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Abstract: The process of viral infection spreading in tissues was influenced by various factors,
including virus replication within host cells, transportation, and the immune response. Reaction-
diffusion systems provided a suitable framework for examining this process. In this work, we
studied a nonlocal reaction-diffusion system of equations that modeled the distribution of viruses
based on their genotypes and their interaction with the immune response. It was shown that the
infection may persist at a certain level alongside a chronic immune response, exhibiting spatially
uniform or oscillatory behavior. Finally, the immune cells may become entirely depleted, leading
to a high viral load persisting in the tissue. Numerical simulations were employed to elucidate the
nonlinear dynamics and pattern formation inherent in the nonlocal model.
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1. Introduction and mathematical model

The management of infectious diseases is a major challenge for public health systems globally,
especially in the era of global pandemics such as COVID-19. The speed of epidemic spread, the
mutations of pathogens, and the socioeconomic challenges related to their management present
complex issues for health authorities. In light of these challenges, optimizing intervention strate-
gies is crucial to minimize the health and economic impacts of epidemics [1–6].
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The immune system’s ability to control virus infections is based on various critical aspects of
the virus-host interaction, including in situ reactions (such as virus replication within cells, cell ac-
tivation, proliferation, differentiation, and death) and spatial transport mechanisms (such as virus
spread between cells and tissues, immune cell trafficking, and migration) [7]. It has been recog-
nized, particularly in the case of systemically spreading virus infections like human immunodefi-
ciency virus (HIV), that an integrated understanding of virus propagation and T cell surveillance
in infected tissues is crucial for comprehending disease pathogenesis and the progression to AIDS
(Acquired immunodeficiency syndrome) [8, 9].

The concept of quasi-species offers a suitable framework for understanding virus evolution
[10, 11]. Various models have been developed to describe the evolution of a discrete set of virus
variants through systems of differential equations [12, 13]. The study of virus evolution within a
continuous genotype space has been addressed in previous works [14–18]. Infection spreading in
cell culture or tissue has been studied in [7, 19, 20].

This study extends the investigation initiated by previous research by further examining virus
density evolution within the genotype space, particularly in its interaction with the immune re-
sponse. Understanding these dynamics is crucial, as it can provide insights into how viruses adapt
and potentially evade immune detection, which has significant implications for vaccine develop-
ment and therapeutic strategies. By elucidating the relationship between virus density and immune
response, this work aims to inform public health interventions and enhance our overall understand-
ing of viral pathogenesis. We analyze the distribution of virus density, denoted as V(x, t), within the
genotype space represented by the variable x at time t, alongside the concentration of virus-specific
T lymphocytes, denoted as C(x, t).

The model describes how the number of viruses and the strength of the immune response change
as the infection develops over time, and is given by the following system of reaction-diffusion
equations:

∂V
∂t
= d1
∂2V
∂x2 + aV(1 − k1H(V)) −

kCV
V + D

− σ(x)V, (1.1)

∂C
∂t
= d2
∂2C
∂x2 + p(V)

C
1 + bC

− q(V)C. (1.2)

To simplify mathematical computations, the genotype variable x is considered on the whole
axis. The model is shown graphically in Figure 1 and explained as follows: Diffusion terms in both
equations account for the small, random mutations that occur in both viruses and cells. The second
term in Eq (1.1) depicts the process of virus replication within host cells. It is proportional to the
virus density V and to the dimensionless quantity of uninfected cells (K − k1H(V)). Here, K = 1
corresponds to the dimensionless total number of cells, and the number of infected cells is directly
proportional to the total amount of virus H(V), which competes for host cells. This assumption is
valid if we assume that infected host cells do not undergo mortality. We will examine two distinct
scenarios. In the first scenario, viruses compete for host cells independently of their genotype,
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Figure 1. Schematic representation of the interactions between the virus and the im-
mune system. The set of processes includes: 1) virus replication, 2) stimulation of virus-
specific T cell proliferation, 3) attenuation of antiviral responses (functional or physical
exhaustion), and 4) virus clearance facilitated by effector CTLs (Cytotoxic T Lympho-
cytes).

known as global competition [18], where

H(V) =
∫ ∞

−∞

V(x, t)dx (= I(V)). (1.3)

In the second scenario, this competition depends on the genetic distance between genotypes [18],
denoted as

H(V) =
∫ ∞

−∞

ϕ(x − y)V(y, t)dy (= J(V)), (1.4)

where the kernel ϕ(x − y) determines the effectiveness of this competition. It will be convenient
henceforth to employ distinct notation for these integrals. The final two terms in this equation
represent virus elimination by immune cells and the virus mortality rate, which is independent of
the immune response but may depend on the virus genotype, with the rate σ(x). The parameter D
is a positive constant that represents the half-saturation.

The second term on the righthand side of Eq (1.2) depicts the clonal expansion of immune cells
induced by the presence of the antigen (virus). The function p(V) is positive when V > 0.
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The function p(V) may exhibit various behaviors: it can be linear, increase with saturation, or
grow initially for small V and then decay for large V . The mortality rate q(V) of immune cells can
either depend on the virus density or remain independent of it, taking a positive constant value.
We assume that p(0) < q(0). This condition implies that in the absence of viral load, the birth
rate of cells is lower than their mortality rate, resulting in a decline in cell concentration. We do
not account for memory cells that persist in the organism after the infection is eradicated. When
the viral load V surpasses a certain threshold, p(V) exceeds q(V), triggering the initiation of the
immune response against the pathogens. Otherwise, the concentration of immune cells diminishes,
and the immune response does not impact the progression of infection in the organism. It’s worth
noting that a high virus concentration can suppress the proliferation rate of immune cells, but we
do not consider this effect here (see [7, 19]).

