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Abstract: We considered predator-prey models which incorporated both an Allee effect and a new fear
factor effect together, and where the predator predated the prey with a Holling type I functional response.
We started off with a two-dimensional model where we found possible equilibria and examined their
stabilities. By using the predator mortality rate as the bifurcation parameter, the model exhibited
Hopf-bifurcation for the coexistence equilibrium. Furthermore, our numerical illustrations demonstrated
the effect of fear and the Allee effect on the population densities, and we found that the level of fear had
little impact on the long-term prey population level. The population of predators, however, declined as
the fear intensity rose, indicating that the fear effect might result in a decline in the predator population.
The dynamics of the delayed system were examined and Hopf-bifurcation was discussed. Finally, we
looked at an eco-epidemiological model that took into account the same cost of fear and the Allee
effect. In this model, the prey was afflicted with a disease. The prey was either susceptible or infected.
Numerical simulations were carried out to show that as the Allee threshold rose, the uninfected prey
and predator decreased, while the population of infected prey increased. When the Allee threshold hit a
certain value, all populations became extinct. As fear intensity increased, the population of uninfected
prey decreased, and beyond a certain level of fear, habituation prevented the uninfected prey from
changing. After a certain level of fear, the predator population went extinct and, as a result, the only
interaction left was between uninfected and infected prey which increased disease transmission, and so
the infected prey increased. Hopf-bifurcation was studied by taking the time delay as the bifurcation
parameter. We estimated the delay length to preserve stability.
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1. Introduction and motivation

Ecologists have observed the prey-predator interaction cycle with great interest. In past, they believed
that the prey population declined due to direct killing by predators. In recent years, they realized through
field studies that the mere presence of predators affects the growth of the prey population. The effect of
stress in the reduction of the prey population is more powerful than direct killing. It has been pointed out
that environmental stress affects the physiology and behavior of the prey to such an extent that it causes
delayed mammal reproduction. Fear of the presence of predators, social life, competition for food, and
similar factors are all causes that can lead to a reduction in mammal reproduction [1, 2]. For small size
prey such as sparrows and bank voles, the anti-predation response influence on the prey population is
much higher [2–4].

Prey species where the physical prey size is small make coordinated feeding groups and avoid being
detected by predators. They are vulnerable to a greater range of predators and cannot defend themselves
or outrun predators. On the other hand, prey species where the physical prey size is large tend to form
a large feeding group. They can defend themselves against predators and are more likely to depend
upon group defense, group alertness, self-defense within a group, and speed to avoid being killed by a
predator. All prey of either small or large physical size respond to predation risk and take a variety of
anti-predation measures. They change habitat, practice vigilance whilst foraging, change their behavior
whilst mating, and also undergo physiological changes [5,6]. It has been observed biologically, based on
experimental studies, that mammals suppress breeding in response to strong predation pressure [4, 7–9].
This has a long-term effect on the population of prey. The nonbreeding individuals have a better chance
of avoiding predation than those who are breeding. Predation induced breeding suppression affects
the prey-predator dynamics. Individuals who do not breed experience less predation because during
pregnancy individuals are less active and can be captured more easily.

There have been quite a few previous attempts to incorporate the effect of fear of the predator into
predator-prey systems. Kumar and Dubey [10] studied a mathematical model to investigate the fear effect
and prey refuge in a predator-prey system with gestation time delay. Their analysis demonstrated that the
fear effect in the prey population induces Hopf-bifurcation. The combined effects of fear and group defense
in a fractional order prey-predator system are investigated by Das and Samanta [11]. Wang et al. [12]
examined a predator-prey model by incorporating the cost of fear of the predator on prey. Their analysis
found that a rise in fear stabilizes the system and a drop in fear leads to bistability. Wang and Zou [13]
incorporated maturity after a delay and adaptive defense in the predator-prey fear model. They found that a
higher predator population leads to robust anti-predator defense and higher predation risk implies a weak
anti-predatory defense. Mondal et al. [14] studied a predator-prey system with a fear of prey and alternative
food available for predators. According to their findings, alternative food to predators lowers the attack on
prey and thus helps in the growth of both populations. Zhang et al. [15] and Wang et al. [16] incorporated
prey refuge with fear effect. Duan et al. [17] investigated that maturation delay in a fear model leads to
Hopf-bifurcation. The fear amongst the prey can stabilize as well as destabilize the population model
as investigated by Pal et al. [18]. Pal et al. [19] observed that the fear effect induced by cooperative
hunting destabilizes the system. Das and Samanta [20] examined a stochastic model where fear is in a
prey population and an alternative food source is available for predators.

A lot of papers build on the previous work of Wang et al. [12] to introduce fear of the predator into
the predator-prey system. If N represents the total population size and P the total predator population
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size, their fear function reduced the growth rate of the prey population by a multiplicative factor

1
1 + kP

,

so in their model the growth rate of the prey population is given by

rN
1 + kP

,

where r represents the per capita birth rate of the prey population in the absence of the predator. This
fear function was used by many authors [21–25]. However, it has the drawback that as P becomes very
large (in other words, the predator population gets very large), the growth rate of the prey population
tends to zero. This is not ecologically true since the prey will become habituated to coexist with the
predator, and as the size of the predator population increases the growth rate will reduce, but not to zero.

Sarkar and Khajanchi [26] corrected this by introducing a fear function

f (α, η, P) = η +
α(1 − η)
α + P

,

where α represents level of fear and η ∈ [0, 1] represents the minimum cost of fear. They incorrectly
state that as the level of fear, α, increases the fear function decreases. Although ecologically this should
be true, with their fear function it is mathematically not true, as the fear function increases as the level
of fear increases. We make a minor redefinition to the model of Sarkar and Khajanchi and define our
fear function to be

f (α1, η, P) = η +
1 − η

1 + sα1 P
,

where α1 is a parameter and sα1 is the level of fear. This fear function decreases as the level of fear
increases. The fear function which we are using is more ecologically sound than the fear function of
of Wang et al. [12], because after a certain level of fear, the prey becomes habituated to live with the
predators. Thus, it reduces its reproduction to a certain extent but does not stop it completely.

The paper is structured as follows. In Section 2 we first outline the full eco-epidemiological model
that we will be studying. The model combines an Allee effect and the modified fear function. There
is a disease spreading amongst the prey, consequently there are three population classes, susceptible
prey, infected prey, and predators. We also introduce the full eco-epidemiological model with a time
delay corresponding to the delayed effect of predators consuming prey on predator reproduction. In
Section 3 we will focus on and analyze the model with no disease present so that it is a predator-prey
model with no disease amongst the prey. There is no time delay in the model discussed in this section.
Section 4 analyzes the model with no disease present and a time delay. Section 5 will return to the
full eco-epidemiological model with disease amongst the prey but without a time delay, and Section 6
analyzes this model with a time delay. This includes finding the length of the time delay to preserve the
stability. In all of these models the reproduction of the prey is reduced due to our modified fear function
as well as Allee effects. A final conclusion section summarizes and discusses the paper.
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2. Formulation of the eco-epidemiological model

In this section we will outline the full eco-epidemiological model that we will be studying. All prey
are born susceptible. The reproduction rate of the prey depends on the combined effects of fear of the
predator together with the strong Allee effect. The function g(α1, η, y) = η + α1(1−η)

α1+y represents the cost
of fear of predators on the reproduction of prey [26]. η ∈ [0, 1] represents the minimum cost of fear and
α1 is a parameter for which 1

α1
= sα1 is the fear factor. In the case of a high predator population, the

prey survives under the minimum fear η, and after a certain level of fear, the prey becomes habituated to
living with the predators.

In the full eco-epidemiological model, we will study a predator-prey model where the prey is infected
with some disease. We divide the total prey population into two classes called susceptible prey and
infected prey. Let u1(t1), u2(t1), and v(t1) be the uninfected prey density, infected prey density, and
predator density, respectively at time t1. We will formulate the model using the following assumptions:

(a) The uninfected prey population grows logistically when there is no predator.
(b) The susceptible prey population u1(t1) becomes infected when it comes in contact with infected

prey u2(t1). This infection follows the nonlinear incidence rate. If we assume that the incidence
rate is given by the law of mass action β1u1 f (u2), then f (u2), will increase as u2 increases, which is
not realistic. Lui et al. [27] investigated many reasons for taking a nonlinear incidence rate rather
than a bilinear one.

(c) The infected prey population will remain infected and will not recover.
(d) Infected prey will not be able to reproduce because it has the disease. Only uninfected prey species

have the capability to reproduce.
(e) The predator consumes infected prey more than susceptible prey because infected prey is easily

catchable. For example, wolves attack moose more successfully when they are heavily infected by
Echinococcus granulosus [28]. Hence, we assumed that the consumption rate p1 of infected prey
is more than the consumption rate b1 of uninfected prey.

(f) The conversion rates b1 and p1 represent the reproduction of predators for capturing each uninfected
and infected prey species, respectively.

(g) All the parameters used in the model are positive and u1(0) > 0, u2(0) > 0, and v(0) > 0.

We will investigate the following ecological issues through our model:

(1) The effect of predator fear on the stability of the system.
(2) The level of infected prey.

Using the above assumptions, we will formulate a mathematical model as below:

du1

dt1
= ru1

(
1 −

u1 + u2

k

)
(u1 − θ1)

(
η +

1 − η
1 + sα1v

)
−

β1u1u2

c1 + δu2
− a1u1v,

du2

dt1
=

β1u1u2

c1 + δu2
− g1u2v − µ1u2,

dv
dt1
= b1u1v + p1u2v − m1v,

(2.1)

where u1 represents the susceptible prey population, u2 represents the infected prey population, v
represents the infected predator population, k is the carrying capacity in the absence of infected prey, θ1
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is the Allee threshold, η represents the minimum cost of fear, α1 is a parameter for which 1
α1
= sα1 is the

fear factor, β1 represents the the disease transmission coefficient, c1 is the half saturation constant, δ is
the predator preference rate of u2, and a1 represents the predation rate between susceptible prey and
predator. g1 represents the predation rate between infected prey and predator, µ1 is the total per capita
death rate of infected prey which includes both natural death and disease induced additional mortality,
b1 is the consumption rate of uninfected prey, p1 represents the consumption rate of infected prey, and
m1 represents the predator per capita natural mortality rate.

We additionally assume that

(h) u1(0) + u2(0) < k.

Note that if there are no infected prey, then u1(t), the total size of the susceptible prey population, will
always be less than the carrying capacity. So, as normally the disease will be introduced by only a
few infected prey, it makes sense to assume that u1(0) + u2(0) < k, which ensures that u1(t) + u2(t) < k
for all time.

