 + κex6−x4

]
(t)dt

≤ ω
(
∥µ1∥∞ + ∥µ2∥∞PV + ∥ν∥∞

) 1 + V∥Λ∥∞
V mint∈[0,ω]Λ(t)

+
∥κ∥∞

mint∈[0,ω] κ(t)

 := d4, (3.30)
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0

∣∣∣∣∣dx5

dt

∣∣∣∣∣ dt ≤
∫ ω

0

[(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ νex4+x3−x5 + θ

]
(t)dt

≤ ω
(
∥µ1∥∞ + ∥µ2∥∞PV + ∥θ∥∞

) (
1 +

∥ν∥∞
mint∈[0,ω] ν(t)

)
:= d5, (3.31)∫ ω

0

∣∣∣∣∣dx6

dt

∣∣∣∣∣ dt ≤
∫ ω

0

[(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ θex5−x6 + κ

]
(t)dt

≤ ω
(
∥µ1∥∞ + ∥µ2∥∞PV + ∥κ∥∞

)
ω

(
1 +

∥θ∥∞
mint∈[0,ω] θ(t)

)
:= d6. (3.32)

To complete the proof, we note
∫ t

ξk
x′k(τ)dτ = xk(t) − xk(ξk) for k = 1, . . . , 6. Then, from (3.26) and

(3.27)–(3.32), we have the following:

xk(t) = xk(ξk) +
∫ t

ξk

dxk(τ)
dτ

dτ

≤ xk(ξk) +
∫ ω

0

∣∣∣∣∣dxk(τ)
dτ

∣∣∣∣∣ dτ ≤ ln
(
ρk

ω

)
+ dk, k = 1, . . . , 6, t ∈ [0, ω]. (3.33)

Hence, by the estimates (3.23) and (3.33), we deduce (3.34) and conclude the proof of the lemma.

Lemma 3.2. Assume that the hypotheses of Lemma 3.1 are satisfied. If x ∈ Ker (L) is a solution of the
operator equation QN(x) = 0, then there exist positive constants ρk and δk such that the inequality

0 < ln(δk) < xk(t) < ln(
ρk

ω
), k = 1, . . . , 6, (3.34)

is satisfied for t ∈ [0, ω] .

Proof. From Lemma 2.1, it follows that Ker(L) � R6, which implies that x ∈ Ker (L) is equivalent
to x = c, where c is a constant vector. Assume the hypothesis that x satisfies the operator equation
QN(x) = 0, or equivalently QN(c) = 0. From the definition of Q, we follow that

QN(c) = 0 ⇔
1
ω

∫ ω

0
N(c)dτ = 0 ⇔ N(c) = 0 = L(c).

Then, for any λ ∈ (0, 1), it follows that λN(c) = 0 = L(c) and consequently λN(c) = L(c). Then, by
similar arguments to the proof of Lemma 3.1, we deduce there exist δk, ρk and dk = 0 for k = 1, . . . , 6
such that the estimate (3.34) is satisfied.

Lemma 3.3. Let X = Y = F with F, the Banach spaces are defined in (1.8); Ω ⊂ F, the open ball
centred at 0 and radius h, with h defined as follows:

h = max

 6∑
k=1

ln(δk);
6∑

k=1

(
ln(
ρk

ω
) + dk

) (3.35)

where δk, ρk, and dk are as defined in (3.19) and (3.20), (3.24) and (3.25), and (3.27)–(3.32), respec-
tively. Then, the items (C1), (C2), and (C3) of Theorem 2.1 are satisfied.
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Proof. The proof of (C1) will be developed by contradiction. We begin by considering that the state-
ment is false, or equivalently we consider that there exists (λ, x) ∈ (0, 1) × [∂Ω ∩ Dom (L)] such that
L(x) = λN(x). Then, by the application of Lemma 3.1, we follow that 0 < ln(δk) < xk(t) < ln(ρk/ω)+dk

for k = 1, . . . , 6, which implies the following:

6∑
k=1

ln(δk) <
6∑

k=1

xk(t) <
6∑

k=1

(
ln

(
ρk

ω

)
+ dk

)
, t ∈ [0, ω]. (3.36)

Using the definition of h given on (3.35), we have that that h can reduced to the following relation:

h = max

 6∑
k=1

ln(δk);
6∑

k=1

(
ln(
ρk

ω
) + dk

) = 6∑
k=1

(
ln

(
ρk

ω

)
+ dk

)
.

We notice that (3.36) implies the relation ∥x∥ < h, or equivalently x belongs to the interior of Ω, which
is a contradiction, since we have assumed that x ∈ ∂Ω.

To prove (C2), we also apply a contradiction argument. If (C2) is false, then we can find x ∈
Ker (L)∩∂Ω, such thatQN(x) = 0. Then, by Lemma (3.2), we follow that 0 < ln(δk) < xk(t) < ln (ρk/ω)
for k = 1, . . . , 6, and consequently

h = max

 6∑
k=1

ln(δk);
6∑

k=1

ln(ρk)

 = 6∑
k=1

ln
(
ρk

ω

)
and ∥x∥ < h.