The functions H(V), p(V), and q(V) are biologically grounded and supported by previous
studies on viral evolution and immune dynamics. They provide a realistic framework for mod-
eling the dynamic interactions between virus populations and immune cells, particularly T cells
(see [7, 14, 17] and the references therein).

In Section 2, we investigate the existence of positive stationary solutions for the system de-
scribed by Eqs (1.1) and (1.2) that decay at infinity. Such solutions correspond to virus quasi-
species. The presence of these solutions is determined by the viability intervals within the genotype
space, where the rate of birth surpasses the rate of death. Section 3 provides a concise overview of
the temporal model, highlighting its key features and dynamics. In Section 4, we focus on the local
reaction–diffusion model, presenting its formulation and key characteristics. Section 5 introduces
the nonlocal reaction–diffusion model, discussing the inclusion of nonlocal interactions and their
impact on the system. In Section 6, we explore the conditions for instability and the mechanisms of
pattern formation, including criteria for both Turing and spatial Hopf bifurcations. Finally, Section
7 provides a discussion summarizing the main results and outlining potential directions for future
research.

2. Existence of positive stationary solution

In this section, we study the existence of positive stationary solutions for the system (1.1)–(1.2)
under the condition that the virus mortality rate σ(x) is lower than the virus replication rate within
a specific range of genotypes. Our analysis suggests that this genotype-dependent virus mortality
rate plays a crucial role in enabling the persistence of virus quasi-species.

2.1. Global competition

The equations governing the stationary solutions of the system (1.1)–(1.2) over the entire axis
are as follows:

V ′′ + V(1 − I(V)) −
CV

V + D
− σ(x)V = 0, (2.1)
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C′′ + p(V)
C

1 +C
− q(V)C = 0, (2.2)

We simplify the notation by assuming that d1 = d2 = D = k1 = k = a = b = 1. Here, we examine
the scenario of global competition among viruses for host cells, where H(V) = I(V). Our goal is
to find positive solutions to this system of equations that approach zero as x→ ±∞.

The existence of these solutions is determined by the function σ(x), which sets the virus mortal-
ity rate. A typical example is given by σ(x) = 0 for |x| ≤ x0 and σ(x) = σ0 > 1 for |x| ≥ x1, where
x0 and x1 > x0. The functions σ(x), p(V), and q(V) are assumed to be nonnegative and sufficiently
smooth. Additional conditions will be formulated below. We will prove the existence of a solution
using the topological degree method. Initially, we will establish some preliminary estimates for
potential solutions to this problem.

Lemma 1. Suppose (V(x),C(x)) constitutes a positive solution to Eqs (2.1) and (2.2), with
V(±∞) = 0 and C(±∞) = 0. Then, it follows that I(V) < 1.

Proof. Assuming that the statement of the lemma does not hold, that is I(V) ≥ 1, we conclude
that V(x) satisfies the inequality:

V ′′ + q(x)V ≥ 0, where q(x) = 1 − I(V) − σ(x).

Since q(x) ≤ 0 and q(x) . 0, from the strong maximum principle [21], we deduce that V(x)
cannot attain a positive maximum or a negative minimum. Therefore, V(x) ≡ 0, which contradicts
the hypothesis V(x) > 0. □

Consider (V(x),C(x)) as a positive solution to (2.1) and (2.2). The following lemma provides
some properties of this solution.

Lemma 2. 1) There exists a positive constant K such that 0 < V(x) < K for all x ∈ R.

2) If
p(V)
q(V)

is bounded for all V ≥ 0, then there exists a constant M > 0 such that 0 < C(x) < M

for all x ∈ R.

Proof. Suppose there exists a point x0 such that V(x0) is the global maximum of V(x) over the
entire domain. From Eq (2.1), we deduce:

V ′′(x) > −V(x) ≥ −V(x0). (2.3)

Utilizing Taylor’s expansion around x0, we obtain the following lower bound for V(x):

V(x) = V(x0) + V ′(x0)(x − x0) +
V ′′(χ)

2
(x − x0)2 ≥ V(x0) −

V(x0)
2

(x − x0)2 = V(x0)g(x), (2.4)

where χ lies between x and x0, and g(x) = 1−
(x − x0)2

2
. Let Ω represent the interval where g(x) is

positive. Hence, we have ∫
Ω

g(x) dx ≥ κ > 0. (2.5)
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From Lemma 1, it follows that
1 > I(V) > κV(x0). (2.6)

Thus, we conclude the first part of the lemma.
Let us now prove the second part of the lemma. If C achieves a positive maximum at some

point y0, then C′′(y0) < 0. This implies:

p(V(y0))
1

1 +C(y0)
− q(V(y0)) > 0. (2.7)

Consequently,

1 +C(y0) <
p(V)
q(V)
, (2.8)

which completes the proof of the lemma.
To ensure the existence of solutions for our nonlinear system, we use the Leray-Schauder

method, which is based on the concept of topological degree and a continuation technique. This
method involves introducing a continuation parameter τ ∈ [0, 1] in a family of parameterized equa-
tions of the form H(u, τ) = τF(u) + (1 − τ)G(u) = 0, where F(u) is the nonlinear operator of the
original equation and G(u) is a simpler operator, often linear. The idea is to first solve the simpli-
fied equation G(u) for τ = 0, and then continuously track the solutions as τ increases until τ = 1,
where the original equation is recovered. The parameter τ thus establishes a homotopy between
these two operators. If the operator H(u, τ) satisfies compactness and continuity conditions, and
the topological degree remains constant and nonzero throughout the deformation, the existence of
solutions for τ = 1 is guaranteed. This process is central to our proof of the existence of solutions
in this study.

