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Abstract: Support vector machine (SVM) is an effective classification tool and maturely used in 

various fields. However, its performance is very sensitive to parameters. As a newly proposed swarm 

intelligence algorithm, snake optimizer algorithm (SO) can help to solve the parameter selection 

problem. Nevertheless, SO has the shortcomings of weak population initialization, slow convergence 

speed in the early stage, and being easy to fall into local optimization. To address these problems, an 

improved snake optimizer algorithm (ISO) was proposed. The mirror opposition-based learning 

mechanism (MOBL) improved the population quality to enhance the optimization speed. The novel 

evolutionary population dynamics model (NEPD) was beneficial for searching accurately. The 

differential evolution strategy (DES) helped to reduce the probability of falling into local optimal value. 

The experimental results of classical benchmark functions and CEC2022 showed that ISO had higher 

optimization precision and faster convergence rate. In addition, it was also applied to the parameter 

selection of SVM to demonstrate the effectiveness of the proposed ISO. 

Keyword: snake optimizer; support vector machine (SVM); parameter optimization; opposition-based 

learning 

 

1. Introduction 

SVM [1] is a classical method in machine learning area. Because of its excellent performance, SVM 

is widely used in many application scenarios, such as text classification [2–4], facial recognition [5], 

pedestrian detection [6,7], etc. However, what mostly affects the ability of SVM is the kernel function 

selection and kernel parameter choice. About the former, the commonly used kernel functions are 

linear kernel, polynomial kernel, sigmoid kernel, Gaussian kernel (also called radius basis kernel 

function), and Laplace kernel. Many studies have shown that kernel function selection is closely related 

to the characteristics of data. According to different data features, we choose the appropriate kernel 
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function. Among the above five kernel functions, the Gaussian kernel is the most popularly used. As 

for kernel parameter choice, there are four main methods, i.e., cross validation technology, minimizing 

the upper bound on the error rate of algorithms, optimizing kernel function metrics, and optimization 

algorithms (like swarm intelligence optimization algorithms). Among them, using swarm intelligence 

optimization algorithms to find the best kernel parameters is an effective solution. 

Swarm intelligence optimization algorithms are a class of simple, flexible and adaptive meta-

heuristic algorithms, which were inspired by the social behavior of biological individuals. Generally 

speaking, there is no standard categorization of swarm intelligence algorithms. For convenience, we 

classify them into four categories: evolution-based algorithms, physical & mathematical-based 

algorithms, human-based algorithms, and animal & plant-based algorithms. 

Evolution-based algorithms are a type of algorithms that randomly update and replace 

individual creatures by modeling the rules of selection, crossover, and mutation among genes in 

biological genetics. The primary algorithms are genetic algorithm (GA) [8], differential evolution 

algorithm (DE) [9], grey prediction evolution algorithm (GPE) [10], and geometric probabilistic 

evolutionary algorithm (GPEA) [11]. 

Physical & mathematical-based algorithms are constructed from real-life physical phenomena 

or mathematical principles. The primary algorithms are simulated annealing algorithm (SA) [12], 

sine cosine algorithm (SCA) [13], gravitational search algorithm (GSA) [14], atomic search 

optimization algorithm (ASO) [15], artificial electric field algorithm (AEFA) [16], and optical 

microscope algorithm (OMA) [17]. 

Human-based algorithms are based on human mental activity or social behavior. The primary 

algorithms are teaching-learning based optimization (TLBO) [18], socio evolution and learning 

optimization (SELO) [19], human learning optimization algorithm (HLO) [20], and student 

psychology based optimization algorithm (SPBO) [21]. 

Animal & plant-based algorithms are the most numerous swarm intelligence algorithms. These 

algorithms are founded on the behavior of biological populations in nature, such as predation, 

reproduction, and competition for territory. The primary algorithms are gray wolf optimization 

algorithm (GWO) [22], tree seed algorithm (TSA) [23], whale optimizer algorithm (WOA) [24], Harris 

hawks optimization (HHO) [25], golden jackal optimization (GJO) [26], and northern goshawk 

optimization (NGO) [27]. To date, these kinds of algorithms have been improved by many scholars to 

solve various problems. For instance, Ma et al. [28] proposed a gray wolf optimizer based on Aquila 

exploration method (AGWO), which can expand the search range to improve the global search ability 

and reduce the possibility of falling into the local optimum. Kang et al. [29] combined HHO with 

Brownian motion-based mutant strategy to generate a new optimization algorithm (HHOBM), which 

helps HHO avoid the local optimum trap problem when optimizing non-convex functions. Lou et al. [30] 

introduced a hybrid strategy-based golden jackal optimizer algorithm (HGJO) to balance the global and 

local search capabilities, and applied it to robot path planning successfully. Li et al. [31] came up with a 

multi-strategy enhanced northern goshawk optimization algorithm (MENGO) to solve NGO’s problems of 

slow convergence rate and tendency to fall into local optimization in some cases. Lin et al. [32] suggested 

a niching hybrid heuristic whale optimization algorithm (NHWOA) to enhance convergence speed and 

search coverage, and experimental results showed it has good performance in the global computations. 

In 2022, Hashim and Hussien proposed the SO [33], which has good optimization capability, fast 

convergence speed, and wide search range [34,35], and many improved SO algorithms have been 

developed [36–40]. SO is used in a wide range of applications. For instance, Li et al. [41] proposed a 

snake optimization-based variable-step multi-scale single threshold slope entropy for classifying 

different categories of real-world signals. Nevertheless, it also has some disadvantages such as 
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converging slowly in the early stage and easily falling into local optimization. At present, some 

scholars have made improvements to SO in view of these problems. For example, Hu et al. [42] 

proposed a multi-strategy boosted snake-inspired optimizer (BEESO), which was formed upon three 

improved methods, i.e., bidirectional search, modified evolutionary population dynamics, and elite 

opposition-based learning. However, it still has a tendency to fall into local optimum on some test 

functions. Yao et al. [43] proposed an enhanced snake optimizer (ESO) that utilizes four strategies, i.e., 

mirror imaging strategy based on convex lens imaging, parameter dynamic update strategy, sine-cosine 

composite perturbation factors, and tent-chaos & Cauchy mutation. Its experimental results are much 

better than BEESO. However, the convergence speed in the early stage of ESO can be raised a little bit. 

In this paper, we combine the advantages of BEESO and ESO to propose an ISO algorithm based 

on MOBL, NEPD, and DES. In order to validate the effectiveness of ISO, a classical benchmark 

function test experiment, CEC2022 test experiment, ablation experiment, and SVM parameter 

optimization experiment are conducted, respectively. The main contributions of this paper are shown 

as follows: 

• Based on ESO, BEESO, and DE algorithms, we propose an ISO, which mainly focuses on the 

population initialization before the exploration phase of SO, egg hatching mode during the exploitation 

phase, and the final elimination process. 

• To illustrate the effectiveness of ISO, we test it against 12 other algorithms for comparison on 23 

classical benchmark functions and CEC2022. We also perform the ablation experiment to discuss the 

impact of three improvement strategies and their combinations on SO. 

• We apply ISO to the problem of parameter optimization for SVM and compare it with 

optimization methods based on other animal & plant-based algorithms. 

The remainder of this article is organized as follows. Section 2 briefly introduces the SVM and 

SO algorithm. Section 3 describes the improved SO algorithm, which includes the mentioned three 

improvement strategies above. Section 4 summarizes the performances of ISO and other swarm 

intelligence optimization algorithms. The conclusion is shown in Section 5. 

2. Preliminaries 

2.1. SVM 

SVM is a machine learning method based on statistical learning theory, mainly aiming at 

classification and regression problems. It has attracted more and more attention from scholars, and has 

become a mainstream technology and standard tool in the field of machine learning. Formally, for a 

set of training samples ( ),i iyx  , 
n

i Rx  ,  1, 1iy  + −  , 1, ,= i m  , if the classification surface 
T 0b+ =ω x  (where ω  is the normal vector and b  is the bias term) can correctly classify the training 

samples into two categories, then the sum of the minimum distances from the two categories to the 

optimal classification surface should be maximized. The optimal classification surface can be obtained 

by solving the following optimization problem: 
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where C  is the penalty factor, the role of which is to strike a balance between model complexity and 
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learning capacity, and i  is the error term. 

Using the Lagrange multiplier method, we can solve the above quadratic programming problem 

with linear constraints, and get the Wolfe dyadic problem: 
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where i  is the Lagrange multiplier. 

After solving the above optimization problem, we obtain the decision function: 
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For nonlinear problems, assume that there is a nonlinear mapping : Χ F → , which maps samples 

from the input space to a high-dimensional feature space F  and is implicitly defined by a kernel 

function. In this article, we choose to use the Gaussian kernel function because of its better 

generalization ability. The definition equation takes the following form: 
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where   is the width of Gaussian kernel. 

After selecting the type of kernel function, the dyadic problem becomes: 
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and the corresponding decision function is as follows: 

 
1

( ) sgn( ( , ) )
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i i i j
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In order to obtain a better generalization performance of SVM, we need to optimize the penalty 

factor C  and the width of Gaussian kernel  . 

2.2. Snake optimizer 

SO is inspired by the hunting and mating behavior of snakes, and its search process can be divided 

into two phases: exploration and exploitation. The exploration phase describes the environmental 

factors, i.e., temperature and food, and there is no situation in this phase where snakes only search for 

food in its surroundings. It ensures that SO is able to search as wide as possible. The exploitation phase 

consists of two transitional modes, i.e., fight mode and mate mode, which are used to improve the 

search efficiency of SO. In the fight mode, each male snake will battle among themselves to get the 

best female snake, and each female snake will select the best male snake. In the mate mode, the 
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occurrence of mating behavior depends on the amount of food and temperature. If the mating behavior 

happens, the worst positions of snakes are updated for the next round of iteration. 

The following mathematical model represents the basic process of SO. 

(I) Population initialization 

Randomly initialize the population to get the initial position: 

 ( )i min max minU U rand U U= +  −  (7) 

where iU  is the position of i th snake, rand  is a random number between 0 and 1, and maxU  and 

minU  are the upper and lower bounds for the solution problem. 

For the population, we first divide them into two groups: male snake group and female snake 

group, then calculate the fitness of two groups and find the best individual in each group. The best 

individual in the male snake group is best ,mU , and the best individual in the female snake group is 

best , fU . Lastly, choose the global best individual bestU  between best ,mU  and best , fU . 

(II) Exploration phase 

Exploration and exploitation phase are determined by food Q  and temperature Temp , which are 

defined by the following formulas: 
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where 1 0 5c .= , t  is the current number of iterations, and T  is the maximum number of iterations. 

