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Abstract: Non-spatial models of competition between floating aquatic vegetation (FAV) and 

submersed aquatic vegetation (SAV) predict a stable state of pure SAV at low total available limiting 

nutrient level, N, a stable state of only FAV for high N, and alternative stable states for intermediate N, 

as described by an S-shaped bifurcation curve. Spatial models that include physical heterogeneity of 

the waterbody show that the sharp transitions between these states become smooth. We examined the 

effects of heterogeneous initial conditions of the vegetation types. We used a spatially explicit model 

to describe the competition between the vegetation types. In the model, the FAV, duckweed (L. gibba), 

competed with the SAV, Nuttall’s waterweed (Elodea nuttallii). Differences in the initial establishment 

of the two macrophytes affected the possible stable equilibria. When initial biomasses of SAV and FAV 

differed but each had the same initial biomass in each spatial cell, the S-shaped bifurcation resulted, 

but the critical transitions on the N-axis are shifted, depending on FAV:SAV biomass ratio. When the 

initial biomasses of SAV and FAV were randomly heterogeneously distributed among cells, the 

vegetation pattern of the competing species self-organized spatially, such that many different stable 

states were possible in the intermediate N region. If N was gradually increased or decreased through 

time from a stable state, the abrupt transitions of non-spatial models were changed into smoother 

transitions through a series of stable states, which resembles the Busse balloon observed in other 

systems. 

Keywords: competing aquatic species; nutrient diffusion; cellular automaton model; alternative stable 

states bifurcation analysis; spatial pattern formation; spatial heterogeneity; Busse balloon 
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1. Introduction  

Competition was modeled between floating (FAV) and submersed (SAV) aquatic macrophyte 

species in a shallow waterbody (Scheffer et al. [1]). FAV was limited by nutrient concentration 

(assumed nitrogen in their model) in the water column but, when established, could limit the light of 

the SAV. The authors showed that SAV could always exclude FAV at low nutrient concentrations, at 

which SAV was a stable state. If the total nutrient of the modeled system, N, was increased sufficiently, 

FAV could invade such that a mixed SAV-FAV stable state occurred. However, further increase in N 

could lead to an abrupt shift such that, for all larger values of N, only a stable state of FAV existed. The 

sudden shift is called a critical transition [1]. If the nutrient amount was then decreased, the critical 

transition from FAV back to mixed FAV and SAV occurred at a lower nutrient level than the critical 

transition from the SAV-FAV mixture to pure FAV; that is, there is hysteresis. This situation is described 

by an S-shaped bifurcation curve as a function of N (Figure 2 in [1]). In the range of values of N 

between the two critical transitions, there are two alternative stable states, one with pure FAV on one 

branch of the S-shaped curve and one that is a mixture of the two species on the other branch. The 

authors successfully tested the model with small tank competition experiments between the FAV, 

duckweed (L. gibba), and the SAV, Nutall’s waterweed (Elodea nuttallii). 

The model of [1] is non-spatial, thus implicitly spatially homogeneous. Subsequently, Nes et al. [2] 

developed spatial models, including a two-dimensional, 50 × 50-pixel grid, representing a spatially 

explicit system, in order to be able to represent different physical spatial conditions of the waterbody, 

such as spatially varying water depth. The authors studied three cases, no spatial heterogeneity, a linear 

gradient in the spatial parameter for water column depth along the lattice, and random assignment of 

water column depths. The aim of the model was to determine the effects of heterogeneity in the 

underlying physical environment, such as spatial variations in depth, on the outcome of the competition 

of SAV and FAV. The authors found that the physical heterogeneity of the system led to the abrupt 

changes in alternative stable states of SAV and FAV in the model of [1] being replaced by gradual 

changes from one stable equilibrium to the other as N was changed, though hysteresis still occurred. 

Another aspect of spatial heterogeneity can be differences in the initial biomasses of the aquatic 

vegetation. For example, following a large disturbance of a shallow pond or lake that greatly reduces 

vegetation, recolonization by aquatic vegetation could occur in some sort of spatially random way.  

To study how different initial spatial patterns of colonization can affect the long-term outcome, we 

used a two-dimensional spatial model similar to that of [2], that is, a 50 × 50 grid or lattice. However, 

we assumed physical homogeneity of depths, and, instead, we assumed that initial conditions of the 

competing SAV and FAV could differ, including differences both between the initial biomasses of the 

two species and in their initial spatial distributions. We investigated the effects of initial conditions on 

the stable equilibria that result, including both amounts and spatial distribution of the biomasses of the 

SAV and FAV species. Our spatial model was based on an existing cellular automata (CA) model 

(McCann [3]), which, like the model of [2], was an extension to space of the non-spatial model of [1]. 

