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Abstract: Traditional compartmental models of epidemic transmission often predict an initial phase of
exponential growth, assuming uniform susceptibility and interaction within the population. However,
empirical outbreak data frequently show early stages of sub-exponential growth in case incidences,
challenging these assumptions and indicating that traditional models may not fully encompass the
complexity of epidemic dynamics. This discrepancy has been addressed through models that
incorporate early behavioral changes or spatial constraints within contact networks. In this paper,
we propose the concept of “frailty”, which represents the variability in individual susceptibility and
transmission, as a more accurate approach to understanding epidemic growth. This concept shifts our
understanding from a purely exponential model to a more nuanced, generalized model, depending on
the level of heterogeneity captured by the frailty parameter. By incorporating this type of heterogeneity,
often overlooked in traditional models, we present a novel mathematical framework. This framework
enhances our understanding of how individual differences affect key epidemic metrics, including
reproduction numbers, epidemic size, likelihood of stochastic extinction, impact of public health
interventions, and accuracy of disease forecasts. By accounting for individual heterogeneity, our
approach suggests that a more complex and detailed understanding of disease spread is necessary
to accurately predict and manage outbreaks.
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1. Introduction

The scaling of growth during the initial phase of an infectious disease outbreak is influenced by a
complex interplay of factors, many of which are not directly observable. These factors include the
nature of the contact network over which the disease spreads [1–5], variability in individuals’ risk of
infection, and changes in behavior or the implementation of control measures [6]. To place our study
in context within the evolution of epidemiological modeling, it is important to understand how these
factors contribute to the non-linear dynamics of disease spread. Under the assumption of
homogeneous mixing, a scenario where each individual has an equal chance of interacting with
others, the incidence curve is expected to grow exponentially during the initial epidemic phase,
provided there are no changes in susceptibility, behavior, or interventions [7]. This exponential
growth presumes a constant rate intrinsic growth rate, a condition rarely met in real-world scenarios.
In contrast, empirical data frequently reveal a sub-exponential growth in the early transmission phase,
suggesting a more complex and heterogeneous interaction pattern among individuals. This pattern can
emerge from spatial limitations within the contact network partly associated with the transmission
mode of the disease, early behavioral modifications, or the introduction of public health
interventions [6]. Moreover, the sub-exponential dynamic is intricately linked to the concept of
“generation interval contraction”, a phenomenon observed when the average time between successive
cases in a chain of transmission shortens as the epidemic progresses [8]. This occurs when a
susceptible individual is exposed to multiple infectious contacts, creating a competitive scenario for
transmission. Such dynamics underscore the critical role of underlying network structures and
behavioral responses in shaping the trajectory of an epidemic, leading to the investigation of complex
network effects in epidemiological modeling [9–14].

The crucial task of accurately characterizing epidemic growth is underscored by the varied growth
patterns observed in empirical data from both historical and recent outbreaks, as documented in the
prior studies [15]. These diverse patterns challenge the conventional exponential growth assumption,
underscoring the need for developing alternative modeling approaches that reflects the heterogeneity
of epidemic processes. The two-parameter generalized-growth model (GGM) offers a nuanced
method for estimating the epidemic growth scaling, employing the scaling of growth parameter
0 < p < 1 [15]. The exploration of this parameter space enables a deeper understanding of the
underlying mechanisms driving different epidemic trajectories. Recent research further validates the
utility of incorporating these nuanced growth dynamics into epidemic models. Studies have shown
that models accounting for the possibility of early sub-exponential growth, rather than just assuming a
simple exponential increase, significantly enhance the models’ fit to empirical data and improve the
accuracy of short-term epidemic forecasts [16–20]. This advancement in modeling aligns more
closely with observed epidemic patterns and provides a more reliable foundation for predicting the
course of outbreaks, thereby informing more effective public health interventions.

While the generalized-growth model captures the nuances of early sub-exponential growth patterns
identified in empirical outbreak data, this model also suggests simple underlying mechanisms for
these patterns. However, a comprehensive mathematical framework that integrates the classic
mechanistic theories of infectious diseases with the observed variability in early growth dynamics
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remains elusive. To bridge this gap, our work introduces the concept of frailty from survival analysis
into epidemic modeling, aiming to reflect the observed heterogeneity in individual disease
susceptibility and transmission. By incorporating individual-level unobserved heterogeneity into
established mechanistic transmission models, we aim to provide a more accurate and nuanced
understanding of epidemic spread, better aligning theoretical predictions with empirical observations

2. Model initial epidemic growth in the presence of unobservable heterogeneous infectious
contacts through random effect

Understanding the dynamics of epidemic growth is crucial for developing effective public health
interventions. Traditional compartmental models often assume homogeneous mixing and uniform
susceptibility within a population, leading to predictions of exponential growth during the initial
phase of an epidemic. However, empirical observations frequently show sub-exponential growth,
indicating that these assumptions may not capture the full complexity of real-world epidemic
dynamics. One approach to addressing this discrepancy is the use of phenomenological models,
which describe the observed growth patterns without necessarily detailing the underlying transmission
mechanisms. To bridge the gap between phenomenological and mechanistic approaches, we introduce
a frailty model, which incorporates individual-level heterogeneity into the epidemic growth dynamics.
Frailty, a concept from survival analysis, represents unobserved variability in individual susceptibility
and transmission potential. This variability can significantly impact the overall epidemic growth rate.