Here, x ∈ Ω is a contradiction, since we have considered that x ∈ Ker (L)∩ ∂Ω. Then, (C2) is satisfied.
In order to prove (C3), we consider x ∈ Dom (L) and ε ∈ [0, 1], and define the homotopy H :

Dom (L) × [0, 1]→ E, by the following relation:

H(x, ε) =



−βex6 + γ

βex6+x1−x2 − α

αex2−x3 − γ

κex6−x4 − µ1

νex4+x3−x5 − (µ1 + θ)
θex5−x6 − (µ1 + κ)



T

+ ε



γ
(
ex3−x1 − 1

)
0
0
Λ
(
ex4 + ex5 + ex6

)
e−x4 − µ2P

(
ex4 + ex5 + ex6

)
− νex3

−µ2P
(
ex4 + ex5 + ex6

)
−µ2P

(
ex4 + ex5 + ex6

)



T

,

where (
β, α, γ, κ, ν, θ,Λ, µ1, µ2

)
=

1
ω

∫ ω

0

(
β, α, γ, κ, ν, θ,Λ, µ1, µ2

)
(t)dt.

We claim the following:

If x ∈ Ker (L) ∩ ∂Ω and ε ∈ [0, 1], then H(x, ε) , 0. (3.37)

Indeed, suppose that there exists x ∈ Ker (L) ∩ ∂Ω and ε ∈ [0, 1] such that H(x, ε) = 0. Since
Ker (L) � R6, we have that x(t) = x(0) and H(x, ε) = H(x(0), ε) = 0. Therefore, from the definition of
H,

0 = −βex6(0) + γ + εγ
(
ex3−x1 − 1

)
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0 = βe(x1+x6−x2)(0) − α,

0 = αe(x2−x3)(0) − γ,

0 = κe(x6−x4)(0) − µ1 + ε
[
Λ
(
ex4(0) + ex5(0) + ex6(0)

)
e−x4(0) − µ2P

(
ex4(0) + ex5(0) + ex6(0)

)
− νex3(0)

]
,

0 = νe(x3+x4−x5)(0) − (µ1 + θ) − εµ2P
(
ex4(0) + ex5(0) + ex6(0)

)
,

0 = θe(x5−x6)(0) − (µ1 + κ) − εµ2P
(
ex4(0) + ex5(0) + ex6(0)

)
.

Proceeding analogously to the proof of Lemma 3.1, we can deduce that ∥x(0)∥ < h, or equivalently
x(t) = x(0) ∈ Ω, which is a contradiction with the assumption that x ∈ ∂Ω. Hence, the claim (3.37) is
verified.

On the other hand, it is known that there exists an isomorphism J : Ker (L) → Im (Q), which
implies that Ker (L) � Im (Q). Then, without a loss of generality, we can choose J = I. It follows
that: JQN = IQN = QN and deg(JQN(x) , Ker (L) ∩ Ω , 0) = deg(QN(x) , Ker (L) ∩ Ω , 0). Then,
from (3.37), we can use the homotopy invariance property of the degree of coincidence to obtain the
following:

deg(QN(x) , Ker (L) ∩Ω , 0) = deg(H(x, 1) , Ker (L) ∩Ω , 0) = deg(H(x, 0) , Ker (L) ∩Ω , 0).

Using the facts that

H(x, 0) =
(
− βex6 + γ, βex1+x6−x2 − α, αex2−x3 − γ, κex6−x4 − µ1, νe

x3+x4−x5 − (µ1 + θ), θe
x5−x6 − (µ1 + κ)

)
,

and the algebraic system H(x, 0) = 0, i.e.,

0 = −βex6 + γ,

0 = βex1+x6−x2 − α,

0 = αex2−x3 − γ,

0 = κex6−x4 − µ1,

0 = νex3+x4−x5 − (µ1 + θ),

0 = θex5−x6 − (µ1 + κ),

has a unique solution x∗ ∈ ∂Ω ∩ Ker (L), we deduce the following:

deg(H(x, 0) , Ker (L) ∩Ω , 0)

= sgn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1H1(x∗, 0) ∂x2H1(x∗, 0) ∂x3H1(x∗, 0) ∂x4H1(x∗, 0) ∂x5H1(x∗, 0) ∂x6H1(x∗, 0)
∂x1H2(x∗, 0) ∂x2H2(x∗, 0) ∂x3H2(x∗, 0) ∂x4H2(x∗, 0) ∂x5H2(x∗, 0) ∂x6H2(x∗, 0)
∂x1H3(x∗, 0) ∂x2H3(x∗, 0) ∂x3H3(x∗, 0) ∂x4H3(x∗, 0) ∂x5H3(x∗, 0) ∂x6H3(x∗, 0)
∂x1H4(x∗, 0) ∂x2H4(x∗, 0) ∂x3H4(x∗, 0) ∂x4H4(x∗, 0) ∂x5H4(x∗, 0) ∂x6H4(x∗, 0)
∂x1H5(x∗, 0) ∂x2H5(x∗, 0) ∂x3H5(x∗, 0) ∂x4H5(x∗, 0) ∂x5H5(x∗, 0) ∂x6H5(x∗, 0)
∂x1H6(x∗, 0) ∂x2H6(x∗, 0) ∂x3H6(x∗, 0) ∂x4H6(x∗, 0) ∂x5H6(x∗, 0) ∂x6H6(x∗, 0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



