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Abstract: The invasive stink bug Halyomorpha halys has become an important pest of many crops,
causing severe economic losses to farmers. Control of the pest mainly relies on multiple applications
of broad-spectrum insecticides, undermining the integrated pest management programs and causing
secondary pest outbreaks. In the native area, egg parasitoids are the main natural enemies of H.
halys, among which Trissolcus japonicus is considered the predominant species. In Italy, adventive
populations of T. japonicus and Trissolcus mitsukurii, another egg parasitoid of H. halys in Japan, have
established themselves. These two species, together with the indigenous Anastatus bifasciatus, are
capable of attacking the eggs of the exotic host. Focusing on the situation in Northern Italy, where
also the hyperparasitoid Acroclisoides sinicus is present, a discrete-time model is developed for the
simulation of the pest evolution. It is based on actual field data collected over a timespan of five years.
The simulations indicate that egg parasitoid by themselves do not suppress populations to non-pest
levels, but can play an important role in reducing their impact. Both the data from the five-year surveys
and those available in the literature are used in the model. It has some limitations in the fact that
climatic conditions were not considered, while more accurate simulations could be performed with
additional collection of field data, which at the moment are based on partial field observations not
sampled at the same sites.
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1. Introduction

Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) is an invasive stink bug introduced from
Asia into North America, Europe, and Chile [1–3]. In Italy, invasion may have occurred from two
different pathways, both from Switzerland and from Asia and/or North America [4]. In the invaded
areas, H. halys has become an important pest of many crops, causing severe economic losses due to
its feeding activity mainly on developing fruits and seeds, such as apples, pears, peaches, nectarines,
tomatoes, peppers, sweet corn, soybean and hazelnuts [1, 5]. In particular, in Italy, under the current
climatic conditions, the species is able to complete two generations per year and has shown very high
reproductive rates for both generations, with massive outbreaks starting from the summer, confirming
that it is a threat for agricultural production in southern Europe [6]. Control of the pest mainly relies
on multiple applications of broad-spectrum insecticides, nullifying the integrated pest management
programs largely adopted in Italy, and causing secondary pest outbreaks [5]. For this reason, as a
long-term solution, classical biological control based on the use of parasitoids has been considered in
the United States and Europe [1]. Parasitoids are insects with a parasitic larval stage (juveniles) that
develops by feeding on another insect called the host, and in our case feeding on a single egg of H.
halys. Unlike parasites, at the end of their development, parasitoid larvae kill their host like a predator,
but they only need one host to complete their development. Then, the resulting adult is a free-living
insect. Therefore, a parasitoid adult, and not a stink bug nymph, will emerge from an egg attacked by
Anastatus bifasciatus (Geoffroy) (Hymenoptera: Eupelmidae) or by Trissolcus japonicus (Ashmead)
(Hymenoptera: Scelionidae) [7]. Indeed, in Europe, an indigenous egg parasitoid, A. bifasciatus,
is able to attack H. halys eggs, but without achieving effective containment of pest populations [8,
9]. In the native area, egg parasitoids are the primary natural enemies of H. halys, and T. japonicus
is considered the predominant species among the egg parasitoid complex of H. halys in China and
Japan [10,11]. Therefore, T. japonicus has been selected as a candidate for classical biological control
both in North America and Europe [12–14].

Currently, field releases of T. japonicus have been authorized in Italy starting from 2020. However,
before any field release, adventive populations of T. japonicus were detected in North Italy from 2018,
as well as adventive populations of Trissolcus mitsukurii (Ashmead) (Hymenoptera:
Scelionidae) [9, 15]. This latter species, known as an egg parasitoid of H. halys in Japan [11], has
been found in Northern Italy since 2016 [16], and has also been considered as a promising candidate
for biological control [17]. Both T. japonicus and T. mitsukurii have successfully established in
Northern Italy, even before the release of T. japonicus was authorized as a part of the national
classical biological control program, and contribute to the H. halys control together with the native A.
bifasciatus [18]. The indigenous and exotic parasitoids can act synergistically in the biological
control of H. halys and, in case of competition, T. japonicus and A. bifasciatus have been shown to be
counterbalanced, the former being a superior extrinsic competitor (by guarding eggs), the latter being
a superior intrinsic competitor, successfully emerging from eggs that were previously parasitized by T.
japonicus [19]. Finally, a hyperparasitoid, Acroclisoides sinicus (Huang and Liao) (Hymenoptera:
Pteromalidae), which develops in H. halys eggs previously parasitized by the Trissolcus species, is
also present in Northern Italy [20, 21]. Hyperparasitoids, or secondary parasitoids, act as parasitoids,
but develop on primary parasitoids: an A. sinicus female lays eggs in the H. halys eggs that have
already been attacked to develop on the larvae of Trissolcus spp. The offspring of the hyperparasitoid

Mathematical Biosciences and Engineering Volume 21, Issue 11, 7501–7529.



7503

causes the death of the primary parasitoid. An A. sinicus adult will emerge from the attacked H. halys
eggs, [22]. The interaction between parasitoids and hyperparasitoids can play a key role in
determining the overall effectiveness of biological control of H. halys. As little information has yet
been available on the Trissolcus spp. impact on H. halys populations, and on the A. sinicus impact on
Trissolcus spp. populations, field surveys were carried out in Piedmont, North-western Italy, from
2017 to 2021 to assess the impact of parasitoids and hyperparasitoids. Both the data from the
five-year surveys and those available in the literature are used in the model proposed here.

The paper is organized as follows. Section 2 contains all the various steps in the model
construction, starting from the description of the field data gathering. It is followed by the overview of
the simulations organization. Their results are presented and thoroughly discussed in Section 4.
Section 5 reports the main findings on the equilibria of the model. Some remarks on the results
obtained and the model limitations conclude the paper. The mathematical details of the feasibility and
stability of the equilibria of the general model are presented in the Appendix A, while its Subsection
A.3 analyzes a special simplified situation.

2. Model formulation

2.1. Data collection

Seasonal abundance of H. halys adults was monitored weekly from May to October, at 40 sites
with pheromone-baited traps (Dead-Inn Pyramid Trap - 4 ft. height, AgBio Inc., baited with Pherocon
BMSB Dual Lure, Trécé Inc.), from 2018 to 2021. The traps were placed in the same locations,
distributed throughout Piedmont, NW Italy, and captures were checked weekly from May to October.
The collection points are reported in Figure 1, where the red dots represent the eggs collection points
and the blue ones the location of the traps. Seasonal abundance of the parasitoids Trissolcus spp., A.
bifasciatus, and the hyperparasitoid A. sinicus was monitored monthly from June to August from 2017
to 2021 by collecting field-laid H. halys eggs with one-hour visual inspection, at 6 sites in 2017, at an
additional 3 sites (9 in total) in 2018 and at an additional 6 sites (15 in total) in 2019, 2020 and 2021.
All eggs were reared in laboratory, and the number of i) H. halys nymphs, ii) A. bifasciatus adults, iii)
Trissolcus spp. adults, and iv) A. sinicus adults which emerged from eggs were counted, discarding
unhatched or preyed eggs.