We consider in our study the following fear function to measure the cost of fear:

g(α, η, P) =
(
η +

α(1 − η)
α + P

)
=

η + 1 − η
1 + 1

α
P

 = (
η +

1 − η
1 + sαP

)
,

where 1
α
= sα is the nondimensional form of the fear factor. Figure 1 demonstrates that the fear function

decreases as the level of fear sα increases. Also, as the predator population increases, the fear function
declines. Because the fear factor multiplies with prey growth rate in model (3.1), the growth of the prey
population will be low when the value of the fear function is low, that is, when the predator population
is high.
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Figure 1. Significance of sα, P, and fear function.

To make the model simple, we non-dimensionalize model (2.1) by taking x = u1
k , y = u2

k , z = v
k ,

t = t1kr, θ = θ1
k , β = β1

kr ,c = c1
k , a = a1

r , g = g1
r , µ = µ1

kr , b = b1
r , p = p1

r , m = m1
kr , and α = α1

k as the
parameter for which 1

α
= sα is the fear factor. So, model (2.1) in nondimensional form becomes:
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dx
dt
= x(1 − x − y)(x − θ)

(
η +

1 − η
1 + sαz

)
−

βxy
c + δy

− axz,

dy
dt
=

βxy
c + δy

− gyz − µy,

dz
dt
= bxz + pyz − mz.

(2.2)

In Eq (2.2), axz is the total rate at which susceptible prey are consumed by predators, and bxz is the
total rate at which predators increase due to the consumption of susceptible prey. So a is the per capita
rate at which a single predator attacks and consumes each susceptible prey, and b is the additional per
capita rate at which each predator reproduces due to this consumption. As predators are typically much
larger than prey, one predator consuming one prey is unlikely to give the predator sufficient energy to
reproduce an entire predator. Therefore, b ≤ a, and similarly p ≤ g. Another way to see this is that
the conversion rate of prey into predators will always be less than the rate at which predators attack
prey because some of the intake energy gained by eating prey will go to waste since it will not all be
converted into predator growth. Similar assumptions were made in [29] and [30].

We also introduce a time delay to make the model (2.1) more realistic. There is a time delay τ
between predators consuming susceptible or infected prey and the susceptible or infected prey which
has been consumed being converted into predators through reproduction. The population of predators
will grow with interactions with uninfected prey and infected prey which take place at time t − τ. Hence,
the population dynamics for the interaction of uninfected prey, infected prey, and predators can be
described by the following system of differential equations:

du1

dt
= ru1

(
1 −

u1 + u2

k

)
(u1 − θ1)

(
η +

1 − η
1 + sαv

)
−

βu1u2

c + δu2
− au1v,

du2

dt
=

βu1u2

a + δu2
− gu2v − µu2,

dv
dt
= bu1(t − τ)v(t − τ) + pu2(t − τ)v(t − τ) − mv.

(2.3)

All the variables and parameters have the same meaning as given in (2.1). After non-dimensionalizing
model (2.3) as we did in model (2.1), we get:

dx
dt
= x(1 − x − y)(x − θ)

(
η +

1 − η
1 + sαz

)
−

βxy
c + δy

− axz,

dy
dt
=

βxy
c + δy

− gyz − µy,

dz
dt
= bx(t − τ)z(t − τ) + py(t − τ)z(t − τ) − mz.

(2.4)

We now proceed to analyze this model in four cases: the model with no disease present and no time
delay, then the model with no disease present and a time delay, next the full eco-epidemiological model
but with no time delay, and finally the full eco-epidemiological model with a time delay.

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7211–7252.



7217

3. The model with no disease present and no time delay

In this section we focus on the model with no disease present and no time delay. Putting y = 0 in
Eq (2.2), we obtain

dx
dt
= x(1 − x)(x − θ)

(
η +

1 − η
1 + sαz

)
− axz,

dz
dt
= bxz − mz.

For the model with no disease present, we make the further transformations to simplify the model N = x,
P = az, α′ = α

a , T = t b
a , r0 =

b
a , and d = ma

b . Then, these equations become

dN
dT
=

1
r0

[
N(1 − N)(N − θ)

(
η +

α′(1 − η)
α′ + P

)
− NP

]
,

dP
dT
= NP − dP.

(3.1)

these are the equations which we shall work with in the remainder of this section. For notational
simplicity, we write α for α′ and t for T .

3.1. Boundedness

Theorem 1. All the solutions (N(t), P(t)) of the system (3.1) with initial conditions N(0) ≥ 0, P(0) ≥ 0
are bounded for all t > 0.

Proof. We define w = N + 1
r0

P. The derivative of w along with (3.1) is

dw
dt
=

dN
dt
+

1
r0

dP
dt
,

=
1
r0

[
N(1 − N)(N − θ)

(
η +

1 − η
1 + sαP

)
− dP

]
.

For any positive constant s, we have

dw
dt
+ sw =

1
r0

[
N(1 − N)(N − θ)

(
η +

1 − η
1 + sαP

)
− dP

]
+ sN +

s
r0

P,

≤
1
r0

[
N(1 − N)(N − θ)(η + (1 − η) − dP

]
+ sN +

s
r0

P,

≤
θ + 1

r0
N2 −

(
θ

r0
− s

)
N −

(
d
r0
−

s
r0

)
P.
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Here, N < 1, and if s = min
(
θ
r0
, d

)
, then

dw
dt
+ sw ≤

θ + 1
r0

.

Let θ+1
r0
= L. Then, the above differential inequality can be expressed in the form

dw
dt
+ sw ≤ L.

Using the theory of differential inequality for w(t), we obtain

0 < w(N, P) ≤
L
s

(1 − e−st) + w0e−st,

where w0 = w(N0, P0). We can deduce that for t → ∞, 0 < w ≤ L
s .

For any ϵ > 0, define

∆ =

{
(P,N) ∈ R2

+; N +
1
r0

P ≤
L
s
+ ϵ

}
.

This shows that the solution of the system represented by (3.1) is bounded, i.e., for every trajectory of
(3.1), there is a time t0 such that (N(t),P(t)) ∈ ∆ for all t > t0. Hence, the theorem is proved. □

3.2. Equilibrium points of the system

It can be verified that model (3.1) has four possible equilibria:

(1) The extinction equilibrium E0 = (0, 0).

(2) The axial equilibrium Eθ = (θ, 0).

(3) The axial equilibrium E1 = (1, 0).

(4) The coexistence equilibrium E∗ = (N∗, P∗), where N∗ = d and P∗ is a nonnegative root of the
quadratic equation: P∗2+σ1P∗+σ2 = 0. Define σ1 = α−η(1−d)(d−θ) and σ2 = −α(1−d)(d−θ).
By Descartes’ rule of signs, the quadratic equation has a unique nonnegative root if θ < d < 1, as
shown in Figure 2.
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Figure 2. Mutual position of the nullclines for the prey-predator system for the parameter
values r0 = 1, α = 0.2, θ = 0.2, and d = 0.64.

3.3. Stability analysis

The stability matrix (J) for system (3.1) is

(
S 1 S 2

P N − d

)

where S 1 =
1
r0

(
η + 1−η

1+sαP

)
[(1 − 2N)(N − θ) + N(1 − N)] − P

r0
and S 2 = −

1
r0

[
N(1 − N)(N − θ) α(1−η)

(α+P)2 + N
]
.

(1) E0 is locally asymptotically stable because the characteristic roots are – θ
r0
< 0 and −d < 0.

(2) The characteristic roots for Eθ are θ(1−θ)
r0

and θ − d, θ(1−θ)
r0

> 0 because 0 < θ < 1 from system (3.1).
Thus, Eθ is unstable.

(3) E1 is stable if d > 1 because the characteristic roots are – (1−θ)
r0

< 0 and 1 − d.
(4) The stability matrix for the coexistence equilibrium E∗ = (N∗, P∗) = (d, P∗) is:

J∗ =
 1

r0

(
η + 1−η

1+sαP∗

)
[−2d2 + (θ + 1)d] − 1

r0

[
d(1 − d)(d − θ)

( α(1−η)
(α+P∗)2

)
+ d

]
P∗ 0

 .
The corresponding characteristic equation is λ2 + Aλ + B = 0, where A = − 1

r0

(
η + 1−η

1+sαP∗

)
[−2d2 +

(θ + 1)d] and B = P∗
r0

[
d(1 − d)(d − θ)

( α(1−η)
(α+P∗)2

)
+d

]
. The Routh-Hurwitz criteria for the second order

system is given by: A > 0 and B > 0.
A = − 1

r0

(
η + 1−η

1+sαP∗

)
[−2d2 + (θ + 1)d] > 0 if d > θ+1

2 and because (N∗, P∗) exists for θ < d < 1,
B = P∗

r0

[
d(1 − d)(d − θ)

( α(1−η)
(α+P∗)2

)
+d

]
> 0. Therefore, (N∗, P∗) is locally asymptotically stable if

d > θ+1
2 , i.e., twice the death rate of predator is one unit higher than the Allee threshold value as

shown in Figures 3 and 4.
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Figure 3. The coexistence equilibrium point is unstable if d < θ+1
2 , r0 = 1, α = 0.2, η =

0.1, θ = 0.2, and d = 0.58. N(0) = 0.8, and P(0) = 0.2.
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Figure 4. The coexistence equilibrium point is stable if d > θ+1
2 , r0 = 1, α = 0.2, η = 0.1, θ =

0.2, and d = 0.67. N(0) = 0.8, and P(0) = 0.2.

3.4. Bifurcation analysis

We observed a transcritical bifurcation and a Hopf-bifurcation that occurs around the equilibrium
points when the parameter passes through some critical values.

3.4.1. Transcritical bifurcation

According to Sotomayor’s theorem [31], we investigate the transcritical bifurcation for the system (3.1)
taking d = d0 as the bifurcation parameter. If the following conditions are satisfied:

1) wT fd(E1, d0) = 0,

2) wT (D fd(E1, d0).υ) , 0,

3) wT D2 f (E1, d0)(υ, υ) , 0,

then the system (3.1) experiences a transcritical bifurcation at the equilibrium point E1 = (1, 0) as the
parameter d passes through the bifurcation value d = d0 = 1, where fd denotes the vector of partial
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derivatives of the components of f with respect to the scalar d and D f represents the matrix of partial
derivatives of the components of f with respect to the components of X = (N, P). Here,

D f (X) =
(∂ f1
∂N

∂ f1
∂P

∂ f2
∂N

∂ f2
∂P

)
, D2 f (X) =

 ∂2 f1
∂N∂N

∂2 f1
∂N∂P

∂2 f1
∂P∂N

∂2 f1
∂P∂P

∂2 f2
∂N∂N

∂2 f2
∂N∂P

∂2 f2
∂P∂N

∂2 f2
∂P∂P

.
υ is an eigenvector of A = D f (E1, d0) corresponding to the eigenvalue λ2 = 0 and w is an eigenvector of
AT corresponding to the eigenvalue λ2 = 0.