When 0 25Q . , snakes start to randomly update their positions to find food. 
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where ,i mU  and ,i fU  are the updated positions in the male snake group and female snake group, 

respectively, rand ,mU   and rand , fU   are the random positions in the male snake group and female 

snake group, respectively, 2 0 05c .= , the sign   can help the SO explore all possible directions 

and ensure a certain traversal, and mA  and fA  are the ability to find food of male snakes and 

female snakes, respectively. 
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where ,rand mf  is the fitness of rand ,mU  and ,i mf  is the fitness of the i th snake in the male snake group, 

and ,rand ff  is the fitness of rand , fU  and ,i ff  is the fitness of the i th snake in the female snake group. 

(III) Exploitation phase 

Under the condition of 0 25Q . , if 0.6Temp  , snakes do not reproduce; instead, they continue 

to search for food. 
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where .i mU  and .i fU  are the positions of male snakes and female snakes, respectively, and 3 2c = . If 

0.6Temp  , the male and female snakes will begin to select each other and mate. Two situations exist 

during this period. 

(i) Fight mode 

The male snakes will compete with each other, as do female snakes. 
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where mF  and fF  are the fighting ability of male snakes and female snakes, respectively. 
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where ,best ff  is the fitness of best , fU  and ,best mf  is the fitness of best ,mU . 

(ii) Mate mode 

Mating behavior begins between selected male and female snakes. 
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where mM  and 
fM  are the mating ability of male snakes and female snakes, respectively. 
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After mate mode was completed, SO has a certain probability to enter the egg-laying period. The 

session can help the worst male snake and female snake update their positions again. 

The pseudo code of SO is given in Algorithm 1. 

Algorithm 1: Snake optimizer 

1. Define the population size N , the maximum iteration T , Dim , maxU , and minU . 

2. Initialize the population iU
 
by Eq (7) 

3. while ( t T ) do 

4. Calculate food Q  and temperature Temp  by Eq (8). 

5. Choose the best individual best ,m / fU  and the global best individual bestU .  

6. if ( 0 25Q . ) 

7. Enter the exploration phase. 
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8. else if ( 0.6Temp  ) 

9. Enter the exploitation phase. 

10. else if ( 0.6rand  ) 

11. Enter the fight mode. 

12. else 

13. Enter the mate mode. 

14. if (egg == 1) 

15. Replace the worst male and female snake. 

16. end if 

17 end if 

18. end if 

19. end if 

20. end while 

3. Proposed method 

Compared with other swarm intelligence algorithms, SO has good optimization ability and fast 

convergence speed. However, it still has some limitations. For instance, its convergence speed is a little 

slow in the early stage, and it has the tendency to fall into local optimization. To address these 

shortcomings, this section presents the improved SO algorithm based on multiple improvement 

strategies. 

3.1. MOBL 

In many cases, the problem solving process generally starts from zero or a random value and 

approaches toward the optimal solution. Examples include the weights of a neural network, the 

population parameters of a swarm intelligence algorithm, the kernel parameters of SVM, and so on. If 

the random value is near the optimal solution at the beginning, the problem can be solved quickly. 

However, there is the worst case where the random value appears opposite to the optimal solution, and 

the solution process will take a lot of time. 

Generally, it is impossible to get a better random value initially without previous knowledge. In 

the perspective of logic, the solutions of a problem can be searched from all directions. If the solution 

produced during the search process and its opposite solution introduced together as feasible solutions 

to the problem, the efficiency of searching for the optimal solution will be higher. This is the core idea 

of opposition-based learning [44], and it can be defined as: 

 ( )i max min iRU U U U= + −  (16) 

where iRU  is the opposite value of iU . 

Based on this theory, Yao et al. [43] proposed a new opposition-based learning, i.e., mirror 

imaging strategy based on convex lens imaging. The strategy not only improves the optimization 

accuracy, but also ensures the convergence speed. The definition equation is given as follows: 

 
2 2

max min max min i
i

U U U U U
MRU

q q

+ +
= + −  (17) 

where q  is the mirroring factor, and its definition formula is 
210 (1 2 ( ) )q t T=  −  . 
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3.2. NEPD 

By repeatedly testing the performance of SO, we found that the egg-laying period has some 

impact on optimization search accuracy, and sometimes causes SO to fall into a local optimum. Hu et 

al. [42] offered a solution, which modifies evolutionary population dynamics. The method provides 

two different optimization schemes for population. 

Having sorted the population from best to worst, the top half of the individuals are recognized as 

the better individuals and the bottom half as the worse individuals. 

(I) For the better individuals, we perform evolutionary operation. 

 
1 2( )i i r rNEU U E U U= +  −  (18) 

where iNEU  is the evolutionary value of iU , 1rU  and 2rU  are different individuals in the current 

population excluding iU , E  is the scaling factor and its formula is (sin(2 ) ( ) 1) 2E freq t t T=    + + , 

and freq  is the vibration frequency of the sinusoidal function, which is defined as 1 /freq Dim= . 

(II) As for the worse individuals, we also evolve them, or else eliminate them. 

 , / sign( 0.5) ( ( ) ) 0.5

sign( 0.5) ( ( ) )

best m f min max min

i

i min max min

U r U U U rand    if  rand  
EU

U r U U U rand            else

+ −  + −  
= 

+ −  + − 

 (19) 

where r  is a random value ranging from 0 to 1. 

 
( )

i ii EU U

i

min max min

EU                                      if  f f
NEU

U U U rand   else


= 

+ − 

 (20) 

where 
iEUf  is the fitness of iEU

 
and 

iUf  is the fitness of iU . 

3.3. DES 

DES is derived from the differential evolution algorithm. To be brief, through continuous 

evolution, the superior individuals are retained to guide the search process toward the optimal solution. 

The specific steps are as follows: first, we randomly select two different individuals ( aU  and bU ) in 

the population, and subtract each other to produce the difference individual. Second, the difference 

individual is assigned with a weight and added with the third individual to produce the variant 

individual. If the fitness value of the variant individual is better than that of the parent individual, the 

variant individual is selected to enter the next iteration, otherwise the parent individual is retained. The 

defining equation is given as follows: 

 ( )a bei b stDEU U beta U U= +  −  (21) 

where beta  is the scale factor and its formula is ( )max max minbeta = beta - t beta - beta / T , 0.8maxbeta = , and 

0.2minbeta = . 

3.4. ISO 

By introducing the above three strategies, we propose the ISO. The pseudo code of ISO is given 

in Algorithm 2. 
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Algorithm 2: Improved snake optimizer 

1. Define the population size N , the maximum iteration T , Dim , maxU , and minU . 

2. Initialize the population iU
 
by Eq (7) 

3. while ( t T ) do 

4. Calculate food Q  and temperature Temp  by Eq (8). 

5. Get the mirror positions iMRU  by Eq (17) and select the better individuals. 

6. Choose the best individual best ,m / fU  and the global best individual bestU . 

7. if ( 0 25Q . ) 

8. Enter the exploration phase. 

9. else if ( 0.6Temp  ) 

10. Enter the exploitation phase. 

11. else if ( 0.6rand  ) 

12. Enter the fight mode. 

13. else 

14. Enter the mate mode. 

15. if (egg==1) 

16. Calculate the fitness of iU  and sort the fitness values. 

17. for ( 1: 2ii U= ) 

18. Get the evolutionary positions by Eq (18) and calculate the fitness. 

Select the better individuals. 

19. end for 

20. for ( ( )/ 2 1:i ii U U= + ) 

21. Get the evolutionary positions by Eqs (19) and (20) and calculate 

the fitness. Select the better individuals. 

22. end for 

23. end if 

24. end if 

25. end if 

26. end if 

27. Calculate the fitness of iU  and update best ,m / fU . 

28. for ( 1: ii U= ) 

29. Calculate the variant individuals of iU  by Eq (21) and select the better individuals. 

30. end for 

31. end while 

The computational time complexity of SO is jointly determined by the population size N  , 

dimension Dim  and maximum number of iteration T , therefore its value is ( )O N Dim T  . As for 

ISO, we first analyze the time complexity involved in the three strategies. The MOBL mechanism 

requires time (2 )O Dim . Considering that the NEPD model requires different evolutionary operations 

for the first and second halves of the population, the time complexity is ( )O N Dim . The computational 

complexity of DES is ( )O N Dim . Therefore, the time complexity of ISO is ( )O N Dim T  . It is clear 

that there is no increase in the complexity required by ISO compared to SO. 

4. Experiments 

In this section, we verify the feasibility and effectiveness of ISO through four experiments, 
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i.e., experiments on classical benchmark function, experiments on CEC2022, ablation experiment, 

and SVM parameter optimization experiment. ISO is compared with 12 other algorithms, including 

SO [33], GWO [22], GJO [26], HHO [25], NGO [27], WOA [24], ESO [43], AGWO [28], HGJO [30], 

HHOBM [29], MENGO [31], and NHWOA [32]. The first six are selected original algorithms because 

they have better optimization capabilities and are more widely used, and the last six are their improved 

algorithms, respectively. For a fair comparison, all algorithms use the parameter values used in the 

respective literature. The best results of test experiments are shown in bold format.  

All experiments are conducted in an Intel Core i5-6200U, 2.4GHz CPU, and 8GB RAM laptop 

using the MATLAB 2021b under Windows 10 operating system. 

4.1. Function test sets and UCI datasets 

Table 1 shows the information of the 23 classical benchmark functions. According to their 

characteristics and information, we divide them into unimodal test functions (F1–F7), multimodal test 

functions (F8–F13), and multimodal test functions with fixed dimension (F14–F23). 

Table 1. Basic information of classical benchmark functions. 
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F x x
=

= +  30 [–100,100] 0 

( )
1

7

4 [0,1)
n

i

i

F x ix random
=

= +  30 [–1.28,1.28] 0 

( )
1

8 sin( )
n

i i

i

F x x x
=

= −  30 [–500,500] –418.9829 × dim 

( ) 19

2

1

[ 10cos(2 ) 10]
n

i

i

F x x x
=

= − +  30 [–5.12,5.12] 0 

( ) ( )2

1 1

10

1 1
20exp 0.2 exp cos 2 20

n n

i i

i i

eF x x x
n n


= =

   
= − − − + +       

   30 [–32,32] 0 

( )
1

11

2

1

1
cos( ) 1

4000

n
n i

i i
i

x
x x

i
F

=
=

= − +   30 [–600,600] 0 

Continued on next page 
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Function Dim Range minF  

( )
1

2 2 2

1 12

1

1

1 {10sin( ) ( 1) [1 10sin ( )] ( 1) }

( ,10,100,4)

n

i i n

i

n

i

i

F x y y y y
n

u x


 

−

+

=

=

= + − + + −

+





1
1

4

( ) ,

( , , , ) 0,

( ) ,

i
i

w

i i

i i

w

i i

x
y

v x s x s

u x s v w s x s

v x s x a

+
= +

 − 


= −  


− −  −

 

30 [–50,50] 0 

( ) ( ) ( ) ( )

( ) ( ) ( )

22 2

1 1

1

2 2

1

13 sin 3 1 1 sin 3 1

1

[

1 sin 2

]0.1{

} ,5,100,4

n

i

i

n n

n

i
i

x x x

x

F

x

x

u x

 



