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Abstract: This study presented a novel approach for the precise ablation of breast tumors using fo-
cused ultrasound (FUS), leveraging a physics-informed neural network (PINN) integrated with a real-
istic breast model. FUS has shown significant promise in treating breast tumors by effectively targeting
and ablating cancerous tissue. This technique employs concentrated ultrasonic waves to generate in-
tense heat, effectively destroying cancerous tissue. In previous finite element method (FEM) models,
the computational demands of handling extensive datasets, multiple dimensions, and discretization
posed significant challenges. Our PINN-based solution operated efficiently in a mesh-free domain,
achieving remarkable accuracy with significantly reduced computational demands, compared to con-
ventional FEM techniques. Additionally, employing PINN for estimating partial differential equations
(PDE) solutions can notably decrease the enormous number of discretized elements needed. The model
employed a bowl-shaped acoustic transducer to focus ultrasound waves accurately on the tumor loca-
tion. The simulation results offered detailed insights into each step of the FUS treatment process,
including the generation of acoustic waves, the targeting of the tumor, and the subsequent heating and
ablation of cancerous tissue. By applying a 3.8 nm displacement amplitude of transducer input pulse at
a frequency of 1.1 MHz for 1 second, the temperature at the focal point elevated to 38.4 °C, followed
by another 90 seconds of cooling time, which resulted in significant necrosis of the tumor tissues.
Validation of the PINN model’s accuracy was conducted through FEM analysis, aligning closely with
real-world FUS therapy scenarios. This innovative model provided physicians with a predictive tool
to estimate the necrosis of tumor tissue, facilitating the customization of FUS treatment strategies for
individual breast cancer patients.
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1. Introduction

With the rising incidence of cancer, predicted to triple by 2030 according to the World Health
Organization (WHO) [1], breast cancer remains a major concern, accounting for 284,200 new cases and
44,130 deaths in the United States in 2021 [2]. The limitations of surgical interventions, particularly for
early-stage tumors, have fueled demand for less invasive treatments, with the focused ultrasound (FUS)
emerging as a promising alternative. FUS precisely targets and destroys cancer cells using ultrasound
waves, offering noninvasiveness, cost-effectiveness, and enhanced drug delivery capabilities [3–5].
Recent studies, such as those by Deckers et al. [6], Peek et al. [7], and Feril et al. [8], underscore
FUS’s potential in breast cancer treatment, yet there remains a significant gap in comprehensive studies
simulating its complex multi-physics phenomena on realistic models. Our research addresses this by
developing a deep-learning model to assess FUS’s effectiveness, building on recent analytical and
numerical insights.

In recent years, significant advancements have been made in simulating the effects of FUS on vari-
ous tissues. Yoon and colleagues [9] developed a multi-resolution simulation using the finite-difference
time-domain formulation for acoustic wave transmission, while Gupta et al. [10] and Rezaeian et
al. [11] investigated how tissues absorb and dissipate heat during FUS, and the delivery of thermosen-
sitive liposomal doxorubicin using FUS, respectively. Montienthong et al. [3] conducted a simulation
focusing on FUS ablation in breast cancer treatment using a two-dimensional model, while Gupta
et al. [12] and Kaczmarek et al. [13] explored bio-heat transfer models, including the thermal wave
model and Pennes’ bio-heat equation. Mohammadpour et al. [14] further studied heat transfer and
hemodynamics in FUS ablation of the porous liver. However, the literature on FUS is constrained by
the lack of comprehensive 3D modeling and anatomically accurate breast phantoms. To address this,
machine learning and deep neural networks, particularly physics-informed neural networks (PINNs),
have been increasingly leveraged in scientific computing, providing an alternative to traditional numer-
ical methods and enabling the simulation of realistic clinical procedures and detailed examinations of
FUS ablation processes [15–19].

PINNs have revolutionized the approach to solving nonlinear partial differential equations (PDEs)
by leveraging deep learning to approximate solutions while adhering to physical laws, significantly
reducing computational demands compared to traditional methods like the finite difference method
(FDM) and finite element method (FEM) [20–24]. This study utilizes a 3D model based on an anatom-
ically realistic breast phantom (ARBP) generated from magnetic resonance imaging (MRI), accurately
reflecting the breast’s complex anatomy and enhancing the precision and clinical relevance of FUS
simulations [25]. The research explores realistic FUS ablation processes with multiple lesion points,
assessing their cumulative effect on necrotic tissue, demonstrating the deep-learning platform’s ability
to mirror actual clinical treatments [26]. The paper presents a comprehensive method for predicting
FUS therapy outcomes using an ARBP, detailing a multi-stage simulation process that includes gener-
ating an acoustic wave, computing acoustic intensity distribution, and employing the absorbed acoustic
energy in a bio-heat transfer model to estimate the generated heat and resulting temperature increase in
the tumor area. This allows for determining the percentage of necrotic tissue. The paper is organized
as follows: Section 2 details the simulation process, Section 3 verifies the accuracy of the proposed
simulation, Section 4 discusses deep learning results concerning temperature elevation and necrotic
tissue percentage, including a validation against FEM outcomes, and Section 5 concludes the study
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with key findings.

2. Materials and methods

This section provides a concise overview of the FUS ablation process. It proceeds to elaborate
on the governing equations and mathematical models involved. The following subsections offer vital
details concerning the deep learning modeling procedure at various stages.

2.1. FUS ablation mechanism

FUS ablation is a noninvasive procedure where an ultrasound transducer generates focused ultra-
sonic beams that penetrate soft tissue and specifically target tumors [27]. The focused beams con-
centrate high intensities within a compact volume, typically around 1 mm in diameter and 10 mm in
length, with sound intensity in the focal region ranging from 100 to 10,000 Wcm-2 and peak pressures
reaching up to 70 MPa (compression) and 20 MPa (rarefaction). These high levels of acoustic intensity
and pressure are primarily due to nonlinear effects, which significantly enhance energy concentration
at the focal point. The two primary mechanisms involved in FUS ablation are the thermal effect and
mechanical effect [28]. The thermal effect involves heat generation from acoustic energy absorption,
leading to a rapid temperature increase in the local tissue. When the temperature exceeds 60 °C for
just 1 second, it typically causes rapid and irreversible cell death through coagulation necrosis, which
is the primary mechanism for eliminating tumor cells during FUS treatment [28].

The mechanical effects induced by FUS, including cavitation, micro-streaming, and radiation force,
specifically occur when high-intensity acoustic pulses are employed. However, due to the thermal
process being better understood and more controllable, it is preferred for tissue ablation [28]. FUS
is rapidly gaining recognition in the medical field as a noninvasive ablation technique across vari-
ous applications. Treatments are typically completed in a single session, with the patient being fully
conscious, lightly sedated, or under mild general anesthesia [29]. To enhance comprehension, the
schematic depiction of the FUS ablation process for a breast tumor is illustrated in Figure 1.