The preliminary estimates of solutions are provided by Lemma 2 above. Let U := (V,C) and
consider the operator

Aτ(U) =

V
′′ + V(1 − I(V)) −CV − στ(x)V,

C′′ + p(V)
C

1 +C
− q(V)C.

(2.9)

Let Aτ(U) be defined as a mapping from the weighted Hölder space (C2+α
µ (R))2 to the space

(Cαµ (R))2, where 0 < α < 1 and τ ∈ [0, 1] serves as a parameter. Here, the space Cαµ (R) consists of
functions u(x) such that u(x)µ(x) ∈ C2+α

µ (R), with µ(x) = 1 + x2. This weight function grows poly-
nomially at infinity. The introduction of weighted spaces is crucial for defining the topological
degree for elliptic operators in unbounded domains, as discussed in works such as [21]. Fur-
thermore, the incorporation of weighted spaces ensures the well-definedness of the integral I(V),
preserving the integrity of the essential spectrum.

We will assume, for simplicity, that στ(x) is infinitely differentiable with respect to both x and
τ, with additional conditions to be specified later. Let Lτ be the operator obtained by linearizing
the operator Aτ about U = 0, defined as:

Lτ(z1, z2) =

z′′1 + z1 − στ(x)z1,

z′′2 + p(0)z2 − q(0)z2.
(2.10)
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Recall the assumption:
p(0) < q(0). (2.11)

Lemma 3. If the principal eigenvalue of the differential operator

G(z) := z′′ + z − στ(x)z (2.12)

is positive for τ0 ≤ τ ≤ τ1, where τ0, τ1 are fixed, then there exists a positive constant ϵ such that
for any positive solution of the equation Aτ(U) = 0 with τ0 ≤ τ ≤ τ1, we have

sup
x

V ≥ ϵ and sup
x

C ≥ ϵ. (2.13)

Proof. It follows from condition (2.11) that the unique solution of the equation

z′′2 + p(0)z2 − q(0)z2 = 0 (2.14)

is identically zero. Suppose for the sake of contradiction that the statement of the lemma does not
hold. This implies the existence of a sequence of solutions Uk(x) for τ = τk such that Umk → 0.
Without loss of generality, we can assume that τk → τ∗ for some τ∗ ∈ [τ0, τ1]. Then, we have:

0 = Aτk(Uk) = Aτk(0) + LτkUk + o(∥Uk∥). (2.15)

Let wk = Uk/∥Uk∥. Then, Lτkwk = o(1). Using the property that operators Lτk are proper with
respect to w and τ (see [21]), we can deduce that the sequence wk is compact. Consequently, there
exists a subsequence, which we denote also as wk, converging to some function w0. Therefore,
Lτ∗w0 = 0.

Since the functions wk(x) are positive, the limit function w0(x) is also nonnegative. Thus,
w0(x) ≥ 0 for all x. This implies that Lτ∗ has a zero eigenvalue with a positive eigenfunction.
However, the only positive eigenfunction of Lτ∗ corresponds to the principal eigenvalue [22]. This
leads to a contradiction. Hence, the assertion of the lemma holds. □

Theorem 1. Let p(V), q(V), and σ(x) be nonnegative infinitely differentiable functions. Assume
p(V)/q(V) is bounded for V ≥ 0, σ(x) = σ > 1 for |x| ≥ x1 with positive constants σ, x1, and
condition (2.11) is satisfied. Suppose the principal eigenvalue of the problemz′′1 + z1 − στ(x)z1 = λz1,

z′′2 + p(0)z2 − q(0)z2 = λz2
(2.16)

is positive. Then, the system (2.1)–(2.2) admits a positive solution converging to 0 at infinity.

Proof. To establish the theorem, we define στ(x) = (1 − τ)σ(x) + τσ, and consider U = (V,C)
as the solution of problem (2.1)–(2.2). Given that σ > 1, the spectrum of the operator L1 is situated
in the left half-plane. Notably, the essential spectrum S e(Lτ) of the operator Lτ remains constant
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for all τ, with Re(Lτ) ≤ −δ < 0 for some positive δ. Let λ0(τ) denote the principal eigenvalue of
Lτ. According to the lemma assumption, we have λ0(0) > 0.

The principal eigenvalue λ0(τ) is a decreasing function with respect to τ ∈ [0, 1]. There exists
a value τ0 ∈ [0, 1] such that λ0(τ0) = 0. For 0 < τ < τ0, we have λ0(τ) > 0, and for τ0 < τ < τ1,
where τ1 lies within the interval (τ0, 1], λ0(τ) < 0. However, it is important to note that ensuring
the existence of the eigenvalue for all values of τ in the interval, [0, 1] remains challenging due to
the possibility of its proximity to the essential spectrum.