= sgn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 −βex∗6

βex∗1+x∗6−x∗2 −βex∗1+x∗6−x∗2 0 0 0 βex∗1+x∗6−x∗2

0 αex∗2−x∗3 −αex∗2−x∗3 0 0 0
0 0 0 −κex∗6−x∗4 0 κex∗6−x∗4

0 0 νex∗3+x∗4−x∗5 νex∗3+x∗4−x∗5 −νex∗3+x∗4−x∗5 0
0 0 0 0 θex∗5−x∗6 −θex∗5−x∗6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= sgn
(
2β

2
α κ ν θ ex∗1+2x∗6

)
= 1.

Then, deg(JQN,Ω ∩ Ker (L), 0) = 1 , 0. In this way, condition the item (C3) of Theorem 2.1 is
verified.

3.3. Conclusion of the proof of Theorem 1.2

The existence of the solution for Lx = Nx on Dom (L) ∩Ω is a straightforward consequence of the
application of Theorem 2.1 since the items (C1), (C2), and (C3) are satisfied.

4. Proof of Theorem 1.1

We can rewrite the system (1.1)–(1.7) as the operator equation of the form (1.11) (see Theorem A.1)
on E with the operators L and N defined in (1.9) and (1.10), respectively. Moreover, the items (C1),
(C2), and (C3) of Theorem 2.1 are satisfied by Lemma 3.3. Hence, by application of Theorem 2.1
there exists at least one solution of the operator equation Lx = Nx on Dom (L) ∩ Ω with Ω defined on
(1.13) and σ = h (see (3.35)). Moreover, from the change of variable (1.12), we obtain the existence(
Ps, Pe, Pi,Vs,Ve,Vi

)T
(t), which is a positive periodic solution of (1.1)–(1.7).

5. Numerical examples

In this section, the objective is to provide a general proof of concept that the governing equations can
qualitatively resemble expected population dynamics, without specific adjustments for a quantitative
calibration. The biological considerations related to the flavescence dorée (see, e.g., [45, 46]) serve as
a general reference for the model.

The population sizes are non-dimensional, where “1” corresponds to a reference unit; the initial
values are adjusted such that the corresponding species (plant or vector) sum up to “1”. The time
scales are adjusted to reflect the realistic scenarios of the typical life cycles based on the temporal
dynamics of the following species:

• Grapevines (Vitis spp.): Grapevines are perennial plants with no specific lifespan; they can live
for many years if kept healthy. Commercial vineyards typically replace grapevines after 25–30
years, as the fruit production may decline by then. Therefore, 10,000 days, which corresponds
to approximately 27.4 years, can be considered a the reference timespan; for the simulations, we
chose 1000 days as a the time span, which allows us to visualize three cycles.
• Flavescence dorée: This disease is caused by phytoplasma, which is a bacterium without cell

walls. The phytoplasma reproduces by binary fission within the phloem of a host plant. The
phloem is a tissue in vascular plants that transports soluble organic compounds from the leaves
to other parts of the plant. The phytoplasma relies entirely on the grapevine for survival and
reproduction and spreads to other plants only through insect vectors, such as leafhoppers.
• Scaphoideus titanus (leafhopper): This insect has one generation per year, with life cycle stages

varying based on the hemisphere:

– Eggs are laid in late summer (August-October in the Northern Hemisphere; February-May
in the Southern Hemisphere) and over winter on the vine.
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– Nymphs hatch in late spring, typically around mid-May (Northern Hemisphere) or mid-
November (Southern Hemisphere) of the following year.

– Adults emerge from the final nymphal stage in mid-summer (June-July in the Northern Hemi-
sphere; December-January in the Southern Hemisphere). During this time, they can acquire
and transmit the flavescence dorée phytoplasma while feeding on the grapevine sap. Adults
live for 1–3 months, dying in late summer.

(a) (b) (c)

Figure 2. Example 1 (without periocity): Profile of simulation of plant and vector popula-
tions; (a) Λ(t) ≡ 0.04, (b) Λ(t) ≡ 0.05, (c) Λ(t) ≡ 0.06.

5.1. Example 1

For Example 1, the following parameter specifications are chosen:

• The life span of the vector is set to µ−1
1 = 20 days, which corresponds to a natural mortality rate

of µ1 = 0.05 (per day).
• The density-dependent mortality rate is specified as µ2 = 0.001 (per day per vector).
• For the recruitment rate, Λ, we estimate an average lifetime fecundity of approximately 30–40

eggs per female. This estimate is based on 2–4 clutches per female during their adult life, with
each clutch containing 5–20 eggs. While technically not a pregnancy, but rather oviposition, the
females lay eggs either singly or in small clutches within the plant tissues after mating. As a
result, we estimate an egg-laying rate between 0.01 and 0.06 eggs per day, with 0.06 being an
optimistic estimate and 0.01 being a more conservative rate, thereby accounting for lower egg
survival rates. In the examples, the main variations operate on changes of Λ.
• The probability of transmission of the bacterium from the plant to the vector, denoted by β, is