Theorem 2. The system (3.1) undergoes a transcritical bifurcation at the positive equilibrium E1 = (1, 0),
as the parameter d passes through the bifurcation value d = d0 = 1.

Proof. The linearized system around the equilibrium point E1 is:

J(E1) =
(
−

(1−θ)
r0

− 1
r0

0 1 − d

)
.

So J(E1, d0) =
(
−

(1−θ)
r0
− 1

r0

0 0

)
.

Let us define υ = (υ1, υ2)T and w = (w1,w2)T to be the right and left eigenvectors of λ2 = 0. Now solving
J(E1, d0)υ = 0 implies that υ =

(−υ2
1−θ , υ2

)
, and by solving JT (E1, d0)w = 0, we get w = (0,w2) where υ2,w2

are any nonzero real numbers. Now, system (3.1) can be rewritten as in the following vector form:

Ẋ = f (X),

where X = (N, P) and f (X) =
 1

r0

[
N(1 − N)(N − θ)

(
η + 1−η

1+sαP

)
− NP

]
NP − dP

 .
Taking the derivative of f (X) with respect to d, we get fd(X) =

(
0
−P

)
, then f(E1,d0)(X) =

(
0
0

)
. Hence

wT f(E1,d0)(X) = 0. Next, taking the derivative of fd(X) with respect to X = (N, P)T , we get

D fd(X) =
(
0 0
0 −1

)
so that D f(E1,d0)(X) =

(
0 0
0 −1

)
.

We have wT (D f(E1,d0)(X).υ) = −w2υ2 , 0. Furthermore,

D2 f (X) =
(
Q1 Q2 Q3 Q4

0 1 1 0

)

where Q1 =
1
r0

(
η +

1 − η
1 + sαP

)
[−2(N − θ) + 2(1 − N) − 2N],

Q2 =
1
r0

(
−
α(1 − η)
(α + P)2

)
[(1 − N)(N − θ) − N(N − θ) + N(1 − N)] −

1
r0
,

Q3 = −
1
r0

(
α(1 − η)
(α + P)2

)
[(1 − N)(N − θ) − N(N − θ) + N(1 − N)] −

1
r0
,

Q4 =
2
r0

(
α(1 − η)
(α + P)3

)
[N(1 − N)(N − θ)].
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Hence,

D2 f(E1,d0)(X) =
( 1

r0
(−2(1 − θ) − 2) 1−η

r0α
(1 − θ) − 1

r0
−

1−η
r0α

(−(1 − θ)) − 1
r0

0
0 1 1 0

)
,

D2 f(E1,d0)(X)(υ, υ) =
(
− 2

r0
(2 − θ)υ1υ1 +

(1−η
r0α

(1 − θ) − 1
r0

)
υ1υ2 −

[ 1−η
r0α

(−(1 − θ)) − 1
r0

]
υ2υ1

υ1υ2 + υ2υ1

)
,

where (υ, υ) is a tensor product of (υ1, υ2)T , so wT D2 fE1,d0(X)(υ, υ) = (υ1υ2 + υ2υ1)w2 = 2υ1υ2w2 , 0.
Therefore, according to Sotomayor’s theorem [31] for local bifurcation, system (3.1) has a transcritical
bifurcation at steady-state E1 when the parameter d passes through the bifurcation value d0 = 1.

□
3.4.2. Hopf-bifurcation

Theorem 3. Any system of the form

Ṅ = f (N, P; d),
Ṗ = g(N, P; d),

(3.2)

that has an equilibrium (N∗, P∗) for the parameter d whose linearization has eigenvalues λ1,2 =

γ(d) ± iβ(d) such that γ(d) = 0, β(d) = β > 0 and satisfying the following condition:

d(γ)
d(d)

∣∣∣∣∣
d=d
, 0,

experiences Andronov-Hopf bifurcation.

Proof. From the previous analysis, we know that the two equilibrium points (0, 0) and (1, 0) have no
complex eigenvalues. Therefore, we use the coexistence fixed point (N∗, P∗) to check if the conditions
stated in the above theorem apply to the model.

The possibility of the Hopf-bifurcation at E∗ = (N∗, P∗) has been analyzed by taking d as a bifurcation
parameter and keeping the rest of the parameters as constants. To begin, we investigate the linearization
condition, which is

J∗ =

 1
r0

(
η + 1−η

1+sαP∗

)
[−2d2 + (θ + 1)d] − 1

r0

[
d(1 − d)(d − θ)

(
α(1−η)
(α+P∗)2

)
+ d

]
P∗ 0

 . (3.3)

The eigenvalues of (3.3) in terms of the trace and determinant are given by

λ1,2 =
trJ ±

√
tr2J − 4 detJ

2
,

trJ =
1
r0

(
η +

1 − η
1 + sαP∗

)
[−2d2 + (θ + 1)d].
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Let γ(d) = trJ
2 . For the condition of the theorem to be satisfied, we try to find a value d = d such that

γ(d) = 0.

γ(d) =
1

2r0

(
η +

1 − η
1 + sαP∗

)
[−2d

2
+ (θ + 1)d] = 0, which implies that d =

θ + 1
2

.

Thus, there exists a value d = d at which γ(d) = 0, or similarly the real part of the eigenvalues is 0.

Next, we consider dγ(d)
d(d)

∣∣∣∣
d=d

. We have γ(d) = 1
2r0

(
η + 1−η

1+sαP∗

)
[−2d2 + (θ + 1)d].

dγ(d)
d(d)

=
1

2r0

(
η +

1 − η
1 + sαP∗

)
(−4d + (θ + 1)) +

1
2r0

[−2d2 + (θ + 1)d]
α(1 − η)
(α + P)2

dP
dd
,

dγ(d)
d(d)

∣∣∣∣
d=d
=

1
2r0

(
η +

1 − η
1 + sαP∗

)
(−(θ + 1)) , 0.

(3.4)

Therefore, the condition dγ(d)
d(d)

∣∣∣∣
d=d
, 0 is satisfied.

Now we show that the complex part of the eigenvalues exist at d = d and they are not zero. Let
iβ(d) = ± i

√
4detJ−tr2 J

2 . We know that at d, trJ = γ(d) = 0, which implies that tr2J = 0. Therefore

iβ(d) = ±i
√

det J(d).

Next, we find detJ(d):

detJ(d) = P∗
r0

[
d(1 − d)(d − θ)

(
α(1−η)
(α+P∗)2

)
+ d

]
> 0 as E∗ only exists if θ < d < 1.

detJ(d) = P∗
r0

[
d(1 − d)(d − θ)

(
α(1−η)
(α+P∗)2

)
+ d

]
> 0. Therefore at d = d, β(d) > 0.

Hence, the conditions for the existence of the Hopf-bifurcation are satisfied. □

Figure 5. The Hopf-bifurcation (HB) at the coexistence equilibrium E∗ and the transcritical
bifurcation (BP) at E1. The parameters are r0 = 1, α = 0.2, η = 0.1, and θ = 0.2. N(0) = 0.7,
and P(0) = 0.1 (the red color shows that the equilibrium is stable while the black color shows
that the equilibrium is unstable, and the green color shows the periodic solution).
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We run the bifurcation diagram using XPPAUT software and using the parameter d as the bifurcation
parameter. Figure 5 shows the Hopf-bifurcation at the coexistence equilibrium E∗ when d = 1+θ

2 and the
transcritical bifurcation at the equilibrium E1 when d = 1.

3.5. Effect of cost of fear sα and the Allee threshold effect θ

It is clear from Figure 6 that as the level of fear sα increases, the initial short-term decrease of the
prey population becomes larger. However, after a long period of time, the level of fear has no effect on
the long-term level of the prey population as the prey become habituated to the presence of the predator.
However, as the level of fear increases, the long-term level of the predator population decreases.
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Figure 6. The effect of the fear parameter on the prey population and predator population.
The parameters are r0 = 1, η = 0.1, θ = 0.2, and d = 0.67. N(0) = 0.8, and P(0) = 0.2.

The existence of the coexistence equilibrium point E∗ = (N∗, P∗) implies that θ < d < 1. If the Allee
threshold θ is small, the coexistence equilibrium is stable when it exists and the Allee effect has no
impact on the long-term prey density, as shown in Figure 7. Moreover, for small values of the Allee
threshold, the long-term level of the predator population decreases. However, as the Allee threshold
increases further, both the long-term predator and long-term prey populations go extinct.
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Figure 7. The effect of Allee threshold effect on the prey population and predator population.
The parameters are r0 = 1, α = 0.2, η = 0.1, and d = 0.67. N(0) = 0.8, and P(0) = 0.2.
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4. Model with no disease and a time delay

Next, we consider the model with no disease present and a time delay. Putting y = 0 in Eq (2.4) and
transforming as in Eq (3.1), we get:

dN
dt
=

1
r0

[
N(1 − N)(N − θ)

(
η +

α(1 − η)
α + P

)
− NP

]
,

dP
dt
= N(t − τ)P(t − τ) − dP.

(4.1)

At equilibrium N = d. Let N = N + u and P = P + v where u and v are very small perturbations. Then
substituting into the second equation of (4.1), we deduce that

dv
dt
= [N + u(t − τ)][P + v(t − τ)] − d[P + v],

= (N P − dP) − dv + Nv(t − τ) + Pu(t − τ).

Let v = Beλt and u = Aeλt. Substituting into the equations and dividing by eλt,

A[Pe−λτ] + B[−d + Ne−λτ − λ] = 0.

Now, f (N, P) =
1
r0

(
η +

1 − η
1 + sαP

)
[N2 − N3 − Nθ + N2θ] −

NP
r0
,

∂ f
∂N
=

1
r0

(
η +

1 − η
1 + sαP

)
[2N − 3N2 − θ + 2Nθ] −

P
r0
= L, say,

∂ f
∂P
= −

1
r0

[
N(1 − N)(N − θ)

α(1 − η)
(α + P)2 + N

]
= M, say.

The stability matrix is
(
L − λ M
Pe−λτ −d + Nde−λτ − λ

)
, where N = d. The corresponding characteristic

equation is:

λ2 + a1λ − a2 − de−λτ(λ + b1) = 0,

where a1 = d − L, a2 = Ld and b1 =
PM
d
− L.

(4.2)

Let λ = σ + iρ. Substituting into the characteristic equation and expanding,

σ2 − ρ2 + 2iσρ + a1σ + ia1ρ − a2 = de−τσ[cos(τρ) − i sin(τρ)][(σ + b1) + iρ].

Equating real and imaginary parts,
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σ2 − ρ2 + a1σ − a2 = de−τσ[(σ + b1) cos(τρ) + ρ sin(τρ)],
2σρ + a1ρ = de−τσ[−(σ + b1) sin(τρ) + ρ cos(τρ)].