=

=

+ − + +

 − +

=

+





 
30 [–50,50] 0 

25
1

14 2
61

1

1 1
( ) ( )

500
( )j

i ij

i

F x

j x a

−

=

=

= +

+ −



 2 [–65.536,65.536] 0.998 

211
21 2

15 2
1 3 4

( )
( ) [ ]i i

i

i i i

x b b x
F x a

b b x x=

+
= −

+ +
  4 [–5,5] 0.0003 

2 4 6 2 4

16 1 1 1 1 2 2 2

1
( ) 4 2.1 4 4

3
F x x x x x x x x= − + + − +  2 [–5,5] –1.0316 

( )
2

2

2 117 1 1

5.1 5 1
6 10 1 cos 10

4 82
F x = x - x + x - + - x +

π π π
   
   
   

 2 [–5,5] 0.398 

( ) ( )

( )

2 2 2

18 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

[1 1 (19 14 3 14 6 3 )]

[30 2 3 (18 32 12 48 36 27 )]

F x x x x x x x x x

x x x x x x x x

= + + +  − + − + +

 + −  − + + − +
 2 [–2,2] 3 

( ) ( )
4 3

2

19

1 1

 expi ij j ij

i j

F x c a x p
= =

 
= − − −  

 
   3 [0,1] –3.86 

( ) ( )
4

2

1 1

6

20  expi ij j ij

i j

F x c a x p
= =

 
= − − −  

 
   6 [0,1] –3.32 

( ) ( )( )
15

21

1

T

i i i

i

F x x a x a c
−

=

 = − − − +
   4 [0,10] –10.1532 

( ) ( )( )
17

22

1

T

i i i

i

F x x a x a c
−

=

 = − − − +
   4 [0,10] –10.4028 

( ) ( )( )
1

23

10

1

T

i i i

i

F x x a x a c
−

=

 = − − − +
   4 [0,10] –10.5364 

Table 2 lists the basic information of CEC2022. According to the characteristics and information 

of the CEC2022, we divide them into unimodal test function (F1), multimodal test functions (F2–F5), 

hybrid test functions (F6–F8), and composition test functions (F9–F12). 

We select five datasets from UCI machine learning repository. Table 3 shows the information 

of datasets. 
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Table 2. Basic information of CEC2022. 

ID Function Range Dim minF  

F1 Shifted and full Rotated Zakharov Function [–100,100] 10/20 300 

F2 Shifted and full Rotated Rosenbrock’s Function [–100,100] 10/20 400 

F3 Shifted and full Rotated Rastrigin’s Function [–100,100] 10/20 600 

F4 Shifted and full Rotated Non-Continuous 

Rastrigin’s Function 

[–100,100] 10/20 800 

F5 Shifted and full Rotated Levy Function [–100,100] 10/20 900 

F6 Hybrid Function 1 (N = 3) [–100,100] 10/20 1800 

F7 Hybrid Function 2 (N = 6) [–100,100] 10/20 2000 

F8 Hybrid Function 3 (N = 5) [–100,100] 10/20 2200 

F9 Composition Function 1 (N = 5) [–100,100] 10/20 2300 

F10 Composition Function 2 (N = 4) [–100,100] 10/20 2400 

F11 Composition Function 3 (N = 5) [–100,100] 10/20 2600 

F12 Composition Function 4 (N = 6) [–100,100] 10/20 2700 

Table 3. Information of five datasets. 

Name Number of samples Dimension of feature Number of categories  

Iris 150 4 3 

Parkinsons 195 22 2 

Fire 243 10 2 

Heart 299 12 2 

Ionosphere 351 34 2 

4.2. SVM optimization process 

The flow chart of the SVM optimization process is shown in Figure 1. Taking the ISO and Iris 

dataset as an example, 50% of the data samples from three types of samples (Iris setosa, Iris versicolour, 

and Iris virginica) are drawn as the training set and the remaining data samples are used as the test set. 

Next, the data in the training and test sets are normalized to the interval [0,1] to facilitate SVM model 

training. Then, the best combination of SVM parameters are selected by ISO, and the optimal 

parameters are used to train and test the SVM model. 
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Figure 1. Flow chart of SVM optimization using ISO. 

4.3. Results and analysis 

4.3.1. Experiment on classical benchmark function 

In order to exclude the influence of other factors, all algorithms use uniform common parameter 

settings. We uniformly initialize the population, setting the population size ( 50N = ) and the maximum 

number of iterations ( 500T = ). Each algorithm is tested individually 30 times, and the best results are 

recorded. We calculate the average (Ave) and standard deviation (Std) as measure criteria from these 

optimal values. Eq (22) is the definition equation. 

 

30

,

1

30
2

,

1

1

30

1
( )

30

best i

i

best i

i

Ave U

Std U Ave

=

=

=

= −





 (22) 
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The comparison results are shown in Table 4, where “−/=/+” indicates that the algorithm is lower, 

equal to or better than ISO, respectively. Meanwhile, we utilize statistical methods such as the 

Wilcoxon rank sum test to evaluate the rank of 13 algorithms. 

We first discuss the performances of ISO, ESO, and SO. From Table 4, we can see that on the 

unimodal test functions, both ISO and ESO can get the best value on functions F1–F4. On functions 

F5–F7, ISO performs better than ESO and SO. On the multimodal test functions, SO performs worst 

of three algorithms. Although ISO and ESO obtain the same average value on function F8, ISO has a 

lower standard deviation. Both ISO and ESO have the same best values on functions F9–F11, and SO 

takes worse values. On functions F12 and F13, ISO has a significant advantage in optimization results. 

In the multimodal test functions with fixed dimension, ISO has the best results on functions F14, F15, 

F18, F20–F23 compared to ESO and SO. On functions F16, F17, F19, and F20, all three algorithms 

achieve the optimal mean, but they have different standard deviations. Among them, SO gets the 

optimal value, which is more stable than ISO and ESO on functions F16 and F19. Except that, they 

achieve equal results on function F17. 

Compared to the other 10 algorithms, ISO is more robust on the unimodal test functions. It 

achieves the best optimization results on six functions, while ESO and MENGO achieve the best results 

only on four functions and HHOBM achieves the best result on function F5. On the multimodal test 

functions, the optimization ability of ISO is more significant. It can be found that ISO achieves the 

best results on five functions. On function F8, though the standard deviation of ISO is smaller than 

ESO, HHOBM is more suitable for optimization. On functions F9–F11, about half and more of these 

algorithms can find out the optimum. It can be seen that these three functions are easier to optimize. 

On the multimodal test functions with fixed dimension, ISO takes a greater advantage because it 

achieves the best results on seven functions, followed by NGO. On functions F14 and F20, ISO and 

NGO achieves the best results. Almost all algorithms can find out the best values on functions F16–

F19, which indicates that the optimization search on these four benchmark functions is extremely 

simple. On functions F21–F23, NGO still possesses a stronger capability to find out the best value, as 

ISO and ESO do. 

Figure 2 plots the convergence curves of the 13 algorithms on 23 classical benchmark functions. 

From Figure 2, the convergence rate of ISO is clearly better than ESO and SO. Only on function F14, 

ISO fails to converge quickly and traps in a local optimum for a longer period of time, but eventually 

it is able to find out the optimum value.  

For other comparison algorithms, MENGO converges nearly as fast as ISO on the unimodal test 

functions. In particular, on functions F1–F4, MENGO converges slightly faster than ISO. However, on 

function F5, MENGO falls into a local optimum at the later stage, resulting in failure to reach a value 

near the optimum. HHOBM, on the contrary, searches for a better optimum on function F5, and 

maintains a higher rate. On functions F6 and F7, ISO is more competitive. On the multimodal test 

functions, most of the comparison algorithms converge well. Only SO lags a little behind. On function 

F8, HHOBM converges better in the early stage. Although HHO also performs better than ISO, it falls 

into a local optimum. On the other five functions, the slow convergence with SO becomes apparent. 

On the multimodal test functions with fixed dimension, ISO has the fastest convergence rate, except 

on the function F14, which falls into a local optimum, and NGO has the fastest rate of convergence at 

this point. 
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Table 4. Comparison results between ISO and other 12 algorithms on 23 classical benchmark functions. 