2.2. Basic interactions

The mutual interactions of H. halys and its parasitoids, described in the Introduction are summarized
in Figure 2. We use I to denote the hyperparasitoid A. sinicus, A to indicate the indigenous parasitoid
A. bifasciatus, T to denote the combined populations of the parasitoids T. japonicus and T. mitsukurii,
while C indicates the invasive pest H. halys. In addition, because parasitization occurs on H. halys eggs,
these must be accounted in the formulation. Because the life cycle of these insects can be expressed in
weeks, as illustrated in Tables 2 and 3, we chose the week as the time unit. A further consequence is
that a discrete dynamical system formulation naturally arises, instead of a possible continuous one.

The various population dynamics are essentially represented by three terms, denoting reproduction
RX, intraspecific competition bX, and natural mortality mX, where X ∈ {I, A,T,C} indicates the specific
population under consideration. Natural mortality represents the mortality rate within a population,
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Figure 1. Left frame: sites of field data collection in Piedmont (NW Italy): the red dots
represent the sites of field eggs collection and the blue ones sites with traps. Right frame:
Piedmont in Italy.

in this case of adult insects, that occurs in the absence of external factors such as natural enemies,
diseases, or human intervention. It is obtained as the reciprocal of the average lifetime of a healthy
insect, respectively. The H. halys reproduction function will be derived from field-collected egg data,
and therefore must be time-dependent. The reproduction function for the other insects are based on H.
halys egg counts, so that they are also time-dependent. As mentioned above, recall that the mortalities
are easily obtained as the reciprocal of the average lifetimes of each species, which are known from
the literature, [27, 28] for A, [23, 30] for the two T species and [24] for C. For each population X ∈
{I, A,T,C} let Xn denote its value at time t = n and let ∆Xn = Xn+1 − Xn be the increment over the time
interval [n, n + 1]. The discrete model can thus be written as

∆In = RI
n − bI I2

n − mI In, (2.1)
∆An = RA

n − bAA2
n − mAAn,

∆Tn = RT
n − bT T 2

n − mT Tn,

∆Cn = RC
n − bCC2

n − mCCn.

The model represents the parasitoid-host interactions shown in Figure 2. However, note that no terms
for these interactions appear in the equations formulation. This is due to the fact that the damage that
some insects cause to the other ones occurs only via the parasitization of their eggs. Therefore, it is
very important that this mechanism be correctly depicted in the model, as we show in the next section.

2.3. Egg parasitization

The main effort in the model construction lies in the mathematical description of the egg
parasitization. Let sC denote the sex ratio of A. sinicus. Eggs laid by a female H. halys are C f = sCC.
However, not all of them are “healthy”; E represents the per capita fraction of healthy eggs that are
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Figure 2. Basic scheme of the model. The full meanings of the parameters are contained in
Table 1: basically, hI and hA are the egg mass fraction already parasitized by T from which,
respectively, I emerges or A emerges, while rA and rT are the parasitization rates of A and T .
Recall also that hyperparasitoid I affects only Trissolcus T because it develops in H. halys
eggs previously parasitized by Trissolcus species, [20, 21]. Also, as stated in the body of
the paper, the indigenous and exotic parasitoids act synergistically in the biological control
of H. halys and, in case of competition, T. japonicus and A. bifasciatus have been shown to
be counterbalanced, the former being a superior extrinsic competitor (by guarding eggs) and
the latter being a superior intrinsic competitor, successfully emerging from eggs that were
previously parasitized by T. japonicus [19].

available for parasitization, so that their total number is EC f . To obtain those that hatch and give new
H. halys individuals, from these we need to subtract those parasitized by Trissolcus spp. and A.
bifasciatus, indicated by the terms rT and rA in the equation below. We thus obtain

RC = sCEC[1 − rT − rA]. (2.2)

Further, since only females lay eggs, it is important to consider the sex ratio. The parameter sT denoting
the sex ratio (females over the whole population) for Trissolcus spp. is known, sT = 0.87 [23]. For H.
halys in general the sex ratio is assumed as sC = 0.5 [24].

We now discuss the parasitization process.
Considering for the moment that parasitization is due to Trissolcus spp., the total number of

parasitized eggs would be obtained by multiplying the per capita parasitization r̃T of T with the total
female population of Trissolcus spp. T f = sT T , where sT denotes the sex ratio of Trissolcus, namely
RT = EC f r̃T T f . In this way, however, if the parasitization rate were higher than one, i.e, r̃T T > 1, the
total number of emerging Trissolcus adults would exceed the total number of eggs laid by H. halys,
which of course cannot be. Therefore, we need to correct this approach.

For this purpose, we need to consider the parasitization rate as a function of the parasitizing agent
population. In the discussion above, this corresponds to taking r̃T = rT (T ). The function rT (T ) should
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have a specific form, namely it should be bounded from above. Such choice is represented by a Holling
type II-like function, i.e.,

rT (T ) = βT
sT T

qT + sT T
, (2.3)

where q−1
T represents the slope at the origin of the parasitization rate. In this way, 0 ≤ rT < 1. Here,

0 ≤ βT ≤ 1 represents the reproduction effectiveness. The two extreme values denote particular
situations. For the case in which Trissolcus spp. are present, but no eggs parasitized by them are found
in the field samples, we set βT = 0. Note that if H. halys eggs were scarce, the presence of Trissolcus
spp. could be inferred by sampling the adults with traps, beating sheets, or other methods. If instead
all females of Trissolcus spp. parasitize all the available eggs, we set βT = 1.

Anastatus bifasciatus behaves in a similar way on H. halys eggs. We can thus introduce
corresponding functions and notations. However, like A. sinicus, it can also parasitize Trissolcus spp.
This hyperparasitization must be described in the same way, considering hyperparasitization as the
product of two different parasitization processes. Specifically, for A. bifasciatus it is necessary to
distinguish between the parasitization rate rA(A) on H. halys and the one on Trissolcus spp., denoted
by hA(A). In view of the previous remarks, we can thus write

rA(A) =
βAsAA

qA,C + sAA
, hA(A) =

βAsAA
qA,T + sAA

, hI(I) =
βI sI I

qI + sI I
, (2.4)

with qT , qA,C, qA,T , qI > 0. Their reciprocals are the slopes at the origin of the parasitization or
hyperparasitization rates. Note that different notations have been used for the parameters in the
denominator: qA,C and qA,T stand for the parasitization and hyperparasitization due to A. bifasciatus,
respectively. In addition to the ones mentioned above, the sex ratios also of these insects are
known [21, 25].

In summary, we have

sC = 0.5, sT = 0.87, sA = 0.49, sI = 0.73. (2.5)

Further, from (2.1) the reproduction rates rX(X), X ∈ {T, A} and hX(X), X ∈ {A, I} must be
nonnegative, so that the following inequalities must be satisfied,

1 − hA(A) − hI(I) ≥ 0, 1 − rA(A) − rT (T ) ≥ 0, (2.6)

which become

hA(A) + hI(I) ≤ 1, rA(A) + rT (T ) ≤ 1. (2.7)

Let us denote by EX, X ∈ {I, A,T,C} the newly emerged offsprings of species X from a single egg
mass. Let also pX denote the respective rates. They are given by

pI :=
EI

E
, pA :=

EA

E
, pT :=

ET

E
, pC :=

EC

E
, (2.8)

so that
pI + pA + pT + pC = 1 (2.9)
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Since the rates pX are known from available field data, we need to find further conditions on the
rates rX(X), X ∈ {T, A} and hX(X), X ∈ {A, I} so that they are feasible. To simplify the notation, for
the rest of this section we drop the explicit dependence of these functions on the respective population
sizes.