Population growth is described by the instantaneous increase in the total count C(t) at any given
time t. This is mathematically represented as:

C′(t) = r(t)C(t). (2.1)

Within the realm of infectious diseases, C(t) signifies the cumulative count of infections at time t. In
the context of our model, r(t) represents the instantaneous growth rate of the epidemic at time t.
Unlike the constant growth rate r in the exponential model, r(t) can vary over time to reflect changes
in the population’s susceptibility and interaction patterns. This variation is influenced by the
distribution of frailty among individuals, leading to a more nuanced understanding of epidemic
growth.

2.1. The growth rate r(t) in phenomenological and in transmission models

The expression (2.1) has been connected with empirical models to describe population-based
phenomena without “mechanically” modelling the transmission dynamics. For instance,

1) The exponential growth equation C′(t) = rC(t) is commonly used to approximate the early stages
of an outbreak, assuming a very large population and during the first few generations of disease
transmission.

2) The General Growth Model (GGM) as described in [6,15,21,22] is given by the growth equation

C′(t) = rC(t)p, 0 ≤ p ≤ 1 (2.2)
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where the rate r(t) = r/C(t)1−p is a function that decreases over time t. Assuming the outbreak
began with just one infected individual, meaning C(0) = 1, there is a solution given by C(t) =
(1 + rθt)1/θ,where θ = 1 − p, leading to r(t) = r/ (1 + rθt) . The GGM returns to the exponential
growth model when θ → 0.

3) The logistic growth model is described by the equation:

C′(t) = r
(
1 −

C(t)
K

)
C(t), with r > 0. (2.3)

Here, K = limt→∞C(t) represents the maximum possible value, known as the carrying capacity.
It is evident that the growth rate, r(t) = r

(
1 − C(t)

K

)
also diminishes over time in accordance with

the logistic rule. This can be explicitly expressed as:

r(t) = r
(K − 1) e−rt

1 + (K − 1)e−rt .

The exponential growth model is the special case when K approaches infinity.
4) The Richards model is represented by the equation:

C′(t) = r
(
1 −

[
C(t)

K

]θ)
C(t), θ > 0. (2.4)

Beginning with an initial condition of C(0) = 1, the model can also be solved analytically for
C(t), leading to the expression:

r(t) = r

(
Kθ − 1

)
e−rθt

1 + (Kθ − 1) e−rθt .

In this model, when K → ∞, the growth rate decreases over time as a negative exponential
function r(t)→ re−rθt. It approaches constant value r as θ → 0.

In these models, the growth rate r(t) phenomenologically incorporates a range of influences from
both individual behaviors and environmental conditions that impact how the disease spreads. However,
it is noteworthy that distinct “mechanical epidemic models” can yield identical phenomenon in terms
of the cumulative growth. For instance, the logistic growth rate above may be derived from various
deterministic transmission models. This includes, among others, the SI (Susceptible-Infected) and SIS
(Susceptible-Infected-Susceptible) models [23].

2.2. The exponential growth approximation

We begin our discussion by looking into the exponential growth dynamics, which is defined by a
steady growth rate, denoted as r(t) = r. This approximation of exponential growth is typical for the
initial phase of an epidemic in various deterministic and stochastic models, under the assumption that
the population size is infinitely large, making the depletion in susceptible individuals within the
population negligible. These models further assume that mixing and transmission among the
population are uniform. The growth rate, r, is then a function of additional parameters that are
specific to particular mechanistic models. We will consider the following examples.
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In the Simple Epidemic model, as outlined by Bailey in [24], also known as the SI model, the count
of infectious persons at any specific time t is expressed by the equation I′(t) = β (1 − I(t)/N) I(t). In
this context, I(t) is equivalent to C(t), and N denotes the entire population size. The parameter β is
the transmission rate per contact between susceptible and infectious individuals. As N tends toward
infinity, C(t) converges to i0e−βt. Thus, r = β.

In the SIS and SIR (Susceptible-Infected-Recovered) models, which are framed using ordinary
differential equations, the rate of change in the number of infected individuals at any given moment
(time t) is described by the formula I′(t) = βS (t)I(t)/N − γI(t). In this context, N represents the total
population size, and β has the same interpretation as it does in the SI model, indicating the transmission
rate. S (t) and I(t) stand for the counts of susceptible and infected individuals at time t, respectively.
The γ parameter represents the rate at which infected individuals recover, moving either back to being
susceptible or gaining immunity. If the reduction in susceptible individuals is minor, the fraction
S (t)/N can be approximated as 1. This simplification leads to the equation I′(t) = (β − γ)I(t). If
β > γ, it suggests that the number of infected individuals,I(t), could increase exponentially without
limit. Many standard texts denote r = β − γ, although this assumes conditions of time-homogenity,
often described as being “under equilibrium conditions”. In this paper, we delve deeper into these
equilibrium conditions and examine whether it is accurate to model the initial growth of a disease
outbreak, represented by C(t) with the equation C′(t) = (β − γ)C(t), from the outbreak’s onset.