Let us examine the equation Aτ(U) = 0 in a small neighborhood of the bifurcation point τ = τ0.
As the parameter approaches this threshold, the previously stable trivial solution U = 0 becomes
unstable, leading to the emergence of another solution Uτ(x). This newfound solution is character-
ized by its positivity, attributed to the positivity of the principal eigenfunction w0(x), as detailed in
Lemma 3. Furthermore, the index of this solution, that is, the value of the degree with respect to a
small ball containing this solution, equals 1. Indeed, from the homotopy invariance of the degree,
it follows that

ind(0) + ind(Uτ) + ind(Ũτ) = 1 (2.17)

for all τ > τ0 and sufficiently close to τ0. Here, Ũτ denotes a negative solution emerging from the
trivial solution and converging to −U0(x). Given that ind(0) = −1, matching (−1)ν with ν = 1,
representing the count of positive eigenvalues of the linearized operator, leads to the conclusion
that ind(Uτ) = ind(Ũτ) = 1.

Lemma 2 implies the existence of a positive constant M0, ensuring that |U |E1 < M0 for any
positive solution u of the equation Aτ(U) = 0. Moreover, by employing Lemma 3, we deduce the
existence of a positive value δ(τ) such that |U |E1 > δ(τ) for τ < τ0.
Let us consider the domain

Ω = {U ∈ C2+α(R)| U(x) > 0, x ∈ R, δ0 < ∥U∥(C2+α(R))2 < M0}

for some δ0 > 0 sufficiently small. Choose τ2 < τ0 such that δ(τ) > δ0 for 0 ≤ τ ≤ τ2.

As Aτ(U) , 0 for U ∈ ∂Ω, it follows that the degree γ(Aτ,Ω) remains unchanged over τ ∈ [0, τ2].
Thus, we can deduce that γ(A0,Ω) = γ(Aτ2 ,Ω) = ind(Uτ2) = 1. This indicates that the equation
A0(U) = 0 possesses a solution within Ω. This conclusion establishes the validity of the theorem.

2.2. Nonlocal competition

In the context of nonlocal competition, our analysis centers on the integral J(V) rather than
I(V).

V ′′ + aV(1 − J(V)) −
kCV
V + 1

− σ(x)V = 0, (2.18)

C
′′

+ p(V)
C

1 +C
− q(V)C = 0. (2.19)

Furthermore, we assume the kernel ϕ(x) to be bounded and integrable. Specific examples will be
explored subsequently. The proof of solution existence mirrors the previous case, albeit with some
differences related to a priori estimates of solutions provided in the following lemma.
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Lemma 4. Suppose (V(x),C(x)) represents a positive solution of Eqs (2.18) and (2.19). Then, the
following assertions hold:
1). There exists a positive constant K1 such that 0 < V(x) < K1.

2). If
p(V)
q(V)

is bounded for all V ≥ 0, then there exists a constant M1 such that 0 < C(x) < M1.

Proof. We will divide the proof of the lemma into two cases: J(V) < 1 and J(V) ≥ 1. In the
first case, we can conclude that V ′′(x) ≥ −aV(x) for all x ∈ R. In the second case, we observe
that V ′′(x) > 0 > −aV(x) for all x ∈ R, as V(x) ≥ 0. Let x0 denote the global maximum of V(x),
which exists since the function is positive and decays at infinity. Our aim is to demonstrate that
J(V(x0)) < 1. Suppose to the contrary that J(V(x0)) ≥ 1. This would result in a contradiction of
signs in (2.18) at x = x0. Expanding V(x) in a Taylor series about x0, we obtain the following lower
bound:

V(x) = V(x0) + V ′(x0)(x − x0) + a2(x − x0)2 ≥ V(x0) −
aV(x0)

2
(x − x0)2 = V(x0)g(x), (2.20)

where a2 = V ′′(χ)/2 and g(x) = 1 − a(x − x0)2/2. Since the function g(x) is positive in the interval

x0 −

√
2
a
< x < x0 +

√
2
a

and equals zero at its boundaries, we can find x1 in this interval such

that g(x) ≥ k > 0 and ϕ(x) > 1/2 for all x ∈ [x0, x1]. Consequently,

1 ≥ J(V(x0)) =
∫ ∞

−∞

ϕ(x0 − y)V(y)dy > V(x0)
∫ x1

x0

ϕ(x0 − y)g(y)dy >
k
2

(x1 − x0)V(x0). (2.21)

This estimate establishes the first part of the lemma. The proof of the second part follows a similar
approach to that of Lemma 2.

The remaining part of the proof for the existence of a solution follows a similar approach to that
used in the case of global competition; hence, we omit the details here.

3. The temporal model

We begin the examination of the interaction between viral infection and the immune response
with the model that does not incorporate diffusion:

dV
dt
= aV(1 − V) −

kCV
V + 1

− σ1V, (3.1)

dC
dt
= p

VC
1 +C

− qVC − σ2C, (3.2)

where we set p(V) = pV and q(V) = qV + σ2, assuming that a > σ1, p > q. This model pos-
sesses three stationary solutions, E0(0, 0), E1(1−

σ1

a
, 0), and the coexistence (positive) equilibrium

E∗(V∗,C∗), where

C∗ =
1
k

(V∗ + 1)(a − σ1 − aV∗), (3.3)
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and V∗ is a positive root of the following cubic equation:

F(v) = aqv3 + (aσ2 + qσ1)v2 +
(
k(p − q) + q(σ1 − a) + σ1σ2

)
v − σ2(a − σ1 + k) = 0. (3.4)

Let us note that C∗ is positive if the following inequality holds:

σ2

p − q
< V∗ < 1. (3.5)

To determine the number of equilibrium points of system (3.1)–(3.2), one needs to count the num-
ber of positive real roots of Eq (3.4) that lie in the interval (0, 1). Since F(0) = −σ2(a−σ1+k) < 0,
and