Unlike the model of [2], McCann’s model assumes homogeneous depths, which are assumed in our 

model as well. Xu and DeAngelis [4] adapted the CA model of [3] as a basis for studying competition 

of SAV and FAV in combination with a biocontrol agent (the weevil Neochetina eichhorniae) feeding 

on the FAV. However, the competitive interaction of SAV and FAV in the absence of biocontrol was 

not considered in [4]. Here we show that the initial spatial heterogeneity of colonization of a shallow 

waterbody by competing SAV and FAV could lead to the emergence of self-organization of the 
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vegetation, which replaced abrupt critical transitions with relatively smooth changes in the species 

biomasses as a function of the changing nutrient. 

2. Materials and methods 

The model simulates competition between a submersed aquatic vegetation (SAV) and floating 

aquatic vegetation (FAV). The nutrient level, N, is assumed to be limiting to FAV, while light is limiting 

to SAV [1] (Figure 1). 

 

Figure 1. Competition between FAV and SAV. The submersed macrophyte (SAV) is a 

better competitor for limiting nutrient but the floating macrophyte (FAV) can shade the 

submerged plant. The “+” and “-” signs between the plants and nutrient represent nutrient 

limitation and exploitation, respectively. The floating plants are partially shading the 

submersed plants. 

2.1. Equations for competition of SAV and FAV 

For the non-spatial model of [1], the equations of competition between the SAV and FAV are,  

𝑑𝑆

𝑑𝑡
= 𝑟𝑠S

𝑛

𝑛+ℎ𝑠

1

1+𝑎𝑠𝑆+𝑏𝐹+𝑊
− 𝑙𝑠𝑆                                   (2.1) 

𝑑𝐹

𝑑𝑡
= 𝑟𝑓𝐹

𝑛

𝑛+ℎ𝑓

1

1+𝑎𝑓∗𝐹
− 𝑙𝑓𝐹,                                    (2.2) 

where S and F are dry weight biomasses (g dW m-2), rs and rf are the maximum growth rates, and ls 

and lf are the loss rates from respiration and mortality. Nutrient concentration in mg liter-1 is given by 

n and hs and hf are the half-saturation values for nutrient uptake of SAV and FAV. Parameters as and 

af are the intraspecific competitive effects of SAV and FAV, respectively, while b is the effect of 

shading of FAV on SAV, and W is the effect of light absorption by the floating plant on submersed 
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plant growth. As in Scheffer et al. [1] and McCann [3], it is assumed here that the water is shallow and 

clear enough that W = 0. 

The total amount of limiting nutrient in the system, N, which is divided among the vegetation and 

soluble form in the water column, is assumed fixed, as in the models of [1] and [3]; 

 𝑁 =  𝑛 + 𝑛𝑞𝑠𝑆 + 𝑛𝑞𝑓𝐹.                                     (2.3) 

Here qs and qf are coefficients of the effect of submerged and floating plants on the nutrient 

concentration in the water; that is, they represent the fractions of nutrient tied up in the vegetation per 

unit dry weight biomass. Therefore, the mean amount of nutrient in the water column is 

𝑛 =  
𝑁

1+𝑞𝑠𝑆+ 𝑞𝐹𝐹
  .                                       (2.4) 

2.2. Extension to spatial dynamics 

McCann [3] used the equations of [1] to simulate competition of SAV and FAV in a spatial arena 

or lattice, using a CA model composed of a block of contiguous spatial cells or pixels. We adopt the 

model of [3] with some modifications. Unlike the [3] model, which simulates various spatial 

configurations of pixels, we considered only a 50 × 50 square of 1× 1 m pixels.  

Both species are capable of both growing within the pixels they occupy and spreading to adjacent 

pixels in the model. We simulate spread such that, at each time step, if the biomass in a given pixel is 

sufficiently large, some fraction of its biomass could spread to any of eight adjacent cells. Vegetation 

could not spread beyond the limits of the 50 × 50 lattice. The details of the spread are described in 

Appendix 1. 