By introducing a new compartment, E(t), which tracks the number of people who are infected but
not yet capable of spreading the infection as of time t, the SIS and SIR models are expanded into the
SEIS and SEIR models, respectively. These models use ordinary differential equations to calculate
how the numbers of latent and infectious individuals evolve over time. Specifically, the equations
E′(t) = β S (t)I(t)

N − αE(t) and I′(t) = αE(t) − γI(t) describe the rates of change for latent and infectious
individuals at any moment. Here, the new parameter α represents the rate at which latent individuals
progress to being infectious. Under the same set of equilibrium conditions as before, there exists an
implicit function between r and the parameters (β, α, γ) through the equation (r + α) (r + γ) = βα. This
relationship is also a recognized finding in standard mathematical epidemiology textbooks such as [25]
and others.

These examples assume homogeneity so that the infection spread rate, denoted as β, remains the
same for all individuals. Additionally, the natural increase rate, r, is less than or equal to β. The
equation (r + α) (r + γ) = βα can be re-written as r = β αr+α

r
r+γ < β. The exception is the SI model,

where there is no latent period and once individuals are infected, they stay infectious indefinitely, which
means α = γ = 0, leading to r = β.

2.3. From stochastic and sampling perspectives

From a stochastic viewpoint, considering C(t) as a counting process, the immediate increase of C(t)
given that C(t) = n is explained as follows:

Pr{C(t + δ) = n + 1|C(t) = n} = h(t)δ + o(δ)
Pr{C(t + δ) = n|C(t) = n} = 1 − h(t)δ + o(δ) (2.5)
Pr{C(t + δ) > n + 1|C(t) = n} = o(δ).

In this context, we posit that every one of the n infected persons independently possesses a positive
rate of ri(t) > 0, i = 1, ..., n, which contributes to the emergence of a new infection. At the level of
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the entire population, the rate of immediate growth is represented by h(t), which is h(t) =
∑n

i=1 ri(t).
Assuming ri(t) = r(t) for all i = 1, ..., n, we arrive at h(t) = nr(t).

We further investigate the scenario of uninterrupted growth when the rate of change is constant
r(t) = r. This situation is linked to an exponentially distributed random variable Y associated with a
typical infected individual, characterized by the survival function G(t) = Pr(Y > t) = e−rt. The random
variable Y is well-defined and can be quantified based on the timing for each person who gets infected,
thanks to its exponential distribution and the property of being memoryless.

The stochastic counterpart of the exponential growth C′(t) = rC(t) is the conditional probability

Pr{C(t + h) = n + 1|C(t) = n} = nrh + o(h).

The marginal distribution of C(t) at time t is negative binomial, with mean value satisfying the
exponential growth E[C(t)] = i0ert, where i0 = C(0) is the initial condition. Consequently, we arrive at
the formulas:

r =
d
dt

log C(t) = −
d
dt

log G(t), (2.6)

where the first formula can be interpreted as r representing the growth rate of the total number of
infected individuals; and the second formula views r as the hazard rate of the exponential distribution,
considering it from the viewpoint of an average individual who is infected.

Yan and Chowell [23] highlight that, if the growth is exponential with constant rate r, it can be
expressed by adjusting the transmission rate β based on the probability of individuals within the
population being infectious at any particular moment, by considering a specific sample taken at time t.
A binary indicator, ∆i(t), is defined to indicate whether an individual i, who was infected prior to time
t, is infectious at time t. This is represented by the probability Pr(∆i(t) = 1), where a value of 1
signifies the individual is infectious, and a value of 0 indicating otherwise. Those individuals for
whom ∆i(t) = 1 are grouped into what is called a “prevalence cohort”. Under suitable equilibrium
conditions, to be elaborated on in the following subsection, the relationship

r = βPr(∆i(t) = 1) (2.7)

is established, indicating that the probability Pr(∆i(t) = 1) stays constant, regardless of the time of
sampling, t.

The expressions r = βr (r + γ)−1 and r = αβr (r + α)−1 (r + γ)−1 in the aforementioned SIS, SIR,
SEIS and SEIR models are the special cases of (2.7) where the durations of both the latent and
infectious phases are assumed to follow exponential distributions with rates α and γ, respectively.
This underlying assumption is crucial for models that utilize ordinary differential equations.

We begin by defining the random variable TI , which symbolizes the duration of infection among
infected people. This duration follows a probability distribution with a density function denoted as
fI(x), where x measures time starting from when a person becomes infectious. If we ignore any latent
period, assuming individuals are infectious right from the infection’s start and Y is independent of TI ,
the probability Pr(Y > TI) can be calculated using the integral

∫ ∞
0

e−rt fI(t)dt = L[ fI](r), where L[ fI](r)
is the Laplace transform applied to the probability density function fI(x). This leads us to understand
that, if all infected individuals have the same constant hazard rate r to produce new infections, then the
chance of an individual causing a new infection at time t while still infectious is given by

Pr(∆i(t) = 1) = Pr(Y ≤ TI) = 1 − L[ fI](r).