F(1) = 2σ1(q + σ2) + k(p − q − σ2) > 2σ1(q + σ2) > 0, (3.6)

according to Descartes’s rule of signs [23], F has exactly one positive root in (0, 1). Taking into
account (3.5), the nontrivial equilibrium exists if

σ2 < (p − q)
(
1 −
σ1

a

)
. (3.7)

It can be shown that the trivial equilibrium point E0 is a saddle point regardless of the parameter
values. On the other hand, if σ2 > (p − q)(1 −

σ1

a
), the coexistence (positive) point does not

exist and the virus-only equilibrium E1 is stable. In the case when the opposite inequality holds
σ2 < (p − q)(1 −

σ1

a
), the point E1 becomes unstable. In this case, the coexistence equilibrium

point E∗ is stable. Indeed, linearizing system (3.1)–(3.2) around E∗, we obtain the associated
characteristic equation.

λ2 + Aλ + B = 0, (3.8)

where
A = −aV∗ +

kV∗C∗

(1 + V∗)2 −
(qV∗ + σ2)C∗

1 + V∗

and
B =

(qV∗ + σ2)C∗

1 + V∗
(
aV∗ −

kV∗C∗

(1 + V∗)2

)
+

kV∗C∗

1 + V∗
( p
1 +C∗

− q
)
.

Because

−aV∗ +
kV∗C∗

(1 + V∗)2 < −aV∗ +
kV∗C∗

1 + V∗
= −aV∗2 − σ1V∗ < 0 (3.9)

and

p
1 +C∗

− q =
σ2

V∗
> 0, (3.10)

then, E∗ is locally asymptotically stable whenever it exists. An illustrative representation of the
population dynamics of viruses and immune cells is presented in Figure 2.
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ξ

Figure 2. Dynamics of virus and immune cell populations described by the model (3.1)–
(3.2). (Left) Case of a stable coexistence equilibrium with parameter values: a = 1.2, k =
0.3, σ1 = 0.6, p = 2, q = 0.4, σ2 = 0.6. (Right) Case of a stable virus-only equilibrium
with parameter values: a = 1.2, k = 0.3, σ1 = 0.6, p = 2, q = 0.4, σ2 = 1.

4. Local reaction–diffusion model

In this section, we extend the temporal model (3.1)–(3.2) presented in the preceding section by
incorporating the random dispersal of the virus and immune cell populations. The corresponding
spatiotemporal model is given by

∂V
∂t
= d1
∂2V
∂x2 + aV(1 − V) −

kVC
V + 1

− σ1V, (4.1)

∂C
∂t
= d2
∂2C
∂x2 + p

VC
1 +C

− qVC − σ2C. (4.2)

subjected to a nonnegative initial condition and the periodic boundary condition. The parameters
d1 and d2, respectively, denote the diffusion coefficients representing the mutation rates of the
virus and immune cell populations. For simplicity, we restrict ourselves to one-dimensional spatial
domain R.

The equilibrium points found in the temporal model (3.1)–(3.2) also serve as equilibrium points
in system (4.1)–(4.2). We now examine the Turing instability of the nontrivial equilibrium solution
E∗(V∗,C∗) in system (4.1)–(4.2), which is locally asymptotically stable in absence of diffusion.
Turing instability occurs when the corresponding non-diffusive system is stable, and destabilization
occurs by some unstable mode of spatial perturbations caused by diffusion.
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The following inequalities define the conditions for Turing instability [24]:

a11 + a22 < 0, (4.3)
a11a22 − a12a21 > 0, (4.4)

d2a11 + d1a22 > 2
√

d1d2
√

a11a22 − a12a21, (4.5)

where
a11 = −aV∗ +

kV∗C∗

(1 + V∗)2 < 0, a12 = −
kV∗

1 + V∗
< 0,

a21 =
pC∗

1 +C∗
− qC∗ =

σ2C∗

V∗
> 0, a22 = −

C∗(qV∗ + σ2)
1 +C∗

< 0.

Two conditions (4.3) and (4.5) cannot be satisfied simultaneously due to the fact that a11 < 0
and a22 < 0. Consequently, the local spatiotemporal model fails to satisfy the criteria for Turing
instability.

5. Nonlocal reaction–diffusion model

We extend the spatiotemporal local model (4.1)–(4.2) by introducing a nonlocal term, leading
to the following nonlocal spatiotemporal model:

∂V
∂t
= d1
∂2V
∂x2 + aV(1 − J(V)) −

kVC
V + 1

− σ1V, (5.1)

∂C
∂t
= d2
∂2C
∂x2 + p

VC
1 +C

− qVC − σ2C. (5.2)

We note that the equilibrium points found in the temporal model (3.1)–(3.2) are also equilibrium
points in the system (5.1)–(5.2). We will derive the instability criteria for the positive homogeneous
steady-state E(V∗,C∗). The associated eigenvalue problem takes the following form:

λz = a1z − a2w − aV∗
∫ +∞

−∞

ϕ(x − y)z(y)dy + d1z′′, (5.3)

λw = b1z − b2w + d2w′′, (5.4)

where z(x), and w(x) are spatial perturbations and

a1 =
kV∗C∗

(1 + V∗)2 , a2 =
kV∗

1 + V∗
, b1 =

σ2C∗

V∗
, b2 =

C∗(qV∗ + σ2)
1 +C∗

.