Now RT hI is the per capita hyperparasitization rate pI . Instead, rA + rT hA is the sum of the direct
per capita parasitization rate of A on C, to which we add the hyperparasitization rate of A on T , to get
pA. Similarly, rT (1− hA − hI) represents the per capita net parasitization rate of T on C, where we have
discounted the hyperparasitizations of A and I. It therefore represents pT . Also, 1 − rA − rT represents
the per capita net reproduction rate of C, adjusted for the parasitizations of A and T , and thus gives pC.
These considerations lead to the following relationships

rA = 1 − rT − pC, hA = 1 −
pI + pT

rT
, hI =

pI

rT
. (2.10)

Since the rates must lie in the interval [0, 1], the following constraints must be satisfied:

rT ≥ pI , rT ≥ pI + pT , rT ≤ 1 − pC, (2.11)

where the second one is more restrictive than the first one. Ultimately, rT must lie in the following
interval

rT ∈
[
pI + pT , 1 − pC

]
=

1
E
[
EI + ET , E − EC

]
. (2.12)

Note that this interval is nonempty; from (2.9) we have indeed pI+pA+pT = 1−pC and since pA ∈ [0, 1]
we have pI + pT ≤ 1 − pC, the required result. In summary, the required feasibility conditions for the
rates are

hI ∈ [0, 1 − hA] , rT ∈
[
pI + pT , 1 −max{pC, rA}

]
. (2.13)

Now A. sinicus reproduces because it parasitizes the eggs of H. halys already parasitized by
Trissolcus spp., [19], so that we can state

RI = sCECrT hI . (2.14)

Instead, A. bifasciatus can parasitize the eggs of H. halys at rate sCECrA and also those parasitized by
Trissolcus spp. at rate sCECrT hA, overall giving

RA = sCEC[rA + rT hA]. (2.15)

Finally, Trissolcus spp. attack the eggs of H. halys

RT = sCECrT [1 − hA − hI]. (2.16)

However, a further consideration should be made. Indeed, we have considered the reproduction
process whereby insects emerge from the available H. halys eggs. It should be noted that from egg to
adulthood, insects go through developmental stages that are different when heterometabolous, such as
H. halys, and holometabolous, such as parasitoids and hyperparasitoid. This whole process is not at
all considered in the modeling procedure: juvenile stages do not appear explicitly in the model.
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However, these stages are still affected by natural mortality, which reduces the eggs produced by
factors σY , Y ∈ {I, A,T,C}. These must therefore be included in the equation formulation.

Putting together the above considerations and (2.2), (2.14)–(2.16), the system to be studied is
therefore

In+1 = In + σI sCECnrT (Tn)hI(In) − bI I2
n − mI In, (2.17)

An+1 = An + σAsCECn[rA(An) + rT (Tn)hA(An)] − bAA2
n − mAAn,

Tn+1 = Tn + σT sCECnrT (Tn)[1 − hA(An) − hI(In)] − bT T 2
n − mT Tn,

Cn+1 = Cn + σC sCECn[1 − rA(An) − rT (Tn)] − bCC2
n − mCCn.

The parameters of the system (2.17) are listed in Table 1 together with their meanings.

3. Simulation settings

The simulations were performed using our data collected in the field over the past five years.
A few caveats are necessary to describe the procedure used to overcome some shortcomings that

might arise in the simulations.

Table 1. Model parameters and their interpretation.

γ ∈ [0, 1] fraction of eggs from which no adult insects emerge
0 ≤ Ẽ average of all eggs collected in a week in egg mass
0 ≤ E = (1 − γ)Ẽ healthy eggs in egg mass, from which H. halys

or its parasitoids emerge
sI sex ratio of A. sinicus, [21]
sA sex ratio of A. bifasciatus, [25]
sT sex ratio of Trissolcus, [23]
sC sex ratio of H. halys, [24]
hI := hI(I) ∈ [0, 1] egg mass fraction already parasitized by T ,

from which I emerges
hA := hA(A) ∈ [0, 1] egg mass fraction already parasitized by T ,

from which A emerges
rA := rA(A) ∈ [0, 1] parasitization rate of A, i.e. egg mass fraction

from which A emerges by parasitizing C
rT := rT (T ) ∈ [0, 1] parasitization rate of T , i.e. egg mass fraction

parasitized by T , i.e. sum of newly emerged T
and its hyperparasitoids

0 ≤ b∗ intraspecific competition rate of species ∗
m∗ ∈ [0, 1] mortality rate of species ∗
β∗ ∈ [0, 1] (hyper-)parasitization rate of species ∗
0 < q−1

∗ slope at the origin of (hyper-)parasitization rate

Because the information on the egg masses did not cover the entire timespan, but had some gaps, a
spline cubic interpolation on the two closest available data points was performed to obtain the values
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at times when they were missing. Furthermore, at the beginning and end of the season, the number of
laid eggs was set to zero, through an interpolation procedure.

The beginning of the season, when H. halys females start oviposition, is assumed to be the 19-th
week of the year, i.e., the second or third week of May [6]. The end before the onset of winter diapause
is set at the 42-nd week, i.e., the third week of October [6]. Trap catch data before the 19-th week were
discarded, as most individuals are still in diapause or have not yet started laying eggs.

Furthermore, most insect data other than those collected in the field, i.e., field collected eggs and trap
catch counts, come from laboratory experiments, and therefore may differ from those occurring in the
field [23,24,27–30] as specified below in detail in Subsection 3.1. Another limitation is that population
data are just estimates on the actual numbers of H. halys in the environment, being calculated as
an average of insects captured at various sites, which differ greatly in location and environmental
conditions. A similar observation applies to parasitoids, which count an average number of those that
emerge from field collected eggs. This entails that the differences between data and simulation values
may sometimes be large.

The simulations ran starting from the year 2017, and iterated. In particular, note that all the
populations with which the following year begins come from the corresponding values obtained at the
end of the current year, in the fall, for which a fixed fraction is deducted that should account for their
mortality during overwintering [6, 26]. This is an important point, since each year the climatic
conditions may change, and taking a constant value for winter mortality does not adequately mimic
what happens in reality. However, little information is available and therefore this assumption
attempts to surrogate the missing estimate. A similar observation can be made on intraspecific
competition rates, which cannot be measured in the field.

3.1. Developmental period and average female longevity

The data of Table 2 come from [27] for I, [28] for A, [23, 29, 30] for the two T species and [24] for
C.

Table 2. Biological traits of the insects under study.

Insect Time from eggs to adulthood Mean longevity
Hyperparasitoid I 2 weeks 7 weeks
Indigenous parasitoid A 2 weeks 14 weeks
Exotic parasitoids T 2 weeks 6 weeks
H. halys C 4 weeks 1 year

Note that in Table 2 the hyperparasitoid I lays eggs within those of C that are already parasitized
one week earlier by T . It takes thus 3 more weeks to emerge. Further, the oviposition period of A is
about 46 days, followed by a further life period of 17.8 days in which oviposition does not occur [28].
Thus, in the simulations the average lifetime is approximated to 14 weeks, see Table 2. We assume
that hyperparasitization of A on C occurs within the first 3 days after oviposition.