estimated at 0.1, or 10%. This value lies within a reasonable range of 2–40%.
• Similarly, the probability of transmission of the bacterium to the grapevine, denoted by ν, is also

estimated at ν = 0.1, which falls within the 2–40% range, thus representing the probability that
the susceptible vectors become infected within a unit of time.
• The parameter θ−1 represents the average incubation period of the bacterium in the vector. Al-

though the bacterium slowly multiplies within the vector after ingestion, we assume an incu-
bation period of 30 days, which corresponds to θ = 1/30 ≈ 0.033. This value is adopted ac-
cording to [30] (see also [47]): “An incubation period of about 1 month, during which time the
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phytoplasma multiplies and colonizes the vector’s body, is required before the vector becomes
infectious.”
• The parameter α−1 denotes the average incubation time of the bacterium in the grapevine. Flaves-

cence dorée, caused by phytoplasmas, typically has an incubation period of one year or more
before symptoms manifest on the grapevine. This prolonged period allows the phytoplasma to
reproduce and overcome the plant defenses. We set α−1 = 365, meaning α = 1/365 ≈ 0.0027.
• The recovery parameter is set to κ = 0, as no recovery occurs in the case of flavescence dorée.

Once the vector (leafhopper) acquires the infection, it becomes systemic, meaning the vector
remains infectious for the rest of its life, with no possibility of recovery. This corresponds to an
infinite average recovery time of the vector κ−1.
• The parameter γ−1 represents the average time the grapevine remains infectious. A grapevine

infected with flavescence dorée remains infectious for its entire lifespan due to the systemic nature
of the infection, which affects the entire vascular system of the vine. Hence, we set γ = 0, as the
infection persists indefinitely, with no recovery or reduction in the infectivity.

The initial condition

x(0) = x0 = (0.8, 0.15, 0.05, 0.7, 0.2, 0.1), (5.1)

is adjusted such that the fractions of each species (plants or vectors) adds to 1, thus providing a dom-
inance of susceptible species. The initial values of each variable are intentionally chosen to create a
visual distinction between the functions. In Examples 1(a)–(c), we select the following variations of
the constant function Λ(t): {0.04, 0.05, 0.06}. See Figure 2 for a visualization of the simulation across
all variables.

The plot employs a logarithmic scale on the x-axis to capture the long-term behavior and the asymp-
totic trends of the plant variables Pe and Pi within the range [100, 1000], while still adequately visual-
izing the short-term behavior of the vector variables in the range [0, 100].

In Figure 2(a), forΛ(t) ≡ 0.04, all vector populations monotonically decrease and eventually vanish.
This outcome is expected for smaller recruitment rates Λ(t). The infected plant population monoton-
ically increases towards an asymptotic value, while the susceptible plant population monotonically
decreases, appearing to approach a non-zero asymptotic value. This non-zero value results from the
absence of the vector populations, which would otherwise drive the susceptible plant population fur-
ther down. The exposed plant population initially increases to a maximum and then declines to an
asymptotic value of zero.

How do these dynamics change with an increase in the recruitment rate? This can be seen in Figure
2(b), where Λ(t) ≡ 0.05. When the recruitment rate increases, the vector populations, particularly
the infected vector Vi, which does not vanish as in the previous example, but can stabilize at a non-
zero level.The susceptible vectors Vs initially increase, reach a maximum, and then begin to decline.
From the visualization, it is unclear whether the asymptotic value of Vs is zero; however, based on
the equations, it should eventually converge to zero. The other two vector populations, Ve and Vi,
first decrease, reaching a minimum (first Ve, followed by Vi), and then increase towards an asymptotic
state. Additionally, the dynamics of the plant population change: in contrast to the previous example,
the susceptible plant population Ps quickly vanishes within the overall time interval.

In Example 1(c), the recruitment rate is further increased to Λ(t) ≡ 0.06, thus leading to an uncon-
trolled rise in all vector populations, as illustrated in Figure 2(c). The qualitative behavior of the plant
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population remains the same, with the notable difference being that the exposed plant population Pe

exhibits a more pronounced peak.

5.2. Example 2

Figure 3. Example 2(a): Profile of plant and vector populations with periodic growth; λ1 =

0.02.

In Example 2, we want to explore the effect of periodic parameters by modifying the equation that
governs the susceptible vector population, Vs. The goal of this adjustment is to control the growth of
the vector population. The modified equation for Vs is as follows:

dVs(t)
dt

= Λ(t) − (µ1(t) + µ2(t) · V(t))Vs(t) − ν(t)Vs(t),

where we replace the term Λ(t)V with Λ(t), which is now defined by the following:

Λ(t) = λ1(t) + λ2(t)V.

This modification offers a significant advantage: it makes the growth rate of Vs independent of the total
vector population V . In cases where the vector population V drastically decreases, the growth of Vs is
no longer tightly coupled to V , thus preventing a prolonged delay in recovery.