Nutrient was allowed to spread by symmetric two-dimensional diffusion, but the concentration at 

any point was also assumed to be influenced by the local biomasses of the two species. If there were 

no diffusion, local nutrient concentration in each pixel would be given by Eq (2.4); for a given pixel 

(i, j) 

                    𝑛𝑖𝑗 =  
𝑁

1+ 𝑞𝑠𝑆𝑖𝑗+ 𝑞𝐹𝐹𝑖𝑗
,                                        (2.5) 

where 𝑆𝑖𝑗 and 𝐹𝑖𝑗 are the biomass concentrations (g dW m-2) in that pixel. If diffusion were very 

large, nutrient concentration would be evenly spread across the spatial arena. In the absence of specific 

knowledge, we considered a variety of nutrient diffusion rates. 

2.3. Parameterization of model 

Our spatial model used the equations above to simulate the growth of floating and submerged 

plants in a difference equation version of the CA model of [3] for the spatial dynamics of FAV 

(duckweed) and SAV (Nuttall’s waterweed). The parameter values are listed in Table 1 and 

parametrization is further discussed in [4]. 
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Table 1. Variables and parameter values for the model of [3] modified for use here. 

State variables Symbol Values Units 

Floating plant biomass, FAV 

Submersed plant biomass, SAV 

Nutrient concentration in water 

F 

S 

n 

0 to 900  

0 to 800 

0 to 2 

g dW m-2 

g dW m-2 

mg nitrogen l-1 

Parameters    

Maximum relative growth rate 

Loss rate 

Half saturation coefficient for n 

FAV Light limitations parameter 

Light attenuation in water 

Total nutrient in system 

Nutrient diffusion rate 

r 

l 

h 

a 

W 

N 

Ndifff 

0.5 (FAV and SAV) 

0.05 (FAV and SAV) 

0.2 (FAV), 0 (SAV) 

0.01 (FAV and SAV) 

0 

0 to 2 

0.01,0.05,0.1,0.2 

day-1 

day-1 

mg nitrogen l-1 

g dW m2 

unitless 

mg nitrogen l-1 

m2 day-1 

Using these parameters and solving Eqs (2.1)–(2.3) analytically, we first checked that we were 

able to produce the bifurcation diagram of the non-spatial model of [1]. We found that within the 

approximate range N = 0.8 to N = 1.35, there are two possible stable equilibrium states, floating species 

alone or mixed floating and submersed. For N > 1.35, only the FAV exists as a stable state. Between 

N = 0.55 and 0.8, only the mixed vegetation exists as a stable state, while for N < 0.55 only the SAV 

exists as a stable state (Figure 2). 

 

(a)                                      (b) 

Figure 2. Bifurcation curves of model solution. (a) FAV biomass possible equilibrium 

states under different values of N. Solid lines represent stable branches of FAV biomass, 

and the dashed line represents floating plant biomass of unstable states. (b) SAV possible 

equilibrium biomasses under different N. Solid lines represent stable branches of SAV 

biomass, and the dashed line represents unstable states. Critical transitions occur at about 

N = 0.8 and 1.35. 
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2.4. Simulation studies using the spatial model 

The effects of different initial conditions were studied in three scenarios. In the first two scenarios, 

the system was assumed closed with a fixed total amount of limiting nutrient, N, in the system. In the 

third scenario, N, was gradually changed through time.  

Scenario 1. Spatially homogeneous initial biomasses. 

The waterbody was initially empty of vegetation. Then initial biomasses of both SAV (S) and 

FAV (F) were allowed to colonize homogeneously to all pixels across the 50 × 50-pixel grid, and the 

resultant equilibrium state that was reached was determined through simulations. Each pixel was 

initiated with the same amount of biomass for a given species, but the initial biomasses could differ 

between species. Five cases of the two species were simulated in the model: Case 1, F = 50, S = 50, 

Case 2, F = 500, S = 5, Case 3, F = 5, S = 500, Case 4. F = 60, S = 30 g dW m-2, and Case 5. F = 30, 

S = 60 g dW m-2 Also, for each case two levels of nutrient diffusion were used, one a low rate and one 

a high rate. Here, low nutrient diffusion rate means that every day 1% of the nutrient of a pixel is 

exchanged with all eight neighboring pixels, intermediate means 10%, (or 5% in some cases) and high 

diffusion rate means that every day 20% of nutrient is exchanged.  

Scenario 2: Spatially heterogeneous initial biomasses. 