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7278–7296.



7284

The probability Pr(∆i(t) = 1) is established through a stochastic comparison between the random
variable Y and the infectious period TI of infected individuals. Specifically, in instances where the
infectious period follows an exponential distribution with an average γ−1, the expression
r = β (1 − L[ fI](r)) = βr/ (r + γ) simplyfies to r = β − γ.

Now we introduce a random variable TE, representing the period of latency in individuals who are
infected but not yet capable of transmitting the infection. We consider TE and TI to be sequential
and independent of each other. Assuming Y is also independent from both TE and TI , we start with
L[ fE](r) = Pr(Y > TE) and Pr(TE < Y ≤ TE + TI) = Pr(Y > TE) Pr(TE < Y ≤ TE + TI |Y > TE). Given
that the distribution of Y is exponential and memoryless, Pr(TE < Y ≤ TE +TI |Y > TE) = Pr(Y ≤ TI) =
1 − L[ fI](r). Thus,Pr(∆i(t) = 1) = Pr(TE < Y ≤ TE + TI) and

r = βL[ fE](r) (1 − L[ fI](r)) . (2.8)

Specifically, in instances where the both TE and TI ard exponentially distributed with averages α−1 and
γ−1, respectively, the formula is expressed as r = β (1 − L[ fI](r)) = βr/ (r + γ) .

2.4. Multifaceted aspects of homogeneity

We have assumed that all the C(t) = n infected individuals are homogeneous in the sense that they
carry the same rate to produce a new infection independently from the other n − 1 individuals. This
rate r is further factorized in (2.7) as the product of transmission rate β and the sampling probability
Pr(∆i(t) = 1).

2.4.1. Time-homogeneity and equilibrium:

The constant growth rate implies that Pr(∆i(t) = 1) is independent of time t. This is
time-homogeneity. It requires that the dynamic system is at a state of equilibrium.

In the case without the latent period, (2.8) becomes r = β (1 − L[ fI](r)) and can be re-written
as β (1 − L[ f ]I(r)) /r = 1. Integration by parts, one can show that (1 − L[ fI](r)) /r =

∫ ∞
0

e−rtF I(t)dt,
where F I(x) = Pr(TI > x) is the survival function of the infectious period. Thus r = β (1 − L[ fI](r))
can be also written as βµI

∫ ∞
0

e−rtF I(x)/µidt = 1. Denote fw(x) = F I(x)/µi and R0 = βµI , we have the
equation

R0

∫ ∞

0
e−rt fw(t)dt = 1, where R0 > 1. (2.9)

The condition R0 > 1 is implied, because
∫ ∞

0
fw(t)dt = 1 and L[ fW](r) =

∫ ∞
0

e−rt fW(t)dt < 1.
The Eq (2.9) is recognized as the Euler-Lokta equation in mathematical biology involving two

intrinsic parameters, R0 and r. R0 is widely known as the basic reproduction number. This equation
links these parameters by stabilizing the dynamic system in a state of equilibrium. Furthermore, the
function fw(x) adheres to the characteristics of a probability density function and is widely
acknowledged as the equilibrium distribution according to renewal theory in the context of stochastic
processes.

Figure 1 shows how the equilibrium distribution works, using an example where there are C(t) = 8
individuals at time t, with 6 of them being infectious. As a result, the probability Pr(∆i(t) = 1) = 0.75.
Each individual is represented by a beginning and an end point. For a given individual i where
∆i(t) = 1, two time-related random variables, Ui and Vi, are associated with them at time t. In renewal
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𝐶 𝑡 = 8
#{∆! 𝑡 = 1} = 6

𝑈! 𝑉!
𝑖

Figure 1. Illustration of C(t) = 8 individuals at time t, with 6 of them being infectious.
Dotted lines represent the 2 individuals no longer being infectious. Solid lines represent
individuals that form the prevalence cohort. This figure demonstrates the concept of the
prevalence cohort and highlights the equilibrium distribution in the context of individual
infectiousness.

process, Ui refers to the backward recurrence time, which measures the time backward from t to when
the individual became infectious. On the other hand, Vi represents the forward recurrence time,
measuring the time from t until the individual is no longer infectious. For equilibrium to be achieved,
it is necessary that Ui and Vi have the same distribution as the distribution of Wi, with each Wi being
independent and identically distributed according to the equilibrium distribution, which has a
probability density function denoted by fw. In addition, the distribution of the sum T (B)

i = Ui + Vi is
stochastically longer than that of the infectious period TI . This occurs because the distribution of
infectious periods for individuals in the prevalence cohort at time t is biased towards longer durations.
Individuals with longer infectious periods are more likely to be included in the cohort. The probability
density of T (B)

i is represented by x fI(x)/µI , which is referred to as the length-biased distribution.

