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Abstract: Effector CD8+ cells lyse human immunodeficiency viruses (HIV)-infected CD4+ cells by 
recognizing a viral peptide presented by human leukocyte antigens (HLA) on the CD4+ cell surface, 
which plays an irreplaceable role in within-host HIV clearance. Using a semi-saturated lysing 
efficiency of a CD8+ cell, we discuss a model that captures HIV dynamics with different magnitudes 
of lysing rate induced by different HLA alleles. With the aid of local stability analysis and bifurcation 
plots, exponential interactions among CD4+ cells, HIV, and CD8+ cells were investigated. The system 
exhibited unexpectedly complex behaviors that were both mathematically and biologically interesting, 
for example monostability, periodic oscillations, and bistability. The CD8+ cell lysing rate, the CD8+ 
cell count, and the saturation effect were combined to determine the HIV kinetics. For a given CD8+ 
cell count, a low CD8+ cell lysing rate and a high saturation effect led to monostability to a high viral 
titre, and a low CD8+ cell lysing rate and a low saturation effect triggered periodic oscillations; this 
explained why patients with a non-protective HLA allele were always associated with a high viral titer 
and exhibited bad infection control. On the other hand, a high CD8+ cell lysing rate led to bistability 
and monostability to a low viral titer; this explained why protective HLA alleles are not always 
associated with good HIV infection outcomes. These mathematical results explain how differences in 
HLA alleles determine the variability in viral infection. 

Keywords: CD8+ cell; HLA allele; bistable viral kinetics; oscillating viral kinetics; semi-saturated 
lysing efficiency; protective HLA allele 
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1. Introduction 

The human immunodeficiency viruses (HIV) are two species of Lenivirus that infect human 
immune cells (e.g., CD4+ T cells) and cause acquired immunodeficiency syndrome (AIDS) [1,2]. 
Combined antiretroviral therapy (cART) can transform HIV infection from a seeming death sentence 
to a manageable chronic disease [3]. However, cART can eventually progress to both HIV drug 
resistance and systemic side effects [4]. 

Human leukocyte antigens (HLA) class I presents short HIV-derived peptides, which lead to 
different antigenic specificities of CD8+ T cell responses [5,6]. Variations in HLA genes lead to 
differences in how the infected cells alert the immune system, and ultimately differences in the disease 
outcomes [6,7]. Approximately 1% of infected patients (known as HIV elite controllers) efficiently 
control HIV infectivity to very low or undetectable levels and exhibit superior HIV-1-specific CD8+ 
cell responses [8,9]. An elite controller must carry a protective HLA allele; however, having protective 
HLA alleles may not always confer the individual’s superior HIV infection outcome [10–13]. 

Numerous mathematical models have been constructed to understand the role of the lysing 
efficiency of CD8+ cells on HIV [8,9,14], influenza [10,15,16], hepatitis B [6,17], and SARS-cov-2 [18] 
dynamics. However, among these models, the lysing efficiency of CD8+ cells is assumed to linearly 
increase with the CD8+ cells or the infected cell count, thereby ignoring saturation. Ganusov et al. [19] 
demonstrated that the lysing efficiency using law mass-action provides a better description of the 
killing than saturation; however, Myers et al. [20] suggested that the saturated model using the Hill 
function is a better candidate. The saturated lysing efficiency provides a smaller sum of squared error 
and better Akaike information criterion (ki) values compared to the unsaturated lysing efficiency 
modelled by the law of mass action [21]. Including saturation has been previously considered, albeit 
not in large numbers of studies. First, Althaus et al. [22] used the saturated lysing efficiency using the 
Hill function to indicate that the HIV kinetics converged to different viral loads according to varying 
efficacies of their CD8+ responses. Next, Burg et al. [23] illustrated that the HIV kinetics with the 
saturated lysing efficiency exhibited damped oscillations upon approaching the steady states. Crucially, 
the saturation effect always led to bistable behaviors, for example, neutrophil-induced bistable 
bacteria kinetics [24], antibody-induced bistable influenza kinetics [15], and antibiotic-induced 
bacteria kinetics [25,26]. Additionally, cytokines have been reported to induce bistable HIV 
kinetics [27–29]. Moreover, it is necessary to understand how the lysing rate induced by different HLA 
alleles, the saturation effect, and CD8+ cell count interplay to determine the HIV kinetics. Specifically, 
it is unclear whether CD8+ cells can lead to different HIV kinetics, including monostability, bistability, 
or periodic oscillations; if they can, then the parameter regions that correspond to the different HIV 
kinetics have not been explored.  

In this work, we conduct a further investigation of our mathematical model that describes HIV 
dynamics with the saturated lysing efficiency of CD8+ cell and biologically relevant parameters [21]. 
After a discussion of the basis for our approach, we investigate the well-posedness of the proposed 
model, the existence of an equilibrium, analyze their local stability, and numerically determine which 
parameters can lead to monostability, bistability, and periodic oscillations. Interestingly, a low lysing 
rate and a low saturation effect can lead to periodic oscillations, and a low lysing rate and a high 
saturation effect can trigger monostability to a high viral titer; this explains how having non-protective 
HLA alleles always coincides with bad infection control. Moreover, a high lysing rate and a high 
saturation parameter results in bistability, in which a high viral inoculum size results in the maintenance 
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of viral infectivity, but a small viral inoculum size count can lead to the eradication of viral infectivity; 
this explains why patients with protective HLA alleles are not always associated with HIV infection 
outcomes. Then, we present a bifurcation analysis of the model which leads to unexpected findings 
that CD8+ cell lead to oscillating HIV kinetics, monostable HIV kinetics, and bistable HIV kinetics. 
Finally, we discuss advantages and limitations of our approach and potential future work. 

2. Model development 

The HIV dynamics with the semi-saturated lysing efficiency of CD8+ cell are captured using a 
mathematical framework (Reference [21], shown in Figure 1). Comparing the short time scale (days) 
used in this model with the 8–11 years life expectancy without cART and several decades with cART, 
the effector CD8+ cell concentration is assumed to be a constant. We describe the rate of change of 
susceptible CD4+ cell, infected CD4+ cells, and the HIV viral titer as follows: 

 ⎩⎪⎨
⎪⎧ ௗ்ௗ௧ = 𝜆 − 𝛿்𝑇 − 𝛽𝑇𝑉ௗூௗ௧ = 𝛽𝑇𝑉−𝛿ூ𝐼 − ூாଵାఊூାఎாௗௗ௧ = 𝜋𝐼 − 𝛿𝑉 , (1) 

where 𝑡 is time (days post infection), 𝑇(𝑡) refers to the susceptible CD4+ cell concentration, 𝐼(𝑡) 
refers to the productively infected CD4+ cell concentration, 𝑉(𝑡)  refers to the free HIV virus 
concentration, and 𝐸 refers to the constant CD8+ cell concentration. Note that the interaction among 
the CD4+ cell, HIV, and CD8+ cells was considered spatially homogeneous, and they were well-mixed. 
The interpretation and value of all parameters are given in Table 1.  