Utilizing the Fourier transform on Eqs (5.3) and (5.4), we obtain:

λz̄ = a1z̄ − a2w̄ − aV∗ϕ̄z̄ − d1ξ
2z̄, (5.5)

λw̄ = b1z̄ − b2w̄ − d2ξ
2w̄, (5.6)
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Here, z̄, w̄, and ϕ̄ represent the Fourier transforms of the functions z(x), w(x), and ϕ(z), respectively
(see [21]). It is important to note that the Fourier transform is understood in the sense of distribu-
tions (see, e.g., [25]), which broadens its application to functions that are not necessarily integrable
in the traditional sense. Thus, the existence of space-homogeneous solutions on an infinite domain
is compatible with the use of the Fourier transform, allowing for effective analysis of the behaviors
of these solutions.

The characteristic equation associated with the system (5.5)–(5.6) can be formulated as follows:

λ2 − Γ(ξ,M)λ + ∆(ξ,M) = 0. (5.7)

where

Γ(ξ,M) ≡ −
(
aV∗ϕ̄ + b2 − a1 + (d1 + d2)ξ2), (5.8)

∆(ξ,M) ≡ d1d2ξ
4 + (d1b2 − d2a1 + d2aV∗ϕ̄))ξ2 + a2b1 − a1b2 + ab2V∗ϕ̄. (5.9)

The homogeneous steady-state remains stable under space dependent perturbations if the following
two conditions are met:

Γ(ξ,M) < 0, ∆(ξ,M) > 0. (5.10)

For any positive real values of ξ and M, the homogeneous steady-state experiences instability
through Turing bifurcation if Γ(ξ,M) < 0 for all ξ and ∆(ξT ,M) = 0 for a specific ξT . It undergoes
spatial Hopf bifurcation if Γ(ξH,M) = 0 for a certain ξH and ∆(ξ,M) > 0 for all ξ.

The characteristic equation for the local reaction-diffusion equation model (4.1)–(4.2) can be
obtained from (5.7) by substituting ϕ̄ = 1. As mentioned earlier, when ϕ̄ = 1, it is impossible
to contravene the inequalities stated in (5.10). In the numerical simulations presented below, we
examine the solution behavior when the kernel function ϕ(x) is a step function

ϕ(x) =
{

1/2M for |x| ≤ M,
0 for |x| > M.

(5.11)

Here, we assumed that the kernel function ϕ(x) is a nonnegative even function with compact sup-
port of length 2M. Therefore, when its support tends to zero (i.e., M → 0), the nonlocal model
(1.1)–(1.2) becomes the local model (4.1)–(4.2) [26].

In this case, the Fourier transform of ϕ(ξ) is

ϕ̄(ξ) =
sin(ξM)
ξM

. (5.12)

5.1. Stationary patterns

First, let us delve into the condition for Turing instability, which can be determined by solving
the system of equations:

∆(ξ,M) = 0,
∂∆

∂M
= 0,

∂∆

∂ξ
= 0. (5.13)

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7530–7553.



7543

It follows from the second equation of (5.13) that

cos(ξM)
M

−
sin(ξM)
ξM2 = 0. (5.14)

Let ξM = z, and from (5.14) we get
tanz = z (5.15)

We claim that Eq (5.15) has countable positive roots 0 < z1 < z2 < z3 < . . . . Set µi = sin zi/zi,
i ∈ Z+, and

Q0 = d1d2, Q1i = d1b2 − d2a1 + d2aV∗µi, Q2i = d1d2(a2b1 − a1b2 + ab2V∗µi).

From equality ∆(ξ,M) = 0, we get

(ξ±i )2 =
−Q1i +

√
Q2

1i − 4Q0Q2i

2Q0
, j ∈ Z+ (5.16)

and the corresponding values of M j are determined by the following equality:

Mi =
zi

ξ j
, j = 1, 2, 3, . . . . (5.17)

Based on the parameter values, we can compute the threshold values ξ j and M j. Noting that Q0 > 0,
we need either of the following conditions to be met:
1). Q2

1i > 4Q0Q2i, Q1i < 0, and Q2i > 0 or
2). Q2i < 0.

5.2. Time oscillations

To determine the threshold for spatial Hopf-bifurcation, we need to find positive values of ξ and
M such that the condition Γ(ξ,M) = 0 is met. By differentiating Γ(ξ,M) = 0 with respect to M,
we find:

aV∗
(cos(ξM)

M
−

sin(ξM)
ξM2

)
= 0 (5.18)

and thus we can define µ j, j ∈ Z, as above. Therefore, ξ j and M j are determined by the following
equalities:

ξ2
j =

a1 − b2 − aV∗µi

d1 + d2
, M j =

z j
√

d1 + d2√
(a1 − b2 − aV∗µi)

, j = 1, 2, 3, . . . (5.19)

Similarly, the following conditions need to be satisfied: a1 − b2 − aV∗µi > 0.
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6. Instability and pattern formation

In this section, we will examine the instability conditions outlined above and identify the pa-
rameter regions associated with stable and unstable solutions. Additionally, we will depict the
resulting patterns through direct numerical simulations. Without loss of generality, we choose d1

as the bifurcation parameter. Then, we can calculate threshold values of parameter d1.