Then, the governing equation for Vs(t) is then slightly modified:

dVs(t)
dt

= Λ(t) − (µ1(t) + µ2(t) ∗ V(t))Vs(t) − ν(t)Vs(t)Pi(t) + κ(t)Vi(t).
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Figure 4. Example 2(b): Profile of plant and vector populations with periodic growth; λ1 =

0.02.

In this second example, the same initial conditions are used as in Example 1, along with most of the
same parameters. The primary difference is the modification of Λ(t), which is chosen as the following
periodic function:

Λ(t) =

λ1 if (t mod 365) < 60,
0 otherwise.

(5.2)

Here, Λ(t) is defined as active for 60 days each year (representing a seasonal factor, such as in-
creased vector reproduction during specific months). For Example 2(a), we set λ1 = 0.02, and we
increase λ1 to 0.04 for Example 2(b) to simulate a higher vector birth rate during the active period.

Figures 3 and 4 depict the simulations for Examples 2(a) and 2(b), respectively. These simulations
illustrate the periodic behavior of the plant and vector populations over time, with varying levels of
periodicity in the vector growth rate, which is controlled by the different values of λ1.

This example demonstrates how altering the periodicity and the vector population’s growth rate
affects the plant-vector system’s overall dynamics. By tuning parameters such as λ1, vineyard managers
or researchers could explore different scenarios, such as varying climatic conditions or vector control
interventions.

The dynamics of the vector population are primarily driven by their recruitment rate, Λ, which is
considered as a primary control variable, and focused on in this second example. During a typical
season, the susceptible vector population Vs initially increases, thus approaching its upper carrying
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capacity, which exceeds the eventual peaks of the other vector stages. As this happens, the exposed
vector population Ve rises and eventually overtakes the susceptible population.

The effect of the halt in growth is immediate: a steep drop in Vs triggers a more moderate decline
in Ve, thus leading to a gradual decrease in Vi. Similarly, a decrease in Ps causes a slight increase in
Pe. When the growth is stopped (i.e., when Λ = 0), the susceptible population populations experience
a sharp decline, immediately followed by the exposed population. This anticipates the end of the
adult generation. Simultaneously, the infected population reaches its peak, and then decreases. This
timing is significant: the infected population peaks just as the birth rate halts. After this point, all
vector populations decline to minimal levels, thus eventually disappearing. The dynamics of the plant
populations mirror those of the vector populations.

The dynamics of the plant populations mirror those of the vector populations. When the infected
vectors are present – typically following a bell-shaped curve with a kink at the peak – the susceptible
plant population decreases in an inverse S-shaped pattern. Conversely, when the infected vectors are
absent, the number of susceptible plants remains stable.

Interestingly, the number of exposed plants decreases during periods of low vector load and slightly
increases during a stronger vector presence. This decrease may seem counterintuitive: why should the
plant populations change when the vectors are absent? Without a significant vector population, one
would expect little change in the plant populations. However, if the exposed plants are present, then
they will convert into infected plants according to the system’s dynamics. In this example, we chose a
relatively high initial number of exposed plants. While this higher initial value might not represent a
typical real-world case, it is included here for didactic purposes to examine the behavior of the system’s
equations.

The increasing number of infected plants is expected, as the process is designed to be irreversible
– no plant recovery is considered. A key observation is that the rate of increase in the infected plants
does not noticeably change during the period of vector emergence. This didactic example is due to
the relatively high number of exposed plants, which dampens any significant change in the overall
percentage of infected plants.

6. Conclusions

Our model for the recruitment rate assumed that births do not occur continuously throughout the
year, but are seasonally concentrated. This can be modeled using a seasonally varying function that
peaks during the leafhopper’s breeding season. In our model, we chose a piecewise constant function
that took a positive value during the breeding season and dropped to zero outside of it. This approach
is both practical and effective in the absence of detailed data. While alternative functional forms could
be considered, the key factors to capture are the average length of the breeding season and the breeding
intensity.

6.1. Model improvements

In this paragraph, some potential improvements to the model are discussed.
As leafhoppers progress through different life stages (eggs, nymphs, adults), these stages could be

modeled with distinct variables to gain a quantitative control over their development. This distinction
is reasonable since only adults can infect plants, while the other stages are crucial for tracking the ef-
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fective number of future adults in the next generation. Of particular relevance are the nymph dynamics,
as pathogen acquisition can occur during both the nymph and adult stages.

To better capture the leafhopper life cycle, we could introduce two key state variables: N for
eggs/nymphs, which represents a latent period, and V∗ for adults, which represents an active period
that involves both reproduction and infection. Then, the model equations could be modified as fol-
lows:

Ṅ = λV − σN + . . .

V̇s = σN + . . .

In the first equation, the term λV accounts for the creation of new eggs/nymphs, and the term σN
represents the transition of nymphs to adults. In the second equation, the corresponding −σN term
accounts for the removal of nymphs as they transition to adults. The function σ could vary seasonally
(e.g., with σ = 0 during the breeding season and σ > 0 during hatching).

It also might be useful to formally classify two levels of infection within the plants:

1) The overall statistics of the plant population, which indicates the percentage of plants in each infec-
tion status (i.e., whether a plant is infected or not, without specifying the severity of infection).

2) The degree of infection within an individual plant, thus acknowledging that the extent of bacterial
growth within a plant influences the probability of transmission.