F(x)  GWO GJO HHO NGO WOA AGWO HGJO HHOBM MENGO NHWOA SO ESO ISO 

F1 Ave 

Std 

−/=/+ 

Rank 

3.59×10-33 

7.23×10-33 

− 

13 

1.64×10-61 

7.74×10-61 

− 

12 

1.36×10-100 

6.14×10-100 

− 

6 

7.52×10-89 

1.75×10-88 

− 

9 

6.91×10-65 

3.78×10-64 

− 

11 

1.12×10-161 

3.55×10-161 

− 

5 

0 

0 

= 

1 

1.60×10-100 

8.66×10-100 

− 

7 

0 

0 

= 

1 

5.16×10-87 

2.83×10-86 

− 

10 

4.53×10-97 

7.05×10-97 

− 

8 

0 

0 

= 

1 

0 

0 

/ 

1 

F2 Ave 

Std 

−/=/+ 

Rank 

8.35×10-20 

5.26×10-20 

− 

13 

2.61×10-36 

3.98×10-36 

− 

12 

8.07×10-53 

4.15×10-52 

− 

7 

5.93×10-46 

3.73×10-46 

− 

10 

1.23×10-47 

3.99×10-47 

− 

9 

2.37×10-91 

3.71×10-91 

− 

5 

4.71×10-264 

0 

− 

4 

5.92×10-51 

2.22×10-50 

− 

8 

0 

0 

= 

1 

2.59×10-56 

5.74×10-56 

− 

6 

2.04×10-45 

4.21×10-45 

− 

11 

0 

0 

= 

1 

0 

0 

/ 

1 

F3 Ave 

Std 

−/=/+ 

Rank 

4.04×10-8 

8.83×10-8 

− 

11 

5.12×10-21 

1.22×10-20 

− 

10 

1.16×10-80 

6.35×10-80 

− 

6 

3.15×10-23 

1.19×10-22 

− 

9 

3.59×104 

4.21×103 

− 

13 

2.97×10-87 

1.51×10-86 

− 

5 

0 

0 

= 

1 

1.35×10-79 

7.40×10-79 

− 

7 

0 

0 

= 

1 

9.96×103 

6.01×103 

− 

12 

4.62×10-58 

1.47×10-57 

− 

8 

0 

0 

= 

1 

0 

0 

/ 

1 

F4 Ave 

Std 

−/=/+ 

Rank 

3.48×10-8 

2.97×10-8 

− 

11 

9.13×10-19 

1.69×10-18 

− 

10 

4.39×10-52 

1.18×10-51 

− 

6 

7.55×10-38 

4.43×10-38 

− 

9 

22.2 

23.3 

− 

12 

1.52×10-65 

6.13×10-65 

− 

5 

5.14×10-251 

0 

− 

4 

3.18×10-51 

1.63×10-50 

− 

7 

0 

0 

= 

1 

25.1 

22.6 

− 

13 

8.60×10-42 

2.18×10-41 

− 

8 

0 

0 

= 

1 

0 

0 

/ 

1 

F5 Ave 

Std 

−/=/+ 

Rank 

26.9 

0.688 

− 

7 

27.3 

0.66 

− 

9 

4.87×10-3 

5.28×10-3 

+ 

2 

25.4 

0.353 

− 

6 

27.6 

0.401 

− 

12 

27.5 

0.501 

− 

11 

28.9 

9.36×10-2 

− 

13 

6.27×10-5 

1.09×10-4 

+ 

1 

27 

0.958 

− 

8 

27.4 

0.466 

− 

10 

19.7 

11.9 

− 

5 

1.97 

6.72 

− 

4 

1.21 

4.61 

/ 

3 

F6 Ave 

Std 

−/=/+ 

Rank 

0.445 

0.314 

− 

9 

2.21 

0.488 

− 

11 

5.50×10-5 

8.19×10-5 

− 

4 

8.00×10-7 

1.70×10-7 

− 

2 

5.41×10-2 

3.28×10-2 

− 

7 

3.01 

0.29 

− 

12 

6.08 

0.413 

− 

13 

2.15×10-5 

3.10×10-5 

− 

3 

1.48 

0.45 

− 

10 

4.62×10-2 

5.67×10-2 

− 

6 

0.134 

7.45×10-2 

− 

8 

4.35×10-3 

1.05×10-2 

− 

5 

1.51×10-8 

4.29×10-8 

/ 

1 

Continued on next page 
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F(x)  GWO GJO HHO NGO WOA AGWO HGJO HHOBM MENGO NHWOA SO ESO ISO 

F7 Ave 

Std 

−/=/+ 

Rank 

1.34×10-3 

8.61×10-4 

− 

11 

3.28×10-4 

2.47×10-4 

− 

9 

7.50×10-5 

8.76×10-5 

− 

4 

4.66×10-4 

1.89×10-4 

− 

10 

2.52×10-3 

3.72×10-3 

− 

13 

1.15×10-4 

1.04×10-4 

− 

6 

4.35×10-5 

4.56×10-5 

− 

3 

8.97×10-5 

7.45×10-5 

− 

5 

2.18×10-5 

2.33×10-5 

− 

2 

1.60×10-3 

1.72×10-3 

− 

12 

1.72×10-4 

1.55×10-4 

− 

8 

1.31×10-4 

1.08×10-4 

− 

7 

1.98×10-5 

1.81×10-5 

/ 

1 

F8 Ave 

Std 

−/=/+ 

Rank 

–6.16×103 

7.72×102 

− 

10 

–3.79×103 

9.86×102 

− 

12 

–1.25×104 

3.94×102 

− 

5 

–8.07×103 

3.72×102 

− 

8 

–9.65×103 

1.49×102 

− 

7 

–3.30×103 

3.59×102 

− 

13 

–4.20×103 

5.94×102 

− 

11 

–1.26×104 

1.90×10-2 

+ 

1 

–7.38×103 

4.05×102 

− 

9 

–1.19×104 

1.15×103 

− 

6 

–1.25×104 

1.89×102 

− 

4 

–1.26×104 

1.12 

− 

3 

–1.26×104 

0.371 

/ 

2 

F9 Ave 

Std 

−/=/+ 

Rank 

1.53 

3.23 

− 

12 

0 

0 

= 

1 

0 

0 

= 

1 

0 

0 

= 

1 

1.89×10-15 

1.04×10-14 

− 

11 

0 

0 

= 

1 

0 

0 

= 

1 

0 

0 

= 

1 

0 

0 

= 

1 

0 

0 

= 

1 

6.51 

9.97 

− 

13 

0 

0 

= 

1 

0 

0 

/ 

1 

F10 Ave 

Std 

−/=/+ 

Rank 

4.25×10-14 

2.82×10-15 

− 

13 

6.69×10-15 

1.74×10-15 

− 

12 

8.88×10-16 

0 

= 

1 

5.27×10-15 

1.53×10-15 

− 

11 

4.80×10-15 

2.53×10-15 

− 

10 

4.56×10-15 

6.49×10-16 

− 

9 

8.88×10-16 

0 

= 

1 

8.88×10-16 

0 

= 

1 

8.88×10-16 

0 

= 

1 

4.20E-15 

2.46×10-15 

− 

7 

4.44×10-15 

0 

− 

8 

8.88×10-16 

0 

= 

1 

8.88×10-16 

0 

/ 

1 

F11 Ave 

Std 

−/=/+ 

Rank 

5.01×10-3 

7.63×10-3 

− 

11 

0 

0 

= 

1 

0 

0 

= 

1 

0 

0 

= 

1 

4.59×10-3 

2.51×10-2 

− 

10 

0 

0 

= 

1 

0 

0 

= 

1 

0 

0 

= 

1 

0 

0 

= 

1 

1.02×10-2 

4.58×10-2 

− 

12 

1.54×10-2 

3.02×10-2 

− 

13 

0 

0 

= 

1 

0 

0 

/ 

1 

F12 Ave 

Std 

−/=/+ 

Rank 

2.59×10-2 

1.65×10-2 

− 

8 

0.181 

5.93×10-2 

− 

11 

3.23×10-6 

4.23×10-6 

− 

4 

1.91×10-7 

1.27×10-7 

− 

3 

5.69×10-3 

3.42×10-3 

− 

7 

0.197 

5.04×10-2 

− 

12 

0.915 

0.172 

− 

13 

1.22×10-7 

1.27×10-7 

− 

2 

3.68×10-2 

2.49×10-2 

− 

9 

3.98×10-3 

2.60×10-3 

− 

6 

0.112 

0.343 

− 

10 

1.42×10-4 

1.35×10-4 

− 

5 

2.71×10-9 

7.51×10-9 

/ 

1 

Continued on next page 
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F(x)  GWO GJO HHO NGO WOA AGWO HGJO HHOBM MENGO NHWOA SO ESO ISO 