Thus, under equilibrium, the following pair of relationships are equivalent:

r = β(1 − L[ fI](r)) = βPr(∆i(t) = 1)

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7278–7296.
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L[ fW](r) =
∫ ∞

0
e−rt fW(t)dt = Pr(Y > W) = 1/R0

where the second line treats W as the forward recurrent time Vi and each of the infected individual at
time t has a probability of 1/R0 failing to produce a secondary infection during the infectious period.
In the special case of exponentially distributed infectious periods with µI = γ

−1, the equilibrium
distribution is identical to the original exponential distribution. Therefore
L[ fW](r) = L[ fI](r) = γ/ (r + γ) , leading to r = β − γ = γ(R0 − 1).

Without further elaboration, adding a latent period TE not only gives (2.8) but also extends (2.9) as

R0L[ fE](r)L[ fW](r) = 1, where R0 > 1.

For further details, we refer to [23].

Challenges to the assumption of equilibrium conditions Even though numerous theoretical
findings are based on the assumption of equilibrium conditions, it is improbable that these conditions
hold true for data from the initial stages of a major epidemic outbreak. Consider the onset of an
outbreak, where nearly every person infected is capable of spreading the disease, resembling the
dynamics of an SI model. Here, the likelihood of an individual being sampled, Pr(∆i(t) = 1), is close
to 1, and the rate of infection, r, is approximately equal to β. However, as time goes on and some of
the infected individuals recover by time t, the probability Pr(∆i(t) = 1) drops below 1. Yet, it remains
unrealistic to expect that the distributions of Ui and Vi align as they would under equilibrium
conditions. When the system is not in equilibrium, the sampling probability not only varies with time
t but also the likelihood of each infected individual being included in the prevalence cohort changes
based on how recently they were infected relative to time t. In essence, time-nonhomogenity induces
one aspect of individual heterogeneity.

2.4.2. Homogeneity assumed in the agent-host-environment interface

The β parameter, often expressed as β = λp, where λ represents the rate of contact within the
social network and p is the probability of transmission during an interaction between an infected and
a susceptible person, implies several assumptions about uniformity across the interactions between
agents, hosts, and the environment.

Regarding the infectious agent, like a virus in viral infections, it is assumed that there are no
mutations that alters its infectiousness during the study, ensuring that infections acquired at various
times confer the same level of infectiousness at the point of infection.

Concerning the hosts, it is assumed that:

1) All susceptible individuals have the same level of susceptibility;
2) An infected individuals maintain a consistent level of infectiousness throughout their infectious

period;
3) All infected individuals have equal infectiousness.

In terms of the environment, it is assumed that there’s uniform mixing, meaning each person is
equally likely to interact with every other person in the population. In large populations, this social
network can be simplified as a Bernoulli random graph like that described in Erdös and Rényi [26].

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7278–7296.
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Viewing from a stochastic processes angle, the social contact network expands in a manner where the
typical individual’s number of contacts adheres to a stationary Poisson process with rate λ.

With these homogeneity assumptions, at any given moment during an epidemic, all infected
individuals are equally infectious, regardless of when or how long ago they were infected. Each
interaction between susceptible and infected individuals carries the same transmission probability p.
Together, these assumptions of homogeneity in the agent-host-environment dynamic lead to the
formulation β = λp. This equation defines the rate of new infections in the population as β S (t)I(t)

N in
deterministic models for disease transmission.

2.5. Frailty as a model to account for non-identifiable and unobservable heterogeneities

The growth rate can be expressed as r = λpδ, where δ = Pr(∆i(t) = 1). Data gathered at the group
level cannot distinguish λ, p and δ as distinct factors. Each factor reflects specific assumptions about
homogeneity. We use a frailty model to describe variability among individuals in a phenomenological
manner.

In the field of survival analysis, the proportional hazard model, denoted as ρ(t|z) = zρ0(t), accounts
for variability in case individuals exhibit varying hazard rates. Here, ρ0(t) > 0 represents a fundamental
hazard rate, and z > 0 is the frailty variable. This can also be depicted via survival functions, G(t|z) =
e−zH0(t), H0(t) =

∫ t

0
ρ0(u)du.. The widely utilized Cox proportional hazard model formulates z as a

log-linear regression based on observed variables.
The frailty model is a type of random effect model designed to account for unobserved

heterogeneity among individuals. It posits that the variable z is random, with an expected mean of
E(z) = 1 and a probability density function represented by ξ(z). In scenarios where there is no
variation among individuals, ξ(z) becomes a singular point where z is exactly 1, leading to no
variability. Under these conditions, the survival function is defined as G0(t) = e−H0(t). Consequently,
when the population includes a diverse mix of individuals, the resulting survival function is derived
from a combined distribution:

G
(mixed)

(t) =
∫ ∞

0
G(t|z)ξ(z)dz =

∫ ∞

0
e−zH0(t)ξ(z)dz = L[ξ](H0(t)) (2.10)

where L[ξ](s) =
∫ ∞

0
e−zsξ(z)dz is the Laplace transform with respect to ξ(z) and L[ξ](H0(t)) is L[ξ](s)

evaluated at s = H0(t). The hazard function becomes

ρ(mixed)(t) = −
d
dt

log G
(mixed)