Figure 1. A schematic of the FUS ablation process for the treatment of a breast tumor.
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2.2. Governing equations

In this section, we examine the essential equations and steps necessary to comprehensively simulate
the process of FUS ablation. Initially, we solve the equations governing the behavior of acoustic waves
as they propagate within the breast tissue. Subsequently, we simulate the generation of heat resulting
from the absorption of these acoustic waves and the subsequent transfer of heat within the biological
tissue of the breast. Ultimately, we make predictions regarding the extent of tumor damage and the
occurrence of necrosis. Presented below are the governing equations that need to be addressed in a
specific order during the solution process.

2.2.1. Acoustic wave generation and propagation

To represent the fixed acoustic field, we address the inhomogeneous Helmholtz equation through
our modeling approach. The specific form of this equation can be found in reference [30]:

∇.(−
1
ρ

(∇p − −→qd)) −
k2 p
ρ
= Qm (2.1)

In the equation, ρ represents density, p represents total pressure, k represents the wave number, qd

represents the source of the dipole domain, and Qm represents the source of the monopole domain. As
acoustic waves travel through breast tissues, they experience a reduction in intensity known as atten-
uation. Due to the involvement of different tissue types, a customized attenuation model is employed
for each tissue, utilizing specific attenuation coefficients (αa). This inclusion of attenuation results in
the wave number becoming a complex value, as depicted in the following equation [30]:

k =
ω

c
− iαa (2.2)

In the equation, ω represents the angular frequency and c represents the speed of sound.

2.2.2. Bio-heat transfer in breast tissues

In this context, the simulation of temperature distribution in biological tissues is achieved by em-
ploying Penne’s bio-heat transfer equation, as presented in reference [31]:

ρcp
∂T
∂t
= kh∇

2T + ωbρbcp,b(Tb − T ) + Qmet + QS (2.3)

The mathematical equation involves multiple variables corresponding to the physical properties of both
tissue and blood, where ρ represents tissue density, cp is the specific heat at constant pressure, kh is
the heat conduction coefficient, ωb indicates the local blood perfusion rate, ρb is the blood density,
cp,b is the blood’s specific heat, Tb refers to the arterial blood temperature, Qmet signifies the metabolic
heat generation rate, and QS denotes the heat source rate corresponding to the power absorbed by
the acoustic waves. Once the acoustic field is resolved, the acoustic pressure and intensity fields are
determined, allowing the calculation of the QS value required for thermal simulation according to
references [30, 32].

QS = 2αaI = |Re(
1
2

pv)| (2.4)
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The equation mentioned αa represents the attenuation coefficient, I represents the magnitude of
acoustic intensity, p represents the acoustic pressure, and v represents the vector of acoustic particle
velocity. Additionally, the magnitude of sound intensity refers to the power conveyed by the acoustic
waves per unit area in a direction perpendicular to that area. It is defined as stated in reference [33]:

I = p2
A/2ρc (2.5)

The equation, pA represents the amplitude of pressure oscillation, while ρ and c represent the density
and speed of sound, respectively. The pressure distribution should be considered along the entire
wavefront to account for the maximum acoustic pressure. This is crucial for accurately determining
the intensity of the ultrasound wave. Moreover, acoustic intensity is defined as the power per unit area
carried by the wave. The intensity of an ultrasound wave is directly proportional to the square of the
acoustic pressure. Therefore, using the peak pressure value in the calculation provides an accurate
estimation of the maximum possible intensity, which is essential for effective and safe FUS treatment.

2.2.3. Prediction of the fraction of necrotic tissue

The evaluation of tissue injury resulting from the hyperthermia process can be conducted using the
Arrhenius kinetic model, as described in references [34, 35]:

∂α

∂t
= (1 − α)nAe

−∆E
RT (2.6)

In the equation mentioned above, n denotes the polynomial order within the equation. R represents
the universal gas constant, while T corresponds to the tissue temperature. A and ∆E are frequency
factors and activation energy, respectively, which are specific to the particular tissue type and have been
previously determined for various tissue types. For breast tissue, these parameters were calculated as
A = 1.18 × 1044 s-1 and ∆E = 3.02 × 105 Jmol-1. Once the degree of tissue injury (α) is determined,
the fraction of necrotic tissue (θd) can be expressed accordingly, as detailed in reference [35]:

θd = min(max(α, 0), 1) (2.7)

2.3. Geometry of the model

All geometry processing in this article utilizes the commercial software “MATLAB” [36]. The
ARBP phantom is placed inside a water tank, with an acoustic transducer submerged at the bottom
to generate an ultrasound wave that propagates through the water and breast tissues. The transducer,
shaped like a bowl with a focal length of 51.74 mm, is aligned with the tumor’s center to focus acoustic
pressure, leading to rapid temperature increase and tissue ablation, as depicted in Figure 2(a). A cross-
sectional view of the model, shown in Figure 2(b), highlights the transducer’s focal length and aperture
of 51.74 and 64 mm, respectively. This section details the use of 3D grid-based numerical breast mod-
els with accurate anatomical details in deep learning and FEM simulations, utilizing a model from the
University of Wisconsin Cross-Disciplinary Electromagnetics Laboratory (UWCEM) repository [25].
These models, derived from T1-weighted MRIs of patients in a face-down position, are designed to
accurately represent breast anatomy for cancer detection. The selected model, Breast ID 070604PA1
(Class 2), was chosen based on the American College of Radiology’s classification system, which

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7337–7372.



7342

categorizes breasts by radiological density, with Class 2 representing some fibro-connective/glandular
tissue [37].

Figure 2. (a) 3D visualization of the entire geometry considered; (b) Middle cross-section
view of the geometry.

By utilizing the previously mentioned data and a MATLAB [36] function connected to the breast
phantom’s tissue types, a 3D detailed surface representation is generated within spatial coordinates.
These surfaces, representing different tissue types, are processed using SOLIDWORKS software to
convert them into surfaces and volumes, resulting in a comprehensive 3D model of the breast phan-
tom [38]. The process involves connecting relevant points from each tissue type to form surfaces,
which are then interconnected to create a closed volume that accurately replicates the breast phantom’s
tissue types. To simplify this, four specific tissue types—fibro-connective and glandular tissue (FCG),
transitional tissue, fatty tissue, and muscle—are isolated from the database. Figure 3 illustrates the
steps involved in generating a 3D breast phantom, from the detailed surface to the resulting volume
corresponding to fatty tissue. In our simulations, the tumor is represented as an ellipsoid object with a
10 mm z-diameter and 5 mm x and y diameters, classified as T1c, indicating its small size and early
stage of cancer development [39]. The tumor, located within the fatty tissue, along with the other tissue
types, is collectively represented as the ARBP in Figure 4.

(a) (b) (c)
Figure 3. Three distinct processes were used to build a 3D breast phantom: (a) obtaining a
detailed surface from the database; (b) constructing surfaces from the detailed surface; and
(c) producing the volume from knitted surfaces.
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Figure 4. Considered 3D geometry of tissue types separately and collectively: (a) FCG
tissue; (b) transitional tissue; (c) fatty tissue, muscle, and tumor; and (d) all tissues within
each other as the ARBP.