(4.3)

At τ = τ∗1, σ(τ∗1) = 0,

ρ∗21 + a2 = −d[b1 cos(τ∗1ρ
∗
1) + ρ∗1 sin(τ∗1ρ

∗
1)],

a1ρ
∗
1 = d[−b1 sin(τ∗1ρ

∗
1) + ρ∗1 cos(τ∗1ρ

∗
1)].

(4.4)

Squaring and adding the two parts of (4.4), we obtain

ρ∗41 + ρ
∗2
1 (a2

1 + 2a2 − d2) + a2
2 − d2b2

1 = 0. (4.5)

Let ξ = ρ∗21 , then (4.5) reduces to

φ(ξ) = ξ2 + ξ(a2
1 + 2a2 − d2) + a2

2 − d2b2
1 = 0. (4.6)

If ρ∗21 = ξ is the last positive single root of (4.6), then

dφ
dξ

∣∣∣∣
ξ=ρ∗21

= 2ρ∗21 + a2
1 + 2a2 − d2 > 0. (4.7)

Using (4.4), after removing sin(τ∗1ρ
∗
1) terms, we get

τ∗1 =
1
ρ∗1

cos−1
[
ρ∗21 (b1 − a1) + b1a2

−d(b2 + ρ∗21 )

]
. (4.8)

Using the analytic version of the implicit function theorem [32] to establish Hopf-bifurcation at τ = τ∗1,
we need to show that

dσ
dτ

∣∣∣∣
τ=τ∗1

, 0. (4.9)

Differentiate (4.3) with respect to τ for ρ(τ∗1) = ρ∗1 and σ(τ∗1) = 0, and we get

dσ
dτ

[ a1 + dτ(b1 cos(τ∗1ρ
∗
1)+ρ∗1 sin(τ∗1ρ

∗
1)) − d cos(τ∗1ρ

∗
1) ]

+
dρ
dτ

[ − 2ρ∗1 + db1τ
∗
1 sin(τ∗1ρ

∗
1) − d sin(τ∗1ρ

∗
1) − dτ∗1ρ

∗
1 cos(τ∗1ρ

∗
1) ]

= ρ∗1
[
db1 sin(τ∗1ρ

∗
1) + dρ∗1 cos(τ∗1ρ

∗
1)
]
,

= ρ∗1(a1ρ
∗
1) = a1ρ

∗2
1 ,

dσ
dτ

[ 2ρ∗1 − dτ∗1(b1 sin(τ∗1ρ
∗
1) − ρ∗1 cos(τ∗1ρ

∗
1)) + d sin(τ∗1ρ

∗
1) ]

+
dρ
dτ

[ a1 + db1τ
∗
1 cos(τ∗1ρ

∗
1) − d cos(τ∗1ρ

∗
1) + dτ∗1ρ

∗
1sin(τ∗1ρ

∗
1) ]

= ρ∗1
[
−db1 cos(τ∗1ρ

∗
1) − dρ∗1 sin(τ∗1ρ

∗
1)
]
,

= ρ∗1(ρ∗21 + a2).

(4.10)
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Let R = a1 + dτ∗1(b1 cos(τ∗1ρ
∗
1) + ρ∗1 sin(τ∗1ρ

∗
1)) − d cos(τ∗1ρ

∗
1)

and S = −2ρ∗1 + dτ∗1b1 sin(τ∗1ρ
∗
1) − d sin(τ∗1ρ

∗
1) − dτ∗1ρ

∗
1 cos(τ∗1ρ

∗
1).

Equation (4.10) can be expressed as

R
dσ
dτ
+ S

dρ
dτ
= a1ρ

∗2
1 ,

−S
dσ
dτ
+ R

dρ
dτ
= ρ∗1(ρ∗21 + a2).

(4.11)

Solving (4.11) for dσ
dτ , we get

dσ
dτ
=

Ra1ρ
∗2
1 − S ρ∗1(ρ∗21 + a2)

R2 + S 2 ,

=
1

R2 + S 2 [[a1 + dτ∗1(b1 cos(τ∗1ρ
∗
1) + ρ∗1 sin(τ∗1ρ

∗
1)) − d cos(τ∗1ρ

∗
1)]a1ρ

∗2
1

[−2ρ∗1 − dτ∗1b1 sin(τ∗1ρ
∗
1) − d sin(τ∗1ρ

∗
1) − dτ∗1ρ

∗
1 cos(τ∗1ρ

∗
1)]ρ∗1(ρ∗21 + a2)],

=
1

R2 + S 2 [ρ∗1(a1 − τ
∗
1(ρ∗21 + a2) − d cos(τ∗1ρ

∗
1))a1ρ

∗
1

− ρ∗1(−2ρ∗1 − τ
∗
1(a1ρ

∗
1) − d sin(τ∗1ρ

∗
1))(ρ∗21 + a2)],

=
ρ∗1(a2

1ρ
∗
1 + 2ρ∗1(ρ∗1 + a2) − d2ρ∗1)

R2 + S 2 =
ρ∗21 (2ρ∗21 + (a2

1 + 2a2 − d2))
R2 + S 2 .

Using inequality (4.7), we obtain

dσ
dτ

∣∣∣∣
τ=τ∗1

=
ρ∗21

dφ
dξ

R2 + S 2 > 0.

Figure 8 shows the Hopf-bifurcation at τ = τ∗1.
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Figure 8. Hopf bifurcation of model (4.1) with respect to τ. The parameters are r0 = 1, α =
0.2, η = 0.1, θ = 0.2, and d = 0.67. N(0) = 0.8, and P(0) = 0.1.
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5. Eco-epidemiological model with no time delay

We now return to the full eco-epidemiological model with no time delay. Recall that the non-
dimensionalized form of this is Eq (2.2):

dx
dt
= x(1 − x − y)(x − θ)

(
η +

1 − η
1 + sαz

)
−

βxy
c + δy

− axz,

dy
dt
=

βxy
c + δy

− gyz − µy,

dz
dt
= bxz + pyz − mz.

5.1. Boundedness

Propsition: The trajectory of system (2.2) is bounded.

Proof. Let s = x + y + z. Differentiating along the solution of model (2.2), we get

ds
dt
=

dx
dt
+

dy
dt
+

dz
dt
,

= x(1 − x − y)(x − θ)
(
η +

1 − η
1 + sαz

)
− (a − b)xz − (g − p)yz − µy − mz.

For any positive constant P, we have

ds
dt
+ Ps ≤ x(x − θ) + Px + Py + Pz − mz,

since a ≥ b and g ≥ p.

ds
dt
+ Ps ≤ 1 + P − (m − P)z,

as u1 + u2 < k for all time implies that x + y < 1.

Now if m > P, then

ds
dt
+ Ps ≤ (1 + P).

Let (1 + P) = M, therefore we have

ds
dt
+ Ps ≤ M.

Using the theory of differential inequality for s(t), we get

0 < s(x, y, z) ≤
M
P

(1 − e−Pt) + s0e−Pt,

where s0 = (x0, y0, z0). It can be deduced that limt→∞sup s ≤ M
P , independently of the initial conditions.

□
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Corollary: If ϵ > 0, then the region

D =
{
0 ≤ x, 0 ≤ y, 0 ≤ z, x + y ≤ 1, x + y + z ≤

M
P
+ ϵ

}
is an invariant region for model (2.2).

5.2. Positivity of Solutions

Since model (2.2) deals with animals populations, it is necessary to show that the prey and predator
population will remain positive for all time.

x(t) = x(0)exp
{∫ t

0

[
(1 − x − y)(x − θ)

(
η +

1 − η
1 + sαz

)
−

βy
c + δy

− az
]

du
}
,

y(t) = y(0)exp
{∫ t

0

[
βx

c + δy
− gz − µ

]
du

}
,

z(t) = z(0)exp
{∫ t

0
[bx + py − m]du

}
.

Hence, all solutions (x(t), y(t), z(t)) will remain positive for all time with positive initial values, that is,
(x(0), y(0), z(0)) ∈ R3

+.

Before analyzing the model (2.2), we define two threshold quantities:

(1) The infection reproduction number r0 =
β

cµ . This is the product of the average infectious duration
1
µ

and β

c , the number of secondary infections per unit time at the disease-free equilibrium in a prey
population with no predators. If r0 < 1, disease will not invade a disease-free equilibrium in the
absence of predators. If r0 > 1, disease will invade such a population.

(2) The predator reproduction number is rd =
b
m . This is the product of the predator life expectancy

1
m and the rate b at which each predator reproduces in a prey population at equilibrium with no
disease present. If rd < 1, the predator cannot invade such a population, whereas if rd > 1, the
predator will invade such a population.

5.3. Equilibrium points of the system

The possible equilibria for the system are:

(a) E0 = (0, 0, 0) is the trivial equilibrium and it always exists. Here, the populations of susceptible
prey, infected prey, and predator species go to extinction.

(b) The two axial equilibria, E1 = (1, 0, 0) and Eθ = (θ, 0, 0).

(c) The planar equilibrium Ez =
(

1
rd
, 0, z

)
where the infected prey is extinct. This exists when

1 < rd <
1
θ
. In this case, z is the unique nonnegative root of the quadratic equation

az2
+

(
aα − η

(
1 −

1
rd

) (
1
rd
− θ

))
z − α

(
1 −

1
rd

) (
1
rd
− θ

)
= 0. (5.1)
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By Descartes’ rule of signs, Eq (5.1) has a unique nonnegative root if, and only if,

0 <
(
1 −

1
rd

) (
1
rd
− θ

)
,

in which case 1 < rd <
1
θ
.

(d) The planar equilibrium Ey = (x, y, 0), where x = 1
r0

(c + δy) and y is the nonnegative root of the
cubic equation

y3
[
δ3

r2
0

+
δ2

r0

]
+ y2

[
−
δ2

r0
+

cδ2

r2
0

+
2δ2

r2
0

−
θδ2

r0
+

2cδ
r0
− θδ

]
+ y

[
−

2cδ
r0
+ θδ +

3c2δ

r2
0

−
2cθδ

r0
+

c2

r0
− cθ + β

]
+

[
−

c2

r0
+ cθ +

c3

r2
0

−
c2θ

r0

]
= 0.

(5.2)

This equation can be written as γ1y3 + γ2y2 + γ3y + γ4 = 0, where

γ1 =

(
δ3

r2
0

+
δ2

r0

)
> 0,

γ2 =

(
δ2

cr0
+
δ

r0

) (
1
r0
− θ

)
+

(
c +

δ

r0

)
δ

r0c
+

(
1
r0
− 1

)
δ2

r0c
,

γ3 = δ

(
1
r0
− 1

) (
1
r0
− θ

)
+

(
c +

δ

r0

) (
1
r0
− θ

)
+
δ

r0

(
1
r0
− 1

)
+ β,

γ4 = c
(

1
r0
− 1

) (
1
r0
− θ

)
.