In the second scenario, again the waterbody was initially empty of vegetation. Certain initial 

biomasses of SAV and FAV were then spread randomly to some fraction of the pixels. In Cases 1–3, 

biomasses of each species were added randomly to a mean of 15% of the pixels. That is, each pixel had 

a 15% chance of being settled by SAV and 15% by FAV. Because overlap was possible, on average 2.5% 

of pixels were colonized with biomasses of both SAV and FAV. The initial biomasses of SAV and FAV 

(in g dW m-2) colonizing the randomly selected pixels differed. Five cases were simulated. In Case 1, F 

= 50, S = 50, in Case 2, F = 500, S = 5, Case 3, F = 5, S = 500 for the two species (we later use the terms 

F:S = 5:500, 50:50, and 500:5). Two additional cases were simulated. In Case 4, 50% of the pixels were 

randomly colonized by FAV and 15% for SAV, where F = 500, S = 5, and in Case 5 90% of the pixels 

were colonized by FAV and 15% by SAV with F = 500, S = 5. For each case two different values of 

nutrient level, N, were used. 

Scenario 3. Changing values of limiting nutrient, N. 

The bifurcation analysis of SAV-FAV competition studied in [1] was motivated primarily for 

predicting changes in the vegetation in shallow lakes as the result of gradually increasing nutrient 

loadings. Scenarios 1 and 2 focused on the properties of the model in [1] for cases in which total 

nutrient, N, was fixed and simulations were performed for different starting conditions of FAV and 

SAV. Here, in Scenario 3, we studied how equilibrium states respond to N changing through time. As 

in Section 3.2, we started by initializing simulations with different values of FAV and SAV, distributed 

in a spatially heterogeneous manner. But now, after a stable equilibrium was reached, the total amount 

of nutrient, N, was gradually changed, both by increasing and decreasing N, with the system being 

allowed to come to equilibrium, by taking 1000 time steps between each small amount increment in 

N. Two examples are presented, one with N decreasing and one with N increasing, with starting 

conditions in the range 0.8 ≤ N ≤ 1.35, where multiple stable equilibria can occur. The intention is not 

a thorough study, but just to show examples of possible trends in equilibria as total nutrient changes. 

The software, MatLab R2022a, was used in all simulations and calculations. 
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3. Results 

3.1. Scenario 1. Spatially homogeneous initial biomasses 

For a series of fixed values of nutrient concentration N, biomasses of F:S = 50:50, F:S = 500:5, 

F:S = 5:500, and F:S = 60:30 were initiated in each pixel and the simulations were run until stable 

equilibrium states were reached. The resultant stable FAV (F) and SAV (S) biomasses reached for the 

four different cases with low nutrient diffusion rate are shown in Figure 3.  

 

(a)                                          (b) 

 

(c)                                          (d) 

Figure 3. Mean vegetation biomass averaged over the gridded landscape (g dW m-2) under 

different N concentrations for homogeneous state with low nutrient diffusion rate (0.01) 

shown in Table 1. Cases 1, 2, 3, and 4 represent different starting values of vegetation. 

Case 1, F:S = 50:50 (a), Case 2, F:S = 500:5 (b), Case 3, F:S = 5:500 (c), and Case 4, F:S 

= 60:30 (d). 

In all cases, for N > 1.35, only the FAV existed as a stable state, for 0.55 < N < 0.8 only the mixed 

state occurred, and for N < 0.55 only the SAV occurred as a stable state. However, in the range 0.8 < 

N < 1.35, different stable equilibria were reached, depending on the different biomass starting 

conditions of F:S = 50:50, F:S = 500:5, and F:S = 5:500. For F:S = 5:500, an abrupt change from one 
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branch to another occurred at N = 1.35 (Figure 3(c)). For F:S = 50:50, the abrupt change occurs at N 

= 1.26 (Figure 3(a)). For F:S = 500:5, the abrupt change occurred at N = 0.82 (Figures 3(b)). For F:S 

= 60:30 the abrupt change occurs at N = 1.13 Figures 3(d)). An additional case of F:S = 30:60 was also 

run, and the abrupt occurred at N = 1.33 (not shown). Therefore, the high and low extreme F:S ratios 

produced jumps between the branches of the bifurcation curve that are the same as those at the high 

and low ends of Figure 2 (N =1.35 and 0.8, respectively) and thus correspond to the critical transitions 

of the model of Scheffer et al. [1]. However, the three cases in which the starting biomass values of 

FAV and SAV were close produced abrupt changes at intermediate values (N = 1.26, 1.35, and 1.13) 

The simulations in Figure 3 for low nutrient diffusion rate (0.01) were repeated for high nutrient 

diffusion rate (0.20). There was no difference in the results, which are not shown here. 