 

Figure 1. Flow diagram for the interaction among CD4+ cells, HIV virions, and CD8+ cells. 
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Table 1. Summary of HIV replication and CD8+ cell lysing parameter. 

Parameter/Meaning  Value  Dimensions  Reference 𝜆, Birth rate of CD4+ susceptible cell 295 cells μL−1day−1 [30,31] 𝛿், Death rate of CD4+ susceptible cell 0.18 Day-1 [31] 𝛽, HIV infectivity 3.9 × 10ିଷ μL 
virions−1day−1 

[32] 𝛿ூ, Death rate of active infected cell 1.0 Day−1 [33] 𝜋, Burst size 5.5 × 10ସ Virions 
cell−1day−1 

[34] 𝛿, Virion clearance rate 36 Day-1 [35] 𝜅, CD8+ cell lysing rate [0, 10] μL−1cell-1day−1 [21] 𝛾, Saturation parameter controlling lysing 
efficiency with increase of infected cells 

[0, 10] μL−1cell-1 [21] 𝜂, Saturation parameter controlling lysing 
efficiency with increase of CD8+ cell count 

0 μL−1cell-1 [21] 𝐸, CD8+ cell count [0, 1600] μL−1cells [36,37] 

In HIV kinetics with a constant CD8+ cell concentration, uninfected CD4+ cells are generated at 
homeostasis with a rate of 𝜆 and die with a rate of 𝛿். Susceptible CD4+ cells become infected with 
a rate of 𝛽 upon exposure to free HIV virions 𝑉, and infected CD4+ cells release HIV virions at a 
burst size of 𝜋 (shown in Figure 1). HIV virions naturally degrade with a rate of 𝛿. CD8+ cells lyse 

actively infected cells with the saturated lysing efficiency ூாଵାఊூାఎா, in which the lysing efficiency of 

CD8+ cell increase but gradually converge to its maximum value as both the CD8+ cell and CD4+ cell 
counts increase. By fitting the virus inhibition assay data, the parameter controlling saturation effect 
in the lysing efficiency as CD8+ cell count 𝐸 increase 𝜂 is fitted to be zero; then, the lysing efficiency ூாଵାఊூାఎா is degraded to ூாଵାఊூ (shown in Figure 1, Reference [21]). 𝜅 represents the CD8+ cell lysing 

rate and 𝛾 controls the saturation effect in the lysing efficiency as the infected cells count 𝐼 increases 
(shown in Figure 1).  

3. The well-posedness of the system  

Because system (1) proposes a biological phenomenon, solutions of system (1) are supposed to 

be positive and bounded with the initial conditions. First, it is easy to know that ௗ்ௗ௧ |்ୀ = 𝜆 > 0, 

ௗூௗ௧ |ூୀ = 𝛽𝑇(0)𝑉(0) > 0, for all 𝑇(0), 𝑉(0) > 0, ௗௗ௧ |ୀ = 𝜋𝐼(0) > 0 for all 𝐼(0) > 0. Thus, the 

positivity is obvious. Next, we prove 𝜙 = 𝑇 + 𝐼 + ఋଶగ 𝑉. In this case, we have ௗథௗ௧ = ௗ்ௗ௧ + ௗூௗ௧ + ఋೇଶగ ௗௗ௧ =𝜆 − 𝛿்𝑇 − ூாଵାఊூାఎா − ఋଶ 𝐼 − ఋఋೇଶగ 𝑉 < 𝜆 − 𝐶𝜙 , where 𝐶 = min (𝛿், ఋଶ , ఋఋೇଶగ  ) . Then, we have 0 ≤𝜙(𝑡) ≤ 𝜃, where 𝜃 = ఒ. Thus, boundedness is obvious. 
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4. Existence of equilibrium 

Setting the right-hand-side of system (1) to zero, three equilibria are found: (a) a solution with 
the maximum susceptible cells amount equaling its carrying capacity and viral titer equaling to zero; 
(b) a solution with a low susceptible cell count and a low viral titer; and (c) a solution with a low 
susceptible cell count and a high viral titer. The populations corresponding to such cases are as follows: 

(a) virus-free equilibrium 𝐸 = (𝑇, 𝐼, 𝑉) = ( ఒఋ , 0,0) ; (b) the first non-trivial equilibrium 𝐸ଵ =(𝑇ଵ, 𝐼ଵ, 𝑉ଵ) = ቀ𝑇ଵ∗𝛿, ଵିఋఋೇ భ்∗ఉగ భ்∗ , ଵିఋఋೇ భ்∗ఉఋೇ భ்∗ ቁ ; and (c) the second non-trivial equilibrium 𝐸ଶ =(𝑇ଶ, 𝐼ଶ, 𝑉ଶ) = ቀ𝑇ଶ∗𝛿, ଵିఋఋೇ మ்∗ఉగ మ்∗ , ଵିఋఋೇ మ்∗ఉఋೇ మ்∗ ቁ . 𝑇ଵ,ଶ∗ = ିభ±√௱ ଶమ   are the two solutions of bifurcation 

equation 𝑘ଶ𝑇ଶ + 𝑘ଵ𝑇 + 𝑘 = 0 , and its discriminant is 𝛥 = 𝑘ଵଶ − 4𝑘ଶ𝑘 , where 𝑘ଶ = 𝛽𝜋(𝛽𝜋 −𝛿்𝛿𝛾) , 𝑘ଵ = 𝜋(𝛾𝜆 − 𝐸𝛽𝜅) − 𝛿ூ(𝛽𝜋 − 𝛿்𝛿𝛾) , and 𝑘 = −𝛿ூ𝛾𝜆 . 𝑇ଵ∗  and 𝑇ଶ∗  cannot be 
simplified by the factor (𝛽𝜋 − 𝛿்𝛿𝛾 ), because 𝑘ଵ = 𝜋(𝛾𝜆 − 𝐸𝛽𝜅) − 𝛿ூ(𝛽𝜋 − 𝛿்𝛿𝛾)  cannot be 
factored by (𝛽𝜋 − 𝛿்𝛿𝛾 ). In this case, 𝑇ଵ∗  and 𝑇ଶ∗  cannot be simplified and cannot provide a 
simplified conditions/ expression for the existence of an equilibrium.  