2.4. Simulation procedure

This section provides a comprehensive explanation of the numerical modeling process for FUS,
detailing the necessary data, material properties, and initial and boundary conditions for each physics
involved. The process begins with simulating the generation of ultrasonic waves within the specified
domain, followed by heat generation and transfer within the breast phantom. The initial step focuses
on pressure acoustics in frequency-domain physics, where an input displacement amplitude (d0) of 3.8
nm is introduced at the transducer aperture boundary. According to Diaz et al. [40], solutions remain
within the linear regime when the input pressure is below p0 = 0.35 MPa, but deviate into a nonlinear
regime as pressure increases, especially in the focal region. The solution assumes linear propagation of
acoustic waves, neglecting nonlinear effects and shear waves, with an input pressure of around 0.1 MPa
and an acoustic frequency of 1.1 MHz.

Following the simulation of acoustic wave propagation within the breast phantom, the next step
involves incorporating time-dependent bio-heat transfer physics. The acoustic intensity field is deter-
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mined based on the acoustic pressure field, and the heat source (QS ) is calculated using Eq (2.4). In
our simulations, the acoustic waves are present for 1 second, with the ablation process lasting 5 sec-
onds. The heat source generated by the ultrasonic waves remains active for only 1 second, after which
the simulation continues without it for an additional 4 seconds to simulate the cooling process and
determines the extent of necrotic tissue resulting from the 5-second exposure to elevated temperatures.
Thermal damage is calculated using the Arrhenius kinetics formula (Eq (2.5)), with considerations for
heat transfer through free convection, radiation, and the impact of blood perfusion on cooling the breast
and tumor area, as outlined in Eq (2.3). The properties of blood, blood perfusion rate, and metabolic
heat source for each tissue type are provided in Table 1, and Figure 5 illustrates the boundary conditions
for each physics.

Table 1. Thermophysical and acoustic properties of different materials [1, 41–48].

Materials ρ Cp k c αa Qmet ωb

(kgm-3) (Jkg-1K-1) (Wm-1K-1) (ms-1) (dBm-1MHz-1) (Wm-3) (s-1)
FCG tissue 1050 3770 0.48 1470 87 700 0.0067
Transitional tissue 990 3270 0.345 1463.5 75 700 0.0067
Fatty tissue 930 2770 0.21 1457 48 700 0.0067
Tumor 1050 3852 0.54 1509 57 5790 0.005
Muscle 1100 3800 0.48 1588.4 109 5790 0.005
Water 997 4184 0.598 1480 0.22 - -
Blood 1050 3617 0.52 1540 20 - -

(a) (b)
Figure 5. Boundary conditions considered in different physics, (a) pressure acoustics and (b)
bio-heat transfer.

As depicted in Figure 5, the boundary conditions for frequency-domain pressure acoustics involve
considering a sound hard boundary for the water tank and transducer walls. Given that the chest wall
and other boundaries within the breast tissue are far from the acoustic source (the transducer surface),
they are also assumed to be sound hard boundaries. While the transducer surface is modeled as a
hard boundary, this does not imply complete rigidity; rather, it means that the normal components
of particle velocity and acceleration are zero at the boundary, except at the transducer surface, which
is designed to vibrate and emit ultrasonic waves. Although perfect matching layers (PML) could be
advantageous in absorbing outgoing waves and reducing reflections, they increase boundary condition
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complexity and computational demands, especially in heterogeneous media like breast tissue. There-
fore, a sound-hard boundary is preferred in the modeling process. To apply the input pressure signal,
the transducer surface is assigned a normal displacement boundary condition, with an input displace-
ment amplitude of 3.8 nm. For heat transfer modeling, bio-heat transfer physics incorporates both heat
flux and radiation from the skin to the surrounding water as boundary conditions. The temperature
across internal boundaries is assumed to be the normal human body temperature of 37°C, set as the
temperature boundary condition for accuracy, as detailed in the corresponding equations [35].

Sound hard boundary (wall): − −→n .(−
1
ρ

(∇p − qd)) = 0 (2.8)

Normal displacement: − −→n .(−
1
ρ

(∇p − qd)) = (iω)2d0 (2.9)

Convective heat flux: − −→n .−→q = h(T∞ − T ) (2.10)

Surface to ambient radiation: − −→n .−→q = ϵσS B(T 4
∞ − T 4) (2.11)

Temperature: T = 310.15K (2.12)

The equations in this study involve various variables: −→n represents the surface normal vector, ρ
stands for density, p represents total pressure, qd represents the dipole domain source, d0 is the dis-
placement amplitude of the input pressure signal, q represents the heat transfer vector, h is the heat
convection coefficient, T∞ represents the ambient temperature, T represents the temperature, ϵ is the
surface emissivity, and σS B represents the Stefan-Boltzmann constant. The heat convection coefficient
between the breast skin and surrounding water is set to 53.5 Wm-2K-1, based on the study by Boutelier
et al. [49], with an ambient air temperature of 293.15 K and a skin surface emissivity of 0.98 [50].
Detailed material properties used in the study are provided in Table 1.

The provided table contains various properties such as density (ρ), specific heat under constant
pressure (Cp), heat conductivity (k), speed of sound (c), acoustic attenuation coefficient (αa), metabolic
heat generation rate (Qmet), and blood perfusion rate (ωb). To assess the simulation outcomes, three
cross-sectional planes were taken into account, intersecting at the center of the tumor. These planes
are depicted in Figure 6 and consist of the x-y, x-z, and y-z surfaces.
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Figure 6. Considered cut planes that pass through the center of the tumor.

2.5. PINN

Training a deep learning algorithm to accurately identify a nonlinear mapping between high-
dimensional input and output data pairs is challenging. Researchers have found that incorporating
empirically validated rules as regularization factors can guide time-dependent dynamics within a prede-
fined system, limiting the solution space to a permissible domain and enhancing the algorithm’s ability
to achieve optimized solutions and generalize well, even with limited training samples [23,24,51–53].
Recent progress in physics-based deep learning techniques has demonstrated that neural networks, as
illustrated in Figure 7(a), can effectively handle PDEs by integrating them into the loss function along
with initial conditions, boundary conditions, and other constraints, enabling the network to predict the
behavior of a computational domain governed by specific physics laws.
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Figure 7. (a) Diagram of PINN architecture for solving PDE. The input layer of the neural
network with spatial inputs and temporal. The output layer computes the solution of the
given PDE and embeds it into the loss function. PDE can have constraints such as initial
conditions and boundary conditions. By minimizing the loss function, PINN can generate
the solution with respect to the previous conditions; (b) diagram of PINN architecture for
solving the 3D Helmholtz equation and time-dependent bio-heat transfer equation (tBHTE)
to predict the temperature rise. The upper neural network with three spatial inputs x, y, and z,
and the pressure result p as the output value. The lower neural network takes three previous
spatial inputs as well as a temporal input, t, and produces the temperature result, T , as the
output value. Other sections are PDE, initial conditions (IC) and boundary conditions (BC).
The last section represents the loss functions embedded with PDE, BC, and IC along with
the training output T . By minimizing the loss function, PINN can generate the heat map with
respect to the previous conditions.
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PINNs integrate physical laws into neural networks by embedding governing PDEs directly into
the loss function, which consists of two main components: data loss and physics loss. The data loss
measures the difference between predicted outputs and actual data, ensuring accurate approximation,
while the physics loss penalizes deviations from the PDEs, expressed through the network’s outputs
and their derivatives using automatic differentiation. This approach balances fitting observed data with
adhering to physical laws, enhancing generalization and ensuring physically consistent predictions. In
the deep learning configuration, waves from concave ultrasound transducers are modeled by solving
the Helmholtz equation and used as input for the next PINN simulator. The predicted output then
serves as an external heat source in the tBHTE, which is fed into a second PINN structure that predicts
heat conduction and generates a temperature map within the tissue domain.