Table 3 reports the temporal sequence of the various events within a single generation. Data of
this table come from [27] for I, from [28] for A, from [23] for the two T species and from [24] for
C. Finally, note that in Table 3 new individuals are accounted for only when they become adult and
thereby are able to reproduce.
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Table 3. Temporal sequence of the life cycle events of the insects under study.

species initial week 0 week 1 week 2 week 3 week 4
C Oviposition Nymph Adult

emergence emergence
T Oviposition Adult

in C eggs emergence
A Oviposition Adult

in C eggs emergence
I Oviposition Adult

in C eggs emergence
parasitized

by T

3.2. Egg mass data

Tables 4–8 contain the mean number of eggs per egg mass from which H. halys or one of its
parasitoids emerged, considering all the egg masses collected in each week at sites in which at least
two egg masses were present, from 2017 to 2021. Data of Table 4 come from field surveys in 2017, as it
is the case for the following tables and the following years. Recall also that E represents healthy eggs,
i.e., neither broken, nor preyed, nor parasitized by other species, while EX, X ∈ {I, A,T,C} represents
the average number of each respective species emerged from a single egg mass.

Table 4. Year 2017. E represents healthy eggs, i.e., neither broken, nor preyed, nor
parasitized by other species, while EX, X ∈ {I, A,T,C} represents the average number of
each respective species emerged from a single egg mass.

week E EI EA ET EC

24-th 25.3 0 23 0 2.3
25-th 21.5 0 12.8 0 8.7
27-th 18 0 7.5 0 10.5
29-th 22.2 0 8.2 0 14
30-th 20.3 0 5.1 0 15.2
31-st 24.2 0 4 0 20.2
34-th 18.8 0 16.8 0 2
35-th 13.9 0 11.3 0 2.6
37-th 11 0 5.5 0 5.5
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Table 5. Year 2018. E represents healthy eggs, i.e., neither broken, nor preyed, nor
parasitized by other species, while EX, X ∈ {I, A,T,C} represents the average number of
each respective species emerged from a single egg mass.

week E EI EA ET EC

22-nd 20 0 0 0 20
24-th 6.5 0 0 0 6.5
26-th 11.5 0 0 0 11.5
27-th 19.4 0 0 0 19.4
28-th 19 0 0 0 19
29-th 16.1 0 0.2 0 15.9
30-th 15.4 0 0 0 15.4
31-st 21.9 0 0 0 21.9
34-th 17.9 0 0.1 0.4 17.4
35-th 7 0 0 0 7
37-th 18.9 0 0.7 0.8 17.4
38-th 20.9 0 0 0 20.9

Table 6. Year 2019. E represents healthy eggs, i.e., neither broken, nor preyed, nor
parasitized by other species, while EX, X ∈ {I, A,T,C} represents the average number of
each respective species emerged from a single egg mass.

week E EI EA ET EC

24-th 22.1 0 0 1.3 20.8
25-th 21.7 0 4.2 1.4 16.1
26-th 22.2 0 4.5 2.5 15.2
27-th 25 0 0 0 25
28-th 24 0 0 0 24
30-th 20.2 0 8.3 1.7 10.2
32-nd 16.3 0 9 7.3 0
33-rd 18.9 0 4.3 12.6 2
34-th 20.4 0 5.1 5 10.3
35-th 18.7 0 13.7 2.2 2.8
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Table 7. Year 2020. E represents healthy eggs, i.e., neither broken, nor preyed, nor
parasitized by other species, while EX, X ∈ {I, A,T,C} represents the average number of
each respective species emerged from a single egg mass.

week E EI EA ET EC

23-rd 20.7 0 0 8.7 12
24-th 26 0 0 16.7 9.3
25-th 24 0 0 0 24
26-th 23 0 3.2 6 13.8
27-th 16.4 0 4 3.8 8.6
28-th 18.1 0 6.3 4.8 7
29-th 18.5 0 4.5 3.3 10.7
30-th 18.3 0 8.3 0.3 9.7
31-st 23.4 0 1.6 2 19.8
32-nd 22 0 2.7 4.4 14.9
33-rd 21.6 0 2.5 3.7 15.4
34-th 19.3 0 3.7 10.3 5.3
35-th 19.3 0.2 4.9 4.9 9.3
36-th 16.5 0 5.8 9.7 1
37-th 18 0 14.5 0 3.5

Table 8. Year 2021. E represents healthy eggs, i.e. neither broken, nor preyed, nor
parasitized by other species, while EX, X ∈ {I, A,T,C} represents the average number of
each respective species emerged from a single egg mass.

week E EI EA ET EC

24-th 21.5 0 1.2 3.3 17
25-th 19.1 0 2.3 14.4 2.4
26-th 19.2 0.1 0.2 4.2 14.7
28-th 22.7 0 1.6 0 21.1
30-th 20 0 4.3 5.2 10.5
31-st 16.2 0 3 0 13.2
32-nd 22.8 0.1 1.9 10.4 10.4
33-rd 19.1 0.4 3.2 9.2 6.3
34-th 20.2 2.4 5.6 9.7 2.5
35-th 15.2 4 0.9 8.5 1.8
36-th 13.5 1.5 2.5 9.5 0

3.3. Trap data

Tables 9–12 contain the mean numbers of H. halys adults found per trap and per week at all sites
from 2018 to 2021.
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Table 9. Year 2018.

week no. 19-th 20-th 21-st 22-nd 23-rd 24-th 25-th 26-th
Trap count 27.5 29.3 25.8 33.6 14 28.4 21.1 14.1
week no. 27-th 28-th 29-th 30-th 31-st 32-nd 33-rd 34-th

Trap count 11.2 7 8.9 15 37.4 42.2 36.3 45
week no. 35-th 36-th 37-th 38-th 39-th 40-th 41-st 42-nd

Trap count 32.9 29.8 39.7 61.1 93.3 109.7 102.9 86.8

Table 10. Year 2019.

week no. 21-st 22-nd 23-rd 24-th 25-th 26-th 27-th 28-th
Trap count 48.9 48.1 73.2 41 45.3 51.1 31 18.5
week no. 29-th 30-th 31-st 32-nd 33-rd 34-th 35-th 36-th

Trap count 14.4 23.2 24.2 45.8 46.6 38.1 44.5 37.5
week no. 37-th 38-th 39-th 40-th 41-st 42-nd

Trap count 35.6 51.8 67.5 96.5 79.1 72.7

Table 11. Year 2020.

week no. 21-st 22-nd 23-rd 24-th 25-th 26-th 27-th 28-th
Trap count 24.3 23.1 22.6 17.3 10.4 13.4 11.7 6.3
week no. 29-th 30-th 31-st 32-nd 33-rd 34-th 35-th 36-th

Trap count 5.1 5.2 4.5 9.6 9.6 14.3 15.8 16.3
week no. 37-th 38-th 39-th 40-th 41-st 42-nd

Trap count 22.9 37.9 60.1 42.4 61.1 71.5

Table 12. Year 2021.