The Jacobian matrix of the system was given by the following: 

 𝐽 = ൮−𝛿் − 𝑉𝛽 0 −𝑇𝛽𝑉𝛽 −𝛿ூ − ா(ଵାఊூ)మ 𝑇𝛽0 𝜋 −𝛿 ൲,  

where we discuss the character of the eigenvalues for the above equilibria below. 

5. Local stability analysis 

5.1. Stability of virus-free equilibrium 𝐸 = ቀ ఒఋ , 0,0ቁ  

The virus-free equilibrium 𝐸 corresponds to a failure of the HIV virion to infect a CD4+ cell 
due to the lysing effect of CD8+ cells. Evaluating the Jacobian at this equilibrium gives the following: 

 𝐽 = ⎝⎜
⎛−𝛿் 0 − ఒఉఋ0 −𝜅𝐸 − 𝛿ூ ఒఉఋ0 𝜋 −𝛿⎠⎟

⎞
,  

which gives rise to the characteristic equation, 𝜌(𝜏; 𝛿், 𝛿ூ, 𝛿) = ଵఋ (𝜏 + 𝛿்)൫𝛿்𝜏ଶ + (𝜅𝐸𝛿் +𝛿்𝛿ூ + 𝛿்𝛿)𝜏 + (𝜅𝐸𝛿்𝛿 + 𝛿்𝛿ூ𝛿 − 𝜆𝜋𝛽)൯. 

The overall stability of the virus-free equilibrium 𝐸 is dependent on the real part of the root of 𝜏 and 𝜏 of the quadratic factor, because the root 𝜏 = −𝛿் < 0 of the linear factor is negative. 
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After calculating 𝜏 and 𝜏, we find that the equilibrium is either a stable node or a stable focus 
when 𝜅𝐸𝛿்𝛿 + 𝛿்𝛿ூ𝛿 > 𝜆𝜋𝛽 . Because both the lysing rate 𝜅  and the CD8+ cell count 𝐸  are 
bifurcation parameters, the real parts of the two eigenvalues are numerically analyzed in the 
numerical simulation section.  

5.2. Stability of two non-trivial equilibria 𝐸ଵ = (𝑇ଵ, 𝐼ଵ, 𝑉ଵ) and 𝐸ଶ = (𝑇ଶ, 𝐼ଶ, 𝑉ଶ) 

The model might admit two non-trivial equilibria, 𝐸ଵ = (𝑇ଵ, 𝐼ଵ, 𝑉ଵ) and 𝐸ଶ = (𝑇ଶ, 𝐼ଶ, 𝑉ଶ), where 
susceptible CD4+ cells coexist with the HIV virions. After substituting 𝐸ଵ = (𝑇ଵ, 𝐼ଵ, 𝑉ଵ) and 𝐸ଶ =(𝑇ଶ, 𝐼ଶ, 𝑉ଶ) into the Jacobian matrix, the characteristic equation for these two solutions, is given by 𝜌(𝜏) = 𝜏ଷ + 𝑎ଶ𝜏ଶ + 𝑎ଵ𝜏 + 𝑎 . The interpretation of three coefficients— 𝑎ଶ , 𝑎ଵ  and 𝑎 —are 
provided in Appendix. For this cubic function, the Routh-Hurwitz criterion is used to deduce the 
parameter values that the three roots have negative real parts [38]. This criterion states that, given a 
general cubic of the form 𝜌(𝜆) = 𝜏ଷ + 𝑎ଶ𝜏ଶ + 𝑎ଵ𝜏 + 𝑎, two conditions need to be simultaneously 

met for all roots to have negative real parts (i.e., (i) భమିబమ > 0 and (ii) 𝑎 > 0).  

6. Numerical simulation 

In this section, we integrate the HIV replication parameters (shown in Table 1) into system (1) to 
investigate how the CD8+ cell lysing rate 𝜅, the CD8+ cell count 𝐸, and the saturation parameter 𝛾 
determine the CD4+ cell and HIV kinetics. First, we understand how these three parameters determine 
the existence of the equilibria 𝐸 , 𝐸ଵ , and 𝐸ଶ . Next, we examine the dynamical behaviors of the 
system on the parameter regions that correspond to a different number of equilibria, for example, the 
stability of an equilibrium and the existence of a periodic cycle. Conclusively, we demonstrate that the 
saturated lysing efficiency leads to unexpectedly complex dynamical behaviors, including 
monostability to either a high or low viral titer, bistability, and periodic oscillations.  

6.1. Existence of equilibria 

The CD8+ cell counts range from 300 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙  to 2100 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙  before and during cART, 
respectively [36]. Before cART, the CD8+ cell counts approximately range from 600 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙  to 1200 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙 ; during cART, the CD8+ cell counts approximately range from 100 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙  to 600 𝑐𝑒𝑙𝑙𝑠/𝜇𝑙 . First, we fixed the CD8+ cell count as 𝐸 = 400  (shown in Figure 2A), 𝐸 = 800 
(shown in Figure 2B), and 𝐸 = 1600 (shown in Figure 2C) to investigate the role of the lysing rate 𝜅 and the saturation parameter 𝛾 on HIV kinetics. The parameter region of the lysing rate 𝜅 and the 
saturation parameter 𝛾 was divided into six regions according to the positivity of 𝑇ଵ,ଶ, 𝐼ଵ,ଶ, and 𝑉ଵ,ଶ. 
First, one positive equilibrium 𝐸ଶ exists when 𝑇ଶ > 0, 𝐼ଶ > 0, and 𝑉ଶ > 0 are in the green and yellow 
regions (shown in Figure 2A–C). 𝑇ଵ > 0, 𝐼ଵ < 0, and 𝑉ଵ < 0 are in the green region, but 𝑇ଵ < 0, 𝐼ଵ < 0, and 𝑉ଵ < 0 are in the yellow region (shown in Figure 2A–C). Therefore, regardless of the 
magnitude of the saturation parameter 𝛾, the low lysing rate 𝜅 leads to one positive equilibrium 𝐸ଶ. 