Note that γ4 < 0 if 1 < r0 <
1
θ
.

(e) The interior equilibrium E∗ = (x∗, y∗, z∗), where

x∗ =
1
b

[m − py∗],

z∗ =
1

g(c + δy∗)

[
β(m − py∗)

b
− µ(c + µδy∗)

]
.

Note that

βm − µcb
βp + µδb

<
m
p
.

For this equilibrium to exist, we need

y∗ <
βm − µcb
βp + µδb

.

y∗ is a positive root of the equation ξ1y4 + ξ2y3 + ξ3y2 + ξ4y + ξ5 = 0, where ξ1, ξ2, ξ3, ξ4, and ξ5

are given in Appendix A.
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5.4. Stability analysis

It is simple to show that the stability matrix for the system (2.1) linearized about the equilibrium
point is 

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (5.3)

where a11 =

(
η +

1 − η
1 + sαz

)
[(1 − x − y)(x − θ) − x(x − θ) + x(1 − x − y)] −

βy
c + δy

− az,

a12 = −x(x − θ)
(
η +

1 − η
1 + sαz

)
−

δβxy
(c + δy)2 +

βx
c + δy

,

a13 =
−x(1 − x − y)(x − θ)α(1 − η)

(α + z)2 − ax, a21 =
βy

c + δy
,

a22 =
βx

c + δy
−

δβxy
(c + δy)2 − az − µ, a23 = −gy, a31 = bz, a32 = pz,

a33 = bx + py − m.

5.4.1. Behavior of the system around the equilibrium points E0, E1, and Eθ

E0 is locally asymptotically stable because all the corresponding eigenvalues are negative. The
stability matrix for equilibrium E1 = (1, 0, 0) is:

J1 =

−1 + θ −1 + θ − β

c −a
0 µ(r0 − 1) 0
0 0 m(rd − 1)

 .
The eigenvalues are λ1 = −1 + θ(< 0), λ2 = µ(r0 − 1) and λ3 = m(rd − 1), so E1 is locally asymptotically
stable if r0 < 1 and rd < 1, as shown in Figure 9.
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Figure 9. The equilibrium point E1 = (1, 0, 0) is locally asymptotically stable if r0 < a and
rd < 1. The parameters are θ = 0.2, a = 2, µ = 1, δ = 1,m = 2, η = 0.1, α = 0.2, b = 1.5, p =
1, c = 2, g = 2.5, and β = 1.65. x(0) = 0.6, y(0) = 0.02, and z(0) = 0.03.
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The stability matrix for equilibrium Eθ = (θ, 0, 0) is:

Jθ =


θ(1 − θ) −βθ

c −aθ
0 µθ

(
r0 −

1
θ

)
0

0 0 mθ(rd −
1
θ
)

 .
The eigenvalues are λ1 = θ(1 − θ), λ2 = µθ

(
r0 −

1
θ

)
and λ3 = mθ

(
rd −

1
θ

)
. Eθ is unstable since

λ1 = θ(1 − θ) > 0.

5.4.2. Behavior of the system around the equilibrium point Ez =
(

1
rd
, 0, z

)
The stability matrix for Ez is:

Jz =


σ1 σ2 σ3

0 β

crd
− gz − µ 0

bz pz 0

 ,

where σ1 =

(
η +

1 − η
1 + sαz

)
1
rd

(
1 −

2
rd
+ θ

)
,

σ2 = −
1
rd

(
1
rd
− θ

) (
η +

1 − η
1 + sαz

)
−

β

crd
,

σ3 =
− 1

rd

(
1 − 1

rd

) (
1
rd
− θ

)
α(1 − η)

(α + z)2 −
a
rd
.

One eigenvalue is given by λ2 =
β

crd
− gz − µ, which is negative if

2aβ − 2acrdµ − cgrd

{
η

(
1 −

1
rd

) (
1
rd
− θ

)
− aα

+

√[
aα − η

(
1 −

1
rd

) (
1
rd
− θ

)]2

+ 4aα
(
1 −

1
rd

) (
1
rd
− θ

) }
< 0.

The other eigenvalues, λ1 and λ3, are roots of the characteristic equation given by

λ2 −

[(
η +

1 − η
1 + sαz

)
1
rd

(
1 −

2
rd
+ θ

)]
λ + bz

 1
rd

(
1 − 1

rd

) (
1
rd
− θ

)
α(1 − η)

(α + z)2 +
a
rd

 = 0.

Clearly, the roots of above equation have negative real parts if(
η +

1 − η
1 + sαz

)
1
rd

(
1 −

2
rd
+ θ

)
< 0, which implies that rd <

2
1 + θ

.

Therefore, the equilibrium Ez is locally asymptotically stable if

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7211–7252.



7234

2aβ − 2acrdµ − cgrd

{
η

(
1 −

1
rd

) (
1
rd
− θ

)
− aα

+

√[
aα − η

(
1 −

1
rd

) (
1
rd
− θ

)]2

+ 4aα
(
1 −

1
rd

) (
1
rd
− θ

) }
< 0,

and rd <
2

1+θ . Figure 10 shows the local stability for the equilibrium point Ez.
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Figure 10. The solution converges to the equilibrium point Ez =
(

1
rd
, 0, z

)
. The parameters

are θ = 0.2, a = 2, µ = 1, δ = 1,m = 1, η = 0.1, α = 0.2, b = 1.5, p = 1, c = 2.5, g = 2.5, and
β = 2. x(0) = 0.6, y(0) = 0.02, and z(0) = 0.03.

5.4.3. Behavior of the system around the equilibrium point Ey = (x, y, 0).

The stability matrix for Ey is:

Jy =


τ1 τ2 τ3
βy

c+δy
−δβxy
c+δy −gy

0 0 bx − py − m

 ,
where τ1 = x(1 − 2x − y − θ), τ2 = −x(x − θ) − βxc

(c+δy)2 and τ3 =
x(1−x−y)(x−θ)(1−η)

α
− ax. One eigenvalue is

given by λ3 = bx − py − m. The other eigenvalues, λ1 and λ2, are roots of the characteristic equation
given by:

λ2 − (K + N)λ + (KN − ML) = 0.

Here, K = τ1, L = τ2 < 0, M =
βy

c + δy
> 0, and N = −

δβxy
(c + δy)2 < 0.

The roots of the characteristic equation have negative real parts if K + N < 0 and (KN − ML) > 0.
Figure 11 shows the solution converges to the equilibrium point Ey = (x, y, 0).
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Figure 11. The solution converges to the equilibrium point Ey = (x, y, 0). The parameters
are θ = 0.2, a = 2, δ = 1, µ = 1,m = 1, η = 0.1, α = 0.2, b = 1.5, c = 1, g = 2.5, p = 1, and
β = 1.81. x(0) = 0.6, y(0) = 0.02, and z(0) = 0.03.

5.4.4. Behavior of the system around the coexistence equilibrium point E∗ = (x∗, y∗, z∗)

The stability matrix at the interior attractor is given by

J∗E =


A B C
D E F
G H 0

 , (5.4)

where A =
(
η + 1−η

1+sαz∗

)
[x∗(1 − 2x∗ − y∗ + θ)], B = −x∗(x∗ − θ)

(
η + 1−η

1+sαz∗

)
+

δβx∗y∗

(c+δy∗)2 −
βx∗

c+δy∗ < 0,

C = −x∗(1−x∗−y∗)(x∗−θ)α(1−η)
(α+z∗)2 − ax∗ < 0, D = βy∗

c+δy∗ > 0, E = − δβx∗y∗

(c+δy∗)2 < 0, F = −gy∗ < 0, G = bz∗ > 0,
and H = pz∗ > 0.

The characteristic equation associated with this stability matrix is given by

λ3 + a1λ
2 + a2λ + a3 = 0, (5.5)

where a1 = tr[J∗E] = −(A+E), a2 = AE−BD−FH−CG, and a3 = −det[J∗E] = AHF−BGF−DHC+GEC.
From the Routh-Hurwitz criteria, the equilibrium E∗ is locally asymptotically stable if, and only if,
a1 > 0, a3 > 0, and a1a2 > a3. Figure 12 demonstrates that the solution converges to the equilibrium
point E∗ = (x∗, y∗, z∗).
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Figure 12. The coexistence equilibrium point E∗ = (x∗, y∗, z∗). The parameters are
θ = 0.2, a = 2, µ = 1, δ = 1,m = 1.05, η = 0.1, α = 0.2, b = 1.5, p = 1, c =
1, g = 2.5, and β = 1.65 with initial condition (x(0), y(0), z(0)) = (0.68, 0.02, 0.03) and
E∗ = (0.6820835954, 0.02687460697, 0.03839351927).

5.5. Bifurcation analysis

When the parameters go through specific critical values, a transcritical bifurcation and a Hopf-
bifurcation occur around the equilibrium points.

5.5.1. Transcritical bifurcation

According to Sotomayor’s theorem for local bifurcation [31], if the following conditions are satisfied:

(1) wT fm(E1,m0) = 0,

(2) wT (D fm(E1,m0).υ) , 0,

(3) wT D2 f (E1,m0)(υ, υ) , 0,

where w and υ are the left and right eigenvectors of fm(E1,m0), then the system (2.2) experiences a
transcritical bifurcation at the equilibrium point E1 = (1, 0, 0), when rd = 1 (i.e m = b).

Theorem 4. If r0 , c, then the system (2.2) undergoes a transcritical bifurcation at the positive
equilibrium E1 = (1, 0, 0) when m = b.

Proof:
The linearized system around the equilibrium point E1 is:

J1 =

−1 + θ −1 + θ − β

c −a
0 µ

c (r0 − c) 0
0 0 m(rd − 1)

 .
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Now, λ3 = 0 at rd = 1, (i.e, at m0 = b). So

J(E1,m0) =

−1 + θ −1 + θ − β

c −a
0 µ

c (r0 − c) 0
0 0 0

 .
Let us define υ = (υ1, υ2, υ3)T and w = (w1,w2,w3)T to be the right and left eigenvectors of λ3 = 0.
Now solving J(E1,m0)υ = 0 implies that υ =

( aυ3
−1+θ , 0, υ3

)
, and by solving JT (E1,m0)w = 0, we get

w = (0, 0,w3) where υ3,w3 are any nonzero real numbers.
Now, if X = (x, y, z), system (2.2) can be rewritten in the following vector form:

Ẋ = f (X), (5.6)

where f (X) =


x(1 − x − y)(x − θ)(η + 1−η

1+sαz ) − βxy
c+δy − axz

βxy
c+δy − gyz − µy
bxz + pyz − mz

 .