This distinction is valuable because the severity of infection within the individual plants can signifi-
cantly affect the overall dynamics of disease spread.

6.2. Outlook on real-world applications

The findings of this study have important real-world implications for disease management and pre-
vention in vineyards, particularly in controlling flavescence dorée. By incorporating seasonality and
periodic dynamics into the mathematical model, vineyard managers can better predict the timing and
intensity of disease outbreaks, thus allowing for more precise interventions. For instance, the identifi-
cation of key periods when the vector population is likely to surge or when grapevines are most vulner-
able to infection can inform the timing of pesticide applications, thus reducing the need for constant
chemical use and lowering environmental impact. Additionally, the model’s ability to simulate vari-
ous control strategies—such as vector population reduction, quarantine measures, or the introduction
of disease-resistant grapevines—provides vineyard managers with valuable tools to assess the effec-
tiveness of these approaches before implementation. This leads to more sustainable and cost-effective
practices, as well as better long-term vineyard health, thereby reducing crop losses and increasing pro-
ductivity. Ultimately, the integration of such modeling into disease management programs enhances
the decision-making processes, thus aligning with the broader goals of sustainable agriculture.
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trol of scaphoideus titanus with natural products in organic vineyards, Insects, 8 (2017), 129.
https://doi.org/10.3390/insects8040129

16. J. Kranz, Epidemics of Plant Diseases Mathematical Analysis and Modeling, Springer Berlin,
Heidelberg, 2004. https://doi.org/10.1007/978-3-642-75398-5

17. F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, Springer New
York, NY, 2019. https://doi.org/10.1007/978-1-4939-9828-9

18. H. Fang, M. Wang, T. Zhou, Existence of positive periodic solution of a hepatitis B virus infection
model, Math. Methods Appl. Sci., 38 (2015), 188–196. https://doi.org/10.1002/mma.3074

19. J. Lourenço, M. Maia de Lima, N. R. Faria, A. Walker, U. MOritz, C. J. Villabona-Arenas, et al.,
Epidemiological and ecological determinants of Zika virus transmission in an urban setting, eLife,
6 (2017), e29820. https://doi.org/10.7554/eLife.29820

20. R. Ranjan, Predictions for COVID-19 outbreak in India using epidemiological models, MedRxiv,
2020 (2020), 11. https://doi.org/10.1101/2020.04.02.20051466

21. M. Martcheva, An Introduction to Mathematical Epidemiology, Springer New York, NY, 2015.
https://doi.org/10.1007/978-1-4899-7612-3

22. T. Smith, G. F. Killeen, N. Maire, A. Ross, L. Molineaux, F. Tediosi, et al., Mathemati-
cal modeling of the impact of malaria vaccines on the clinical epidemiology and natural his-
tory of Plasmodium falciparum malaria: Overview, Am. J. Trop. Med. Hyg., 75 (2010), 1–10.
https://doi.org/10.4269/ajtmh.2006.75.2 suppl.0750001

23. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epi-
demics, Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 115 (1927), 700–721.
https://doi.org/10.1098/rspa.1927.0118

24. R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford
University Press, UK, 1992. https://doi.org/10.1093/oso/9780198545996.001.0001

25. H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653.
https://doi.org/10.1137/S0036144500371907

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7554–7581.

https://dx.doi.org/https://doi.org/10.32796/bice.2015.3068.5512
https://dx.doi.org/https://doi.org/10.1016/j.ecolmodel.2015.05.014
https://dx.doi.org/https://doi.org/10.3390/insects12020169
https://dx.doi.org/https://doi.org/10.1007/978-981-13-2832-9_1
https://dx.doi.org/https://doi.org/10.1016/j.biosystemseng.2022.01.009
https://dx.doi.org/https://doi.org/10.3390/insects8040129
https://dx.doi.org/https://doi.org/10.1007/978-3-642-75398-5
https://dx.doi.org/https://doi.org/10.1007/978-1-4939-9828-9
https://dx.doi.org/https://doi.org/10.1002/mma.3074
https://dx.doi.org/https://doi.org/10.7554/eLife.29820
https://dx.doi.org/https://doi.org/10.1101/2020.04.02.20051466
https://dx.doi.org/https://doi.org/10.1007/978-1-4899-7612-3
https://dx.doi.org/https://doi.org/10.4269/ajtmh.2006.75.2_suppl.0750001
https://dx.doi.org/https://doi.org/10.1098/rspa.1927.0118
https://dx.doi.org/https://doi.org/10.1093/oso/9780198545996.001.0001
https://dx.doi.org/https://doi.org/10.1137/S0036144500371907


7577

26. M. J. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton Uni-
versity Press, UK, 2011. https://doi.org/10.2307/j.ctvcm4gk0

27. D. H. Anderson, Compartmental modeling and tracer kinetics, in Lecture Notes in Biomathemat-
ics, Springer-Verlag Berlin, Heidelberg, 1983. https://doi.org/10.1007/978-3-642-51861-4

28. R. Anguelov, J. Lubuma, Y. Dumont, Mathematical analysis of vector-borne diseases on plants,
in IEEE, 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and
Applications, Shanghai, China, (2012), 22–29. https://doi.org/10.1109/PMA.2012.6524808