Next, two positive equilibria, namely 𝐸ଵ and 𝐸ଶ, exist when 𝑇ଶ > 0, 𝐼ଶ > 0, 𝑉ଶ > 0, 𝑇ଵ > 0, 𝐼ଵ > 0, 𝑉ଵ > 0 are in purple region (shown in Figure 2A–C); more specifically, the high lysing rate 𝜅  and the high saturation parameter 𝛾  always lead to the two equilibria 𝐸ଵ  and 𝐸ଶ . Finally, no 
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positive equilibrium and only the virus-free equilibrium 𝐸 exists in the cyan, blue, and red regions 
(shown in Figure 2A–C). Due to a negative discriminant of the quadratic bifurcation equation (Eq (2)), 𝑇ଵ,ଶ, 𝐼ଵ,ଶ, and 𝑉ଵ,ଶ did not have real solutions in the cyan region. Because 𝑇ଶ < 0, 𝐼ଶ < 0, 𝑉ଶ < 0, 𝑇ଵ < 0, 𝐼ଵ < 0, and 𝑉ଵ < 0 were in the blue region, no positive equilibrium existed. Though 𝑇ଶ > 0 
but 𝐼ଵ < 0 , 𝑉ଵ < 0 , 𝑇ଶ < 0 , 𝐼ଶ < 0 , 𝑉ଶ < 0 , and 𝑇ଵ < 0  were in the red region, no positive 
equilibrium existed either. Thus, the high lysing rate 𝜅 and the low saturation parameter 𝛾 did not 
lead to the existence of a positive equilibrium. Moreover, the parameter region which corresponded to 
one positive equilibrium (𝐸ଶ, green and yellow regions) and two positive equilibria (𝐸ଵ and 𝐸ଶ, purple 
region) decreased with the CD8+ cell count; the parameter region which corresponded to no positive 
equilibrium (𝐸, cyan, blue, and red regions) increased with the CD8+ cell count (shown in Figure 2A–C). 
Biologically, the higher the CD8+ cell counts were, the higher the possibility that good infection 
outcomes were achieved. 

 

Figure 2. Regions representing the existence of the nonzero equilibrium A–F. In Panel 
A–C, the existence of the nonzero equilibrium changes with the saturation parameter 𝜂 
and the CD8+ cell lysing rate 𝜅 at a CD8+ cell count 𝐸 = 400, 800, 1600. In Panel D–F, 
the existence of the nonzero equilibrium changes with the lysing rate 𝜅 and the CD8+ cell 
count 𝐸 at the saturation parameter 𝛾 = 3, 5, 8. The green region represents 𝑇ଶ, 𝐼ଶ, 𝑉ଶ, 
and 𝑇ଵ  are positive, and 𝐼ଵ  and 𝑉ଵ  are negative; the yellow region represents 𝑇ଶ , 𝐼ଶ , 
and 𝑉ଶ are positive, and 𝑇ଵ, 𝐼ଵ, and 𝑉ଵ are negative; the purple region represents 𝑇ଶ, 𝐼ଶ, 𝑉ଶ, 𝑇ଵ, 𝐼ଵ, and 𝑉ଵ are positive; the cyan region represents 𝑇ଶ, 𝐼ଶ, 𝑉ଶ, 𝑇ଵ, 𝐼ଵ, and 𝑉ଵ do 
not exist; and the blue region represents 𝑇ଶ, 𝐼ଶ, 𝑉ଶ, 𝑇ଵ, 𝐼ଵ, and 𝑉ଵ are negative, 𝑇ଶ is 
positive, and 𝐼ଶ, 𝑉ଶ, 𝑇ଵ, 𝐼ଵ, and 𝑉ଵ are negative.  
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Next, we fixed the saturation parameter γ = 3, γ = 5, and γ = 8, to investigate the role of the 
CD8+ cell lysing rate 𝜅 and the CD8+ cell count 𝐸 on HIV kinetics. For the saturation parameter 𝜂 = 3, one positive equilibrium 𝐸ଶ existed in the yellow region, and only the virus-free equilibrium 𝐸 existed in the red region (shown in Figure 2D); specifically, one positive equilibrium 𝐸ଶ existed 
if either 1) the lysing rate 𝜅 was low and the CD8+ cell count 𝐸 was high, or 2) the lysing rate 𝜅 
was high and the CD8+ cell count 𝐸 was low. Otherwise, only the virus-free equilibrium 𝐸 existed. 
For the saturation parameter 𝜂 = 5  and 𝜂 = 8 , one positive equilibrium 𝐸ଶ  existed in the green 
region, two positive equilibria (𝐸ଶ  and 𝐸ଵ ) existed in the purple region, and only the virus-free 
equilibrium 𝐸 existed in the cyan and blue regions (shown in Figure 2E,F); specifically, one positive 
equilibrium 𝐸ଶ existed if either 1) the lysing rate 𝜅 was low and the CD8+ cell count 𝐸 was high, 
or 2) the lysing rate 𝜅 was low and the CD8+ cell count 𝐸 was high. Only the virus-free equilibrium 𝐸 existed if the lysing rate 𝜅 and the CD8+ cell count 𝐸 were high. Otherwise, the two positive 
equilibria 𝐸ଶ and 𝐸ଵ existed. Additionally, the parameter region which corresponded to two positive 
equilibria (𝐸ଶ and 𝐸ଵ) and one positive equilibrium (𝐸ଶ) increased with the saturation parameter 𝛾. 
The parameter region which corresponded to the virus-free equilibrium (𝐸 ) decreased with the 
saturation parameter 𝛾. 

 

Figure 3. Regions representing the existence of equilibria and three possible dynamical 
behaviors. A: Region representing the existence of equilibria 𝐸 , 𝐸ଵ , and 𝐸ଶ  with the 
saturation parameter 𝜂  and the lysing rate 𝜅  at a CD8+ cell count 𝐸 = 800 . B: The 
effector cell induced monostable HIV kinetics implies that the viral titer converges to an 
equilibrium independent of the initial conditions. C: The effector cell induced oscillating 
HIV kinetics implies that the viral titer exhibits a periodical behavior independent of the 
initial conditions. D: The effector cell induced bistable HIV kinetics implies that the high 
viral inoculums remain infectious, and a low viral inoculum leads to an inhibition of the 
viral infectivity.  
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In the following context, we used a CD8+ cell count 𝐸 = 800 as an example to investigate the 
dynamical behaviors of HIV dynamics on parameter region which correspond to a different number of 
equilibria, for example, monostable, bistable, and oscillating HIV kinetics (shown in Figure 3A). The 
CD8+ cell induced monostable HIV kinetics implies that the viral titer converges to an equilibrium 
independent of the initial conditions (shown in Figure 3B). The CD8+ cell induced oscillating HIV 
kinetics implies that the viral titer exhibits a periodical behavior independent of the initial conditions 
(shown in Figure 3C). The CD8+ cell induced bistable HIV kinetics implies that high viral inoculums 
remained infectious, and low viral inoculums led to an inhibition of the viral infectivity (shown in 
Figure 3D). 