The hyperparameters for training the PINN model were meticulously chosen to optimize perfor-
mance, with a learning rate of 0.001 selected based on preliminary experiments to ensure stable and
efficient training—lower rates slowed convergence, while higher rates caused instability. A batch size
of 32 balanced memory usage and training speed, and training was conducted over 5000 epochs, deter-
mined by monitoring the validation loss until it plateaued, indicating model convergence. The Adam
optimizer was used for its efficiency and adaptive learning rate capabilities. For the plot illustrating
wave propagation and the heat map, the solution of PDEs using PINN involved setting up components
like temporal and spatial domains, the frequency-domain Helmholtz equation, the tBHTE, boundary
conditions, initial conditions, and other hyperparameters. The spatial and temporal domains were set
at 1 mm in each direction and 0.1 s, respectively, with the model trained to ensure that given an in-
put (x, y, z, t), the outputs p(x, y, z) and T (x, y, z, t) satisfy the wave and heat equations along with the
boundary and initial conditions.

f1 = MS E f ,acoustics + MS Eu,acoustics (2.13)

f2 = MS E f ,heat + MS Eu,heat (2.14)

The loss function for the PINN model is defined by two components: MS E f =
1
N

∑N f

i=1 | f (xi
f , y

i
f , z

i
f , t

i
f )|

2,

representing the mean squared error over the interior domain points [xi
f , y

i
f , z

i
f , t

i
f ]

N f

i=1, and MS Eu =
1
N

∑Nu
i=1 | f (xi

u, y
i
u, z

i
u, t

i
u) − ui|2, which accounts for the BCs and ICs at the collocation points

[xi
u, y

i
u, z

i
u, t

i
u]Nu

i=1. The neural network model employs 9 hidden layers with 20 neurons each, a learn-
ing rate of 0.001, and the rectified linear unit (ReLU) activation function. Hyperparameter tuning is
crucial, as different settings may require adjustments to capture the underlying physics accurately. In-
creasing the number of layers or neurons can improve the model’s ability to learn complex patterns but
may risk overfitting if not properly regularized, while a simpler model might fail to capture essential
features. Therefore, careful tuning of hyperparameters like the number of layers, neurons, learning
rate, and activation functions is essential for optimizing model performance and achieving a balance
between complexity and accuracy.

Table 1 presents the essential attributes for simulating the temperature increase caused by a concave
ultrasound transducer, including the parameters related to the tBHTE and the external heat source QS .
After implementing the wave equation and constraints for creating a concave transducer in the neural
network (Eq (2.1)), the resulting value is used as the external heat source in the simulation. This
allows the PINN to model heat conduction while considering all the relevant features. Subsequently,
the tBHTE is incorporated into the neural network as the PDE to solve the problem outlined in Eq
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(2.3).
Subsequently, our model incorporates the embedded equation within the neural network, which

has 9 hidden layers with 20 neurons in each layer, to forecast the output of the associated tBHTE
using spatial and temporal inputs. The training output is responsible for simulating thermal conduction
within a real-life bio-tissue domain. By employing a deep learning algorithm to approximate the
solution of the PDE, the neural network minimizes the residual. The depicted neural network in Figure
7(b) represents the architecture of the PINN utilized in the proposed methodology.

In contrast to traditional machine learning models, the PINN approach does not require separate val-
idation and testing datasets. The validation process is inherent in the model’s structure, as it is guided
by the governing PDEs, which are embedded in the loss function. These PDEs ensure that the model’s
predictions are physically consistent and accurate during training. For testing purposes, we compare
the PINN model’s results with those from the FEM. This comparison allows us to quantitatively assess
the model’s accuracy in predicting temperature distribution, acoustic pressure, and necrotic tissue for-
mation under various clinical scenarios. The alignment between the PINN and FEM results confirms
the robustness and reliability of the PINN approach.

2.6. Finite element modeling

The FEM simulation utilizes quadratic Lagrange discretization for both the pressure acoustics and
bio-heat transfer phenomena. The FEM simulation was performed using Comsol Multi-physics soft-
ware on a system equipped with an Intel Core i7-1065G7 Processor running at 1.5 GHz and 16 GB
DDR4 RAM. Each simulation took approximately 115 hours to complete. The majority of the com-
putation time is dedicated to simulating the acoustic wave due to the need for very fine meshes in this
particular physics simulation. The subsequent subsection will provide a detailed explanation of the
required mesh grids for each step mentioned. The various boundary conditions considered for each of
the mentioned physics can be observed in Figure 5.

2.6.1. Mesh study

The mesh size is critical in accurately simulating acoustic waves, particularly in FEM simulations
of “pressure acoustics,” which require significantly finer meshes compared to “bio-heat transfer” simu-
lations. To achieve precise solutions for acoustic equations, a highly refined mesh set with a maximum
mesh size of λ/4 (where λ represents the wavelength) is employed for the ARBP and the surrounding
water. For the tumor tissue, an even finer mesh with a maximum size of λ/8 is used to capture the sharp
pressure gradient in the focal region accurately. Additionally, finer meshes are applied near the focal
point, while larger mesh sizes are considered for regions farther from the focal point, as they have a
lesser impact on the accuracy of the results.

In this research, multiple computational meshes were generated to assess grid independence by
computing the maximum sound intensity magnitude at the focal point. The ideal number of grids
was determined by balancing computational cost and simulation accuracy, with the most refined grid
selected if finer meshes did not significantly alter the results, as shown in Figure 8(a) for “pressure
acoustics” physics. For solving bio-heat transfer equations, significantly larger meshes were used
to achieve high precision while minimizing simulation time. Similar mesh samples were analyzed
to measure the maximum temperature at the focal point during the ablation process, with the grid
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independence results for “bio-heat transfer” physics presented in Figure 8(b).

Figure 8. Grid independency test for each physics.