Taking the derivative of f (X) with respect to m, we get fm(E1,m0) =


0
0
0

. Hence, wT fm(E1,m0) = 0.

Next, taking the derivative of fm(X) with respect to X = (x, y, z)T , we get

D fm(E1,m0) =


0 0 0
0 0 0
0 0 −1

 .
Therefore, we have wT (D fm(E1,m0).υ) = −w3υ3 , 0. Furthermore,

D2 f (X) =


A1 A2 A3 A4 A5 A6 A7 A8 A9

A10 A11 A12 A13 A14 A15 A16 A17 A18

A19 A20 A21 A22 A23 A24 A25 A26 A27

,
where A1 =

(
η + 1−η

1+sαz

)
[−2(x − θ) − 2x], A2 =

(
η + 1−η

1+sαz

)
[−(x − θ) − x] − βc

(c+δy)2 ,

A3 = −
α(1−η)
(α+z)2 [(1 − x − y)(2x − θ) − x(x − θ)] − a, A4 =

(
η + 1−η

1+sαz

)
[−(x − θ) − x] − βc

(c+δy)2 , A5 =
2βcδy

(c+δy)3 ,
A6 =

x(x−θ)α(1−η)
(α+z)2 , A7 =

α(1−η)
(α+z)2 [−(1 − 2x − y)(x − θ) − x(1 − x − y)] − a, A8 =

x(x−θ)α(1−η)
(α+z)2 ,

A9 =
2x(1−x−y)(x−θ)α(1−η)

(α+z)3 , A10 = 0, A11 =
βc

(c+δy)2 , A12 = 0, A13 =
βcy

(c+δy)2 , A14 = −
2δcβx

(c+δy)3 , A15 = −g, A16 = 0,
A17 = −g, A18 = 0, A19 = 0, A20 = 0, A21 = b, A22 = 0, A23 = 0, A24 = p, A25 = b, A26 = p, A27 = 0.

So, wT D2 f (E1,m0)(υ, υ) = 2bυ1υ3w3 + 2pυ2υ3w3 , 0. Therefore, according to Sotomayor’s theorem [31]
for local bifurcation, system (2.2) has a transcritical bifurcation at steady-state E1 = (1, 0, 0) when the
parameter rd = 1, (i.e, m = b) (Figure 13).
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Figure 13. Transcritical bifurcation (BP) for E1 = (1, 0, 0) at m = b. The parameters are
θ = 0.2, a = 2, µ = 1, δ = 1, η = 0.1, α = 0.2, b = 1.5, p = 1, c = 2, g = 2.5, and β = 1.65. The
initial condition is the value of the equilibrium point E1.

5.5.2. Hopf-bifurcation analysis

We observe that the system shows the Hopf-bifurcation for the equilibrium point Ez with respect to
the parameter θ when θ = 0.333335, (Ez = (0.666667, 0, 0.046177)), as shown in Figure 14 by using
Matcont software for bifurcation. The blue color shows that the equilibrium is stable, while the red
color shows the unstable equilibrium.

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4
0

0.5

1

1.5

x

H
LPC

0 100 200 300 400 500 600 700 800 900 1000

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(
t)

,y
(t

),
 z

(t
)

x(t)
y(t)
 z(t)

Figure 14. The Hopf-bifurcation for Ez at θ = 0.333335. The parameters are a = 2,m =
1, µ = 1, δ = 1, η = 0.1, α = 0.2, b = 1.5, p = 1, c = 2.5, g = 2.5, and β = 2. The initial
condition is the value of the equilibrium point Ez.

In addition, Figure 15 shows another Hopf-bifurcation for the equilibrium point Ez with respect to the
parameter m when m = 0.900001, (Ez = (0.600000, 0, 0.062795)).
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Figure 15. The Hopf-bifurcation for Ez at m = 0.900001. The parameters are θ = 0.2, a =
2, µ = 1, δ = 1, η = 0.1, α = 0.2, b = 1.5, p = 1, c = 2.5, g = 2.5, and β = 2. The initial
condition is the value of the equilibrium point Ez.

Also, we observed the Hopf-bifurcation for the equilibrium point Ez with respect to the parameter b
when b = 1.666664, (Ez = (0.600001, 0, 0.062795)), as seen in Figure 16.
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Figure 16. The Hopf-bifurcation for Ez at b = 1.666664. The parameters are θ = 0.2, a =
2, µ = 1, δ = 1, η = 0.1, α = 0.2,m = 1, p = 1, c = 2.5, g = 2.5 and β = 2. The initial
condition is the value of the equilibrium point Ez.
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Figure 17. The Hopf-bifurcation for Ey at µ = 0.845893. The parameters are θ = 0.2, a =
2, δ = 1, η = 0.1, α = 0.2, b = 1.5, p = 1, c = 1, g = 2.5, and β = 1.81. The initial condition is
the value of the equilibrium point Ey.
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Figure 18. The Hopf-bifurcation for Ey at δ = 0.101810. The parameters are θ = 0.2, a =
2, µ = 1, η = 0.1, α = 0.2, b = 1.5, p = 1, c = 1, g = 2.5, and β = 1.81. The initial condition is
the value of the equilibrium point Ey.
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Figure 17 shows the Hopf-bifurcation for the equilibrium point Ey with respect to the parameter µ
when µ = 0.845893 (Ey = (0.502786, 0.075836, 0)).

Also, we found the Hopf-bifurcation for the equilibrium point Ey with respect to the parameter δ
when δ = 0.101810 (Ey = (0.556617, 0.073434, 0)), as shown in Figure 18.

5.6. Effect of cost of fear sα and the Allee threshold effects θ

We observe from Figure 19 that the population of uninfected prey declines as fear intensity rises,
and after a certain level of fear, population of uninfected prey will not change due to habituation to
stress. Increasing the fear parameter stabilizes the system. For an intermediate value of fear, the
system becomes unstable, and after a certain level of fear, the system shows instability and the predator
population goes extinct. As a result, the infected prey and the uninfected prey interact and this increases
disease transmission, and, consequently, the infected prey increases.

Figure 20 shows the effect of the Allee threshold effect on uninfected prey, infected prey, and
predator. It is clear that when the Allee threshold increases, the population of uninfected prey and
predator decrease while the population of infected prey increases. When the Allee threshold exceeds
0.3, all populations go to extinction.
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Figure 19. The effect of fear parameter on uninfected prey, infected prey, and predator. The
parameters are θ = 0.2, a = 2, µ = 1, δ = 1,m = 1.05, η = 0.1, b = 1.5, p = 1, c = 1, g = 2.5,
and β = 1.65. x(0) = 0.6, y(0) = 0.02, and z(0) = 0.03.
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Figure 20. The effect of the Allee threshold effect on uninfected prey, infected prey, and
predator. The parameters are α = 0.14, a = 2, µ = 1, δ = 1,m = 1.06, η = 0.1, b = 1.48, p =
2, c = 1, g = 2.019, and β = 1.65. x(0) = 0.6, y(0) = 0.02, and z(0) = 0.03.

6. Full eco-epidemiological model with a time delay

Recall the non-dimensionalized full eco-epidemiological model (2.4) with a time delay included:

dx
dt
= x(1 − x − y)(x − θ)

(
η +

1 − η
1 + sαz

)
−

βxy
c + δy

− axz,

dy
dt
=

βxy
c + δy

− gyz − µy,

dz
dt
= bx(t − τ)z(t − τ) + py(t − τ)z(t − τ) − mz.

Define A =
∂ f
∂x
=

(
η +

1 − η
1 + sαz

) [
−(x2 − θx) + (1 − x − y)(2x − θ)

]
−

βy
c + δy

− az,

B =
∂ f
∂y
= −x(x − θ)

(
η +

1 − η
1 + sαz

)
−

βxc
(c + δy)2 < 0,

C =
∂ f
∂z
= −x(1 − x − y)(x − θ)

α(1 − η)
(α + z)2 − ax < 0, D =

∂g
∂x
=

βy
c + δy

> 0,

E =
∂g
∂y
=

βxc
(c + δy)2 − gz − µ and F =

∂g
∂z
= −gy < 0.

Also define bx + py = m. The characteristic equation for model (2.4) is

ξ3 + P2ξ
2 + P1ξ + P0 + e−ξτ(Q2ξ

2 + Q1ξ + Q0) = 0, (6.1)
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where P0 = (AE − BD)m,

=

[ ((
η +

1 − η
1 + sαz

) [
−(x2 − θx) + (1 − x − y)(2x − θ)

]
−

βy
c + δy

− az
)

×

(
βxc

(c + δy)2 − gz − µ
)

+

(
x(x − θ)

(
η +

1 − η
1 + sαz

)
+

βxc
(c + δy)2

) (
βy

c + δy

) ]
m,

P1 = AE − Am − BD − Em,

=

(
η +

1 − η
1 + sαz

)
x(1 − 2x + θ − y)

[
βxc

(c + δy)2 − gz − µ − m
]

+

[
x(x − θ)

(
η +

1 − η
1 + sαz

)
+

βxc
(c + δy)2

]
βy

c + δy
+

[
−

βxc
(c + δy)2 + gz + µ

]
m,

P2 = −A − E + m,

= −

(
η +

1 − η
1 + sαz

) [
−(x2 − θx) + (1 − x − y)(2x − θ)

]
+

βy
c + δy

+ az −
βxc

(c + δy)2 + gz + µ + m,

Q0 = −AEm + AF pz + BDm − BFbz −CDpz +CEbz,

Q1 = (A + E)m −Cbz − Fbz,

=

[(
η +

1 − η
1 + sαz

)
x(1 − 2x + θ − y) +

βxc
(c + δy)2 − gz − µ

]
m

+

[
x(1 − x − y)(x − θ)

α(1 − η)
(α + z)2 + ax

]
bz + gybz,

Q2 = −m.

If τ = 0, then E∗ is asymptotically stable under certain conditions. When τ , 0, we take ξ = ι + iψ
where ι, ψ ∈ R. Substituting the value of ξ into (6.1) and separating in terms of real and imaginary parts:

(ι3 − 3ιψ2) + P2(ι2 − ψ2) + P1ι + P0 =

−e−ιτ[cos(ψτ)(Q2(ι2 − ψ2))+(Q1ι + Q0) cos(ψτ) + sin(ψτ)(2Q2ιψ + Q1ψ)],
(3ι2ψ − ψ3) + 2P2ιψ + P1ψ =

−e−ιτ[cos(ψτ)(2Q2ιψ + Q1ψ) − sin(ψτ)(Q2(ι2 − ψ2)) − (Q1ι + Q0)sin(ψτ)].