6.2. Local analysis of equilibrium 

First, the parameter region which corresponds to only the virus-free equilibrium 𝐸  existing 
consists of a red square (𝜅 > 1.2 and 0 < 𝜂 < 3.3) and a cyan and blue trapezoid region (𝜅 > 1.2 
and 3.3 < 𝜂 < 10, shown in Figure 4A). In this parameter region, the virus-free equilibrium 𝐸 is a 
locally asymptotically stable node due to three negative eigenvalues: 𝜆, 𝜆 and 𝜆. Obviously, 𝜆 = −𝛿் is negative due to a positive death rate of the susceptible cells, and 𝜆 and 𝜆 are also 
negative in the corresponding parameter region (shown in Figure 4B,C).  

For the fixed lysing parameters 𝜅 = 4  and 𝜂 = 4  in the blue parameter region, the model 
converges to a high susceptible cell count, a low infected cell count, and a low virus titer independent 
of the initial conditions (shown in Figure 4D–F), because the three eigenvalues at the virus-free 
equilibrium 𝐸 = (1638, 0, 0)  are −0.18 , −3212 , and −24.9 . Because the infected cell count 𝐼(𝑡) is positively correlated with the viral titer 𝑉(𝑡), we provide the susceptible cell count 𝑆(𝑡) and 
the viral titre 𝑉(𝑡) in following text. 

Next, the parameter region which corresponds to one positive equilibrium 𝐸ଶ existing (𝑇ଶ > 0, 𝐼ଶ > 0 , 𝑉ଶ > 0 , 𝑇ଵ > 0 , 𝐼ଵ < 0  and 𝑉ଵ < 0 , green region in Figure 3A) ranges from 𝜅 = 0  to 𝜅 = 1.2 and from 𝜂 = 3.3 to 𝜂 = 10 (shown in Figure 5A). Unexpectedly, the system converges to 
a low susceptible cell count and a high viral titer in a majority of the parameter region (green region 
in Figure 5A), but also exhibits oscillating viral kinetics in a minority of the parameter region (black 
region, low concern in Figure 5A). In this parameter region, the virus-free equilibrium 𝐸 is a saddle 
point due to two negative eigenvalues 𝜏 = −𝛿் < 0 and 𝜏 < 0 (shown in Figure 5B) and one 

positive eigenvalue 𝜏 > 0 (shown in Figure 5C). Due to భమିబమ > 0 and 𝑎 > 0 in a majority 

of the parameter region (shown in Figure 5D,E), one positive equilibrium 𝐸ଶ is locally asymptotically 
stable by the Routh–Hurwitz criterion (green region in Figure 5A); similarly, equilibrium 𝐸ଶ  is 
unstable in a minority of the parameter region (black region in Figure 5A).  

Numerically, for the fixed lysing parameters 𝜅 = 1  and 𝜂 = 5 , the system provides two 
equilibria: 𝐸 = (1638, 0, 0)  and 𝐸ଶ = (3.67, 134.5, 205,825) . Three eigenvalues at the 
equilibrium 𝐸 are 𝜏 = −0.18, 𝜏 = −844, and 𝜏 = 7; three eigenvalues at the equilibrium 𝐸ଶ are 𝜏ଶ = −82, 𝜏ଶ = −34, and 𝜏ଶ = −1. Thus, the system monotonically converges to a 
low susceptible cell count and a high virus titer independent of the initial conditions (shown in 
Figure 6A,C,E). 

Similarly, for the fixed lysing parameters 𝜅 = 1.18  and 𝜂 = 3.4 , the system provides two 
equilibria: 𝐸 = (1638, 0, 0)  and 𝐸ଶ = (28.74, 16.92, 25,853) . Three eigenvalues at the 
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equilibrium 𝐸 are 𝜏 = −0.18, 𝜏 = −982, and 𝜏 = 1; three eigenvalues at the equilibrium 𝐸ଶ  are 𝜏ଶ = −51 , 𝜏ଶ = 1.9 + 1.84𝑖 , and 𝜏ଶ = 1.9 − 1.84𝑖 . Due to well-posedness, the model 
exhibits an oscillating susceptible cell and viral kinetics independent of the initial conditions (shown 
in Figure 6B,D,F). 

 

Figure 4. Bifurcation diagram, two eigenvalues on the virus-free equilibrium 𝐸 , and 
typical numerical simulation of susceptible cells, infected cells, and viral titer. A: 
Bifurcation diagram with the saturation parameter 𝜂 and the lysing rate 𝜅 corresponding 
to the case that no positive equilibrium exists. B and C: Two eigenvalues on the virus-free 
equilibrium 𝐸 are negative on the parameter region where no positive equilibrium exists. 
D–F: Susceptible cell kinetics, infected cells kinetics, and viral titer kinetics converge to a 
high susceptible cell count, a low infected cell count, and a low viral titer independent of 
the initial infected cell count for the fixed parameter 𝜅 = 4 and 𝛾 = 4. Blue, cyan, red, 
black, purple, and green curves represent the susceptible cell kinetics, infected cells 
kinetics, and viral titer kinetics with the initial infected cell counts 101, 101.5, 102, 102.5, 
103, and 103.5 in Panel D–F. Initial susceptible cell 𝑆(0) = 10ଶ, and initial virial titer 𝐼(0) = 10. 
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Figure 5. Bifurcation diagram with one positive equilibrium 𝐸ଶ, two eigenvalues on virus-
free equilibrium 𝐸, and a discriminant for the Routh–Hurwitz criterion and constant term 
in the characteristic equation on the positive equilibrium 𝐸ଶ. A: Bifurcation diagram with 
the saturation parameter 𝜂  and the lysing rate 𝜅  corresponding to the case that one 
positive equilibrium 𝐸ଶ exists. Green region represents that the system converges to a 
high viral titer and low susceptible cell counts; black region represents the system 
exhibiting oscillating viral kinetics. B and C: One eigenvalue on the virus-free equilibrium 𝐸  is negative on the parameter region that one positive equilibrium 𝐸ଶ  exists, and 
another is positive. D and E: Discriminant for Routh–Hurwitz criterion and constant term 
in the characteristic equation on the positive equilibrium 𝐸ଶ. 
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Figure 6. Typic numeric simulations of system (1) demonstrating oscillating and 
monostable viral kinetics. In Panel A, C, and E, system (1) converges to a lower susceptible 
cell count and a high viral titer for the fixed parameters 𝜅 = 1 and 𝜂 = 5. In Panel B, D, 
and F, system (1) exhibits an oscillating susceptible cell and viral kinetics for the fixed 
parameters 𝜅 = 1.18  and 𝜂 = 3.4 . Blue, cyan, red, black, purple, and green curves 
represent the susceptible cell kinetics, infected cells kinetics, and viral titer kinetics with 
the initial infected cell counts 101, 101.5, 102, 102.5, 103, and 103.5. Initial susceptible 
cell 𝑆(0) = 10ଶ, and initial virial titer 𝐼(0) = 10.  