The simulations show that under the homogeneous state, results of the spatial model with high 

F:S (500:5) and low F:S ratios (5:500) of initial homogeneously distributed SAV and FAV species 

taken together can roughly duplicate the basic results of Scheffer et al. [1] for the branches of the stable 

states. Starting conditions of 50:50, 60:30, and 30:60 produce results in which the transition of the 

equilibrium point from one branch to the other occurs at intermediate values of N between the two 

extremes of 0.8 and 1.35. 

3.2. Scenario 2: Spatially heterogeneous initial biomasses 

3.2.1. Effects on mean FAV and SAV biomasses 

For a series of fixed N values, spatially heterogeneous stable equilibria were produced by starting 

the simulations with different assumed colonization by FAV and SAV biomass scattered randomly in 

some fractions of the pixels, as described in Section 2.4. Five different cases of amounts of initial 

colonization of species biomass and different probabilities of pixels being colonized were considered.  

For a series of values of total nutrient N, Figure 4 shows that, as in Scenario 1, for the N > 1.40 or 

N < 0.70, similar to results for the stable equilibrium states were obtained as in the Scheffer et al. [1] 

non-spatial model; that is, there was only one stable equilibrium state, either FAV for N > 1.40, mixed 

SAV-FAV for 0.55 < N < 0.70, or SAV, for N < 0.55. However, the values of N such that 0.70 ≤ N ≤ 

1.40, the situation is more complicated. Different initial values of the FAV and SAV biomasses resulted 

in different stable equilibria for values in the range of 0.70 ≤ N ≤ 1.40 when there was spatial 

heterogeneity in the initial biomasses. These equilibrium points depart from those predicted by the 

bifurcation curve of Scheffer et al. [1] and Figure 2.  

Continua of equilibria were reached in the range 0.8 ≤ N ≤ 1.35 for the five different cases for 

FAV (Figure 4(a)) and SAV (Figure 4(b)), which are color-coded for the five cases of different 

heterogeneous starting values of biomasses. All results shown are for the low nutrient diffusion rates, 

(Ndiff = 0.01). Consider Case 5 (light green) first. In this case FAV was introduced at very high amounts 

to approximately 90% of the cells and a small amount of SAV was introduced to 15% of the cells. The 

result was that the simulations came very close to producing the bifurcation branches of the [1] model 

(our Figure 2), with the FAV biomass declining drastically for decreasing N only when N had decreased 

to 0.80. In Case 4 (brown), in which the only change from Case 4 was that FAV was introduced to only 

50% of cells rather than 90%, the FAV species biomass declined more gradually, starting around the 

point where N declines slightly below 1.4, far before the rapid drop that occurs in Case 5. At the other 

extreme, Case 3 (light orange), where the SAV biomass was introduced to pixels at 500 g dW, while 

FAV was introduced to pixels at 5 g dW in approximately 15% of the cells for both species, the FAV 

started to decline gradually, but the rapidly, as N decreased below 1.4. The two remaining cases, Cases 
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1 and 2, fall in between these cases. Precisely the same patterns occurred under the high nutrient 

diffusion rate (Ndiff = 0.2, results not shown here). All of the points (places connecting straight lines) 

shown in Figure 4 are stable equilibria, meaning that some sort of heterogeneous stable spatial pattern 

had been reached, which is explored in the next section. 

 
(a)                                     (b) 

Figure 4. (a) FAV, (b) SAV. Mean vegetation biomass (g dW m-2) averaged over the 

gridded landscape under different nutrient levels in a heterogenous state with low nutrient 

diffusion (Ndiff = 0.01). Cases 1–5 represent different starting values of vegetation. Case 1, 

F:S = 50:50 (both distributed to 15% of pixels); Case 2, F:S = 500:5 (both distributed to 

15% of pixels); Case 3, F:S = 5:500 (both distributed to 15% of pixels); Case 4, F:S = 

500:5 (FAV distributed to 50% of pixels and SAV to 15% of pixels); Case 5, F:S = 500:5 

(FAV distributed to 90% of pixels, SAV to 15% of pixels).  

3.2.2. Spatial patterns of heterogeneous conditions 

The reason for the multiple stable equilibrium states that occur in Scenario 2 is that stable 

heterogeneous patterns of SAV and FAV developed on the spatial grid. Here we show an example of 

stable spatial patterns produced by initial heterogeneous introductions of SAV and FAV, for the case in 

which N = 1 and with 15% of the spatial pixels initialized randomly with SAV and 15% initialized 

randomly with FAV. Initial values of both FAV and SAV in each of the randomly occupied cells was 

50 g dW (as in Case 1). An intermediate diffusion rate of (0.1) was used; that is, a daily turnover rate 

of 10% in a cell.  