(t) = −
d
dt

log L[ξ](H0(t)). (2.11)

We use the frailty framework with a fixed baseline hazard rate, denoted as ρ0(t) = r, and cumulative
hazard rate H0(t) = rt. In the frailty model, the hazard rate given frailty z is ρ(t|z) = zr, leading to
a mixed hazard rate expression ρ(mixed)(t) = − d

dt log L[ξ](rt). The following general observations are
made:

1) For any non-degenerate probability density function ξ(z), the Laplace transform of ξ at rt, satisfies
L[ξ](rt) =

∫ ∞
0

e−zrtξ(z)dz ≥ e−rt. Referring to (2.6) when z is constantly 1, r = d
dt log C(t) =

− d
dt log G(t), leading to the relationship C(t) = G(t)−1. Introducing the random effect (frailty) ξ(z)

and assuming C(0) = 1, we have d
dt log C(t) = − d

dt log L[ξ](rt), resulting in the inequality

C(t) =
[
L[ξ](rt)

]−1
≤ ert for all t > 0, (2.12)
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indicating that the growth of C(t) is limited by the exponential function ert from above.
2) It has been demonstrated [27] that L[ξ](rt) is log-convex. As a survival function, its hazard rate
ρ(t) = − d

dt log L[ξ](rt) decreases monotonically from an initial value of r at time 0. This reflects a
decrease in the effective reproduction number, Rt, during the initial phase of epidemic growth, as
noted by [21].

3) When comparing the variability of z using convex order (as detailed in the Appendix), it is found
that higher variability in z results in a higher value of the Laplace transform L[ξ](s) for all s > 0.
This, in turn, means that the more variable z is, the higher the value of L[ξ](rt) and thus, the
smaller the value of C(t) for any t > 0.

2.6. Special cases

2.6.1. Gamma distributed heterogeneity

Let ξ(z) be the p.d.f. of the Gamma distribution with E(z) = 1 and variance var[z] = v > 0. The
Laplace transform is L[ξ](s) = (1 + sν)−1/v. Letting C(0) = 1, the expression C(t) =

[
L[ξ](rt)

]−1

becomes
C(t) = (1 + vrt)1/v , for all t > 0. (2.13)

Meanwhile the instantaneous growth function is

r(t) = −
d
dt

log L[ξ](rt) =
r

1 + vrt
.

Figure 2 illustrate r(t) and C(t) at different values of ν > 0. The parameter r is a time-scale parameter
and the x-axes in these plots are scaled to τ = rt. We focus on the range 0 < v < 1. During this range,
(1 + rvt)1/v is the same as the GGM (2.2) by letting v = 1 − p and C′(t) = [r/{1 + r(1 − p)t}]C(t)
can be re-written as C′(t) = r (1 + r(1 − p)t)

p
1−p = rC(t)p, corresponding to the phenomenological

model (2.2). When ν = 1, the linear growth C(t) = 1 + rt corresponds to G
(mixed)

(t) =
[
L[ξ](rt)

]
=

(1 + rt)−1 recognized as the survival function of a (continuous time) power-law distribution, analogous
to the discrete power-law distribution in social network analysis. C(t) is a convex increasing function
bounded by the exponential function from above and the linear function from below. This is the sub-
exponential growth feature [6].

We also draw a connection to previous studies [28, 29], which demonstrate that an initial Gamma
distribution of agent susceptibility and infectivity in the SIR model leads to power-law
sub-exponential growth. These results, although derived through a different theoretical pathways,
aligns with our findings on frailty-induced heterogeneity using a Gamma distribution. This similarity
suggests a deeper link between different approaches to modeling heterogeneity in epidemics. it is also
worth noting the recent work by

2.6.2. Inverse-Gaussian distributed heterogeneity

If ξ(z) be the p.d.f. of an inverse-Gaussian distribution with E(z) = 1 and variance var[z] = v, the
Laplace transform is L[ξ](s) = e(1−

√
1+2vs)/v. Letting C(0) = 1, the expression (2.12) becomes

C(t) =
[
L[ξ](rt)

]−1
= e(

√
1+2vrt−1)/v, v > 0 (2.14)
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Figure 2. Plots of r(t) and C(t) assuming gamma distributed random effect. The plots show
how the growth rate r(t) decreases over time, illustrating the impact of frailty on epidemic
growth dynamics and resulting in sub-exponential growth patterns

and C(t)→ ert as v→ 0.Meanwhile,

r(t) =
C′(t)
C(t)

=
r

√
1 + 2vrt

.

However, the difference between C(t) given in (2.14) and C(t) given in (2.13) is small:

e(
√

1+2vrt−1)/v − (1 + vrt)1/v =
1
6

v2r3t3 + O
(
t4
)
.