The parameter region which corresponds to one positive equilibrium 𝐸ଶ existing (𝑇ଶ > 0, 𝐼ଶ > 0, 𝑉ଶ > 0 , 𝑇ଵ < 0 , 𝐼ଵ < 0  and 𝑉ଵ < 0 ) ranges from 𝜅 = 0  to 𝜅 = 1.2  and from 𝜂 = 0  to 𝜂 = 3.3 
(shown in Figure 7A). System (1) converges to a low susceptible cell count and a high viral titer 
(yellow region, shown in Figure 7A), and exhibits oscillating viral kinetics (black region, shown in 
Figure 7A). The parameter region which corresponds to monostable virus kinetics approximately 
equals to that which corresponds to oscillating viral kinetics (shown in Figure 7A). In this parameter 
region, the virus-free equilibrium 𝐸 is a saddle point due to two negative eigenvalues 𝜏 = −𝛿் < 0 
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and 𝜏 < 0  (shown in Figure 7B) and one positive eigenvalue 𝜏 > 0  (shown in Figure 7C). 

According to భమିబమ > 0 and 𝑎 > 0 (shown in Figure 7D,E), one positive equilibrium 𝐸ଶ is locally 

asymptotically stable by the Routh–Hurwitz criterion in the yellow region (shown in Figure 7A); 
similarly, equilibrium 𝐸ଶ is unstable in the black region (shown in Figure 7A).  

 

Figure 7. Bifurcation diagram with one positive equilibrium 𝐸ଶ, two eigenvalues on virus-
free equilibrium 𝐸, and discriminant for the Routh–Hurwitz criterion and constant term 
in the characteristic equation on the positive equilibrium 𝐸ଶ. A: Bifurcation diagram with 
the saturation parameter 𝜂 and the lysing rate 𝜅 corresponds to the case that one positive 
equilibrium 𝐸ଶ exists. Yellow region represents that the system converges to a high viral 
titer and low susceptible cell counts; black region represents the system exhibiting 
oscillating viral kinetics. B and C: One eigenvalue on the virus-free equilibrium 𝐸 is 
negative on the parameter region that one positive equilibrium exists, and another is 
positive. D and E: Discriminant for the Routh–Hurwitz criterion and the constant term in 
the characteristic equation on the positive equilibrium 𝐸ଶ. 
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Figure 8. Typic numeric simulations of system (1) demonstrating oscillating and 
monostable viral kinetics. In Panel A, C, and E, system (1) converges to a lower susceptible 
cell count and a high viral titer for the fixed parameters 𝜅 = 0.5 and 𝛾 = 2. In Panel B, 
D, and F, system (1) exhibits an oscillating susceptible cell and viral kinetics for the fixed 
parameters 𝜅 = 0.5  and 𝛾 = 0.7 . Blue, cyan, red, black, purple, and green curves 
represent the susceptible cell kinetics, infected cells kinetics, and viral titer kinetics with 
the initial infected cell counts 101, 101.5, 102, 102.5, 103, and 103.5. Initial susceptible 
cell 𝑆(0) = 10ଶ, and initial virial titer 𝐼(0) = 10.  

Numerically, for the fixed lysing parameters 𝜅 = 0.5 and 𝛾 = 2, the model provides two equilibria: 𝐸 = (1638, 0, 0) and 𝐸ଶ = (5.189, 95.1119, 145,310). Three eigenvalues at the equilibrium 𝐸 
are 𝜏 = −0.18 , 𝜏 = −480 , and 𝜏 = 43 ; three eigenvalues at the equilibrium 𝐸ଶ  are 𝜏ଶ = −61, 𝜏ଶ = −31, and 𝜏ଶ = −1. Thus, the system monotonically converges to a low susceptible 
cell count and a high virus titer independent of the initial conditions (shown in Figure 8A,C,E). 
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Similarly, for the fixed lysing parameters 𝜅 = 0.5  and 𝛾 = 0.7 , the model provides two 
equilibria: 𝐸 = (1638, 0, 0)  and 𝐸ଶ = (415.2985, 0.8901, 1359.8) . Three eigenvalues at the 
equilibrium 𝐸 are 𝜏 = −0.18, 𝜏 = −480, and 𝜏 = 43; three eigenvalues at the equilibrium 𝐸ଶ  are 𝜏ଶ = −205 , 𝜏ଶ = 15 , and 𝜏ଶ = 0.7 . Due to well-posedness, the model exhibits an 
oscillating susceptible cell count and viral kinetics independent of the initial conditions (shown in 
Figure 8B,D,F). Compared to the lysing parameters 𝜅 = 1.18 and 𝜂 = 3.4, the lysing parameters 𝜅 = 0.5 and 𝛾 = 0.7 provide a higher frequency of the viral titer and the susceptible cell count. 