29. I. M. Bulai, A. C. Esteves, F. Lima, E. Venturino, A mathematical modeling approach to
assess biological control of an orange tree disease, Appl. Math. Lett. 118 (2021), 107–140.
https://doi.org/10.1016/j.aml.2021.107140
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Appendix

A. Reformulation of the system (1.1)–(1.7) as operator equation

Theorem A.1. Consider that the hypothesis of Theorem 1.1 are satisfied. Let L and N be the operators
defined in (1.9) and (1.10), Respectively, and consider x(t) = (x1, . . . , x6)T (t) defined by (1.12). Then,
the following statements are true:

(a) x is a solution of the operator equation (1.11) if and only if a solution of (Ps, Pe, PI ,Vs,Ve,Vi

)
is

a solution of the system (1.1)–(1.7).

(b) If the solution of (1.11) is ω−periodic, then the solution of system (1.1)–(1.7) is also ω−periodic.

(c) If operator equation (1.11) has a solution. Then system (1.1)–(1.7) has a positive solution.

Proof. In order to prove Theorem A.1-(a), we begin by noticing that the change of variable (1.12) and
differentiation imply the following identities:

d
dt

x(t) =
1
P

(
e−x1(t) dPs

dt
, e−x2(t) dPe

dt
, e−x3(t) dPi

dt
, e−x4(t) dVs

dt
, e−x5(t) dVe

dt
, e−x6(t) dVi

dt

)
(t), (A.1)

d
dt

(
Ps, Pe, Pi,Vs,Ve,Vi

)
=

(
Pex1

dx1

dt
, Pex2

dx2

dt
, Pex3

dx3

dt
, Pex4

dx4

dt
, Pex5

dx5

dt
, Pex6

dx6

dt

)
. (A.2)
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If (Ps, Pe, Pi,Vs,Ve,Vi)T is a solution of system (1.1)–(1.7), then using (A.1) and (1.12), we deduce
that x is a solution of the following system:

dx1

dt
= −β(t)ex6 + γex3−x1 , (A.3)

dx2

dt
= β(t)ex6+x1+x2 − α, (A.4)

dx3

dt
= αex2−x3 − γ, (A.5)

dx4

dt
= Λ(t)

(
ex4 + ex5 + ex6

)
e−x4 −

(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
− ν(t)ex3 + κex6−x4 , (A.6)

dx5

dt
= −

(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ ν(t)ex4+x3−x5 − θ, (A.7)

dx6

dt
= −

(
µ1 + µ2P

(
ex4 + ex5 + ex6

))
+ θex5−x6 − κ, (A.8)

x(0) =
(
ln

(P0
s

P

)
, ln

(P0
e

P

)
, ln

(P0
i

P

)
, ln

(V0
s

P

)
, ln

(V0
e

P

)
, ln

(V0
i

P

))
. (A.9)

Using the operators L and N defined in (1.9) and (1.10), respectively, we can rewrite the system
(A.3)–(A.9) as the operator equation (1.11). Conversely, if we consider that x satisfies (1.11), we
deduce that x is a solution of (A.3)–(A.9); then by the application of (A.2) and (1.12),we get that
(Ps, Pe, Pi,Vs,Ve,Vi)T is a solution of system (1.1)–(1.7).

The proofs of items (b) and (c) of Theorem A.1 are straightforward consequence of (1.12).

B. Proof of Lemma 2.1

(a) Let x ∈ Ker (L), (i.e., L(x) = 0 ∈ R6). Then, by the definition of the operator L, we deduce
that x′(t) = 0, or equivalently that x(t) = x(0) for t ∈ [0, ω]. Thus, we deduce that Ker (L) � R6

and dim( Ker (L)) = 6 < ∞. Applying the elementary algebra results, we obtain the following:
(i) X � Ker (L)

⊕
(X/Ker (L)); (ii) Y � Im (L)

⊕
(X/Ker (L)) � Im (L)

⊕
(Y/Ker (L)), since X = Y;

and (iii) Im (L) � (X/Ker (L)). Using (iii) in (i), it follows that X � Ker (L)
⊕

(X/Ker (L)) �
Ker (L)

⊕
Im (L); and from (ii), Y � (Y/Ker (L))

⊕
Im (L), which implies that Ker (L) � (Y/Ker (L))

using the fact that X = Y. Therefore, dim( Ker (L)) = dim(Y/Ker (L)) = codim( Im (L)) = 6 < ∞.
In order to prove that Im (L) is a closed set, we select arbitrarily y ∈ Im (L). Then, we can find

x ∈ Dom (L) such that L(x) = y, and by the definition of L and the fact that x ∈ X, we deduce the
following

L(x) = y ⇔
dx(t)

dt
= y(t) ⇔

∫ t+ω

t
dx =

∫ t+ω

t
y(τ)dτ ⇔ 0 =

∫ t+ω

t
y(τ)dτ.