week no. 19-th 20-th 21-st 22-nd 23-rd 24-th 25-th 26-th
Trap count 12.4 7 16.7 23.4 20.6 20.5 17.3 13.1
week no. 27-th 28-th 29-th 30-th 31-st 32-nd 33-rd 34-th

Trap count 16.1 8.5 7.9 10.2 16.3 27.1 27.4 25.5
week no. 35-th 36-th 37-th 38-th 39-th 40-th 41-st 42-nd

Trap count 23 26.7 29.1 46.3 50.7 57.5 47.5 31.8

4. Simulation results

Because the initial value of the H. halys population at the beginning of the year 2017 is not available,
we assumed it to be of the same order of the one assessed by traps in the following years, of the order
of 100. Since no T is found in the egg masses, but only A is present, and only a fraction of them
parasitizes C, the initial condition for the latter in the year 2017 is set to a smaller hypothetical value
than the one for H. halys. We thus take

I0 = 0, A0 = 10, T0 = 0, C0 = 100. (4.1)
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In these simulations, the intraspecific competition rate bC is not known. For the years 2018–2021,
it is estimated by a regression procedure based on the minimization of the discrepancy between the
simulations results and the actual field data. For the year 2017 instead, the value has been assessed
as the one that minimizes the difference between the final value at the end of the fall, discounted for
the winter mortality, and the initial population in the following spring. Overwintering survival data in
the literature are very variable depending on the temperature and many other factors, 14, 23 and 61%,
respectively in [6, 31, 32]. We therefore assumed a mean data of 33% of overwintering survival. The
whole argument is repeated in the following years. Based on each insect average lifetime (Table 2), the
various mortalities are set to

mI =
1
7
, mA =

1
14
, mT =

1
6
, mC =

1
52
. (4.2)

The value bC is calculated for H. halys as the value that minimizes, in the sense of least squares, the
discrepancy of the simulations results with the actual trap data for this species. Because no information
on the intraspecific competition of the other populations is available, the values of the coefficients bI ,
bA and bT are set to the same value bC.

As discussed at the end of Subsection (2.3), we need to account for the natural mortality of the
juvenile stages. We assume a weekly loss of 50%, which leads from the initial number of laid eggs to
a lower number of adults. This implies for H. halys a reduction factor σC = 0.07 over the whole four
week-period to reach the adult stage, and similarly a reduction factor σX = 0.25, X ∈ {I, A,T } for the
parasitoids and hypeparasitoids, according to their average two week-developmental period. With n
denoting the week in the year, the actual implementation of the model relies on using (2.3), (2.10) in
(2.17) and thus ultimately on the following equations,

In+1 = In + σI sCEI,n−1Cn−2 − bI I2
n − mI In, (4.3)

An+1 = An + σAsCEA,n−1Cn−1 − bAA2
n − mAAn,

Tn+1 = Tn + σT sCET,n−1Cn−1 − bT T 2
n − mT Tn,

Cn+1 = Cn + σC sCEC,n−3Cn−3 − bCC2
n − mCCn.

4.1. H. halys simulations

In Figure 3, left frame, we show the population behavior for the H. halys at the start of the
simulations, in the year 2017. After use of the Matlab minimization routine fminsearch, the value of
the whole overwintering population is 550.

For the following years, the optimization procedure gives the results of Table 13.

Table 13. Optimal intraspecific competition coefficients for H. halys.

year 2018 2019 2020 2021
bC 0.092231 0.0036358 0.66779 0.0001896

4.2. Simulations for all the populations

For the simulations in the following years the values of the intraspecific coefficients for the other
insects are taken to be equal to those of bC that can be read for each year in Table 13, thus in each case

bI = bA = bT = bC.
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Figure 3. Left: populations simulations of the hyperparasitoid I, indigenous parasitoid A,
exotic parasitoids T , and H. halys C in 2017; Right: the reproduction rates rA of A, rT of T ,
rC of C in 2017.

The initial conditions for the year 2017 are given in (4.1). The results are shown in Figures 3–7, left
frames.

Figure 4. Left: populations simulations of the hyperparasitoid I, indigenous parasitoid A,
exotic parasitoids T , and H. halys C in 2018; Right: the reproduction rates rA of A, rT of T ,
rC of C in 2018.

Figure 5. Left: populations simulations of the hyperparasitoid I, indigenous parasitoid A,
exotic parasitoids T , and H. halys C in 2019; Right: the reproduction rates rA of A, rT of T ,
rC of C in 2019.
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Figure 6. Left: populations simulations of the hyperparasitoid I, indigenous parasitoid A,
exotic parasitoids T , and H. halys C in 2020; Right: the reproduction rates rA of A, rT of T ,
rC of C in 2020.

Figure 7. Left: populations simulations of the hyperparasitoid I, indigenous parasitoid A,
exotic parasitoids T , and H. halys C in 2021; Right: the reproduction rates rA of A, rT of T ,
rC of C in 2021.

4.3. Simulations for the reproduction rates

In view of the fact that the reproduction rates (2.3) and (2.4) are implicitly time-dependent, because
they depend on the respective population sizes, it is worth investigating also how they behave, when
the populations evolve in time. Figures 3–7, right frames, contain the results of the simulations.

4.4. Simulations discussion

The model simulations aim at a description of the H. halys invasion phenomenon. This species
after its appearance, is monitored in the graphs starting from the year 2017 together with its
indigenous parasitoid A. bifasciatus. In the following years the exotic parasitoids also appear and their
joint action helps in keeping in check and finally curbing the H. halys population toward the end of
the season. Indeed, in the first two years, the curve of the H. halys raises up, although not necessarily
monotonically, from the spring to the fall.

In 2017, the A. bifasciatus experiences two peaks in the season, at the end of the spring or early
summer, and toward the beginning of the fall.

In 2018, instead, it shows a declining behavior, compensated however by a raise in the Trissolcus
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spp. population. The two together help in a sharp decline of the stink bug around the 40th week of the
simulation, followed, however, by a further rise at the end of the season.

In 2019, H. halys attains a small peak in the spring and a much higher one in the summer, which are
immediately followed by corresponding maxima of A. bifasciatus. In the second part of the summer,
Trissolcus spp. also raises up to replace the indigenous parasitoid as the most effective control measure.
Two other smaller maxima for both the pest and A. bifasciatus appear before the end of the season,
driving the stink bug to lower values. The maximum for H. halys is a bit reduced with respect to the
maximal value attained in 2018, being respectively slightly below and above 600.

In 2020, the H. halys population raises up almost monotonically until the end of the summer, but
with values that are much below those of the previous year. This is due to the joint action of A.
bifasciatus and Trissolcus spp., which grow and exhibit interlaced maxima, finding their maximum
values at the beginning of the fall. Note that the H. halys population maximum, about 250, is halved
with respect to the same value in 2019.

In 2021, a similar trend is shown by the model, only in part mimicking the previous year. Indeed
now the hyperparasitoid emerges at the end of the summer, and at the same time, a reduction in the
maximum value of A. bifasciatus and an increase in Trissolcus spp. in its place can be observed. The
latter is the most effective control on the stink bug at the end of the season. The joint action of the
three parasitoids curbs the final value of H. halys to half the final value that it attains in 2020, namely
roughly 100 versus 200, in spite of the fact that the stink bug has an overall maximum 300 in the whole
season that is higher than the corresponding one observed in the previous year, i.e., 250.