Both Figure 8(a),(b) show that as the number of grids increases, the maximum intensity magnitude
and temperature at the focal point stabilize. Table 2 lists numerical values and differences across sim-
ulated scenarios to identify the optimal mesh for “pressure acoustics” and “bio-heat transfer” physics.
Relative errors, which can be positive (indicating higher measured values) or negative (indicating lower
values), reveal that the maximum intensity magnitude for cases 1.3 and 1.4 is nearly identical, making
case 1.3 the optimal mesh for “pressure acoustics” to reduce computational costs. Similarly, cases 2.4
and 2.5 show comparable maximum temperatures, with case 2.4 chosen as the optimal mesh for “bio-
heat transfer.” Figure 9(a),(c) display these optimal mesh designs, while sliced views in Figure 9(b),(d)
provide a clearer visualization of the individual mesh grids for each physics.

Table 2. Quantitative amounts and relative errors of different considered mesh cases for each
of the physics.

Pressure acoustic physic

Case Grid numbers Maximum sound intensity magnitude (Wm-2) % Relative error in comparison with the optimum case
1.1 178438795 5276891 -7.471 %
1.2 359274873 5560187 -2.504 %
1.3 447531449 5702988 -
1.4 519592973 5702988 0.116 %

Bio-heat transfer physic
Case Grid numbers Maximum temperature generated at focal point (°C) % Relative error in comparison with the optimum case
2.1 1421843 62.90969 -3.788 %
2.2 1798417 64.14794 -1.895 %
2.3 2163212 65.05169 -0.512 %
2.4 2551674 65.38679 -
2.5 2939390 65.4274 0.062 %
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(a) (b)

(c) (d)
Figure 9. Optimum grid generation considered for each physics. “Pressure acoustics”
physics: (a) whole geometry, (b) sliced magnified model. “Bio-heat transfer” physics: (c)
whole geometry, (d) sliced magnified model.
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3. Validation

In order to verify the accuracy of our simulation methods, we proceed with the validation of the
acoustic wave generation simulation, referred to as the “pressure acoustics” physics. Following that,
we conduct the validation of the heat transfer simulation, known as the “bio-heat transfer” physics.
These two validation steps, in addition to the comparison between PML and sound hard boundary
conditions, are presented in the following sections.

3.1. PML and sound hard boundary

The transducer was initially modeled using a sound hard boundary condition, which implies that
the normal components of particle velocity and acceleration are zero at the boundary except at the
transducer surface, the active element. However, recognizing the potential for unnecessary reflections
with sound hard boundaries, we performed additional simulations using PML in Comsol Multi-physics.
The PML effectively absorbed outgoing waves and minimized reflections. The comparison between
PML and sound hard boundaries showed minimal differences in critical outcomes, such as maximum
temperature and total acoustic pressure, confirming that our original results remain reliable. Details of
this comparative analysis are provided in Table 3.

Table 3. Comparison between PML and sound hard boundary conditions in FEM simulations
results.

Parameters Hard Boundary PML
(% error)

Maximum total acoustic 2.0026E7 1.9828E7
pressure (Pa) (0.01 %)
Maximum sound intensity 1.1678E8 1.157E8
magnitude (Wm-2) (0.0094 %)
Maximum Temperature (°C) 49.95 49.45

(0.011 %)

3.2. Pressure acoustics phenomenon (Montienthong & Rattanadecho study [3])

To validate the initial stage of our simulation, we compare our results with those obtained by Mon-
tienthong & Rattanadecho [3], who conducted a 2D axisymmetric simulation of FUS in a cylindrical-
shaped breast model, different from the ARBP model used in our study. Their model includes three
tissue types—fat, glands, and muscle—within a larger water-filled cylinder, with a bowl-shaped trans-
ducer and two ultrasound frequencies (1 and 1.5 MHz) and tumor sizes (5 and 10 mm) considered. To
ensure consistency, we adopted the same ICs and BCs, specifically simulating the 1 MHz frequency
and 5 mm tumor scenario. We then compared the total acoustic pressure field and sound intensity
magnitude distribution, focusing on the maximum values across the domain. The comparison between
Montienthong & Rattanadecho’s results and ours is presented in Figure 10.
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(a) (b)
Figure 10. Comparison of the maximum total acoustic pressure and the maximum sound
intensity magnitude obtained from our simulations (FEM and PINN) and the Montienthong
& Rattanadecho’s simulation.

It is apparent that there exist minor discrepancies between our simulation results and those of Mon-
tienthong & Rattanadecho. However, these small deviations can be considered acceptable within a
tolerable margin of error.

3.3. Heat transfer phenomenon (Montienthong & Rattanadecho study [3])

To verify the accuracy of our bio-heat transfer predictions, we compare our results with the sim-
ulations conducted by Montienthong & Rattanadecho [3], using the same geometric configuration
and operating conditions. The temperature distributions predicted at the tumor’s central region (focal
point) during the ablation process are shown in Figure 11, alongside their results, demonstrating a good
alignment between the two studies. Table 4 presents a comprehensive comparative assessment through
relative error measurements, focusing on the highest overall acoustic pressure, the maximum sound
intensity magnitude, and the maximum temperature achieved at the focal point during ablation. The
relative error analysis reveals a satisfactory level of agreement between our simulations and those of
Montienthong & Rattanadecho, as displayed in Table 4.

Figure 11. Comparison of FEM and deep learning simulations results, and Montienthong
& Rattanadecho simulation plots of the temperature distribution in the focal point during the
time.
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Table 4. Comparison between our simulations results and Montienthong & Rattanadecho’s
simulation results [3].

Montienthong &
Parameters FEM PINN Rattanadecho’s

(% error) (% error) result
Maximum total acoustic 2.0026E7 1.9823E7 2.0228E7
pressure (Pa) (-2 %) (-2 %)
Maximum sound intensity 1.1678E8 1.156E8 1.1796E8
magnitude (Wm-2) (-1 %) (-2 %)
Maximum Temperature (°C) 49.95 50 49.9

(0.1 %) (0.2 %)

4. Results and discussion

In this section, we present the outcomes obtained from various simulated physical processes across
different subsections. Initially, we showcase the field of total acoustic pressure and the distribution
of sound intensity magnitude generated within the domain. Next, we illustrate the distribution of
temperature in the breast model as a result of absorbing this acoustic energy. Finally, we present the
extent of necrotized tissue and evaluate the amount of tumor and breast tissue that undergo necrosis
due to the increase in temperature.

4.1. Acoustic field generation

As previously mentioned, an attempt is made to generate a concentrated ultrasonic wave at the
tumor site using a bowl-shaped acoustic transducer operating at a frequency of 1.1 MHz. Figure 12
displays the contours of total acoustic pressure and sound intensity magnitude, respectively. These
contours depict the three cut planes (1 to 3) which include the x-y, z-y, and x-z surfaces passing
through the center of the tumor. To provide a clearer depiction of the acoustic physics simulation
outcomes, Figures 13 and 14 show the distribution of acoustic pressure and intensity magnitude along
various x, y, and z directions, with the z-direction corresponding to the acoustic wave’s propagation.
As shown in Figure 13, the pressure amplitude is significantly higher at the tumor site due to focused
acoustic waves, resulting in greater sound intensity and higher energy in the tumor region. Figure 14
highlights a prominent peak in sound intensity within the tumor, leading to rapid heat generation from
dissipating this intense acoustic power. After simulating the pressure acoustics, the bio-heat transfer
physics should be simulated to quantify the heat generated and the resulting temperature rise in the
tumor region. The outcomes of this simulation are presented in the next subsection.
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Figure 12. Total acoustic pressure field, (a) FEM cut plane 1, (b) FEM cut plane 2, (c) FEM
cut plane 3, (d) PINN cut plane 1, (e) PINN cut plane 2, (f) PINN cut plane 3. Sound intensity
magnitude (Wm-2), (g) FEM cut plane 1, (h) FEM cut plane 2, (i) FEM cut plane 3, (j) PINN
cut plane 1, (k) PINN cut plane 2, (l) PINN cut plane 3.
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(a)

(b)

(c)
Figure 13. Absolute pressure distribution along lines passing through the tumor’s center in
different directions, (a) x-direction, (b) y-direction, (c) z-direction.
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(a)

(b)

(c)
Figure 14. Sound intensity magnitude distribution along lines passing through the tumor’s
center in different directions, (a) x-direction, (b) y-direction, (c) z-direction.