It can be shown that, if E(z) = 1 and variance var[z] = v > 0, e(
√

1+2vrt−1)/v ≥ (1 + vs)1/v for all s > 0.
It is a special case of a more general result [30]:

e(1−
√

1+2vs)/v ≤ (1 + vG s)−1/vG , for all v ≤ vG and s > 0 (2.15)

where v on the left hand is the variance of an inverse-Gaussian distribution and vG on the right hand is
the variance of a gamma distribution satisfying v ≤ vG. In both distributions, it is assumed the mean
value E[z] = 1. Relating (2.15) to C(t) =

[
L[ξ](rt)

]−1 , it implies that if one compares two growth
curves CIG(t) and CGAM(t), generated by a frailty model with random effect distribution ξ(z) chosen
from an inverse-Gaussian distribution with variance v and from a gamma distribution with variance vG,

respectively, if v ≤ vG, CIG(t) ≥ CGAM(t).
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2.6.3. Two distributions for ξ(z) where L[ξ](s) lacks explicit expressions and discussion of
sub-exponential growth

If we replace the left hand side in the inequality (2.15) by the Laplace transform of a log-normal
distribution with variance v, denoted by LLogN[ξ](s), the following statement is still true.

LLogN[ξ](s) ≤ (1 + vG s)−1/vG , for all v ≤ vG and s > 0. (2.16)

To show this, we briefly introduce Lκ-class distributions.

Definition 1. The distribution for X > 0 with p.d.f. f (x) and finite mean µ is said to belong to the
Lκ-class of distributions, if

L[ f ](s) =
∫ ∞

0
e−sx fX(x)dx ≤

(
1 +
µs
κ

)−κ
.

The p.d.f. of a log-normal distribution of a random variable X can be written as fX(x; γ, ς) =
ς
√

2πx
e−

(ς log(γx))2

2 [31] with mean E[X] = 1
γ

exp
(

1
2ς2

)
and variance var[X] = 1

γ2 e
1
ς2

(
e

1
ς2 − 1

)
. The gamma

distribution with mean value µG and shape parameter κ has the variance expression vG = µ
2
G/κ. We

compare a log-normal distribution with a gamma distribution with equal mean values and let µG =
1
γ

exp
(

1
2ς2

)
. The condition var[X] ≤ µ2

G/κ becomes e
1
ς2 ≤ 1 + 1

κG
. Immediately following Proposition

3.4 in [30], if ς−2 ≤ log
(
1 + 1

κ

)
, the log-normal distribution belongs to the Lκ-class.

Applying the above to ξ(z) with mean µ = 1, then vG = 1/κ, the condition ς−2 ≤ log
(
1 + 1

κ

)
is

v ≤ vG and the inequality (2.16) holds even though LLogN[ξ](s) does not have explicit expression. Since
C(t) =

[
L[ξ](rt)

]−1 , it implies that if one compares two growth curves CIogN(t) and CGAM(t), generated
by a frailty model with random effect distribution ξ(z) chosen from a log-normal distribution with
variance v and from a gamma distribution with variance vG, respectively, if v ≤ vG, CIogN(t) ≥ CGAM(t).

With respect to the benchmark vG = 1, of the three distributions for ξ(z), when E(z) = 1 and
variance var[z] = v ≤ 1, they all belong to the L1−class satisfying L[ξ](s) ≤ (1 + s)−1 . This gives
C(t) =

[
L[ξ](rt)

]−1
≥ 1 + rt. We can add the Weibull distribution for ξ(z) into this class because [30]

has also shown that the Weibull distribution with E(z) = 1 and variance var[z] = v ≤ 1 belongs to the
L1−class. Therefore, for four distributions for ξ(z): the gamma, the inverse-Gaussian, the log-normal
and the Weibull distribution, when E(z) = 1 and variance var[z] = v ≤ 1, C(t) =

[
L[ξ](rt)

]−1 satisfies
1 + rt ≤ C(t) < ert.

It is worth noting that a power-law sub-exponential diffusion growth has been demonstrated on the
recent COVID-19 epidemic (for example in [32–36]).

3. Discussion

Most popular compartmental epidemic models treat populations as homogeneous, with only a few
key differences considered, such as age, gender, and location [7]. However, capturing all the factors
that influence the transmission dynamics of infectious diseases in these models is practically
impossible. This is partly because some relevant factors might be unknown, a challenge frequently
encountered in epidemiology. Our analysis employs the frailty model from survival analysis, offering
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a robust framework for addressing this issue. This model is suitable for incorporating unobserved
heterogeneity into the study of epidemic growth dynamics, without the need to define the specific
mechanisms. By doing so, it allows us to explore the dynamic impacts of these unaccounted-for
variables on disease transmission, providing insights that are not obtained from conventional models.

The frailty model has found increasing use across various applications, notably in epidemiology.
In our study, we leverage the concept of frailty to provide a straightforward explanation for the
observed diversity in the early growth dynamics of epidemics across different infectious diseases [15].
This approach allows us to delve into the phenomenon of sub-exponential epidemic growth by
acknowledging the presence of unseen internal and external factors. These factors contribute to
individual-level heterogeneity, a complexity that traditional mechanistic frameworks struggle to fully
encompass.