As a general remark, we can conclude that the simultaneous action of the three biological control
mechanisms appears to be able to keep the invaders population down at the end of the simulations and
at the end of the season.

5. System’s equilibria

Here we summarize the results for which the mathematical details are provided in the Appendix A,
both for the full model and in case of constant reproduction rates.

5.1. The full model

For the full model (2.17) with population-dependent reproduction rates, (A.1), in addition to the
origin O and coexistence X6, the other equilibria are found as follows, where the notation Xk with
X ∈ {I, A,T } emphasizes the value of the population X at the equilibrium Ek, k = 1, . . . , 5.

X1 = (0, 0, 0,C1) , C1 =
σC sCE − mC

bC
, X2 = (0, 0,T2,C2) ,

X3 = (0, A3, 0,C3) , X4 = (0, A4,T4,C4) , X5 = (I5, 0,T5,C5) .

Some of these equilibria cannot be determined analytically. However, for X2 and X3 some sufficient
conditions for their feasible existence can be assessed.

Proposition 1. The origin is always feasible. If mI ,mA,mT , 1, O is locally asymptotically stable
for

0 ≤ E <
mC + 1
σC sC

. (5.1)
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Note that in general E represents the number of eggs in an egg mass from which individuals emerge.
In fields data, generally it is found that E ≥ 3, so that the origin is unstable in most of the cases.

Proposition 2. X1 is feasible whenever

σC sCE ≥ mC. (5.2)

It is locally asymptotically stable if the following conditions are satisfied∣∣∣∣∣∣σAsAβAσC sCEC1

qA,C

[
1 +
σT sTβT

qT

]
− mA

∣∣∣∣∣∣ < 1, (5.3)∣∣∣∣∣σC sCEC1βTσT sT

qT
− mT

∣∣∣∣∣ < 1, 0 ≤ E <
mC + 1
σC sC

.

Proposition 3. Sufficient conditions for the feasibility of X2 are

E ≥
1

2σC sC

mC +

√
m2

C + 4
bCqT mT

σC sCσT sTβT

 . (5.4)

Corollary If (5.4) holds, we also have the constraint for the C population:
mT qT

σC sCσT sT EβT
≤ C2 ≤

σC sCE − mC

bC
.

Proposition 4. Letting

∆X2 = [J33(X2) − J44(X2)]2 − 4J34(X2)J43(X2),

the stability conditions for X2 are ∣∣∣∣∣βTβIσC sCσI sIσT sT ECT
(qT + σT sT T ) qI

− mI

∣∣∣∣∣ < 1, (5.5)∣∣∣∣∣∣σAsAβAσC sCEC
qA,C

[
1 +

σT sTβT

(qT + σT sT T )

]
− mA

∣∣∣∣∣∣ < 1,∣∣∣∣J33(X2) + J44(X2) ±
√
∆X2

∣∣∣∣ < 2.

Proposition 5. Sufficient conditions for the feasibility of X3 are

E ≥
1

2σC sC

mC +

√
m2

C + 4
bCqA,CmA

σAsAσC sCβA

 , (5.6)

Corollary Proposition 5 gives also the following constraint for the C population
mAqA,C

σAsAσC sCE βA
≤ C3 ≤

σC sCE − mC

bC
.

Proposition 6. X3 is locally asymptotically stable if

|mI | < 1,

∣∣∣∣∣∣σC sCECβTσT sT

qT

[
1 −

βAσAsAA
qA,T + σAsAA

]
− mT

∣∣∣∣∣∣ < 1, (5.7)∣∣∣∣J22(X3) + J44(X3) ±
√
∆X3

∣∣∣∣ < 2, (5.8)

where
∆X3 = [J22(X3) − J44(X3)]2 − 4J24(X3)J42(X3).
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5.2. A particular case

In the particular case of (2.17) with constant rates

rA(A) = rA, rT (T ) = rT , hI(I) = hI , hA(A) = hA. (5.9)

equilibria are the origin, unconditionally feasible, and the coexistence point.
Proposition 7. Assuming (5.9), coexistence is given by

W = (I+, A+,T+,C+) , C+ =
1

bC
[σC sCE (1 − rA − rT ) − mC], (5.10)

where

I+ =
1

2bI

[
−mI +

√
m2

I + 4bIσI sCEC+rT hI

]
,

A+ =
1

2bA

[
−mA +

√
m2

A + 4bAσAsCEC+[rA + rT hA]
]
,

T+ =
1

2bT

[
−mT +

√
m2

T + 4bTσT sCEC+rT
(
1 − hA − hI

)]
.

and for its feasibility we have the constraint

E >
mC

σC sC (1 − rA − rT )
. (5.11)

Proposition 8. Assuming (5.9), the origin is locally asymptotically stable for the following
alternatives:

• Assuming that mX ∈ [0, 1), X ∈ {I, A,T } and rA + rT < 1, O is asymptotically stable if and only if

0 ≤ E <
mC + 1

σC sC (1 − rA − rT )
; (5.12)

• If mX̂ = 1, for some X̂ ∈ {I, A,T }, while mX ∈ [0, 1) for X ∈ {I, A,T } − {X̂}, and (5.12) holds, O is
stable, but not asymptotically.

Proposition 9. Assuming (5.9), using the feasibility condition, (5.11), and (5.10) local asymptotic
stability is guaranteed by the following sets of inequalities, for X ∈ {I, A,T }:

E ∈ [0, ζX+), E <
mC + 1

σC sC (1 − rA − rT )
, (5.13)

where, using (A.6)

ζX± =
mC

2σC sC (1 − rA − rT )
±

√
m2

C + γXbC (1 − rA − rT )

2σC sC (1 − rA − rT )
.
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6. Conclusions

In this work, we modeled the parasitism and hyperparasitism on H. halys eggs in North Italy using
both data collected during a five-year field survey and data available in the literature. The model
presented here is of descriptive nature, although, as stated above, clearly based on a sound ecological
basis. It cannot be taken as a tool for forecasts, because it is still in a rudimentary phase and therefore
validation with real data at this stage is not considered. We plan in the future to refine and validate it
accordingly.

As all models, the one considered here is subject to several limiting assumptions, listed below.

• In the modeling procedure juvenile stages do not appear explicitly; however insects experience
developmental stages that differ for heterometabolous, (i.e., H. halys), and holometabolous, (i.e.,
parasitoids and hyperparasitoid) during their evolution from egg to adulthood.
• To fit the gaps on the egg masses data, an interpolation procedure was used in which eggs are

forced to disappear at the start and end of each year.
• Unlike field insect data, i.e., field collected eggs and trap catch counts, biological parameters,

such as longevity and sex ratio, came from laboratory experiments, which may differ from those
occurring in the field.
• Population data are just estimates on the actual numbers of individuals in the environment; they

are obtained as averages of insects captured at various sites, differing greatly for environmental
conditions. This applies to H. halys as well as to parasitoids, counted as averages of those
emerging from field collected eggs.
• All populations at the start of the following year come from the corresponding values at the end

of the fall of the current year, discounted by a fixed fraction representing their mortality during
overwintering, which is arbitrarily taken for the whole parasitoid populations. However, climatic
conditions may change, so that the assumption of constant winter mortality could be refined.
• Intraspecific competition rates are not measurable in the field. Thus bI , bA and bT are set to the

same value bC that is instead calculated for H. halys through least squares regression, see Section
4.
• The average lifetime of the indigenous parasitoid is set to 14 weeks while A hyperparasitizes C

within the first 3 days.
• Not having data at the start of 2017, the value of the H. halys is taken to be of the same order of

the one assessed by traps in the following years, while for A we set a smaller hypothetical value
than the one for H. halys, since only a fraction of A parasitizes C (4.1).