4.2. Temperature distribution

The focused ultrasonic wave generates heat in the targeted area, raising the temperature, as shown
in Figure 15(a)–(f) after 1 second on various cut planes. To better visualize the temperature rise in the
tumor, Figure 16 presents temperature plots along lines passing through the tumor’s center in different
directions. By comparing Figure 15(a)–(f) with Figure 12(g)–(l), we observe that areas with higher
sound intensity experience a greater temperature increase, with the tumor area reaching approximately
38.5 °C after a 1-second exposure. However, this temperature is too low for rapid tissue destruction, as
thermal ablation, which causes tissue coagulation or necrosis, requires temperatures between 46 and
56 ºC sustained for a sufficient duration [54]. To visualize the necrotized area, the ablation time was
extended to 10 seconds with a 10 nm transducer displacement, and the Arrhenius kinetic equation (Eq
(2.6)) was used to calculate tissue necrosis during this period. The results of this analysis are presented
in the subsequent subsection.
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Figure 15. Distribution of temperature after 1 second, (a) FEM cut plane 1, (b) FEM cut
plane 2, (c) FEM cut plane 3, (d) PINN cut plane 1, (e) PINN cut plane 2, (f) PINN cut plane
3. Distribution of necrotic tissue fraction after 10 s of the ablation process, (g) FEM cut plane
1, (h) FEM cut plane 2, (i) FEM cut plane 3, (j) PINN cut plane 1, (k) PINN cut plane 2, (l)
PINN cut plane 3.
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(a)

(b)

(c)
Figure 16. Temperature distribution after 1 s along lines passing through the tumor’s center
in different directions, (a) x-direction, (b) y-direction, (c) z-direction.

4.3. Distribution of necrotized tissue fraction

Figure 15(g)–(l) illustrates the distribution of necrotic tissue after 10 seconds, showing the contour
of the necrotic tissue fraction on different cut planes of the breast. As depicted, nearly the entire
tumor is eradicated, with some surrounding normal tissue also affected. The maximum necrotic tissue
fraction indicates complete necrosis in those areas. Comparing Figure 15(g)–(l) with Figure 15(a)–(f),
a clear relationship emerges between the extent of necrosis and the temperature increase—regions with
higher temperatures experience greater tissue ablation after 10 seconds of exposure. To provide further
insight, Figure 17 presents plots showing the distribution of necrotic tissue fraction along lines passing
through the tumor’s center in various x, y, and z directions after 10 seconds of the ablation process.
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(a)

(b)

(c)
Figure 17. Fraction of necrotic tissue after 10 s ablation process along lines passing through
tumor’s center in different directions, (a) x-direction, (b) y-direction, (c) z-direction.

As shown in Figure 17, the proportion of necrotized tissue at the tumor’s center reaches its max-
imum value of one but decreases as one moves away, indicating that not all tumor areas undergo
complete ablation. To achieve full ablation, clinicians can adjust various parameters: briefly altering
the acoustic pulse generator’s position to change the focal point, increasing input pulse pressure to
raise ablation temperature, or extending the duration of the acoustic pulse to expose the tumor longer.
Multiple FUS ablation sessions can also target untreated tumor areas. Figure 18 presents plots of tem-
perature and necrotic tissue fraction at the tumor’s center throughout the 100-second ablation process,
offering a comprehensive view of the procedure.
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(a)

(b)
Figure 18. Temperature and fraction of necrotic tissue at the tumor’s center during ablation
time: (a) Temperature change, (b) fraction of necrotic tissue.

As observed in Figure 18(a), during the initial 10 seconds of the existence of the acoustic pressure
field, the temperature undergoes a rapid increase at the center of the tumor, elevating from 37 °C to
approximately 70 °C. Subsequently, upon cessation of the FUS source, the temperature at the tumor’s
center gradually decreases to 37 °C, attributed to the heat transfer and cooling effect of the blood
perfusion process. Conversely, depicted in Figure 18(b), the fraction of necrotic tissue at the tumor’s
center continually rises, reaching approximately 1 after 4 seconds. This indicates that approximately
100% of the tumorous tissues are ablated at the tumor’s center.

4.4. Realistic clinical approach

The previously described approach of focusing FUS solely at the tumor’s center for 10 seconds
followed by 90 seconds of thermal diffusion is inefficient for complete ablation, especially in larger
tumors, and differs from current clinical practices. This method was designed to demonstrate the FUS
process and our deep learning platform’s capabilities. In this section, we adopt a more realistic clinical
approach, showing how our platform can predict FUS ablation outcomes in actual clinical settings. In
current clinical systems, a more effective method involves rapidly generating multiple lesions to cover
the entire tumor volume by adjusting the transducer focus, thereby mitigating uncertainties related
to heat diffusion and the heat sink effect caused by perfusion. In this study, we used a FUS therapy
process with three faster lesions: one at the tumor’s center and two others 3 mm away on the right and
left sides along the x-axis. The transducer was moved and its focal point adjusted accordingly, with
FUS waves generated for 6 seconds at each location, followed by 5-second intervals for repositioning.
After treating the tumor from these three points, the simulation continued without any acoustic source
until reaching 100 seconds.
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The diagram in Figure 19(a)–(c) shows the distribution of sound intensity magnitude within the cut
plane 1 for FEM and (d to f) for PINN, with the x-z surface passing through the tumor’s midpoint
for each of the three lesion processes occurring between 0–6, 11–17, and 22–28 seconds. Addition-
ally, Figure 19(g)–(r) presents the distribution of temperature and the fraction of necrotic tissue at the
conclusion of each lesion process within cut plane 1 for FEM and PINN, concluding at 6, 17, and
28 seconds for the first, second, and third lesions, respectively. These processes involve three distinct
focal points where a significant sound intensity magnitude of approximately 4.5E+6 Wm-2 is gener-
ated, leading to temperature increases to about 63, 65, and 64 ºC at different points within the tumor,
contributing to a more uniform necrosis of the tumor tissue.