The essence of the frailty framework lies in its ability to capture information about elusive
individual heterogeneity through the structure of conditional hazards and the distribution of frailty (or
heterogeneity) among individuals. However, a significant challenge we face is that of identifiability.
Specifically, the hazard function (2.11) when the population arises from a random mixture of
heterogeneous individuals involves a baseline hazard h0(t) and a random effect distribution ξ(z). Thus,
different combinations of h0(t) and ξ(z) may produce the same marginal hazard rate h(mixed)(t). To
overcome this issue, we propose limiting the baseline hazard rate to a constant value, h0(t) = r and
also confining ξ(z) to a specific family of distributions, such as the gamma distribution.

By incorporating individual unobserved heterogeneity into standard mechanistic compartmental
epidemic models through the frailty framework from survival analysis offers a significant opportunity
to understand the consequences of heterogeneity on infectious disease dynamics and control.
Moreover, the use of different statistical distributions to represent frailty highlights the flexibility and
robustness of our approach. The connection to previous work [28, 29] further underscores the
relevance and potential of incorporating heterogeneity in epidemic modeling. For instance,
Novozhilov (2008) examined the spread of epidemics in a closed heterogeneous population by
introducing a model that incorporates individual variability in susceptibility and infectivity through an
initial Gamma distribution. He demonstrated that this variability leads to power-law sub-exponential
growth, highlighting how heterogeneity can significantly alter epidemic trajectories.

While incorporating individual heterogeneity into epidemic models enhances their accuracy and
predictive power, it also increases their complexity. This complexity can pose challenges in terms of
model availability and computational feasibility. Therefore, a careful balance must be struck between
the level of detail included and the practical utility of the model. Our approach aims to provide a
nuanced understanding of epidemic dynamics through the concept of frailty, while maintaining a level
of simplicity that ensures the model’s applicability and ease of use.

In this paper we have distinguished the growth rate r as a scale parameter of time in the growth
curve function from the instantaneous growth function r(t) given in (2.1). Importantly, our work here
and a recent study [37] suggests that mathematical analyses that rely on the integration of mechanistic
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epidemic models and the frailty model are often feasible. For instance, in [37] authors incorporated
the frailty framework into mechanistic models to explore the impact of individual variability in the
level of compliance on a control intervention. Immediate research in this direction include studies that
extend specific mechanistic models with the frailty framework to better understand the impact of
individual unobserved heterogeneity on estimates of the reproduction number, epidemic size,
stochastic extinction as well as the accuracy of epidemic forecasts.

The proposed frailty model provides a comprehensive mathematical framework to incorporate
unobserved heterogeneity into epidemic growth models. By doing so, it bridges the gap between
phenomenological observations and mechanistic theories, offering a more nuanced understanding of
epidemic spread. This approach aligns with related work in the field, such as Novozhilov (2008) [28],
and suggests promising directions for future research in modeling epidemic heterogeneity.

In summary, we demonstrate how the variability in early epidemic growth, ranging from
sub-exponential to exponential, can be mathematically derived by incorporating individual
unobserved heterogeneity into simple mechanistic models. This is achieved using the frailty model
from survival analysis. By adopting the standard assumption that heterogeneity is gamma-distributed,
we have derived a generalized growth equation based on the variance of the frailty distribution. These
findings are in line with previous work [6], emphasizing the importance of including detailed
individual-level characteristics, including dynamic contact networks, in transmission models to aim to
capture sub-exponential epidemic growth dynamics.
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Appendix: Order of variability of non-negative random variables

If T1 and T2 have equal mean value µ1 = µ2 (should they exist), a general description of variability
is based on “marjorization”. Let f1 and f2 are the corresponding p.d.f. for T1 and T2, the verbal
description for T2 being more dispersed (spread out) than T1 is reflected in Figure A1 about the change
of signs between. f1 and f2 and their corresponding survival functions F1 and F2.

Figure A1. Verbal and graphic presentation for the convex order showing that T2 is more
“spread out” than T1. This figure explains the concept of the convex order and how it relates
to the variability in the distribution of infectious periods.

The verbal and graphic description gives the following definition:

Definition 2. T1 ≤
cv

T2 if and only if µ1 = µ2 plus the following two statements:

1) f2(x) − f1(x) has two sign changes and the sign sequence is: +,−,+ (see Figure A1).
2) F1(x) − F2(x) has one sign change and the sign sequence is: +,− (see Figure A1).

The above definition is verbal and has been proven to be equivalent to the following definition in
mathematical terms:
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Definition 3. T1 ≤
cv

T2 if E[Ψ(T1)] ≤ E[Ψ(T2)] for all convex functions Ψ(x) for which these

expectations exist.

Therefore, the order T1 ≤
cv

T2 is called the convex order.

1) The convex order implies the ordering according to variance var(T ) = E[(T − µ)2] because x2 is
a convex function.

2) It also implies the ordering according to the Laplace transform E[e−sT ] for all s > 0, because e−sx

is a convex function.
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