(6.2)

Let τ1 = τ
∗
1 be such that ι(τ∗1) = 0 and ψ(τ∗1) = ψ∗1, then (6.2) can be written as

−P2ψ
∗2
1 + P0 = A1 cos(ψ∗1τ

∗
1) − B1 sin(ψ∗1τ

∗
1),

−ψ∗31 + P1ψ
∗
1 = −B1 cos(ψ∗1τ

∗
1) − A1 sin(ψ∗1τ

∗
1),

(6.3)

where A1 = Q2ψ
∗2
1 − Q0 and B1 = Q1ψ

∗
1. By squaring and adding, on simplification, it follows that

ψ∗61 + ψ
∗4
1 (P2

2 − 2P1 − Q2
2) + ψ∗21 (−2P2P0 + P2

1+2Q0Q2 − Q2
1) + (P2

0 − Q2
0) = 0. (6.4)
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Let ψ∗21 = w. Also
φ(w) = w3 + P∗2w2 + P∗1w + P∗0 = 0, (6.5)

where P∗0 = P2
0 − Q2

0, P∗1 = −2P2P0 + P2
1 + 2Q0Q2 − Q2

1, and P∗2 = P2
2 − 2P1 − Q2

2. Note that

φ′(w) = 3w2 + 2P∗2w + P∗1. The two roots of the equation φ′(w) = 0 are: w1 =
−P∗2+
√

P∗22 −3P∗1
3 and

w1 =
−P∗2−
√

P∗22 −3P∗1
3 . The conditions for (6.5) to have positive roots are as follows:

(a) If P∗0 < 0, then (6.5) has at least one positive root.

(b) If P∗0 ≥ 0 and P∗22 ≤ 3P∗1, then (6.5) has no positive root.

(c) If P∗0 ≥ 0 and P∗22 > 3P∗1, then (6.5) has a positive root if, and only if, w1 > 0 and ϕ(w1) ≤ 0.

Using the above conditions, we can say that if condition (b) is satisfied then the stability of E∗ will not
change on increasing τ. If (6.5) has a positive root, then the stability of E∗ may change as τ changes.
Let w1,w2, and w3 be three positive roots of (6.5), then (6.4) has positive roots ψ∗1 =

√
wk, k = 1, 2, 3.

Using (6.3), we get:

cos(ψ∗1τ
∗
1) =

A1(P0 − P2ψ
∗2
1 − P0) + B1(−ψ∗31 + P1ψ

∗
1)

A2
1 + B2

1

,

or τ∗1 =
1
ψ∗1

{
cos−1

(
A1(P0 − P2ψ

∗2
1 ) − B1(−ψ∗31 + P1ψ

∗
1))

(A2
1 + B2

1)

)}
, (6.6)

where ψ∗1 is the last positive root of (6.4). To establish Hopf-bifurcation at τ = τ∗1, we need to show that

dι
dτ

∣∣∣∣
τ=τ∗1

, 0. (6.7)

Differentiating (6.2) with respect to τ and setting ι = 0 and ψ = ψ∗1, we get

dι
dτ

∣∣∣∣
τ=τ∗1

[
Ucos(τ∗1ψ

∗
1) + V sin(τ∗1ψ

∗
1) + M

]
+

dψ
dτ

∣∣∣∣
τ=τ∗1

[
−Vcos(τ∗1ψ

∗
1) + Usin(τ∗1ψ

∗
1) − N

]
= −Xsin(τ∗1ψ

∗
1) − Ycos(τ∗1ψ

∗
1),

dι
dτ

∣∣∣∣
τ=τ∗1

[
Vcos(τ∗1ψ

∗
1) − Usin(τ∗1ψ

∗
1) + N

]
+

dψ
dτ

∣∣∣∣
τ=τ∗1

[
Ucos(τ∗1ψ

∗
1) + V sin(τ∗1ψ

∗
1) + M

]
= −Xcos(τ∗1ψ

∗
1) + Y sin(τ∗1ψ

∗
1),

(6.8)

where U = Q2ψ
∗2
1 τ
∗
1−Q0τ

∗
1+Q1, V = 2Q2ψ

∗
1−Q1ψ

∗
1τ
∗
1, M = −3ψ∗21 +P1, N = 2P2ψ

∗
1, X = Q2ψ

∗3
1 −Q0ψ

∗
1,

and Y = Q1(ψ∗1)2. Finally, by solving dι
dτ

∣∣∣∣
τ=τ∗1

and dψ
dτ

∣∣∣∣
τ=τ∗1

, we have

dι
dτ

∣∣∣∣
τ=τ∗1

=
ψ∗21

[
3ψ∗41 + 2ψ∗21 (P2

2 − 2P1 − Q2
2) + (2Q2Q0 + P2

1 − Q2
1 − 2P2P0)

]
S 2

1 + S 2
2

, (6.9)
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where S 1 = Ucos(τ∗1ψ
∗
1) + V sin(τ∗1ψ

∗
1) + M, S 2 = Usin(τ∗1ψ

∗
1) − Vcos(τ∗1ψ

∗
1) − N, and S 2

1 + S 2
2 > 0.

If ψ∗1 is the last positive root of (6.4), then using (6.5),

dφ
dw

∣∣∣∣
w=ψ∗21

> 0. (6.10)

Hence,
dι
dτ

∣∣∣∣
τ=τ∗1

=

ψ∗21
dφ
dw

∣∣∣∣
w=ψ∗21

S 2
1 + S 2

2

> 0.

Figure 21 shows the Hopf-bifurcation of model (2.4) with respect to τ.

Figure 21. Hopf-bifurcation of model (2.4) with respect to τ. The parameters are θ = 0.2, a =
2, µ = 1, δ = 1,m = 1.05, η = 0.1, α = 0.2, b = 1.5, p = 1, c = 1, g = 2.5, and β = 1.65, with
initial condition (x(0) = 0.6, y(0) = 0.02, z(0) = 0.03) .

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7211–7252.



7246

6.1. Maximum delay to maintain stability

Let X(t) = X + u(t), Y(t) = Y + v(t), and Z(t) = Z + w(t). Linearizing the system (2.4) at the
coexistence equilibrium E∗, we get:

du
dt
=

[(
η +

1 − η
1 + sαz

) [
−(x2 − θx) + (1 − x − y)(2x − θ)

]
−

βy
c + δy

− az
]

u

+

[
−x(x − θ)

(
η +

1 − η
1 + sαz

)
−

βxc
(c + δy)2

]
v

+

[
−x(1 − x − y)(x − θ)

α(1 − η)
(α + z)2 − ax

]
w,

dv
dt
=

(
βy

c + δy

)
u +

(
cβx

(c + δy)2 − gz − µ
)

v + (−gy)w, and

dw
dt
= −mw + bzu(t − τ) + bzv(t − τ) + byw(t − τ).

(6.11)

Taking Laplace transforms for (6.11), we obtain

sL {u} − u(0) =[(
η +

1 − η
1 + sαz

) [
−(x2

− θx) + (1 − x − y)(2x − θ)
]
−

βy
c + δy

− az
]

L {u}

+

[
−x(x − θ)

(
η +

1 − η
1 + sαz

)
−

βxc
(c + δy)2

]
L {v}

+

[
−x(1 − x − y)(x − θ)

α(1 − η)
(α + z)2 − ax

]
L {w} ,

sL {v} − v(0) =
βy

c + δy
L {u} +

(
cβx

(c + δy)2 − gz − µ
)

L {v} − gyL {w} ,

sL {w} − w(0) = −mL {w} + bzL {u(t − τ)} + bzL {v(t − τ)} + byL {w(t − τ)} .

(6.12)

Here, L {u(t − τ)} =
∫ 0

−τ

e−s(t1+τ)u(t1)dt1 +

∫ ∞

0
e−s(t1+τ)u(t1)dt1 = L1e−sτ + e−sτL {u(t)} .

Similarly, L {v(t − τ)} = L2e−sτ + e−sτL {v(t)} and L {w(t − τ)} = L3e−sτ + e−sτL {w(t)} ,

where L2 =
∫ 0

−τ
e−s(t1)v(t1)dt1 =

∫ 0

−τ
e−s(t)v(t)dt and L3 =

∫ 0

−τ
e−s(t1)w(t1)dt1 =

∫ 0

−τ
e−s(t)w(t)dt.

If L {u(t)} , L {v(t)} and L {w(t)} have poles with positive real parts, then the inverse Laplace
transformation of L {u(t)} , L {v(t)}, and L {w(t)} will have terms which exponentially increase with time.
Thus, E∗ will be locally asymptotically stable if, and only if, all poles of L {u(t)} , L {v(t)}, and L {w(t)}
have negative real parts. Using the Nyquist criterion E∗ will be asymptotically stable if the following
two conditions are satisfied [33, 34]:

ReG(iw0) = 0, (6.13)

ImG(iw0) > 0, (6.14)

where G(s) = s3 + P2s2 + P1s + P0 + e−sτ(Q2s2 + Q1s + Q0) = 0 and w0 is the smallest positive root
of (6.13). Equating the real and imaginary parts, we get
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P2w2
0 − P0 = (Q0 − Q2w2

0) cos(w0τ) + Q1w0 sin(w0τ), (6.15)

−w3
0 + P1w0 > sin(w0τ)(Q0 − Q2w2

0) − Q1w0 cos(w0τ). (6.16)
To find the length of maximum delay so that stability is preserved, we write (6.15) and (6.16) as

P2w2 − P0 = (Q0 − Q2w2) cos(wτ) + Q1w sin(wτ), (6.17)

−w3 + P1w > sin(wτ)(Q0 − Q2w2) − Q1w cos(wτ). (6.18)

Equation (6.17) and inequality (6.18) are the conditions for stability and both should be satisfied
simultaneously. We first find an upper bound w+, independent of τ, such that (6.18) is valid for
w0 ≤ w ≤ w+. We will later use this inequality to determine a range of feasible values for τ∗.