Figure 19. (a)–(f) sound intensity magnitude in the cut plane 1 during each of the three lesion
processes for FEM and PINN, (g)–(l) temperature distribution in the cut plane at the end of
each lesion process for FEM and PINN, (m)–(r) fraction of necrotic tissue distribution in the
cut plane 1 at the end of each lesion process for FEM and PINN.

The figure demonstrates that after 28 seconds of FUS therapy, the fraction of necrotic tissue reaches
1 in nearly all regions of the tumor, indicating complete ablation. To better understand these results
and evaluate the impact of this clinically realistic approach, temperature and necrotic tissue fraction
are plotted along a line passing through the tumor’s center in the x direction (Figure 20) at various
time points during the ablation process, including the end of each lesion process and the entire therapy.
Figure 20(a) shows the temperature increase at different points within the tumor—center, right, and
left—resulting in a more evenly distributed high-temperature pattern. Comparing Figure 20(b) with
Figure 17(a), it is evident that this approach achieves a fraction of necrotic tissue reaching 1 across
almost all regions, unlike the previous method, where this fraction did not reach 1 at the tumor’s edges,
highlighting the new approach’s effectiveness in uniformly and completely eradicating tumor tissues.
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(a)

(b)
Figure 20. Temperature and the fraction of necrotic tissue after 6, 17, 28 and 100 s along the
line passing through the tumor’s center in the x direction.

Increasing the number of lesion points across different parts of the tumor leads to more favor-
able outcomes without requiring extended lesion durations, aligning with current clinical practices.
This deep learning platform can simulate various FUS ablation processes, accommodating different
lesion numbers, durations, locations, and acoustic settings, making it a valuable tool for predicting di-
verse FUS therapy results and selecting the most efficient procedure based on tumor size and location.
Notably, 3D simulations offer significantly more precise outcomes than 2D simulations due to the in-
creased complexity and incorporation of three spatial dimensions, resulting in higher sound attenuation
and a more pronounced temperature increase within the tissue.

The augmented temperature increase in our simulation, evident when comparing our results with
those of Montienthong & Rattanadecho’s study [3], highlights the advantages of 3D simulations. While
our study shows a temperature rise to approximately 64–65 °C (Figure 20(a)), their research only
reached 50–51 °C despite using the same acoustic frequency and similar focal lengths (Figures 14 and
15 in their paper). The 3D simulations allow for incorporating the intricate and realistic geometry of the
breast model, including asymmetric details that significantly affect acoustic wave propagation and heat
transfer, leading to more accurate results than 2D axisymmetric models. The PINN model’s ability to
generalize to different tumor types and breast anatomies is crucial for clinical applicability. Although
our study demonstrates the model’s effectiveness for a specific anatomy and tumor type, generalization
to other scenarios requires defining new anatomical geometries and FUS specifications. The training
dataset was based on specific configurations of an anatomical phantom, capturing particular scenarios
of acoustic pressure, sound intensity, and temperature distributions. However, this dataset doesn’t cover
the full range of breast anatomies and tumor types, meaning the model may not perform optimally
for cases significantly different from those represented in the training data, requiring precise input

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7337–7372.



7364

configurations for accurate FUS treatment predictions.
When scaling the PINN approach to more complex anatomical structures, several challenges arise,

including increased model complexity and computational demands. However, the modular nature of
PINNs makes them well-suited for handling such complexity. One approach to managing complexity
is hierarchical modeling, where the anatomical structure is divided into smaller, more manageable
subdomains. Each subdomain can be modeled individually using the PINN framework, and the results
can be integrated to form a comprehensive model of the entire structure. Adaptive mesh refinement
techniques can be used to focus computational resources on regions with high complexity or significant
changes, such as tumor boundaries or areas with steep temperature gradients. This allows for more
detailed modeling in critical areas without overwhelming the computational resources.

4.5. Validation and computational efficiency

To validate the accuracy of the proposed PINN model, we compared its predictions against those
from FEM simulations. The validation process was carried out across different clinical scenarios,
varying key parameters such as tissue properties, FUS power, and blood perfusion rates. We assessed
the model’s performance using metrics such as root mean squared error (RMSE), mean absolute error
(MAE), and the correlation coefficient (R²). The following table (Table 5) summarizes the validation
metrics in various scenarios.

Table 5. Validation metrics for comparison with FEM results in various scenarios.

Scenario RMSE (°C) MAE (°C) Correlation coeddicient (R2)

Baseline (nominal tissue properties, FUS power) 0.05 0.03 0.98
±10% Variation in Thermal Conductivity 0.07 0.05 0.97
±10% Variation in Specific Heat Capacity 0.06 0.04 0.97
±10% Variation in FUS Power 0.08 0.05 0.96
±10% Variation in Blood Perfusion Rate 0.06 0.04 0.98

One of the key advantages of the PINN model is its computational efficiency compared to conven-
tional FEM techniques. A detailed comparison of computational time and resource usage between the
PINN model and FEM simulations, as shown in Table 6, demonstrates that the PINN model signifi-
cantly reduces both computational time and memory usage. Specifically, the PINN model completed
the simulations in just 5 hours, whereas FEM simulations required approximately 115 hours. Addi-
tionally, the PINN model used 8 GB of memory, compared to 16 GB for FEM simulations. These sub-
stantial differences underscore the efficiency of the PINN model, making it particularly advantageous
for clinical applications where timely results are essential. By leveraging this computational efficiency,
the PINN model enables rapid and accurate simulations of FUS ablation, making it a valuable tool for
treatment planning and optimization.

Table 6. Computational time and resource usage comparison.

Method Computational time (hours) Memory usage (GB)
PINN Model 5 8
FEM Simulation 115 16
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4.6. Uncertainty quantification

Uncertainty quantification (UQ) is crucial for validating and ensuring the robustness of predictive
models, especially in clinical applications. In this study, we addressed uncertainties in model parame-
ters and input data to enhance the reliability of PINN predictions. Parameters such as tissue properties
(e.g., thermal conductivity, specific heat capacity) and blood perfusion rates, as well as variations in in-
put data like FUS wave intensity and focus, can significantly impact model predictions. To account for
these uncertainties, we conducted Monte Carlo simulations, running multiple simulations with param-
eters sampled from their respective probability distributions. The results provided statistical measures
such as mean, variance, and confidence intervals for predicted quantities like temperature distribution.
Additionally, sensitivity analysis was performed to identify the parameters most significantly affect-
ing model outputs, with findings summarized in Table 7. This involved varying one parameter at a
time while holding others constant to assess how each affects predicted temperature and necrotic tis-
sue distribution. Bayesian methods were also used to update parameter probability distributions based
on prior knowledge and observed data, incorporating prior uncertainties and improving the model’s
predictive accuracy.