Under intermediate nutrient concentration (N = 1), a stable state of a mixture FAV and SAV had 

been formed by day 5000, a steady state had formed with species coexisting heterogeneously across 

space (Figure 5(a),(b)). with FAV average biomass is 231 g dW m-2 and SAV average biomass is 449 

g dW m-2. Figure 5(c) shows changes in mean FAV and SAV biomass through time. 
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(a)                       (b)                      (c) 

Figure 5. FAV and SAV, started from randomly scattered biomasses and treated with 

intermediate nutrient concentration (N = 1).  

3.2.3. Different fractions of initial spatial coverage 

The results Figure 4 show the stable equilibria reached for five different heterogeneous initial 

conditions on SAV and FAV biomasses over a range of values of total nutrient, N. The effects of the 

initial conditions by themselves can be studied more systematically. Here, nutrient level was fixed at 

an intermediate level of N = 1. The initial conditions were varied in the following way. Three different 

initial values of FAV and SAV biomasses were considered, F:S = 5:50, F:S = 50:50, and F:S = 500:50 

(Figure 6). For each ratio (F:S), coverage range (mean fraction of pixels in which vegetation was 

initialized) was varied from 0.10 to 0.90, increasing by 0.05 each step. A general result of the 

simulations was that there was continued coexistence for the three cases over the whole range of 

coverages. As would be expected, SAV dominated for F:S = 5:50 and FAV dominated for F:S = 500:50, 

at least for higher coverage levels, but the SAV dominated for F:S = 50:50, which implies that there 

is an advantage for SAV for the value of N = 1. 

 
(a)                           (b)                          (c) 

Figure 6. Stable state biomass of SAV and FAV for a range of values of coverage of the by 

initial biomasses, with N=1 and medium diffusion rate (Ndiff = 0.1). (a) F:S =5:50; (b) 

F:S=50:50; (c) F:S = 500:50. 

3.2.4. Different nutrient diffusion rates  

In the absence of knowledge of the nutrient diffusion rate for the situation modeled, it is useful to 

explore the consequences of a range of plausible values of diffusion. This was done for the particular 

case of total nutrient N = 1 and initial biomasses F:S = 50:50, each being initially spread randomly 
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over 50% of the pixels, so there was a lot of overlap of biomasses on pixels. The effect of the diffusion 

rate was relatively small, though there was some increase in amount of SAV biomass and decrease in 

FAV biomass for larger values of the diffusion rate (Figure 7). 

 

Figure 7. Different nutrient diffusion rates result in different alternative stable states; no 

diffusion, low, medium, and high N diffusion rates. For initial F:S = 50:50 over 50% of 

pixels. 

3.3. Changing N through time 

Case 1: Decreasing values of nutrient amount, N. 

The initial values of SAV biomass, S, across the grid were chosen randomly and uniformly 

between 0 and 10 g dW m-2 on 50% of the cells, and those of FAV biomass, F, were chosen randomly 

and uniformly between 0 and 600 on 50% of the cells. The total nutrient was started at N = 1.2 mg l-1. 

The system was first allowed to approach a stable equilibrium and then N was decreased gradually 

through time in steps of 0.001. Between each step in N there were 1000 steps in time to allow the 

system to approach a new equilibrium point. The result of decreasing N from 1.2 was that at first F 

decreased and S increased very gradually. Then, at about N = 0.75 there is a series of a few sharp 

increases in mean S and drops in mean F, after which the changes were slower (Figure 8(a)). With 

further decreases in N, F would reach zero. The accompanying changes in the biomass patterns in 

spatial grid landscape show a changing self-organizing pattern of S and F in the spatial pixels (Figure 

9(a)). Each panel in Figure 9(a), is a steady state equilibrium. By the time N = 0.75 was reached, 

clumped patterns of F and S occurred, and continued to change with further decreases in N. At N = 0.7, 

both S and F were close to being homogeneously distributed on the grid, with F approaching a small 

value. The decrease in N was continued to N = 0.65 and then reversed such that N increased. Although 

the spatial results are not shown for this reversal in Figure 9, the mean values are shown in Figure 10 

(compare with Figure 8(a)). The result is hysteresis, with the trajectories of F and S following the 

bifurcation branch of mixed FAV and SAV when N is reversed (Figure 10). 

Case 2. Increasing values of nutrient. 