Finally, the parameter region which corresponds to two positive equilibria 𝐸ଵ and 𝐸ଶ existing 
(𝑇ଶ > 0, 𝐼ଶ > 0, 𝑉ଶ > 0, 𝑇ଵ > 0, 𝐼ଵ > 0 and 𝑉ଵ > 0) ranges from 𝜅 = 1.2 to 𝜅 = 3.5 and from 𝜂 = 3.3  to 𝜂 = 10  in a triangle region (shown in Figure 9A). System (1) exhibits a bistable 
behavior in the purple triangle region, and a monostable lower viral titer in the green region (shown 
in Figure 9A). The parameter region which corresponds to the bistable viral kinetics is much larger 
than that which corresponds to monostable viral kinetics (shown in Figure 9A). In this parameter 
region, the virus-free equilibrium 𝐸  is a stable node point due to three negative eigenvalues: 𝜆 = −𝛿் < 0 , 𝜆 < 0  (shown in Figure 9B) and 𝜆 < 0  (shown in Figure 7C). Due to భమିబమ < 0  and 𝑎 < 0  (shown in Figure 9D,E), the positive equilibrium 𝐸ଵ  is unstable by the 

Routh–Hurwitz criterion. Similarly, the positive equilibrium 𝐸ଶ  is stable when భమିబమ > 0  and 𝑎 > 0  (purple region in Figure 9A,F,G), and is unstable when భమିబమ < 0  and 𝑎 > 0  (green 

region in Figure 9A,F,G).  
Numerically, for the fixed lysing parameters 𝜅 = 2 and 𝜂 = 7, the model provides three equilibria: 𝐸 = (1638, 0, 0), 𝐸ଵ = (694.293, 0.411, 627.93), and 𝐸ଶ = (7.5159, 65.5726, 100,180). Three 

eigenvalues at the equilibrium 𝐸  are 𝜏 = −0.18 , 𝜏 = −1623 , and 𝜏 = −13 ; three 
eigenvalues at the equilibrium 𝐸ଵ are 𝜏ଵ = −198, 𝜏ଵ = 55, and 𝜏ଵ = −0.1; three eigenvalues 
at the equilibrium 𝐸ଶ  are 𝜏ଶ = −50 , 𝜏ଶ = −24 , and 𝜏ଶ = −1 . Thus, the model exhibits a 
bistable behavior, namely large viral inoculum sizes lead to the maintenance of viral infectivity and 
small viral inoculum sizes lead to an inhibition of the viral infectivity (shown in Figure 10A,C). 

Moreover, for the fixed lysing parameters 𝜅 = 2.4  and 𝜂 = 7 , the model provides three 
equilibria: 𝐸 = (1638, 0, 0) , 𝐸ଵ = (192.9549, 2.2638, 3458.6) , and 𝐸ଶ = (27.0437, 18.0055,27,508). Three eigenvalues at the equilibrium 𝐸 are 𝜏 = −0.18, 𝜏 = −1939, and 𝜏 = −17; 
three eigenvalues at the equilibrium 𝐸ଵ  are 𝜏ଵ = −88 , 𝜏ଵ = 431 , and 𝜏ଵ = −0.1 ; three 
eigenvalues at the equilibrium 𝐸ଶ  are 𝜏ଶ = −50 , 𝜏ଶ = 1.39 + 2.15i , and 𝜏ଶ = 1.39 − 2.15i . 
The model monotonically converges to a high susceptible cell count and a low virus titer independent 
of the initial condition (shown in Figure 10B,D). 
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Figure 9. Bifurcation diagram with two positive equilibria 𝐸ଵ and 𝐸ଶ, two eigenvalues 
on virus-free equilibrium 𝐸, and discriminant for the Routh–Hurwitz criterion and constant 
term in the characteristic equation on the positive equilibria 𝐸ଵ and 𝐸ଶ. A: Bifurcation 
diagram with the saturation parameter 𝜂 and the lysing rate 𝜅 corresponds to the case 
that two positive equilibria, namely 𝐸ଵ and 𝐸ଶ, exist. Purple region represents that the 
system exhibits a bistable susceptible cell and viral kinetics; green region represents the 
system converging to a high susceptible cell count and a lower viral titer. B and C: Two 
eigenvalues on the virus-free equilibrium 𝐸 are negative. D and E: Discriminant for the 
Routh–Hurwitz criterion and the constant term in the characteristic equation on the positive 
equilibrium 𝐸ଵ are negative. F and G: Discriminant for the Routh–Hurwitz criterion and 
the constant term in the characteristic equation on the positive equilibrium 𝐸ଶ. 
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Figure 10. Typic numeric simulations of system (1) demonstrating bistable and 
monostable viral kinetics. In Panel A and C, system (1) converges to bistable susceptible 
cells and viral kinetics for the fixed parameters 𝜅 = 2  and 𝜂 = 7 . In Panel B and D, 
system (1) exhibits monostable kinetics to a high susceptible cell count and a lower viral 
titer for the fixed parameters 𝜅 = 2.4  and 𝜂 = 7 . Blue, cyan, red, purple, and green 
curves represent the susceptible cell kinetics, infected cells kinetics, and viral titer kinetics 
with the viral inoculum sizes 102.9, 103.2, 103.5, 103.8, and 104.1. Initial susceptible cell 𝑆(0) = 10ଶ, and initial virial titer 𝐼(0) = 10. 

7. Discussion 

The model analyzed in this work displayed several interesting and unexpected features, both from 
mathematical and biological perspectives. First, a range of possible dynamical outcomes based on the 
value of the model parameters were found. Numerous nontrivial dynamical behaviors were discovered, 
with the presence of an important system equilibrium (i.e., bistability and periodic oscillation) that was 
described by a Jacobian matrix and the Routh–Hurwitz criterion. The lysing rate, CD8+ cell count, and 
saturation effect that controlled the lysing efficiency as the infected cell count increased were 
combined to determine the HIV kinetics. The HIV kinetics with the CD8+ cell exhibited unexpectedly 
complex behaviors that were both mathematically and biologically interesting, for example, 
monostability, bistability, and periodic oscillations depending on the initial conditions.  

The model provides a few insights into the interactions among CD4+ cells, HIV, and CD8+ cells 
with the saturated lysing efficiency. One of the main limitations of the present approach is that CD8+ 
cell concentration is assumed to be a constant. Upon analysis (Figures 4, 6, 8, and 10), we found that 
the viral titer and the susceptible cell kinetics rapidly converged to stable steady states in several days 
or a period of periodic oscillations that lasted between ten to fifty days. Because the life expectancy of 
patients without cART is around ten-fifteen years and is more than several decades with cART, it is 
reasonable to accept the assumption that the CD8+ cell count is constant during a couple of days.  
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For the fixed CD8+ cell count, the low lysing rate led to monostability to a high viral titer with a 
high magnitude of the saturation effect (shown in Figures 5A and 6A,C) and periodic oscillations with 
a low magnitude of the saturation effect (shown in Figures 7A and 8A,C); this explains why patients 
with non-protective HLA alleles always lead to bad infection outcomes. A high CD8+ cell lysing rate 
induced to bistability (shown in Figures 9A and 10A,C); this explains why patients with protective 
HLA alleles sometimes exhibited good infection outcomes but with some bad infection outcomes. This 
theoretical result may challenge the idea that the lysing efficiency of the CD8+ cells is used as a 
predictor of good or bad infection outcomes, because the HIV replication kinetics and the CD8+ cell 
lysing kinetics combined to determine the infection outcomes. Moreover, the lysing efficiency can be 
used as a predictor of infection outcomes if the HIV kinetics only exhibits monostable kinetics 
independent of the initial conditions. 