Table 7. Sensitivity analysis results.
Parameter Range % Change in maximum temperature % Change in necrotic tissue fraction
Thermal conductivity 0.4–0.6 W/m·K ±5% ±3%
Specific heat capacity 3500–4000 J/kg·K ±4% ±2%
Blood perfusion rate 0.001–0.005 s-1 ±7% ±5%
Initial tumor temperature 36.5–37.5°C ±2% ±1%
FUS power 30–50 W ±10% ±8%

The uncertainty quantification results are presented in Table 8, which includes the mean and stan-
dard deviation of key predicted quantities, as well as the 95% confidence intervals. These results
demonstrate the robustness of the PINN model predictions despite the presence of uncertainties in the
model parameters and input data. The narrow confidence intervals indicate that the model is relatively
insensitive to parameter variations, which enhances confidence in its clinical applicability. For ex-
ample, we explored the effect of a ±5% variation in thermal conductivity and specific heat capacity
on the temperature distribution within the tumor. The simulations show that a 5% decrease in thermal
conductivity leads to a 3% increase in peak tumor temperature, while a 5% increase in thermal conduc-
tivity results in a 2% reduction in peak temperature. This demonstrates that the tumor temperature is
sensitive to variations in tissue properties, but the overall treatment outcome remains within clinically
acceptable bounds, with full ablation achieved in all cases.

Uncertainty in the applied FUS power was also analyzed, with a ±10% variation around the nominal
value. A 10% increase in FUS power led to a 6% increase in the extent of necrotic tissue, while a
10% reduction in power resulted in a 4% decrease in necrotic tissue. While these variations could
impact treatment efficiency, the model demonstrated that tumor ablation remained effective even at
lower power levels, showcasing its robustness to fluctuations in FUS power during clinical procedures.
We considered a range of blood perfusion rates from 0.001 to 0.005 s-1 to simulate how variability in
perfusion impacts the cooling effect during ablation. Higher perfusion rates led to a slight reduction
in the maximum temperature (approximately 5%) and a delayed necrosis onset. However, the tumor
region still reached the required thermal dose for complete ablation in all cases, further supporting the
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reliability of the model across different physiological conditions.
These analyses demonstrate that while uncertainty in model parameters can lead to variations in the

exact temperature distribution and necrotic tissue extent, the overall therapeutic outcomes—namely,
successful tumor ablation—are robust. This highlights the model’s ability to handle clinical uncertain-
ties and maintain treatment effectiveness. Moving forward, this uncertainty quantification will aid in
establishing safety margins for clinical treatments and provide confidence in the model’s predictions
when used in real-world FUS therapy.

Table 8. Uncertainty quantification results.

Quantity Mean Standard deviation 95% Confidence interval
Maximum temperature (°C) 70.0 2.5 [65.2, 74.8]
Necrotic tissue fraction (%) 90.0 5.0 [80.2, 99.8]

4.7. Limitations and future work

While our study provides a comprehensive simulation of FUS ablation using a PINN model, it is
important to acknowledge certain limitations, particularly the use of the traditional Pennes bio-heat
equation, which assumes homogeneous or isotropic blood perfusion and may not accurately reflect the
heterogeneous and anisotropic conditions within breast tissue. Recent studies have suggested modifi-
cations to account for spatial variability in blood perfusion [55,56], especially in tumor hypoxia, where
low blood perfusion can affect thermal energy deposition and reduce sensitivity to ablation treatments.
Moreover, the current model assumes linear acoustic propagation, which may not accurately capture
the complexities of FUS, where nonlinear effects can significantly influence the pressure distribution
and temperature rise at the focus, potentially leading to discrepancies between the simulated and actual
acoustic pressure values, particularly in high-intensity regions.

Additionally, it is important to consider the continuous regeneration of living tissues due to oxygen
supply through arterial blood, which counterbalances thermal degradation under quasi-static thermal
conditions. Heating of cellular and biological tissues can lead to reversible (repairable) or irreversible
(lethal) thermal cell death. At the interface between tumor and healthy tissue, the regeneration of
healthy cells triggers an immune response that suppresses, prevents, and restricts further thermal dam-
age within the damage bounds of Ω ≤ 1. This partial self-regeneration of normal tissues at the tumor
periphery, facilitated by continuous oxygen supply, should not be overlooked when modeling thermal
damage kinetics.

The current bio-heat model does not consider the effects of large blood vessels and thermal relax-
ation in bio-tissues, both of which are significant in heat transfer. Large blood vessels can act as heat
sinks, rapidly dissipating heat and affecting thermal distribution, while thermal relaxation accounts for
the time delay in heat conduction. Ignoring these factors can lead to inaccuracies. Future work should
integrate a modified bio-heat equation that considers heterogeneous blood perfusion, large blood ves-
sels, and thermal relaxation into our PINN framework. This enhancement would improve the accuracy
and clinical relevance of our simulations, allowing for a more detailed analysis of thermal energy dis-
tribution and its effects on tumor ablation, providing valuable insights for optimizing FUS treatment
protocols.

While the current model demonstrates effective generalization within the scope of the training data,
future work will focus on expanding the dataset to improve its applicability across a broader range
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of breast anatomies and tumor types. This will be achieved through the inclusion of additional 3D
models from datasets such as UWCEM, along with patient-specific MRI-derived models representing
different breast densities, tumor sizes, and locations. Furthermore, we plan to apply transfer learning
techniques to enhance the model’s adaptability to new clinical cases. Data augmentation strategies,
such as simulating variations in tissue properties and tumor characteristics, will also be employed to
further enrich the dataset. Lastly, rigorous testing on diverse clinical cases will validate the model’s
generalization capability and robustness in real-world scenarios.

Our PINN-based solution operates efficiently in a mesh-free domain, providing a simplified frame-
work that offers preliminary insights into the FUS process. However, we recognize that this model
does not fully capture the complexities of real-world FUS therapy scenarios. Future work will focus
on enhancing the model to incorporate more detailed tissue properties, patient-specific anatomy, and
dynamic physiological conditions to improve its applicability to clinical settings. By addressing these
limitations and incorporating more advanced modeling techniques, we aim to improve the predictive
power and applicability of our deep learning platform for FUS ablation therapies and extend the model
to other types of cancer.

5. Conclusions

This study presents a comprehensive deep learning framework based on PINN for 3D simulation of
FUS ablation in breast tissue, accurately replicating key aspects such as acoustic pressure, sound inten-
sity, temperature distribution, and necrotic tissue. We validated our model against existing numerical
findings and FEM simulations, demonstrating its effectiveness in simulating FUS ablation with an
anatomically accurate breast phantom. The results show that a bowl-shaped acoustic transducer can
effectively focus ultrasound waves to raise the temperature at the tumor site, leading to significant
tumor necrosis.

We explored a clinically relevant approach involving multiple lesions, achieving a more uniform
temperature distribution and effective tumor ablation, demonstrating the advantages of 3D simulations
over 2D models in capturing FUS ablation processes. Our deep learning model enables personalized
treatment planning, potentially improving clinical outcomes by providing precise predictions of tem-
perature elevation and tumor ablation. However, the model’s effectiveness depends on the quality of
training data and its generalizability to diverse patient cases, requiring extensive validation and clinical
trials before implementation.

Future research should focus on expanding the dataset, improving model interpretability, and inte-
grating the model into clinical workflows. Continuous monitoring and adaptation of the model will
ensure its long-term utility in clinical settings.
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