F13 Ave 

Std 

−/=/+ 

Rank 

0.39 

0.223 

− 

9 

1.48 

0.16 

− 

10 

3.51×10-5 

1.11×10-4 

− 

3 

6.62×10-2 

6.55×10-2 

− 

5 

0.116 

7.45×10-2 

− 

6 

1.99 

0.188 

− 

11 

2.85 

9.18×10-2 

− 

13 

1.95×10-6 

1.80×10-6 

− 

2 

2.75 

0.566 

− 

12 

0.155 

0.107 

− 

7 

0.216 

0.439 

− 

8 

1.02×10-3 

2.06×10-3 

− 

4 

5.74×10-8 

2.22×10-7 

/ 

1 

F14 Ave 

Std 

−/=/+ 

Rank 

4.49 

4.09 

− 

9 

5.37 

4.39 

− 

11 

1.03 

0.181 

− 

4 

0.998 

0 

= 

1 

2.24 

3.05 

− 

7 

7.77 

4.33 

− 

12 

5.10 

4.12 

− 

10 

1.03 

0.181 

− 

4 

9.39 

4.03 

− 

13 

3.71 

4.09 

− 

8 

1.03 

0.181 

− 

4 

0.998 

1.08×10-8 

− 

3 

0.998 

0 

/ 

1 

F15 Ave 

Std 

−/=/+ 

Rank 

1.17×10-2 

1.01×10-2 

− 

13 

1.69×10-3 

5.08×10-3 

− 

11 

3.42×10-4 

2.30×10-5 

− 

4 

3.08×10-4 

2.81×10-7 

− 

2 

4.72×10-4 

1.30×10-4 

− 

8 

6.32×10-3 

8.89×10-3 

− 

12 

7.82×10-4 

5.13×10-4 

− 

10 

3.62×10-4 

1.64×10-4 

− 

5 

4.46×10-4 

9.98×10-5 

− 

7 

5.61×10-4 

3.89×10-4 

− 

9 

4.13×10-4 

1.35×10-4 

− 

6 

3.11×10-4 

1.58×10-5 

− 

3 

3.07×10-4 

1.03×10-18 

/ 

1 

F16 Ave 

Std 

−/=/+ 

Rank 

–1.03 

5.22×10-9 

− 

10 

–1.03 

9.70×10-8 

− 

12 

–1.03 

9.53×10-11 

− 

9 

–1.03 

6.71×10-16 

+ 

4 

–1.03 

9.24×10-12 

− 

7 

–1.03 

8.22×10-8 

− 

11 

–1.03 

8.34×10-3 

− 

13 

–1.03 

4.17×10-12 

− 

6 

–1.03 

6.45×10-16 

+ 

3 

–1.03 

4.86×10-11 

− 

8 

–1.03 

5.68×10-16 

+ 

1 

–1.03 

5.83×10-16 

+ 

2 

–1.03 

6.78×10-16 

/ 

5 

F17 Ave 

Std 

−/=/+ 

Rank 

0.398 

1.44×10-7 

− 

7 

0.398 

4.27×10-6 

− 

12 

0.398 

7.95×10-7 

− 

9 

0.398 

0 

= 

1 

0.398 

1.72×10-6 

− 

10 

0.398 

3.93×10-6 

− 

11 

0.411 

1.60×10-2 

− 

13 

0.398 

3.52×10-10 

− 

6 

0.398 

0 

= 

1 

0.398 

4.28×10-7 

− 

8 

0.398 

0 

= 

1 

0.398 

0 

= 

1 

0.398 

0 

/ 

1 

F18 Ave 

Std 

−/=/+ 

Rank 

3 

1.28×10-5 

− 

9 

3 

1.67×10-6 

− 

7 

3 

5.48×10-8 

− 

5 

3 

1.16×10-15 

+ 

1 

3 

4.27×10-5 

− 

10 

3 

4.88×10-7 

− 

6 

3.01 

7.33×10-3 

− 

11 

3 

1.90×10-14 

− 

4 

3 

1.37×10-15 

− 

3 

3 

9.09×10-6 

− 

8 

15.6 

13.7 

− 

13 

3.9 

4.93 

− 

12 

3 

1.32×10-15 

/ 

2 
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F(x)  GWO GJO HHO NGO WOA AGWO HGJO HHOBM MENGO NHWOA SO ESO ISO 

F19 Ave 

Std 

−/=/+ 

Rank 

–3.86 

2.12×10-3 

− 

8 

–3.86 

3.63×10-3 

− 

11 

–3.86 

1.99×10-3 

− 

7 

–3.86 

2.71×10-15 

= 

4 

–3.86 

4.78×10-3 

− 

12 

–3.86 

2.84×10-3 

− 

10 

–3.8 

2.19×10-2 

− 

13 

–3.86 

2.63×10-5 

− 

6 

–3.86 

2.63×10-15 

+ 

2 

–3.86 

2.78×10-3 

− 

9 

–3.86 

2.61×10-15 

+ 

1 

–3.86 

2.63×10-15 

+ 

2 

–3.86 

2.71×10-15 

/ 

4 

F20 Ave 

Std 

−/=/+ 

Rank 

–3.32 

3.40×10-6 

− 

6 

–3.25 

0.122 

− 

11 

–3.13 

0.112 

− 

12 

–3.32 

1.36×10-15 

= 

1 

–3.31 

3.46×10-2 

− 

10 

–3.32 

7.14×10-4 

− 

8 

–2.18 

0.206 

− 

13 

–3.22 

8.06×10-2 

− 

9 

–3.32 

1.35×10-14 

− 

4 

–3.32 

5.24×10-4 

− 

7 

–3.32 

6.94×10-15 

− 

3 

–3.32 

3.83×10-11 

− 

5 

–3.32 

1.36×10-15 

/ 

1 

F21 Ave 

Std 

−/=/+ 

Rank 

–7.1 

2.54 

− 

8 

–8.03 

2.67 

− 

7 

–5.05 

1.37×10-3 

− 

12 

–10.2 

1.55×10-8 

− 

2 

–5.90 

1.93 

− 

11 

–6.07 

2.07 

− 

9 

–1.70 

0.948 

− 

13 

–6.07 

2.07 

− 

9 

–10.1 

4.23×10-2 

− 

4 

–9.28 

1.93 

− 

6 

–10 

0.359 

− 

5 

–10.2 

1.72×10-5 

− 

3 

–10.2 

7.07×10-15 

/ 

1 

F22 Ave 

Std 

−/=/+ 

Rank 

–10.4 

1.62×10-4 

− 

4 

–9.34 

2.43 

− 

8 

–5.09 

1.39×10-3 

− 

11 

–10.4 

3.28×10-7 

− 

2 

–5.09  

2.36 

− 

12 

–10.1 

1.39 

− 

7 

–1.12  

0.498 

− 

13 

–7.39  

2.68 

− 

9 

–10.4  

3.01×10-2 

− 

5 

–7.05  

3.67 

− 

10 

–10.3 

0.303 

− 

6 

–10.4 

1.46×10-4 

− 

3 

–10.4 

1.23×10-15 

/ 

1 

F23 Ave 

Std 

−/=/+ 

Rank 

–10 

2.06 

− 

7 

–10.1 

1.76 

− 

6 

–5.04 

0.496 

− 

12 

–10.5 

2.40×10-15 

− 

2 

–6.32 

2.83 

− 

10 

–5.67 

4.03 

− 

11 

–2.62 

1.06 

− 

13 

–6.39 

2.33 

− 

9 

–10.3 

1.02 

− 

5 

–7.82 

3.68 

− 

8 

–10.4 

0.399 

− 

4 

–10.5 

2.56×10-15 

− 

3 

–10.5 

1.89×10-15 

/ 

1 

−/=/+ 

Average rank 

Total rank 

23/0/0 

9.52 

11 

21/2/0 

9.39 

12 

19/3/1 

5.87 

6 

15/6/2 

4.52 

4 

23/0/0 

10.30 

13 

21/2/0 

8.39 

9 

18/5/0 

9.30 

10 

18/3/2 

4.91 

5 

13/8/2 

4.52 

3 

22/1/0 

8.22 

8 

20/1/2 

7.13 

7 

14/8/1 

3.13 

2 

/ 

1.48 

1 
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Figure 2. Convergence curves of 13 algorithms on 23 classical benchmark functions. 

4.3.2. Experiment on CEC2022 

CEC2022 is a newer test set for evaluating swarm intelligence algorithms. In this experiment, we 

also set the population size ( 50N = ) and the maximum number of iterations ( 500T = ), and run each 

algorithm 30 times individually and the corresponding optimal values are recorded. Tables 5 and 6 

show the experimental results of 13 algorithms on these functions with different dimensions, where 

“−/=/+” indicates that the algorithm is lower, equal to, or better than ISO, respectively. Likewise, we 

use the Wilcoxon’s rank sum test to evaluate the rank of these algorithms. 

According to Table 5, ISO ranks second among all algorithms with an average rank of 2.5, while 

NGO ranks first with an average rank of 2.33. The main reason for ISO lagging behind NGO may be 

that ISO ranks 10th on function F4, which is far behind other algorithms due to its poor optimization 

on this function. The second reason is that ISO ranks fourth on functions F2 and F10. Nevertheless, 

ISO achieves the best results on other nine functions.
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Table 5. Comparison results between ISO and other 12 algorithms on CEC2022 (Dim = 10). 

F(x)  GWO GJO HHO NGO WOA AGWO HGJO HHOBM MENGO NHWOA SO ESO ISO 

F1 Ave 

Std 

−/=/+ 

Rank 

1.36×103 

1.40×103 

− 

8 

3.26×103 

1.83×103 

− 

9 

4.62×102 

1.84×102 

− 

5 

3.14×102 

2.12×102 

− 

3 

1.35×104 

5.02×103 

− 

13 

5.21×103 

2.66×103 

− 

10 

1.27×104 

3.72×103 

− 

12 

4.01×102 

1.38×102 

− 

4 

5.25×102 

2.22×102 

− 

6 

1.17×104 

4.89×103 

− 

11 

5.47×102 

2.52×102 

− 

7 

3.10×102 

21.8 

− 

2 

3.00×102 

6.70×10-4 

/ 

1 

F2 Ave 

Std 

−/=/+ 

Rank 

4.20×102 

18.5 

− 

6 

4.39×102 

22.3 

− 

9 

4.41×102 

36.6 

− 

10 

4.01×102 

2.24 

+ 

1 

4.60×102 

34.2 

− 

12 

4.36×102 

26.8 

− 

8 

9.29×102 

2.54×102 

− 

13 

4.32×102 

32.1 

− 

7 

4.14×102 

20.1 

− 

5 

4.46×102 

33.8 

− 

11 

4.05×102 

9.05 

+ 

3 

4.02×102 

3.73 

+ 

2 

4.08×102 

2.73 

/ 

4 

F3 Ave 

Std 

−/=/+ 

Rank 

6.01×102 

0.911 

− 

5 

6.08×102 

6.24 

− 

7 

6.24×102 

7.26 

− 

10 

6.00×102 

0.128 

− 

3 

6.22×102 

6.85 

− 

9 

6.12×102 

4.69 

− 

8 

6.57×102 

10.1 

− 

13 

6.25×102 

7.15 

− 

11 

6.03×102 

3.54 

− 

6 

6.25×102 

7.39 

− 

12 

6.00×102 

0.135 

− 

4 

6.00×102 

8.94×10-2 

− 

2 

6.00×102 

2.28×10-5 

/ 

1 

F4 Ave 

Std 

−/=/+ 

Rank 

8.15×102 

7.45 

+ 

4 

8.24×102 

9.64 

+ 

9 

8.20×102 

5.26 

+ 

7 

8.09×102 

2.25 

+ 

2 

8.39×102 

11.3 

− 

11 

8.20×102 

6.06 

+ 

8 

8.53×102 

9.92 

− 

13 

8.19×102 

5.5 

+ 

6 

8.17×102 

5.72 

+ 

5 

8.39×102 

12.1 

− 

12 

8.11×102 

4.52 

+ 

3 

8.07×102 

3.90 

+ 

1 

8.27×102 

6.11 

/ 

10 

F5 Ave 

Std 

−/=/+ 

Rank 

9.08×102 

15.8 

− 

4 

9.76×102 

74.8 

− 

7 

1.54×103 

1.21×102 

− 

12 

9.00×102 

0.116 

− 

3 

1.54×103 

3.57×102 

− 

13 

9.87×102 

49.8 

− 

8 

1.51×103 

23.2 

− 

11 

1.49×103 

13.8 

− 

10 

9.54×102 

73.7 

− 

6 

1.47×102 

3.41×102 

− 

9 

9.08×102 

19.6 

− 

5 

9.00×102 

3.26×10-2 

− 

2 

9.00×102 

3.96×10-12 

/ 

1 

F6 Ave 

Std 

−/=/+ 

Rank 

4.81×103 

2.53×103 

− 

10 

7.90×103 

2.30×103 

− 

11 

3.33×103 

1.41×103 

− 

8 

1.90×103 

32.7 

+ 

1 

3.30×103 

1.61×103 

− 

7 

1.51×104 

9.85×103 

− 

12 

4.07×107 

2.21×107 

− 

13 

2.44×103 

6.94×102 

− 

4 

2.44×103 

1.09×103 

− 

5 

2.61×103 

9.15×102 

− 

6 

3.74×103 

1.64×103 

− 

9 

2.25×103 

3.92×102 

− 

3 

1.99×103 

3.38×102 

/ 

2 

Continued on next page 

 



7319 

Mathematical Biosciences and Engineering    Volume 21, Issue 10, 7297–7336. 