The model equilibria have been analytically assessed, when possible. Ecosystem collapse,
represented by the origin, could occur in case of population-dependent reproduction rates if
condition (5.1) holds. In general however, it does not, as the number of eggs in an egg mass usually
exceeds the critical value 3.

H. halys alone can stably survive at equilibrium X1, if feasibility (5.2) holds and conditions (5.3)
are satisfied.

For both the points with H. halys and just one of the parasitoids T or A we have obtained sufficient
conditions for their feasibility, (5.4) and (5.6). They are not stringent in the sense that even in case they
are violated, these equilibria could nevertheless exist. Their local asymptotic stability conditions have
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instead completely assessed, respectively by (5.5) for X2 and the equations (5.7) and (5.8) for X3. An
explicit interpretation of their meanings in terms of the model parameters appears however to be very
difficult.

The coexistence point and the equilibrium with no hyperparasitoid I lead to nonlinear algebraic
systems for which the analytic solution is not available. Similarly, the Jacobian evaluated at these
points leads to a fourth order matrix, whose eigenvalues are impossible to calculate; formally, we
could write the Routh-Hurwitz conditions for stability, but they would hardly shed any light on this
issue. The recourse to numerical methods is therefore imperative.

In our simulations the populations of the indigenous and generalist parasitoid, A. bifasciatus,
fluctuated over the five years, confirming that this species alone cannot significantly suppress H. halys
populations, consistent with what was observed in previous field trials [9, 33]. Examples of failed
biological control exist in the literature. The most notable case concerns aphid species in open-air
crops, both horticultural and fruit with the use of parasitoid species and the role played by
hyperparasitoid species; both experimental [34] and by the use of mathematical models [35].
However, we are not observing a failure of biological control due to hyperparasitoid activity but
merely describing the situation that, in our opinion, has not yet reached an equilibrium. Instead,
populations of the exotic parasitoids T. japonicus and T. mitsukurii increased greatly from 2019 to
2021, after they first appeared in 2018 and 2016 respectively. This led to H. halys populations
gradually decreasing, demonstrating that the exotic species can have a strong impact on their host.
The hyperparasitoid A. sinicus, which in these surveys was detected for the first time in 2020, even if
it had already been detected starting from 2016 in the study area, the Piedmont region [9], did not
show as large an increase in the following years as the two Trissolcus species, thus demonstrating a
minimal impact on parasitoids, without hampering their activity on bug populations, as modeled
in [36]. Certainly, egg parasitoids are not the only natural enemies of H. halys. Indeed, eggs are also
attacked by predators [33, 37], and mobile stages can be affected by other parasitoids, predators, and
entomopathogens [38, 39]. Egg parasitoids clearly do not, by themselves, suppress H. halys
populations to noneconomic levels, as already modeled in [36], but can play an important role in
reducing H. halys populations, as seen in these simulations and also by [36]. These interactions
between host, parasitoids, and hyperparasitoids tend to reach different equilibria over time, especially
as the populations adapt to environmental pressures. In our model, this is reflected in the fluctuating
dynamics of A. bifasciatus and the stabilizing effect of T. japonicus and T. mitsukurii on H. halys
populations. The stability and biological significance of these equilibria depend on multiple factors,
such as the reproductive rates of the species and their susceptibility to predation or parasitism, which
our model attempts to approximate. More extensive field data could improve our understanding of
these equilibria and the conditions that favor stability or instability in these populations. However, our
simulations are based on partial field observations, as adults and eggs were not sampled at the same
sites, and parameters from literature were obtained from laboratory trials. Furthermore, climate
conditions, and climate change, were not considered, but they can affect populations of both host and
parasitoids [40–45]. Incorporating these additional variables could further describe the stability of the
modeled interactions and the long-term biological significance of these parasitoid-host dynamics.
More accurate simulations could be made with additional collection of field data, and also by adding
climatic data in the model.
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Appendix

A. Mathematical appendix: Equilibria analysis of the full model

In this situation, (2.17) has population-dependent reproduction rates,

rX = rX(X), X ∈ {A,T }. (A.1)
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In addition to the origin O and coexistence X6, the other equilibria are found as follows.

X1 = (0, 0, 0,C1) , C1 =
σC sCE − mC

bC
, X2 = (0, 0,T2,C2) ,

X3 = (0, A3, 0,C3) , X4 = (0, A4,T4,C4) , X5 = (I5, 0,T5,C5) .

Some of these equilibria cannot be determined analytically. However, for X2 and X3 some sufficient
conditions for their feasible existence can be assessed.

A.1. Feasibility

A.1.1. Equilibrium X2

Proof of Proposition 3
For X2, observing that C , 0, T , 0, the equilibrium equations of (2.17) to be considered are the

last two. They can be rearranged as follows:

C = Π(T ) =
1

σC sC sT EβT

[
σT sT bT T 2 +

(
σT sT mT + bT qT

)
T + mT qT

]
(A.2)

C = Φ(T ) =
1

bC

[
σC sCE − mC −

σC sCσT sT EβT T
qT + σT sT T

]
where Π(T ) is a convex parabola in the T −C plane through the point on the vertical axis(

0,
mT qT

σC sCσT sT EβT

)
where it has a positive slope and Φ(T ) is a hyperbola with intercept at the origin(

0,
σC sCE − mC

bC

)
.

and horizontal asymptote with height b−1
C [σC sCE(1 − βT ) − mC]. Note that Φ(T ) is always decreasing,

since
dΦ(T )

dT
= −
σC sCσT sT EβT qT

(qT + σT sT T )2 < 0.

An intersection of Π(T ) and Φ(T ) in the first quadrant is thus guaranteed if

mT qT

σC sCσT sT EβT
≤
σC sCE − mC

bC

so that the sufficient condition in this case turns out to be (5.4).

A.1.2. Equilibrium X3

Proof of Proposition 5
Here, we need to consider the second and fourth equilibrium equations of (2.17). Thus, we need to

intersect the curves

C = Ψ(A) =
1

σAsAσC sCEβA

[
bAσAsAbAA2 +

(
bAqA,C + σAsAmA

)
A + mAqA,C

]
, (A.3)
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C = Φ(A) =
1

bC

(
σC sCE − mC −

σAsAσC sCEβAA
qA,C + σAsAA

)
.

Again Ψ(A) is a convex parabola and Ψ(A) is a hyperbola in the A − C plane, respectively through the
points (

0,
mAqA,C

σC sAσC sCE βA

)
,

(
0,
σC sCE − mC

bC

)
.