The initial values of S were chosen randomly and uniformly between 0 and 10 g dW m-2 on 50% 

of the cells, and initial values of F biomass values were chosen randomly and uniformly between 0 

and 600 on 70% of the cells. In this case, the initial total nutrient was N = 0.78, and it was increased 
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from that amount over time. As in Case 1, the system was allowed to go to equilibrium between each 

step of N. After sharp increases in S and drops in F to reach an equilibrium state, there was a more 

gradual decrease in S and increase in F, followed by a sharp drop in S and sharp increase in F (Figure 

8(b)). The remaining changes follow the upper branch bifurcation diagram of Figure 2, for the F-alone 

stable state. Both the decreasing and increasing N scenarios show that spatial heterogeneity plays a 

role in moderating the changes in mean SAV and FAV biomass over segments of the changes in N, 

although the heterogeneity does not completely eliminate the occurrence of sharp changes (Figure 

9(b)). The effect of spatial self-organization on smoothing the transitions was stronger for decreasing 

than for increasing N.  

 
(a)                              (b) 

Figure 8. (a) Decreasing total nutrient N through time under heterogenous state, starting 

at a stable equilibrium at N = 1.2. (b) Increasing N through time, starting at a stable 

equilibrium at N = 0.78. 

4. Discussion 

Our study of competition of submersed (SAV) and floating (FAV) aquatic macrophytes shows 

that the initial conditions of the two competing species could determine the stable equilibrium reached. 

Three types of scenarios were studied using the 50 × 50 pixel spatially explicit model of [3].  

In Scenario 1, each species was initiated with the same biomass as each of the 50 x 50 pixels of 

the grid, but the starting biomasses of the two species differed. This was done over the whole range of 

values of nutrient 0 < N < 2. Over the range of values, 0.80 ≤ N ≤ 1.35, [1] found that two alternative 

states could occur, one along a branch of pure FAV and one along a branch of mixed FAV and SAV. 

Our results duplicated the existence and biomass values of the two branches but showed that the 

discontinuous transition from one branch to the other depended on the initial ratios of the biomasses 

of FAV to SAV. Outside of the range 0.80 ≤ N ≤ 1.35, our results completely agree with those of [1], 

that only one stable equilibrium occurred outside of the range, pure SAV for N < 0.55, mixed SAV-

FAV for the range 0.55 ≤ N ≤ 0.8 and pure FAV for N > 1.35. 

  



7206 

Mathematical Biosciences and Engineering  Volume 21, Issue 10, 7194-7210. 

 
(a) FAV             SAV          (b) FAV           SAV 

Figure 9. Changing N through time under heterogenous state result in different formation 

pattern of vegetation. ((a) In this case (decreasing N with heterogeneity), N was started at 

N = 1.2, with F set at rand < 0.7 and F = 600*rand, while for S, rand < 0.5 and S = 10*rand. 

(b) In this case (increasing N with heterogeneity), N was started at N = 0.78, with F set at 

rand < 0.7 and F = 600*rand, while for S, rand < 0.5 and S = 10*rand, where rand is a 

random number drawn uniformly on the interval (0,1). Moderate N diffusion (0.05) is 

assumed in both cases. 
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Figure 10. The simulation in Figure 8(a) is continued with reversal of decreasing to 

increasing N. The result is hysteresis behavior, shown in the straight lines. Low N 

diffusion (diffusion rate = 0.05). 

In Scenario 2, again the initial values of the two species were initiated at different ratios of the 

species, but this time the biomasses of the species were initiated randomly and independently to an 

average of 15% of the pixels on the grid. In this scenario, instead of the equilibria being reached that 

are always along one of the two alternative branches as in [1], the result is that there are multiple 

possible stable states in the approximate range 0.65 ≤ N ≤ 1.40, depending on the initial values. As in 

Scenario 1, only one stable equilibrium occurred outside of that range, pure SAV for N < 0.55, mixed 

FAV-SAV for 0.55 ≤ N < 0.65 and pure FAV for N > 1.40, but, instead of the abrupt discontinuities, 

the transitions between alternative stable states were modified so that they were relatively smooth. 

In Scenario 3, in which N was gradually decreased or increased after an initial heterogeneous 

stable state was formed in the approximate range 0.80 < N < 1.35, it was found that increasing N but 

particularly decreasing N can produce gradual changes of FAV and SAV biomasses, as a series of small 

jumps, as the system moved from one stable heterogeneous equilibrium state to another. Coexistence 

could occur outside of the region within the critical transition points of the non-spatial model of [1]. 

An interesting difference between the increasing and decreasing N cases is that in the latter there 

appears to be self-organization into spotty spatial patterns of SAV and FAV dominance (Figure 9). As 

in the models [1,2], there was hysteresis when the direction of N change was reversed (Figure 10).  