F(x)  GWO GJO HHO NGO WOA AGWO HGJO HHOBM MENGO NHWOA SO ESO ISO 

F7 Ave 

Std 

−/=/+ 

Rank 

2.03×103 

9.34 

− 

5 

2.04×103 

14.5 

− 

7 

2.09×103 

35.5 

− 

11 

2.02×103 

6.63 

− 

2 

2.08×103 

32 

− 

9 

2.06×103 

14.2 

− 

8 

2.13×103 

25.7 

− 

13 

2.08×103 

33.9 

− 

10 

2.03×103 

9.49 

− 

6 

2.09×103 

41. 6 

− 

12 

2.02×103 

8.02 

− 

3 

2.02×103 

10.3 

− 

4 

2.01×103 

8.93 

/ 

1 

F8 Ave 

Std 

−/=/+ 

Rank 

2.23×103 

4.94 

− 

10 

2.23×103 

3.79 

− 

9 

2.23×103 

2.34 

− 

6 

2.22×103 

3.64 

− 

8 

2.23×103 

7.73 

− 

13 

2.23×103 

2.21 

− 

5 

2.34×103 

97.2 

− 

12 

2.23×103 

9.24 

− 

11 

2.23×103 

2.01 

− 

4 

2.23×103 

3.65 

− 

7 

2.22×103 

3.94 

− 

2 

2.22×103 

6.48 

− 

3 

2.21×103 

9.89 

/ 

1 

F9 Ave 

Std 

−/=/+ 

Rank 

2.55×103 

18.9 

− 

6 

2.59×103 

41 

− 

7 

2.63×103 

42.4 

− 

11 

2.53×103 

3.79×10-11 

− 

2 

2.62×103 

45.8 

− 

10 

2.60×103 

30.3 

− 

8 

2.77×103 

48.9 

− 

13 

2.62×103 

40.4 

− 

9 

2.53×103 

1.1×10-3 

− 

4 

2.64×103 

52.3 

− 

12 

2.53×103 

0.192 

− 

5 

2.53×103 

2.98×10-4 

− 

3 

2.53×103 

0 

/ 

1 

F10 Ave 

Std 

−/=/+ 

Rank 

2.61×103 

5.3 

− 

6 

2.63×103 

9.05 

− 

10 

2.64×103 

40.5 

− 

12 

2.55×103 

54.5 

+ 

1 

2.60×103 

67.9 

− 

5 

2.62×103 

7.13 

− 

8 

2.65×103 

79.7 

− 

13 

2.62×103 

51 

− 

9 

2.61×103 

42.6 

− 

7 

2.63×103 

45.5 

− 

11 

2.57×103 

62.6 

+ 

2 

2.58×103 

49.1 

+ 

3 

2.60×103 

33 

/ 

4 

F11 Ave 

Std 

−/=/+ 

Rank 

2.97×103 

1.31×102 

− 

10 

3.14×103 

1.58×102 

− 

12 

2.90×103 

63.5 

− 

7 

2.62×103 

65.2 

+ 

1 

2.90×103 

1.09×102 

− 

8 

3.06×103 

89.2 

− 

11 

3.30×103 

5.29×102 

− 

13 

2.88×103 

97.9 

− 

6 

2.78×103 

1.32×102 

− 

5 

2.91×103 

83.1 

− 

9 

2.65×103 

82.1 

− 

3 

2.67×103 

1.16×102 

− 

4 

2.62×103 

76.1 

/ 

2 

F12 Ave 

Std 

−/=/+ 

Rank 

2.87×103 

5.17 

− 

6 

2.87×103 

7.8 

− 

7 

2.92×103 

35.8 

− 

12 

2.86×103 

1.43 

+ 

1 

2.87×103 

8.54 

− 

8 

2.87×103 

12.8 

− 

9 

2.99×103 

45.9 

− 

13 

2.92×103 

31.1 

− 

11 

2.86×103 

1.71 

− 

3 

2.88×103 

19.2 

− 

10 

2.87×103 

3.00= 

− 

5 

2.87×103 

1.09 

− 

4 

2.86×103 

1.55 

/ 

2 

−/=/+ 

Average rank 

Total rank 

11/0/1 

6.67 

6 

11/0/1 

8.67 

9 

11/0/1 

9.25 

10 

6/0/6 

2.33 

1 

12/0/0 

9.83 

11 

11/0/1 

8.58 

8 

12/0/0 

12.67 

13 

11/0/1 

8.17 

7 

11/0/1 

5.17 

5 

12/0/0 

10.17 

12 

9/0/3 

4.25 

4 

9/0/3 

2.75 

3 

/ 

2.5 

2 
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Table 6. Comparison results between ISO and other 12 algorithms on CEC2022 (Dim = 20). 

F(x)  GWO GJO HHO NGO WOA AGWO HGJO HHOBM MENGO NHWOA SO ESO ISO 

F1 Ave 

Std 

−/=/+ 

Rank 

1.23×104 

3.41×103 

− 

2 

1.55×104 

6.28×103 

− 

5 

2.49×104 

1.15×104 

− 

10 

1.48×104 

2.42×104 

− 

4 

3.33×104 

1.16×104 

− 

12 

1.92×104 

3.58×103 

− 

9 

5.32×104 

1.85×104 

− 

13 

1.66×104 

7.82×103 

− 

7 

1.75×104 

3.95×103 

− 

8 

3.08×104 

1.08×104 

− 

11 

1.65×104 

3.15×103 

− 

6 

1.36×104 

4.39×103 

− 

3 

5.04×103 

2.01×103 

/ 

1 

F2 Ave 

Std 

−/=/+ 

Rank 

5.21×102 

45.3 

− 

5 

6.17×102 

87 

− 

9 

5.85×102 

32.9 

− 

7 

4.60×102 

12.8 

− 

3 

6.49×102 

30.3 

− 

11 

6.94×102 

56.6 

− 

12 

1.98×103 

4.27×102 

− 

13 

5.70×102 

37.9 

− 

6 

5.86×102 

38.5 

− 

8 

6.24×102 

43.1 

− 

10 

4.59×102 

11.5 

− 

2 

4.64×102 

18.3 

− 

4 

4.50×102 

12.2 

/ 

1 

F3 Ave 

Std 

−/=/+ 

Rank 

6.05×102 

2.28 

− 

5 

6.24×102 

8.01 

− 

6 

6.63×102 

5.72 

− 

9 

6.04×102 

3.35 

− 

4 

6.72×102 

8.82 

− 

11 

6.47×102 

7.3 

− 

8 

6.94×102 

7.72 

− 

13 

6.64×102 

7 

− 

10 

6.28×102 

16.5 

− 

7 

6.73×102 

6.87 

− 

12 

6.01×102 

0.828 

− 

3 

6.01×102 

0.624 

− 

2 

6.00×102 

0.169 

/ 

1 

F4 Ave 

Std 

−/=/+ 

Rank 

8.56×102 

31.7 

− 

3 

8.93×102 

27.2 

− 

7 

8.95×102 

13.7 

− 

8 

8.68×102 

9.68 

+ 

4 

9.32×102 

29.1 

− 

12 

8.99×102 

19.1 

− 

10 

9.76×102 

14.9 

− 

13 

8.96×102 

15.1 

− 

9 

8.84×102 

16.6 

− 

6 

9.24×102 

28.7 

− 

11 

8.41×102 

21.2 

+ 

1 

8.44×102 

12.1 

+ 

2 

8.82×102 

3.78 

/ 

5 

F5 Ave 

Std 

−/=/+ 

Rank 

1.19×103 

3.40×102 

+ 

3 

1.83×103 

4.23×102 

− 

7 

2.81×103 

2.23×102 

− 

9 

1.38×103 

1.69×102 

+ 

4 

3.76×103 

9.36×102 

− 

13 

1.73×103 

3.35×102 

− 

6 

3.74×103 

2.78×102 

− 

12 

2.84×103 

1.99×102 

− 

10 

2.17×103 

2.84×102 

− 

8 

3.64×102 

9.9×102 

− 

11 

9.87×102 

69.9 

+ 

2 

9.29×102 

54.8 

+ 

1 

1.55×103 

5.52×102 

/ 

5 

F6 Ave 

Std 

−/=/+ 

Rank 

2.52×105 

5.66×105 

− 

8 

1.63×107 

1.73×107 

− 

12 

1.56×105 

8.46×104 

− 

7 

3.53×103 

1.18×103 

− 

2 

4.01×106 

4.34×106 

− 

10 

8.98×106 

1.28×107 

− 

11 

8.44×108 

5.87×108 

− 

13 

1.24×105 

6.76×104 

− 

6 

4.81×103 

1.22×103 

− 

4 

2.15×106 

3.73×106 

− 

9 

5.56×103 

2.53×103 

− 

5 

3.79×103 

1.6×103 

− 

3 

3.11×103 

9.69×102 

/ 

1 

Continued on next page 
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F(x)  GWO GJO HHO NGO WOA AGWO HGJO HHOBM MENGO NHWOA SO ESO ISO 

F7 Ave 

Std 

−/=/+ 

Rank 

2.08×103 

27.6 

− 

5 

2.14×103 

68.6 

− 

6 

2.25×103 

93.1 

− 

11 

2.08×103 

15.9 

− 

4 

2.23×103 

58.7 

− 

9 

2.15×103 

22.7 

− 

7 

2.26×103 

70.7 

− 

13 

2.23×103 

84.2 

− 

10 

2.15×103 

77.1 

− 

8 

2.26×103 

63.6 

− 

12 

2.07×103 

19.8 

− 

3 

2.06×103 

14.8 

+ 

1 

2.06×103 

56.4 

/ 

2 

F8 Ave 

Std 

−/=/+ 

Rank 

2.24×103 

36.1 

− 

8 

2.24×103 

9.26 

− 

7 

2.26×103 

12.6 

− 

10 

2.23×103 

2.16 

− 

2 

2.27×103 

15 

− 

11 

2.24×103 

7.66 

− 

6 

2.43×103 

1.32×102 

− 

13 

2.26×103 

12.5 

− 

9 

2.24×103 

5.86 

− 

5 

2.27×103 

20.5 

− 

12 

2.23×103 

6.41 

− 

4 

2.23×103 

2.89 

− 

3 

2.23×103 

1.32 

/ 

1 

F9 Ave 

Std 

−/=/+ 

Rank 

2.52×103 

35 

− 

8 

2.58×103 

38.9 

− 

12 

2.51×103 

13.7 

− 

6 

2.48×103 

8.21×10-3 

− 

2 

2.58×103 

36.9 

− 

11 

2.58×103 

36.4 

− 

10 

2.97×103 

1.90×102 

− 

13 

2.51×103 

14 

− 

7 

2.48×103 

2.02 

− 

5 

2.55×103 

30.8 

− 

9 

2.48×103 

3.77×10-2 

− 

3 

2.48×103 

0.492 

− 

4 

2.48×103 

2.70×10-5 

/ 

1 

F10 Ave 

Std 

−/=/+ 

Rank 

3.83×103 

8.40×102 

− 

6 

4.12×103 

1.55×103 

− 

9 

3.98×103 

5.82×102 

− 

8 

2.52×103 

46.2 

− 

2 

5.11×103 

7.89×102 

− 

11 

4.61×103 

1.22×103 

− 

10 

6.01×103 

1.45×103 

− 

13 

3.85×103 

6.28×102 

− 

7 

2.56×103 

1.53×102 

− 

3 

5.19×103 

4.03×102 

− 

12 

2.74×103 

2.18×102 

− 

5 

2.60×103 

1.14×102 

− 

4 

2.50×103 

81.3 

/ 

1 

F11 Ave 

Std 

−/=/+ 

Rank 

3.40×103 

1.84×102 

− 

9 

3.72×103 

2.75×102 

− 

11 

3.31×103 

59.4 

− 

6 

2.99×103 

41.8 

− 

4 

3.46×103 

94.9 

− 

10 

3.79×103 

2.07×102 

− 

12 

7.07×103 

8.73×102 

− 

13 

3.29×103 

95.7 

− 

5 

3.31×103 

80.1 

− 

7 

3.39×103 

72.2 

− 

8 

2.91×103 

6.18 

+ 

1 

2.98×103 

1.17×102 

− 

3 

2.94×103 

49 

/ 

2 

F12 Ave 

Std 

−/=/+ 

Rank 

2.97×103 

19.4 

− 

4 

3.01×103 

38.8 

− 

7 

3.22×103 

95.1 

− 

12 

2.95×103 

7.95 

− 

2 

3.10×103 

80.1 

− 

9 

3.09×103 

49.1 

− 

8 

3.82×103 

2.37×102 

− 

13 

3.20×103 

1.09×102 

− 

11 

2.97×103 

19.5 

− 

5 

3.13×103 

86.6 

− 

10 

3.00×103 

20.7 

− 

6 

2.96×103 

9.4 

− 

3 

2.94×103 

4.27 

/ 

1 

−/=/+ 

Average rank 

Total rank 

11/0/1 

5.5 

5 

12/0/0 

8.17 

8 

12/0/0 

8.58 

9 

10/0/2 

3.08 

3 

12/0/0 

10.83 

12 

12/0/0 

9.08 

10 

12/0/0 

12.91 

13 

12/0/0 

8.08 

7 

12/0/0 

6.17 

6 

12/0/0 

10.58 

11 

9/0/3 

3.42 

4 

9/0/3 

2.75 

2 

/ 

1.83 

1 
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Figure 3 plots the convergence curves of the 13 algorithms on CEC2022 when the dimension is 

set to 10. From Figure 3, we can see that ISO converges at a faster rate than other algorithms, except 

for the poor performance on functions F4 and F10. In particular, ESO has the best optimization 

capability on function F4, and NGO achieves the best results on function F10. On function F2, although 

ISO converges quickly in the early stage, the optimization ability decreases in the late stage. 