6.1. Spatial patterns for the nonlocal model

Assume that lim
M→0+

Γ(ξ,M) < 0 and lim
M→0+

∆(ξ,M) > 0. These criteria guarantee the stability of
the homogeneous steady-state under space-independent perturbations. The critical wave number
and the corresponding Turing bifurcation threshold in terms of d1 can be established by solving the
following two equations:

∆(ξ,M) = 0,
∂

∂ξ
∆(ξ,M) = 0. (6.1)

From ∆(k,M) = 0, we get

d1(ξ) = −
1
ξ2

(
aV∗

sin (ξM)
ξM

− a1 +
a2b1

d2ξ2 + b2

)
. (6.2)

When we substitute this expression into the second equation in (6.1), we get:

(
− 3aV∗

sin(ξM)
ξM

+ aV∗cos(ξM) + 2a1

)
(d2ξ

2 + b2)2 − 4a2b1d2ξ
2 − 2a2b1b2 = 0. (6.3)

We solve Eq (6.3) numerically for the wave number ξ, and we fix all parameter values except for
ξ. This equation might possess multiple positive roots. Substituting these solutions ξT in Eq (6.2),
we obtain corresponding diffusion coefficients d1. The minimum among all positive values of d1 is
the critical value d1 = d1T .

Consider, as example, the following values of parameters:

a = 7, k = 10, σ1 = 1, σ2 = 0.1, p = 1.4, q = 0.8, d2 = 0.1, and M = 5.

Then V∗ = 0.48,C∗ = 0.39. To illustrate the formation of patterns driven by nonlocal interactions,
we plot in Figure 3(a), the graph of the function defined by Eq (6.3) with respect to ξ (in blue)
and located the roots of this function. Furthermore, in Figure 3(b) we plot the curve of d1 with
respect to ξ (in green). We identify ξT = 0.91 in red on the Figure 3(a), along with the bifurcation
threshold d1T = 0.46. As is illustrated in Figure 3(b), when d1 exceeds its critical value d1T , the
function ∆(ξ,M) is negative for a certain range of ξ. This implies that the characteristic Eq (5.7)
has at least one positive root, which indicates that Turing instability occurs and spatiotemporal
pattern emerges for d1 < d1T .
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(a) (b)

Figure 3. (a): Solutions of the Eq (6.3) with respect to ξ (blue line) and d2 as a function
of ξ (green line) for the parameter values: a = 7, k = 10, σ1 = 1, σ2 = 0.1, p = 1.4, q =
0.8, d2 = 0.1, and M = 5. (b): Plot of ∆(ξ,M) for three values of d1 against ξ for the
same parameter values.

6.2. Spatial Hopf bifurcation

We determine the spatial Hopf bifurcation threshold relative to the parameter d1. For a suitable
M, if one can identify a unique value ξ = ξH such that Γ(ξH,M) = 0, then ξH represents the
critical wave number for the spatial Hopf bifurcation. This critical wave number can be obtained
by solving the following two equations simultaneously:

Γ(ξH,M) = 0,
∂

∂ξ
Γ(ξH,M) = 0. (6.4)

We derive the value of d1 from the equation Γ(ξ,M) = 0:

d1(ξ) = −
1
ξ2

(
aV∗

sin (ξM)
ξM

− a1 + b2 + d2ξ
2
)
. (6.5)

By replacing the expression for d1(ξ) from Eq (6.5) into the second equation of (6.4), we derive:

aV∗ cos(ξM) − 3aV∗
sin (ξM)
ξM

+ 2(a1 − b2) = 0. (6.6)

Equation (6.6) can possess multiple positive real roots depending on the parameter values. It is
essential to verify that the corresponding values of d1(ξ) are positive. We choose the root ξH such
that d1(ξH) is the smallest positive number, satisfying ∆(ξH,M) > 0.

For illustrative purposes, let’s consider the following set of parameter values:

a = 7, k = 10, σ1 = 1, σ2 = 0.1, p = 1.4, q = 0.8, d2 = 0.1
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Then V∗ = 0.48,C∗ = 0.39. For M = 10, in Figure 4(a), we plot the graph of the function defined
by Eq (6.6) in blue with respect to ξ, and mark the roots of this function. Additionally, we plot the
curve of d1 with respect to ξ in green. On the graph, we identify ξT = 0.37 in red, along with the
bifurcation threshold d2T = 8.67. As illustrated in Figure 4(b), for d1 < d1H, we have Γ(ξ, 21) > 0
for a certain range of values of ξ. Therefore, the spatial Hopf bifurcation occurs as d1 crosses the
critical threshold d1H from higher to lower values.

(a) (b)

Figure 4. (a): Solutions of the Eq (6.6) with respect to ξ (blue line), and d2 as a function
of ξ (green line) for the parameter values: a = 7, k = 10, σ1 = 1, σ2 = 0.1, p = 1.4, q =
0.8, d2 = 0.1 and M = 10. (b): Plot of Γ(ξ,M) for three values of d1 against ξ for the
same parameter values.

6.3. Turing-Hopf bifurcation

In many dynamic systems, Hopf bifurcation breaks the temporal symmetry of the system and
induces periodic oscillations which are uniform in space and periodic in time, while the Turing
instability breaks the spatial symmetry leading to the pattern formation that is stationary in time
and oscillatory in space. In this subsection, we consider Eqs (1.1) and (1.2) in a bounded interval
0 < x < L with periodic boundary conditions, using a small random perturbation to the homo-
geneous steady state of the system as the initial condition. We study the coupling between the
two different instabilities, i.e., Turing-Hopf bifurcation in the (d1,M) parameter space, which is
represented in Figure 5. There exists a region where stable stationary solutions, which are spatially
homogeneous, are present. These solutions can lose their stability through two primary mecha-
nisms. In the first scenario, a real eigenvalue crosses the origin, leading to the emergence of stable
stationary solutions that exhibit periodicity in space (as shown in Figure 6). In the second scenario,
a pair of complex conjugate eigenvalues intersects the imaginary axis, resulting in time-periodic
oscillations of a solution that remains constant in space (not represented). As we delve deeper into
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the instability region, both instabilities can occur concurrently, giving rise to complex spatiotem-
poral dynamics. Consequently, Figure 7 illustrates periodic oscillations over time in the spatial
structure, where amplitude waves propagate from the center of the interval toward its boundaries.
Meanwhile, Figure 8 depicts the scenario of a Turing-Hopf bifurcation, resulting in the existence
of a branch of spatially heterogeneous and time periodic solutions.
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Figure 5. Stability boundaries in the (d1,M)-parameter plane. Parameters values: a =
7, k = 10, σ1 = 1, σ2 = 0.1, p = 1.4, q = 0.8, d2 = 0.1.