The HIV infection outcomes with the effector CD8+ cell is strongly associated with the CD8+ 
lysing rate and the effector CD8+ cell concentration (shown in Figures 5A and 9A). For a given saturation 
parameter, we have two possible scenarios: 1) Figure 5A consists of monostability and periodic 
oscillations; and 2) Figure 9A consists of bistable viral kinetics. For scenarios 1), slightly increasing 
the lysing rate above the critical value can change the monostability to a high viral titer and to periodic 
oscillations. For scenarios 2), slightly increasing the lysing rate above the critical values changes the 
bistable viral kinetics to monostability to a low viral titer; then, using cART pushes the infected CD4+ 
cell count and the viral titer under the critical values, thereby inducing good infection outcomes.  

Reference [28] proposed that immunosuppressed viral infection exhibits bistable HIV kinetics 
through a saddle–node bifurcation. Reference [27] used monotonic and nonmonotonic immune 
responses of CD8+ cell to display bistable HIV kinetics through a saddle–node bifurcation. Here, we 
found that the semi-saturated lysing model led to bistable HIV kinetics through a saddle–node 
bifurcation and oscillatory HIV kinetics though the Hopf bifurcation.  

In the future modelling works, it is worthwhile to use the Monod-Haldane function to the 
delineate immune response stimulated by the HIV titer [27]. For the non-protective HLA allele, it is 
meaningful to determine which CD8+ cell count interval corresponds to monostable viral kinetics and 
bistable viral kinetics. It is meaningful to investigate whether using cART pushes the infected CD4+ 
cell count and viral titer under critical values for the protective HLA allele carrier, thereby inducing 
good infection outcomes. In a similar framework, it is interesting to understand how CAR (Chimeric 
Antigen Receptor) -T cell and CAR-NK therapy affect HIV infections. 
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Appendix 

A1. Coefficients in characteristic polynomial 

In Section Stability of two positive equilibria 𝐸ଵ = (𝑇ଵ, 𝐼ଵ, 𝑉ଵ)  and 𝐸ଶ = (𝑇ଶ, 𝐼ଶ, 𝑉ଶ) , we 
provided characteristic polynomial on equilibria 𝐸ଵ = (𝑇ଵ, 𝐼ଵ, 𝑉ଵ)  and 𝐸ଶ = (𝑇ଶ, 𝐼ଶ, 𝑉ଶ) , 𝜌(𝜏) =𝜏ଷ + 𝑎ଶ𝜏ଶ + 𝑎ଵ𝜏 + 𝑎. Here, we provide closed-form expression of three coefficients in characteristic 
polynomial, 𝑎ଶ, 𝑎ଵ and 𝑎.  

First, the closed-form expression of coefficient 𝑎ଶ  is 𝑎ଶ = ଵ(ଵାఊூ)మ (𝐼ଶ𝑉ଶ𝛽𝛾ଶ + 𝐼ଶ𝛾ଶ𝛿் +𝐼ଶ𝛾ଶ𝛿ூ + 𝐼ଶ𝛾ଶ𝛿 + 2𝐼𝑉𝛽𝛾 + 2𝐼𝛿்𝛾 + 2𝐼𝛿ூ𝛾 + 2𝐼𝛿𝛾 + 𝜅𝐸 + 𝑉𝛽 + 𝛿் + 𝛿ூ + 𝛿) . Next, the 

closed-form expression of coefficient 𝑎ଵ  is 𝑎ଵ = ଵ(ଵାఊூ)మ (−𝐼ଶ𝑇𝛽𝛾ଶ𝜋ଵ + 𝐼ଶ𝑉𝛽𝛿ூ𝛾ଶ + 𝐼ଶ𝑉𝛽𝛿𝛾ଶ +𝐼ଶ𝛿்𝛿ூ𝛾ଶ + 𝐼ଶ𝛿்𝛿𝛾ଶ + 𝐼ଶ𝛿ூ𝛿𝛾ଶ − 2𝐼𝑉𝛽𝛾𝜋 + 2𝐼𝑉𝛽𝛿ூ𝛾 + 2𝐼𝑉𝛽𝛿 + 𝐸𝑉𝛽𝜅 + 2𝐼𝛿்𝛿ூ𝛾 +2𝐼𝛿்𝛿𝛾 + 2𝐼𝛿ூ𝛿𝛾 + 𝐸𝛿்𝜅 + 𝐸𝛿𝜅 − 𝜋𝑇𝛽 + 𝑉𝛽𝛿ூ + 𝑉𝛽𝛿 + 𝛿்𝛿ூ + 𝛿்𝛿 + 𝛿ூ𝛿) . Next, the 

closed-form expression of coefficient 𝑎  is 𝑎 = ଵ(ଵାఊூ)మ (−𝐼ଶ𝑇𝛽𝛿்𝛾𝜋ଵ + 𝐼ଶ𝑉𝛽𝛿ூ𝛿𝛾ଶ +𝐼𝛿்𝛿ூ𝛿𝛾ଶ − 2𝐼𝑇𝛽𝛿்𝛾𝜋 + 2𝐼𝑉𝛽𝛿ூ𝛿𝛾 + 𝐸𝑉𝛽𝛿𝜅 + 2𝐼𝛿்𝛿ூ𝛿𝛾 + 𝐸𝛿்𝛿𝜅 − 𝑇𝛽𝛿்𝜋 + 𝑉𝛽𝛿ூ𝛿 +𝛿்𝛿ூ𝛿), 𝑇, 𝐼 and 𝑉 are value in 𝐸ଵ = (𝑇ଵ, 𝐼ଵ, 𝑉ଵ) and 𝐸ଶ = (𝑇ଶ, 𝐼ଶ, 𝑉ଶ). 
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