 

 

 
Continued on next page 
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Figure 3. Convergence curves of 13 algorithms on CEC2022 (Dim = 10). 

From Table 6, when the dimension of CEC2022 functions is set to 20, NGO shows weakness 

and ISO gradually gets the upper hand. Generally, ISO obtains the first rank with an average rank 

of 1.83, followed by ESO, and NGO ranks third. Among the 12 CEC2022 functions, ISO ranks fifth 

on functions F4 and F5, while ranking in the top two on the other 10 functions. It can be seen that as 

the dimension increases, the performance of ISO improves. 

Figure 4 plots the convergence curves of the 13 algorithms on CEC2022, when the dimension is 

set to 20. As can be seen from Figure 4, ISO falls into a local optimum on functions F4 and F5, and 

SO converges faster than ISO on both functions. On function F7, ESO performs the best and ISO is 

slightly weaker in the later iterations. All in all, ISO keeps a faster rate to seek out the optimal value. 

   
Continued on next page 
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Figure 4. Convergence curves of 13 algorithms on CEC2022 (Dim = 20). 
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4.3.3. Ablation experiment 

Ablation experiment is performed on 23 classical benchmark test functions, and there exist some 

differences in error between this experiment and the experiment in Subsection 4.3.1, because we 

mainly investigate the influence of three strategies and their portfolios on SO. Table 7 lists all possible 

SO variants under three strategies (seven in total), where 1 or 0 indicates whether the strategy is 

included or not. For example, MSO only has the mirror opposition-based learning mechanism, and 

NDSO contains the novel evolutionary population dynamics model and differential evolution strategy. 

Table 8 shows the experimental results, where “−/=/+” denotes that the improved algorithm is lower, 

equal to or better than SO, respectively. The convergence curves are given in Figure 5. 

Table 7. Different SO variants based on three strategies. 

Strategy MSO NSO DSO MNSO MDSO NDSO ISO 

MOBL 1 0 0 1 1 0 1 

NEPD 0 1 0 1 0 1 1 

DES 0 0 1 0 1 1 1 

From Table 8, it can be found that ISO has the best optimization capability among the seven SO 

variants, and MDSO and MNSO rank the second and third, respectively. This indicates that the mirror 

opposition-based learning mechanism is the most effective factor in improving SO, and the other two 

strategies can also play a supportive role.  

It is worth noting that the NSO and DSO, which contain only one strategy, are ranked lower than 

SO. This represents that it is not always possible to achieve better results by improving the original 

algorithm. A strategy may be very effective for a certain problem or function, but for other problems, 

it may perform poorly. For example, DSO achieves the best optimization results with the first rank on 

function F18, but it ranks last on function F21. 

On the unimodal test functions, the MSO, MNSO, MDSO, and ISO algorithms which contain 

MOBL achieve higher convergence accuracy with fewer iterations. While the optimization accuracy 

of DSO and NDSO is reduced, they converge a little faster than SO. The result is a little worse for 

NSO, which does not converge as fast or accurately as SO. On the multimodal test functions, the 

situation is not much changed from the previous ones by and large. The only difference is that on 

function F8, the convergence profiles of various SO variants become easily distinguishable. It can be 

seen from the figure that the convergence speed of MSO, NSO and MNSO in the early stage is not 

improved effectively. On the multimodal test functions with fixed dimension, eight algorithms 

converge more complexly than the previous 13 test functions. On function F14, ISO, MSO, MNSO, 

and MDSO are slower than SO in the early stages and also all fall into local optimum, but ISO and 

MNSO converge continuously to get closer to the optimal value in the later iterations. Meanwhile, 

although the convergence rate of DSO is faster on function F14, it is a bit weak on the late optimization 

search process and is caught up by other SO variants. On functions F15–F20, ISO and MDSO still 

hold the lead, followed by DSO and NDSO. MSO and MNSO are more unstable. For example, they 

perform better than SO on function F15, whereas worse on function F17. NSO is the worst one, which 

barely beats SO. On functions F21-F23, MNSO takes the first place on function F21, and ISO and 

MDSO rank first on the other two functions. 
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Table 8. Comparison results between SO and other 7 improved algorithms on 23 classical 

benchmark functions. 

F(x)  MSO NSO DSO MNSO MDSO NDSO ISO SO 

F1 Ave 

Std 

−/=/+ 

Rank 

0 

0 

+ 

1 

3.46×10-46 

1.42×10-45 

− 

8 

5.48×10-59 

1.84×10-58 

− 

6 

0 

0 

+ 

1 

0 

0 

+ 

1 

1.01×10-58 

5.52×10-58 

− 

7 

0 

0 

+ 

1 

1.05×10-96 

3.11×10-96 

/ 

5 

F2 Ave 

Std 

−/=/+ 

Rank 

0 

0 

+ 

1 

3.56×10-19 

1.35×10-18 

− 

8 

1.56×10-28 

3.45×10-28 

− 

7 

0 

0 

+ 

1 

0 

0 

+ 

1 

4.18×10-31 

1.21×10-30 

− 

6 

0 

0 

+ 

1 

2.41×10-45 

4.40×10-45 

/ 

5 

F3 Ave 

Std 

−/=/+ 

Rank 

0 

0 

+ 

1 

2.40×10-30 

9.31×10-30 

− 

6 

2.91×10-24 

1.56×10-23 

− 

8 

0 

0 

+ 

1 

0 

0 

+ 

1 

2.51×10-28 

1.33×10-27 

− 

7 

0 

0 

+ 

1 

1.32×10-57 

7.20×10-57 

/ 

5 

F4 Ave 

Std 

−/=/+ 

Rank 

0 

0 

+ 

1 

5.03×10-16 

1.71×10-15 

− 

8 

2.95×10-18 

9.67×10-18 

− 

6 

0 

0 

+ 

1 

0 

0 

+ 

1 

8.07×10-17 

4.30×10-16 

− 

7 

0 

0 

+ 

1 

7.91×10-42 

1.56×10-41 

/ 

5 

F5 Ave 

Std 

−/=/+ 

Rank 

15.9 

12.8 

+ 

6 

0.606 

0.956 

+ 

3 

26.9 

24.4 

− 

8 

0.752 

3.78 

+ 

4 

15.3 

10.7 

+ 

5 

0.307 

0.569 

+ 

2 

0.239 

0.542 

+ 

1 

24.7 

20.4 

/ 

7 

F6 Ave 

Std 

−/=/+ 

Rank 

0.375 

0.254 

− 

8 

1.56×10-2 

2.98×10-2 

+ 

4 

9.62×10-2 

0.11 

+ 

6 

8.12×10-2 

0.133 

+ 

5 

2.53×10-8 

4.84×10-8 

+ 

1 

1.14×10-4 

1.49×10-4 

+ 

3 

3.22×10-8 

6.33×10-8 

+ 

2 

0.143 

0.135 

/ 

7 

F7 Ave 

Std 

−/=/+ 

Rank 

3.36×10-5 

2.84×10-5 

+ 

4 

5.97×10-4 

4.01×10-4 

− 

7 

5.84×10-4 

3.51×10-4 

− 

6 

2.58×10-5 

2.36×10-5 

+ 

2 

2.25×10-5 

2.31×10-5 

+ 

1 

7.94×10-4 

4.46×10-4 

− 

8 

2.94×10-5 

3.18×10-5 

+ 

3 

2.08×10-4 

1.62×10-46 

/ 

5 

F8 Ave 

Std 

−/=/+ 

Rank 

–1.26×104 

39.3 

+ 

5 

–1.26×104 

2.57 

+ 

4 

–1.25×104 

46.7 

+ 

7 

–1.26×104 

0.46 

+ 

2 

–1.26×104 

65.6 

+ 

6 

–1.26×104 

0.41 

+ 

1 

–1.26×104 

2.24 

+ 

3 

–1.24×104 

2.58×102 

/ 

8 

F9 Ave 

Std 

−/=/+ 

Rank 

0 

0 

+ 

1 

0 

0 

+ 

1 

4.13 

6.79 

+ 

7 

0 

0 

+ 

1 

0 

0 

+ 

1 

0 

0 

+ 

1 

0 

0 

+ 

1 

4.81 

9.9 

/ 

8 

F10 Ave 

Std 

−/=/+ 

Rank 

8.88×10-16 

0 

+ 

1 

6.34×10-15 

1.80×10-15 

− 

8 

4.56×10-15 

6.49×10-16 

− 

7 

8.88×10-16 

0 

+ 

1 

8.88×10-16 

0 

+ 

1 

4.44×10-15 

0 

− 

6 

8.88×10-16 

0 

+ 

1 

4.32×10-15 

6.49×10-16 

/ 

5 

Continued on next page 
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F(x)  MSO NSO DSO MNSO MDSO NDSO ISO SO 