Since | cos(wτ) |≤ 1 and | sin(wτ) |≤ 1, using these inequalities in (6.17),
P2w2 ≤ | Q0 − Q2w2 | + | Q1 | w+ | P0 |,

and so P2w2 ≤ | Q0 | + | Q2w2 | + | Q1 | w+ | P0 | .
(6.19)

So, (| P2 | − | Q2 |)w2− | Q1 | w − (| Q0 | + | P0 |) ≤ 0.
(6.20)

Let w+ denote the maximum value of w satisfying (6.18),

w+ =
| Q1 | +

√
Q2

1 + 4(| P2 | − | Q2 |)(| Q0 | + | P0 |)

2(| P2 | − | Q2 |)
, (6.21)

where w+ ≥ w0. From (6.18), we get

w2 <
(
Q2w −

Q0

w

)
sin(wτ) + Q1cos(wτ) + P1. (6.22)

Since E∗ is locally asymptotically stable for τ = 0, by assumption, the inequality (6.22) will continue to
hold for sufficiently small τ and w = w0. Using (6.17) and (6.22), we get

P2

[(
Q2w

Q0

w

)
sin(wτ) + Q1cos(wτ) + P1

]
− P0 ≥ (Q0 − Q2w2)cos(wτ) + Q1wsin(wτ),

or
(
Q1w +

P2Q0

w
− P2Q2w

)
sin(wτ) + (P2Q1 − Q0 + Q2w2)(1 − cos(wτ))

≤ P2P1 − P0 + P2Q1 − Q0 + Q2w2,

where sin(wτ) ≤ wτ and 1 − cos(wτ) ≤ 2sin2(wτ
2 ) ≤ w2τ2

2 . So(
Q1w +

P2Q0

w
− P2Q2w

)
sin(wτ) + (P2Q1 − Q0 + Q2w2)(1 − cos(wτ))

≤

∣∣∣∣∣∣Q1w +
P2Q0

w
− P2Q2w

∣∣∣∣∣∣ wτ + |P2Q1 − Q0 + Q2w2|
w2τ2

2
,

≤ (| Q1 − P2Q2 | w2+ | P2Q0 |)τ+ | Q2w2 + P2Q1 − Q0 |
w2τ2

2
,

≤ (| Q1 − P2Q2 | w2
++ | P2Q0 |)τ+ | Q2w2 + P2Q1 − Q0 |

w2
+τ

2

2
,
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since w0 ≤ w ≤ w+.

If (| Q1 − P2Q2 | w2
++ | P2Q0 |)τ+ | Q2w2

+ + P2Q1 − Q0 |
w2
+τ

2

2
≤ P2P1 − P0 + P2Q1 − Q0 + Q2w2

+,

then
(
Q1w+ +

P2Q0

w+
− P2Q2w+

)
sin(w+τ) + (P2Q1 − Q0 + Q2w2

+)(1 − cos(w+τ))

≤ P2P1 − P0 + P2Q1 − Q0 + Q2w2
+.

Let |Q2w2
++P2Q1−Q0 |w2

+

2 = L1, | Q1 − P2Q1 | w2
++ | P2Q0 |= L2, and P2P1 − P0 + P2Q1 −Q0 +Q2w2

+ = L3.
So, L1τ

2 + L2τ ≤ L3. Suppose τ∗ is the positive root of L1τ
2 + L2τ = L3, that is,

τ∗ =
−L2 +

√
L2

2 + 4L1L3

2L1
.

Theorem 5. If 0 < τ < τ∗ and the Nyquist criterion to the local asymptotic stability is satisfied, then τ∗

estimates the maximum delay length to preserve stability.

7. Conclusions

This paper has examined prey-predator models with the Allee effects and the cost of fear in prey
reproduction, where the predator predates the prey with a Holling Type I functional response. We have
investigated the dynamic behavior of the model mathematically, including the existence and stability of
equilibria, the occurrence of Hopf-bifurcation around the coexistence equilibrium point, and the existence
of a limit cycle that emerges from Hopf-bifurcation. We have described equilibria, the stabilities of the
system, and the occurrence of Hopf-bifurcation. The coexistence equilibrium is locally asymptotically
stable if twice the death rate of the predator is one unit higher than the Allee threshold value.

We have shown that as the fear level rises, the population of prey remains unaffected because, at
N∗ = d, the fear level has no effect. However, when the level of fear increases, the population of
predators decreases. The existence of the coexistence equilibrium point E∗ = (N∗, P∗) implies that
θ < d < 1. Since N∗ = d, the Allee effect has no affect on the prey population, and the coexistence
equilibrium E∗ is stable when it occurs for a small Allee effect. Furthermore, we have demonstrated
that as the Allee threshold rises, the predator population rises. However, after certain values of the
Allee threshold, both populations become unstable and then go extinct. If we take the death rate of
the predator d as a bifurcation parameter, the system experiences Andronov-Hopf bifurcation. When
the parameter d passes through the bifurcation value d0 = 1, our system experiences a transcritical
bifurcation at steady state E1 according to Sotomayor’s theorem [31]. The dynamics of the delayed
system have been investigated and we have discussed the Hopf-bifurcation.

Finally, we have looked at an eco-epidemiological model that takes the cost of fear and the Allee
effect into account in the prey population. We have examined a predator-prey model in which the prey
is afflicted with a disease. The overall prey population is divided into two categories, susceptible prey
and infected prey. When susceptible prey comes into contact with infected prey, it becomes infected.
Infected prey is unable to procreate because it has the disease. The predator consumes both uninfected
and infected prey, but infected prey is easy to capture whilst it takes more time to catch the uninfected
prey. As a result, we have assumed that the consumption rate of infected prey is higher than that of
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uninfected prey. There are five biologically significant equilibria. We have discussed the stabilities of
these equilibria. We have performed a numerical study to examine how the Allee effect and fear effect
affect our system, and we have discovered that the population of uninfected prey and predator drops as
the Allee threshold rises, whereas the population of infected prey rises. All populations become extinct
when the Allee threshold reaches a specified value. We have demonstrated that when the fear intensity
rises, the population of uninfected prey declines, and after a certain level of fear, there is no effect on
the population of uninfected prey as the fear increases, and this is due to physiological effects when they
get acclimatised to fear. The system becomes stable for an intermediate level of fear, and after a certain
level of fear, the system exhibits instability because the predator population goes extinct, leaving only
uninfected and infected prey, which increases disease transmission and leads to an increase in infected prey.
We have found that the equilibria Ez and Ey have a Hopf-bifurcation under specific parametric conditions.

To make the model (2.1) more realistic, we have incorporated a time delay and Hopf-bifurcation
occurs by taking the delay as the bifurcation parameter. Hopf-bifurcation will occur when the delay τ
passes through a series of critical values. If 0 < τ < τ∗ and the Nyquist criterion to the local asymptotic
stability is true then τ∗ estimates the maximum delay length to preserve stability.

Hopf-bifurcation has helped us in finding the existence of a region of instability in the neighborhood
of non-zero equilibrium, where prey and predator species will persist undergoing regular fluctuation.
For the transcritical bifurcations a stable coexistence equilibrium E∗ combines with another equilibrium
and disappears and the positive equilibrium E1 switches from instability to stability.
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Appendix A

ξ1 = pδg(p − b)(−αbδg + bδηµ + βηp),

ξ2 = (p − b)(b2δ2ηgµθ + bβδηgpθ + 2bcδηgµp + βcηgp2 − αb2δ2g2θ

− 2αbcδg2 p) + (2p − b)(αbδ2g2m − bδ2ηgmµ) + (2b − 3p)(βδηgmp)

+ bβδηgp2 − αb2δ2g2 p,

ξ3 = aαb3δ2gµ + 2αb3cδg2θ − αb3δ2g2θ − 2αb2cδg2 pθ + αb2δ2g2mθ

− 2b3cδηgµθ + b3δ2ηgµθ + 2b2cδηgµpθ − b2δ2ηgmµθ + aαb2βδgp

− ab3δ2µ2 − αb3βδg2 + αb2c2g2 p − 2αb2cδg2m − 2αb2cδg2 p + αb2δ2g2m

− αbc2g2 p2 + 4αbcδg2mp − αbδ2g2m2 − b2βcηgpθ + b2βδηgmθ + b2βδηgpθ

− b2c2ηgµp + 2b2cδg2mp − αbδ2g2m2 − b2βcηgpθ + b2βδηgmθ + b2βδηgpθ

− b2c2ηgµp + 2b2cδηgmµ + 2b2cδηgµp − b2δ2ηgmµ + bβcηgp2θ

− 2bβδηgmpθ + bc2ηgµp2 − 4bcδηgmµp + bδ2ηgm2µ − 2ab2βδµp

+ b3βδgµ + 2bβcηgmp + bβcηgp2 − bβδηgm2 − 2bβδηgmp − 3βcηgmp2

+ 3βδηgm2 p − abβ2 p2 + b2β2gp,

ξ4 = 2aαb3cδgµ + αb3c2g2θ − 2αb3cδg2θ − αb2c2g2 pθ + 2αb2cδg2mθ

− b3c2ηgµθ + 2b3cδηgµθ + b2c2ηgµpθ − 2b2cδηgmµθ + aαb2βcgp

− aαb2δgm − 2ab3cδµ2 − αb3βcg2 − αb2c2g2m − αb2c2g2 p + 2αb2cδg2m

+ 2αbc2g2mp − 2αbcδg2m2 + b2βcηgmθ + b2βcηgpθ − b2βδηgmθ

+ b2c2ηgmµ + b2c2ηgµp − 2b2cδηgmµ − 2bβcηgmpθ + bβδηgm2θ

− 2bc2ηgmµp + 2bcδηgm2µ − 2ab2βcµp + 2ab2βδmµ + b3βcgµ − bβcηgm2

− 2bβcηgmp + bβδηgm2 + 3βcηgm2 p − βδηgm3 + 2abβ2mp − b2β2gm,

ξ5 = aαb3c2gµ − αb3c2g2θ + αb2c2g2mθ + b3c2θθηgµθ − b2c2ηgmµθ

− aαb2βcgm − ab3c2µ2 + αb2c2g2m − αbc2g2m2 − b2βcηgmθ − b2c2ηgmµ

+ bβcηgm2θ + bc2ηgm2µ + 2ab2βcmµ + bβcηgm2 − βcηgm3 − abβ2m2,

ξ5 =

(
1 −

b
m

)
(αb2c2g2θm + bβcηgm2θ + bc2ηηgm2µ − b2c2ηgmµθ

− αbc2g2m2 − βcηgm3) + aαb3c2gµ − aαb2βcgm − ab3c2µ2 + 2ab2βcmµ

− abβ2m2.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 10, 7211–7252.

https://creativecommons.org/licenses/by/4.0

	Introduction and motivation
	Formulation of the eco-epidemiological model
	The model with no disease present and no time delay
	Boundedness
	Equilibrium points of the system
	Stability analysis
	Bifurcation analysis
	Transcritical bifurcation
	Hopf-bifurcation

	 Effect of cost of fear s and the Allee threshold effect 

	Model with no disease and a time delay
	Eco-epidemiological model with no time delay
	Boundedness
	Positivity of Solutions
	Equilibrium points of the system
	Stability analysis
	Behavior of the system around the equilibrium points E0, E1, and E
	Behavior of the system around the equilibrium point Ez=(1rd, 0, z)
	Behavior of the system around the equilibrium point Ey=(x,y,0).
	Behavior of the system around the coexistence equilibrium point E*=(x*,y*,z*)

	Bifurcation analysis
	Transcritical bifurcation
	Hopf-bifurcation analysis

	Effect of cost of fear s and the Allee threshold effects 

	Full eco-epidemiological model with a time delay
	Maximum delay to maintain stability

	Conclusions