Equivalently, Im (L) is characterized by Im (L) =
{
y ∈ Y :

∫ ω

0
y(τ)dτ = 0

}
. Moreover, it follows that

for a continuous f : Im (L) ⊂ X → R6; f −1(0T ) = Im (L) is a closed set; because
{
0T

}
is a closed set

of R6.

Hence, we have that L is a Fredholm operator of index zero.
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(b) Consider the sequence {xn} ⊂ X and x ∈ X such that xn → x in the topology induced by the
norm of X. Based on the definition of the operator N as given in (1.10), and applying the inequality
component-wise,

| exp(z2) − exp(z1)| =

∣∣∣∣∣∣
∫ z1

z2

exp(s)ds

∣∣∣∣∣∣ ≤ max
{

exp(z1), exp(z2)
}
|z2 − z1|, ∀z1, z2 ∈ R,

we establish the existence of a constant C > 0 depending only on ψ, ϕ, ν, θ, α, β, γ, and κ, such that
∥N(xn) − N(x)∥ ≤ C∥xn − x∥. This leads to the conclusion that N(xn)→ N(x) in the norm of E, proving
that N is continuous.

(c) By the definition of the operator P, we easily deduce that it is linear, continuous, and is a projector,
since

P2(x) = P(P(x)) = P
(

1
ω

∫ ω

0
x(τ)dτ

)
=

1
ω

∫ ω

0

1
ω

∫ ω

0
x(τ)dτds =

1
ω

∫ ω

0
ds ·

1
ω

∫ ω

0
x(τ)dτ

=
ω

ω

1
ω

∫ ω

0
x(τ)dτ =

1
ω

∫ ω

0
x(τ)dτ = P(x).

Using the fact that P = Q, we have the same conclusions for the operator Q (i.e., Q is linear, continuos
and is a projector).

We prove that Ker (L) = Im (P) by using the double inclusion argument. We can deduce that
Ker (L) ⊂ Im (P); by the results of Lemma 2.1–(a), we can apply the following arguments: if x ∈
Ker (L) � R6, then we have that x(t) is a constant function on [0, ω], then P(x) = x or equivalently
x ∈ Im (P). Conversely, we prove that Im (P) ⊂ Ker (L) as follows: if y ∈ Ker (L), then there exists
z ∈ X such that P(z) = y; and from the definition of P, we get ω−1

∫ ω

0
z(τ)dτ = y, i.e., L(y) = 0, which

implies that y ∈ Ker (L).
We prove that Ker (Q) = Im (L) using the definition of the operator Q and the characterization of

Im (L) given on the item (a): y ∈ Ker (Q) is equivalent to
∫ ω

0
y(τ)dτ = 0 or y ∈ Im (L).

To prove Im (I − Q) = Im (L), we consider y ∈ Im (I − Q); then, there exists z ∈ X such that

(I − Q)
(
z
)
= y ⇔

∫ ω

0

(
z(τ) −

1
ω

∫ ω

0
z(m)dm

)
dτ =

∫ ω

0
y(τ)dτ = 0 ⇔ y(τ) ∈ Im (L).

The last equivalence is obtained by the application of item (a). Hence, we deduce that Im (I − Q) =
Im (L).

Let us prove the existence of the Operators KP and LP. The operator LP is the restriction of L to
Dom (L) ∩ Ker (P) (i.e., LP : Dom (L) ∩ Ker (P) → Im (L) and LP = L on Dom (L) ∩ Ker (P)). The
operator KP is the inverse operator of LP, defined by the following relation:

KP (x) (t) =
∫ t

0
x(τ)dτ −

1
ω

∫ ω

0

∫ η

0
x(m)dmdη. (B.1)

To prove that KP = L−1
P , we apply the following identity:∫

0

d
ds

x(s)ds −
1
ω

∫ ω

0

∫
0

d
dm

x(m)dmdt = x(t),
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which is satisfied only on Dom (L) ∩ Ker (P).

(d) Considering the definition of the operator Q, we note that QN(x) = 1
ω

∫ ω

0
N(τ)dτ. Then, for x ∈ Ω

we get that ∥QN(x)∥ ≤ 1
ω

∫ ω

0
∥N∥dτ = ∥N∥, which implies that QN(Ω) is bounded on Ω. From the

definitions of the operators KP,N and Q, we have the following:(
KP(I − Q)N)

)
(x)(t) =

∫ t

0
N(τ)dτ +

(
1
2
−

t
ω

) ∫ ω

0
N(τ)dτ −

1
ω

∫ ω

0

∫ η

0
N(m)dmdη.

Consequently, we deduce the estimate ∥KP(I − Q)N∥ ≤ 3ω∥N∥, thus indicating that (KP(I − Q)N)(Ω)
is bounded on Ω, as N is bounded on Ω. Additionally, we clearly deduce that∣∣∣∣(KP(I − Q)N)

)
(x)(t) −

(
KP(I − Q)N)

)
(x)(s)

∣∣∣∣ ≤ 2∥N∥ |t − s|, ∀t, s ∈ [t0,∞],

or equivalently, KP(I − Q)N is an equicontinuous operator. By applying Arzela-Ascoli’s theorem, it
follows that KP(I −Q)N is a compact operator on Ω. Thereby, we conclude that N is L-compact on Ω.
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