F11 Ave 

Std 

−/=/+ 

Rank 

0 

0 

+ 

1 

0 

0 

+ 

1 

2.43×10-3 

4.66×10-3 

+ 

8 

0 

0 

+ 

1 

0 

0 

+ 

1 

2.08×10-3 

4.18×10-3 

+ 

6 

0 

0 

+ 

1 

2.40×10-2 

3.51×10-2 

/ 

7 

F12 Ave 

Std 

−/=/+ 

Rank 

3.63×10-4 

5.41×10-4 

+ 

6 

1.92×10-4 

2.94×10-4 

+ 

5 

7.23×10-3 

6.98×10-3 

+ 

7 

1.43×10-4 

1.59×10-4 

+ 

4 

6.87×10-10 

1.09×10-9 

+ 

1 

1.69×10-6 

2.37×10-6 

+ 

3 

6.46×10-9 

2.81×10-8 

+ 

2 

9.08×10-2 

0.22 

/ 

8 

F13 Ave 

Std 

−/=/+ 

Rank 

0.121 

0.127 

+ 

7 

4.80×10-3 

1.35×10-2 

+ 

5 

7.85×10-3 

9.36×10-3 

+ 

6 

3.20×10-3 

1.25×10-2 

+ 

4 

3.67×10-4 

2.01×10-3 

+ 

3 

6.73×10-6 

8.16×10-6 

+ 

2 

1.71×10-8 

2.56×10-8 

+ 

1 

0.211 

0.197 

/ 

8 

F14 Ave 

Std 

−/=/+ 

Rank 

1.13 

0.503 

− 

7 

0.998 

1.63×10-7 

+ 

3 

0.998 

1.45×10-3 

+ 

5 

0.998 

4.08×10-6 

+ 

4 

1.23 

0.958 

+ 

8 

0.998 

5.83×10-17 

+ 

1 

0.998 

1.47×10-11 

+ 

2 

1.07 

0.252 

/ 

6 

F15 Ave 

Std 

−/=/+ 

Rank 

3.07×10-4 

5.33×10-12 

+ 

4 

4.72×10-4 

8.56×10-5 

− 

7 

7.15×10-4 

1.82×10-4 

− 

8 

3.07×10-4 

1.75×10-12 

+ 

3 

3.07×10-4 

3.94×10-19 

+ 

2 

3.69×10-4 

2.32×10-4 

+ 

5 

3.07×10-4 

3.80×10-19 

+ 

1 

4.61×10-4 

1.81×10-4 

/ 

6 

F16 Ave 

Std 

−/=/+ 

Rank 

–1.03 

5.90×10-16 

= 

1 

–1.03 

1.00×10-15 

− 

8 

–1.03 

6.71×10-16 

− 

3 

–1.03 

6.05×10-16 

− 

7 

–1.03 

6.78×10-16 

− 

4 

–1.03 

6.78×10-16 

− 

4 

–1.03 

6.78×10-16 

− 

4 

–1.03 

5.90×10-16 

/ 

1 

F17 Ave 

Std 

−/=/+ 

Rank 

0.398 

0 

= 

1 

0.398 

1.98×10-6 

− 

8 

0.398 

0 

= 

1 

0.398 

0 

= 

1 

0.398 

0 

= 

1 

0.398 

0 

= 

1 

0.398 

0 

= 

1 

0.398 

0 

/ 

1 

F18 Ave 

Std 

−/=/+ 

Rank 

3 

2.11×10-15 

− 

6 

3 

2.59×10-5 

− 

7 

3 

1.22×10-15 

+ 

1 

3 

2.88×10-15 

− 

8 

3 

1.33×10-15 

+ 

2 

3.00 

2.04×10-15 

− 

4 

3 

2.06×10-15 

− 

5 

3 

1.84×10-15 

/ 

3 

F19 Ave 

Std 

−/=/+ 

Rank 

–3.86 

2.61×10-15 

− 

2 

–3.86 

1.41×10-15 

− 

8 

–3.86 

2.71×10-15 

− 

4 

–3.86 

2.68×10-15 

− 

3 

–3.86 

2.71×10-15 

− 

4 

–3.86 

2.71×10-15 

− 

4 

–3.86 

2.71×10-15 

− 

4 

–3.86 

2.49×10-15 

/ 

1 

F20 Ave 

Std 

−/=/+ 

Rank 

–3.32 

1.42×10-15 

+ 

5 

–3.32 

2.50×10-4 

− 

8 

–3.32 

2.29×10-15 

− 

7 

–3.32 

1.36×10-15 

+ 

2 

–3.32 

1.36×10-15 

+ 

2 

–3.32 

1.36×10-15 

+ 

2 

–3.32 

1.34×10-15 

+ 

1 

–3.32 

1.82×10-15 

/ 

6 

F21 Ave 

Std 

−/=/+ 

Rank 

–10.2 

1.59×10-2 

+ 

5 

–10.1 

2.56×10-2 

+ 

6 

–10.0 

0.393 

− 

8 

–10.2 

5.71×10-15 

+ 

1 

–10.2 

7.12×10-15 

+ 

2 

–10.2 

1.05×10-4 

+ 

4 

–10.2 

7.17×10-15 

+ 

3 

–10.1 

0.105 

/ 

7 

Continued on next page 
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F(x)  MSO NSO DSO MNSO MDSO NDSO ISO SO 

F22 Ave 

Std 

−/=/+ 

Rank 

–10.4 

0 

+ 

1 

–10.4 

2.63×10-2 

+ 

6 

–10.3 

0.14 

+ 

7 

–10.4 

4.66×10-16 

+ 

2 

–10.4 

1.28×10-15 

+ 

3 

–10.4 

1.29×10-5 

+ 

5 

–10.4 

1.36×10-15 

+ 

4 

–10.3 

0.496 

/ 

8 

F23 Ave 

Std 

−/=/+ 

Rank 

–10.5 

1.58×10-15 

+ 

2 

–10.5 

1.50×10-2 

+ 

6 

–10.5 

3.04×10-2 

+ 

7 

–10.5 

1.58×10-15 

+ 

2 

–10.5 

1.81×10-15 

+ 

4 

–10.5 

5.71×10-16 

+ 

1 

–10.5 

1.81×10-15 

+ 

4 

–10.3 

0.522 

/ 

8 

−/=/+ 

Average rank 

Total rank 

4/2/17 

3.35 

4 

12/0/11 

5.87 

7 

13/1/9 

6.09 

8 

3/1/19 

2.61 

3 

3/1/19 

2.43 

2 

9/1/13 

3.91 

5 

3/1/19 

2.09 

1 

/ 

5.65 

6 

From the convergence curves in Figure 5, we notice that the convergence processes of ISO and 

MDSO have no significant difference on most of the classical test set, and they both possess excellent 

optimization capabilities. Only on functions F5, F14, and F21, MDSO performs worse than ISO. Other 

SO variants have a mediocre convergence effect, and may even converge worse than SO on some 

functions. Therefore, we conclude that ISO exhibits better convergence behavior. 

  

   

Continued on next page 
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Figure 5. Convergence curves of 8 algorithms on 23 classical benchmark functions. 

4.3.4. SVM parameter optimization experiment 

SVM integrates several standard machine learning techniques to overcome the problems of local 



7331 

Mathematical Biosciences and Engineering  Volume 21, Issue 10, 7297–7336. 

minima, dimensional catastrophe and so on, and it provides better generalization capabilities than 

traditional neural network learning algorithms. However, the problem of parameter selection that 

affects its performance has not been solved. 

The optimal selection of the SVM parameters is a key step that directly affects the 

performance of SVM, which has become a major research field in the area of kernel methods. For 

instance, Kalita et al. [45] proposed a dynamic framework based on moth flame optimization (MFO) 

and knowledge-based-search (KBS) to optimize the penalty factor C  and Gaussian kernel parameter 

 . Their experiments showed that KBS helps in controlling the exponential growth of time complexity 

when MFO is used to optimize these two parameters. Huang et al. [46] introduced an improved black 

widow optimization (IBWO) algorithm and constructed the IBWO-SVM to select better parameters. 

From these two articles, it can be seen that optimizing model parameters by swarm intelligence 

algorithms can effectively improve the prediction accuracy. Literature [47–49] also utilized this type 

of method and achieved good results. 

The parameter setting of the SVM classification experiment is shown in Table 9. The classification 

accuracy in the test set is used as the measure criterion. In order to reduce the random error of the 

experiment results, we conduct 10 rounds of experiments and the average values are shown in Table 10. 

Table 9. Parameter setting of SVM classification experiment. 

Parameters Value or Range 

Population size (N) 50 

Maximum number of iterations (T) 500 

Dimension (Dim) 2 

Penalty factor (C) [0.01,100] 

Gaussian kernel width ( ) [0.01,100] 

Table 10. Classification results of SVM after parameter optimization by swarm 

intelligence algorithms. 

Name GWO-

SVM 

GJO-

SVM 

HHO-

SVM 

NGO-

SVM 

WOA-

SVM 

SO-

SVM 

ISO-

SVM 

Iris 95.47% 95.47% 96.00% 95.20% 92.00% 95.47% 96.00% 

Parkinsons 81.33% 81.12% 81.02% 80.92% 75.51% 81.33% 81.53% 

Fire 81.53% 81.27% 80.47% 79.67% 34.00% 81.40% 81.60% 

Heart 85.95% 86.42% 85.74% 85.88% 75.00% 86.08% 86.49% 

Ionosphere 94.26% 94.32% 94.32% 94.32% 64.77% 94.15% 94.38% 

Analyzing the data in Table 9, it can be seen that the classification accuracy based on ISO is 

higher than SO in all five datasets. Compared with other algorithms, ISO has the same classification 

result as HHO on the Iris dataset, and for the remaining four datasets, ISO achieves the highest accuracy. 

It can be concluded that ISO is more effective and stronger than SO, and when applied to the 

optimization of SVM parameters, it can achieve significant results. 
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4.4. Further discussions 

In the function comparison experiments with the above 12 algorithms, we can see that ISO has 

better optimization performance and convergence speed. However, it has some weaknesses compared 

to other evolutionary algorithms. First, ISO may not be as effective as some evolutionary algorithms 

in global search, resulting in the search result to hover around a local optimum. Second, due to the fact 

that the performance of ISO is more sensitive to parameter settings, different problems may require 

different parameter configurations, adding a certain degree of complexity.  

When dealing with nonlinear optimization problems, the advantage of ISO lies in its flexibility 

and adaptability (i.e., robustness), allowing it to adapt to complex changes. Non-convex optimization 

problems usually involve complex objective functions that may contain multiple local minimums and 

complex structures [50]. However, the three improvement strategies of ISO can greatly improve the 

algorithm’s ability to jump out of local optima. In practice, noisy is a common problem; it contains 

uncertain variables, both multivariate and multi-objective. The key challenge for ISO in optimization 

problems involving uncertain variables is how to deal with these uncertainties. As it stands now, ISO 

has no clear superiority. We have two ideas about the solution to this problem. The first is the 

decomposition mechanism proposed by Deng et al. [51]. This mechanism can resolve such uncertain 

variables separately to further improve the optimization performance. The second combines the ISO with 

deep learning to create a new hybrid model. Literature [52–54] describes the advantages of approaches 

based on deep learning. ISO has strong potential in multivariate and multi-objective optimization 

problems. This is due to the fact that in the function test experiment of CEC2022, ISO ranks second 

among all the 13 algorithms with an average ranking of 2.5 when the dimension is set to 10, whereas 

when the dimension is increased to 20, ISO takes the first place with an average ranking of 1.83. 

Overall, the ISO has certain advantages in dealing with complex optimization problems, although it 

also faces many challenges. 

5. Conclusions 

In this article, ISO is presented with three improvement strategies, and combined with SVM for 

the first time to provide an effective solution to the SVM parameter optimization problem. From the 

experimental results, it can be seen that the proposed ISO is effective and the ISO-optimized SVM 

parameters improves the classification accuracy by 0.2–0.5% over the SO-optimized SVM parameters. 

However, the proposed method still has the potential to upgrade. For example, although ISO and SO 

are consistent in time complexity, ISO may take more time in practice. This requires attention to 

whether mechanisms with high time overhead in the algorithm can be replaced with simple and 

efficient strategies. Overall, in future research, we will focus mainly on the improvement of ISO and 

apply it to solve more complex problems in a wider range of fields. 
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