At the origin, the slope of Ψ(A) is positive and the one of Φ(A) is negative. Thus an intersection
exists if (5.6) holds.

A.2. Local Stability

In this section we recall the values of some important parameters, (4.2), that are used in the analysis
that follows. System (2.17), in view now of the assumptions (A.1), has the following Jacobian J = Jik,
i, k = 1, . . . , 4, with J1,2 = J2,1 = J4,1 = 0 and

J1,1 =
βTβIqIσC sCσI sIσT sT ECT
(qT + σT sT T ) (qI + σI sI I)2 − 2bI I − mI , J1,3 =

σC sCσI sIσT sTβTβIqT ECI
(qT + σT sT T )2 (qI + σI sI I)

, (A.4)

J1,4 =
σC sCEβTβIσI sIσT sT T I

(qT + σT sT T ) (qI + σI sI I)
, J2,4 = σC sCE

βAσAsAA
qA,C + σAsAA

[
1 +

βTσT sT T
qT + σT sT T

]
,

J2,2 =
σAsAqA,CβAσC sCEC(

qA,C + σAsAA
)2

[
1 +

σT sTβT

qT + σT sT T

]
− 2bAA − mA

J2,3 =
σC sCECβTσT sT qTβAσAsAA

(qT + σT sT T )2 (
qA,T + σAsAA

) , J3,1 =
σC sCECβTσT sT T

qT + σT sT T

[
1 +

βIσI sIqI

(qI + σI sI I)2

]
,

J3,2 =
σC sCECβTσT sT T

qT + σT sT T

[
1 +

βAσAsAqA,T

(qA,T + σAsAA)2

]
, J4,2 =

σC sCECβAσAsAqA,T

(qA,T + σAsAA)2 ,

J3,3 =
σC sCECβTσT sT qT

(qT + σT sT T )2

[
1 −

βAσAsAA
qA,T + σAsAA

−
βIσI sI I

qI + σI sI I

]
− 2bT T − mT ,

J3,4 =
σC sCEβTσT sT T

qT + σT sT T

[
1 −

βAσAsAA
qA,T + σAsAA

−
βIσI sI I

qI + σI sI I

]
J4,3 =

σC sCECβTσT sT qT

(qT + σT dsT T )2 ,

J4,4 = σC sCE
[
1 −

βAσAsAA
qA,T + σAsAA

−
βIσI sI I

qI + σI sI I

]
− 2bCC − mC.

A.2.1. Origin

Proof of Proposition 1
Here the eigenvalues of (A.4) are all explicitly known,

λO
1 = −mI , λ

O
2 = −mA, λ

O
3 = −mT , λ

O
4 = σC sCE − mC

thus yielding (5.1).

A.2.2. Equilibrium X1

Proof of Proposition 2
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Feasibility follows by imposing the nonnegativity of the C population at equilibrium, C1, giving
(5.2).

For stability, again the four eigenvalues are explicitly found. For qA,C, qT , 0, we have

λX1
1 = −mI , λ

X1
2 =

σAsAβAσC sCEC1

qA,C

[
1 +
σT sTβT

qT

]
− mA,

λX1
3 =

σC sCEC1βTσT sT

qT
− mT , λ

X1
4 = mC − σC sCE = −bCC1 < 0,

from which (5.3) follows.
Remark 1 For βA = βT = 0, the second and third eigenvalues would coincide with the

corresponding ones of the origin, and the analysis would then be identical to the one of O. The claim
of Proposition 2 follows in view of the values of Table 1, −1 ≤ λX1

1 ≤ 0.

A.2.3. Equilibrium X2

Proof of Proposition 4
In this case two eigenvalues are known immediately, JX2

11 and JX2
22 , because the Jacobian factorizes,

providing the first two conditions (5.5). The remaining two are obtained from the roots of the quadratic
equation

λ2 − (J33(X2) + J44(X2)) λ + J33(X2)J44(X2) − J34(X2)J43(X2) = 0.

A.2.4. Equilibrium X3

Proof of Proposition 6
Here again, the Jacobian factorizes giving two explicit eigenvalues JX3

11 and JX3
33 , giving the first two

stability conditions (5.7), while the other ones are the roots of the quadratic equation

λ2 − (J22(X3) + J44(X3)) λ + J22(X3)J44(X3) − J24(X3)J42(X3) = 0,

which provide the last two stability conditions, (5.8).

A.3. Analysis of a particular case

Proof of Proposition 7
We consider here the case where the primary parasitization rates rA and rT , as well as the

hyperparasitizations hI , hA, are assumed to be constant, (5.9).
The feasible equilibria of the system (2.17) are just the origin O and coexistence W. The latter in

principle is not unique, but only one instance can be accepted, (5.10).
Note that for feasibility of W we must impose that the C population is nonnegative, giving the

constraint (5.11), with 1− rA − rT > 0 stemming from (2.10). Note that if (5.11) holds, I− ≤ 0, A− ≤ 0,
T− ≤ 0 and the other equilibria are not feasible. Since I+ ≥ 0, A+ ≥ 0, T+ ≥ 0, the only feasible
equilibria are the origin and W.
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A.3.1. Stability

For the stability, we need the Jacobian of (2.17),

J̃ =


−2bI I − mI 0 0 σI sCErT hI

0 −2bAA − mA 0 σAsCE (rA + rT hA)
0 0 −2bT T − mT σT sCErT (1 − hA − hI)
0 0 0 J̃4,4

 (A.5)

where

J̃4,4 = σC sCE (1 − rA − rT ) − 2bCC − mC

Proof of Proposition 8
At the origin, the eigenvalues are easily determined, µO

1 = −mI , µO
2 = −mA, µO

3 = −mT , µO
4 =

σC sCE (1 − rA − rT )−mC. While the first three lie in [−1, 0], for the fourth one there are the alternatives
in the statement of Proposition 8. Note that if rA + rT = 1, then µO

4 = −mC and similar considerations
apply here as well. We omit the details.

Proof of Proposition 9
For the stability of W, we have again four explicit eigenvalues for the Jacobian evaluated at this

equilibrium:

µW
1 = −

√
m2

I + 4σI sCEbIrT hIC+ < 0,

µW
2 = −

√
m2

A + 4σAsCEbA
(
rA + rT hA

)
C+ < 0,

µW
3 = −

√
m2

T + 4σT sCEbT rT
(
1 − hA − hI

)
C+ < 0,

µW
4 = mC − σC sCE (1 − rA − rT ) .

From the feasibility of W, (5.11), we find that µ4 < 0. For the asymptotic stability of the coexistence
equilibrium, we need µW

k ∈ (−1, 0), k = 1, . . . , 4. If one of these inequalities attains the lower bound,
only stability can be obtained. Once again, using (5.11) and (5.10) asymptotic stability is therefore
guaranteed by (5.13) where

γI =
1 − m2

I

bIrT hI
> 0, γA =

1 − m2
A

bA (rA + rT hA)
> 0, γT =

1 − m2
T

bT rT (1 − hA − hI)
> 0. (A.6)

The above inequalities hold in view of the information of Table 1 on the various mortalities and
from (2.6) for γT . Further, note that ζX− < 0 for all the populations X ∈ {I, A,T } and, therefore, this
lower bound is indeed excluded from the conditions (5.13).
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