Our modeling can be compared with other work on competition in aquatic ecosystems. Our spatial 

model differs from that of [2], in which the physical conditions of the aquatic system, e. g., water depth, 

were spatially varying, either as a gradient or with random heterogeneity. Depending on the details of 

physical heterogeneities in [2], they could lead to a smoothing of the discontinuity, though some degree 

of hysteresis remained. Another way in which physical heterogeneity could be applied to the case of 

competing floating and submersed vegetation was modeled in Janssen et al. [5]. In their model of a 

spatially long lake, the way in which nutrient loading was applied, either at the upstream end or through 

seepage along the longitudinal extent of the lake, could affect the occurrence and spatial location of 

alternative stable states. Our model is not like either of these examples, as the physical conditions were 

assumed homogeneous, and instead the initial conditions on vegetation varied, including initial 
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differences in the SAV and FAV spread homogeneously or heterogeneously over the grid. These results 

are important, as initial conditions of vegetation in a shallow lake, such as those following a 

disturbance, are likely to be heterogeneous. 

Although we know of no model of aquatic vegetation that our model can be directly compared 

with, it is possible that our results reflect observations and theory of some terrestrial vegetation. Our 

model simulations resemble some studies of vegetation patterns in semi-arid ecosystems showing that 

sudden tipping points may be evaded by spatial pattern formation [6,7]. The sequence of stable patterns 

exhibited in our Figure 9 is similar to what has been observed empirically and studied in models of 

semi-arid systems. The authors of such studies have related them to what is called the Busse balloon, 

after Bastiaansen [8,9]. In particular, Rietkerk and Koppel [10] found that changes in some factors 

such as soil water availability, light, water and nutrient flux, produce sequences of stable states. von 

Hardenberg et al. [11] found such a vegetation formation pattern transition in water-limited regions, 

that is bare soil at low precipitation and vegetation at high precipitation. Siteur et al. [12] and Vanselow 

et al. [13] found that the response of patterned ecosystem depends on both magnitude and rate of 

environmental change. Sheffer et al. [14] concluded that real landscapes are controlled by the mixture 

of physical template and self-organization. Dong et al. [15] found that self-organized spatial patterns 

are caused by scale-dependent feedbacks, coupling short-range positive feedbacks with long-range 

negative feedbacks.  

Our model has some of the characteristics of the models in the papers cited above. At low N levels 

have short-range positive feedbacks on submerged plants by promoting their dominance, which leaves 

little nutrient for floating plants to grow due to long-range negative feedbacks. However, high nutrient 

level provides enough nutrient for both submerged plants and floating plants to grow. When floating 

plants grow to a sufficiently large size, they will have long-range negative feedbacks on submerged 

plants by shading light away from the water surface. Patch formations in Figure 10 are the examples 

of self-organized spatial patterns, for example, when N is equal to 0.74 in Figure 10(a), vegetation 

pattern forms a dot-stripe-like pattern. The boundary of self-organized pattern is clearer in figure 9(a) 

than that in figure 9(b), which shows that decreasing N with heterogeneity causes more visible pattern 

than increasing N with heterogeneity does. 

5. Conclusions 

Our modeling extends the work of studies such as [1] and [2] on the competition of floating and 

submersed vegetation in shallow lakes. In particular, within the range of values of nutrient, N, our 

modeling shows that the initial conditions on the starting biomasses of the competing species can 

determine the equilibria reached. The equilibria that are reached can then affect the response of the 

biomasses of the two species to any gradual changes in nutrient level in the system. Instead of an abrupt 

discontinuity causing dominance of one species to shift to another, it is more likely that a series of 

stable states will occur between the two extreme stable equilibria. This result may relate to similar 

results in models of vegetation patterns in semi-arid regions. 
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Appendix 

Movement algorithm of biota. 

FAV colonization 

Each day FAV in a given pixel can invade a Moore-adjacent pixel deterministically by adding 1 

g dW of biomass into an adjacent pixel if 

• There is more than 8 g dW in the donor pixel. 

• There is less than 1 g dW in the recipient pixel. 

The donor pixel can contribute to more than one recipient pixel and the amount 1 g dW is 

subtracted for each donation. 

SAV colonization 

Each day SAV can invade 1 g dW of biomass into an adjacent pixel if 

• There is more than 8 g dW in the donor pixel. 

• There is less than 1 g dW in the recipient pixel. 

That amount is subtracted from the donor pixel. 
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