7. Discussion

The virus within a host organism undergoes frequent mutations, resulting in the emergence of
new variants that compete, persist, or vanish during this ongoing competition. This population of
viruses, characterized by closely related genotypes, is referred to as a virus quasi-species. From
a modeling perspective, these variants can be conceptualized as a distribution of virus densities
across genotype space, centered around an average genotype. The existence of such quasi species
is influenced by the interplay between virus replication within host cells and its genotype dependent
mortality, which may occur independently of immune responses. The results obtained demonstrate
that the model (1.1)–(1.2) illustrates the complexity of viral dynamics and immune responses. For
instance, Figure 6 shows a stationary solution with a certain number of spikes representing different
virus variants and the corresponding immune cells involved in the adaptive immune response. In
contrast, the viral dynamics observed in Figure 7 differ significantly: new virus variants emerge
at the center of the interval and move toward the boundary of the domain. This motion occurs
due to the genetic pressure from the antigen-specific immune response. Immune cells eliminate
virus with the corresponding antigens and lead to the virus evolution trying to avoid the immune
response.
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Figure 6. Spatiotemporal patterns in numerical simulations of the nonlocal model (1.1)–
(1.2). a) Solution profile for t = 500. b) Behavior of V with respect to time and space
variables. c) Behavior of C with respect to time and space variables. Parameter values
are: a = 7, k = 10, p = 1.4, q = 0.8, σ1 = 1, σ2 = 0.1, d1 = 0.03, d2 = 0.1; M = 5.

Problem (1.1)–(1.2) can have different stationary solutions for the same values of parameters.
These different solutions are similar to the solution shown in Figure 6 but they have different num-
bers of spikes. As such, in the beginning of simulations in Figure 8, there are 22 spikes. The choice
of initial condition means that the time-dependent solution of system (1.1)–(1.2) approaches this
stationary solution, but after some time we observe transition to another stationary solution with a
different number of spikes. This transition occurs due to the emergence of new virus variants man-
ifested by the splitting of the existing variant into two new variants for x = 20 and t = 150. Then
such emergence of new variants occurs several times leading to the convergence to the stationary
solution with 26 spikes. Emerging new virus variants push away the existing variants resulting in
consecutive waves of their displacement. This new solution is stable, and it does not change any
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Figure 7. Spatiotemporal pattern in numerical simulations of the nonlocal model (1.1)–
(1.2). a) Solution profile for t = 500. b) The dynamics of V with respect to both spatial
and temporal variables. c) The dynamics of C with respect to both spatial and temporal
variables. Parameter values are: a = 7, k = 10, p = 1.4, q = 0.8, σ1 = 1, σ2 = 0.1, d1 =

1, d2 = 0.1; M = 10.

more for large time. Spatial localization of new emerging variants can be determined by the choice
of initial conditions and small perturbations of solutions.

The presence of viability intervals confers a fitness advantage, predisposing the emergence of
virus quasi-species with specific genotypes. Alternatively, virus quasi-species may emerge without
any assumed fitness advantage for certain genotypes. From a modeling standpoint, this mechanism
bears resemblance to the emergence of biological species through intraspecific competition and
natural selection (sympatric speciation) [19, 27, 28].

Nonlocal competition for host cells, coupled with interactions with the immune response, leads
to the emergence of genotype-dependent virus distributions, without any inherent advantage for
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Figure 8. The spatiotemporal patterns generated by the nonlocal model (1.1)–(1.2). a)
Solution profile for t = 500. b) The dynamics of V with respect to both spatial and
temporal variables. c) The dynamics of C with respect to both spatial and temporal
variables. Parameter values are: a = 7, k = 10, p = 1.4, q = 0.8, σ1 = 1, σ2 = 0.1, d1 =

0.28, d2 = 0.1; M = 6.7.

particular genotypes. Numerical simulations demonstrate that these distributions can be either
stationary or time-dependent, with fluctuations in the sizes of virus subpopulations and the emer-
gence of new variants. Unlike scenarios involving global competition or no competition (where
H(u) = u), the emergence of virus quasi-species occurs exclusively in cases of nonlocal competi-
tion. Additionally, a low virus mutation rate (diffusion coefficient) fosters the emergence of virus
quasi-species, while a high mutation rate can lead to their extinction. Notably, while previous
work [29] only identified stationary patterns, our study also observes temporal dynamics (using a
different model).

In summary, this study explores two mechanisms for the emergence of virus quasi-species us-

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7530–7553.



7551

ing simplified yet biologically realistic models of virus replication and immune response. More
comprehensive models of immune response could provide further insights into the roles of innate
and adaptive immune responses, as well as other factors influencing viral infections.
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