
MBE, 21(1): 1413–1444. 
DOI: 10.3934/mbe.2024061 
Received: 22 September 2023 
Revised: 04 December 2023 
Accepted: 15 December 2023 
Published: 27 December 2023 

http://www.aimspress.com/journal/MBE 
 

Research article 

Decision tree models for the estimation of geo-polymer concrete 

compressive strength 

Ji Zhou1, Zhanlin Su2, Shahab Hosseini3, Qiong Tian1, Yijun Lu4, Hao Luo4, Xingquan Xu5, 
Chupeng Chen4,5,* and Jiandong Huang4,* 

1 College of Civil and Environmental Engineering, Hunan University of Science and Engineering, 
Yongzhou 425199, China 

2 Shandong Energy Group Xinwen Mining Co., Ltd., Taian 271233, China 
3 Faculty of the Engineering, Tarbiat Modares University, Jalal AleAhmad, Nasr, Tehran, Iran 
4 School of Civil Engineering, Guangzhou University, Guangzhou 510006, China 
5 Guangdong Hualu Transport Technology Co., Ltd, Guangzhou, China 

* Correspondence: Email: 1112216034@e.gzhu.edu.cn, jiandong.huang@hotmail.com. 

Abstract: The green concretes industry benefits from utilizing gel to replace parts of the cement in 
concretes. However, measuring the compressive strength of geo-polymer concretes (CSGPoC) needs 
a significant amount of work and expenditure. Therefore, the best idea is predicting CSGPoC with a 
high level of accuracy. To do this, the base learner and super learner machine learning models were 
proposed in this study to anticipate CSGPoC. The decision tree (DT) is applied as base learner, and 
the random forest and extreme gradient boosting (XGBoost) techniques are used as super learner 
system. In this regard, a database was provided involving 259 CSGPoC data samples, of which four-
fifths of is considered for the training model and one-fifth is selected for the testing models. The values 
of fly ash, ground-granulated blast-furnace slag (GGBS), Na2SiO3, NaOH, fine aggregate, gravel 4/10 
mm, gravel 10/20 mm, water/solids ratio, and NaOH molarity were considered as input of the models 
to estimate CSGPoC. To evaluate the reliability and performance of the decision tree (DT), XGBoost, 
and random forest (RF) models, 12 performance evaluation metrics were determined. Based on the 
obtained results, the highest degree of accuracy is achieved by the XGBoost model with mean 
absolute error (MAE) of 2.073, mean absolute percentage error (MAPE) of 5.547, Nash–Sutcliffe 
(NS) of 0.981, correlation coefficient (R) of 0.991, R2 of 0.982, root mean square error (RMSE) 
of 2.458, Willmott's index (WI) of 0.795, weighted mean absolute percentage error (WMAPE) 
of 0.046, Bias of 2.073, square index (SI) of 0.054, p of 0.027, mean relative error (MRE) of -0.014, 
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and a20 of 0.983 for the training model and MAE of 2.06, MAPE of 6.553, NS of 0.985, R of 0.993, 
R2 of 0.986, RMSE of 2.307, WI of 0.818, WMAPE of 0.05, Bias of 2.06, SI of 0.056, p of 0.028, 
MRE of -0.015, and a20 of 0.949 for the testing model. By importing the testing set into trained models, 
values of 0.8969, 0.9857, and 0.9424 for R2 were obtained for DT, XGBoost, and RF, respectively, 
which show the superiority of the XGBoost model in CSGPoC estimation. In conclusion, the XGBoost 
model is capable of more accurately predicting CSGPoC than DT and RF models. 

Keywords: geo-polymer concrete; compressive strength; super learner; extreme gradient boosting; 
decision tree; random forest 
 

1. Introduction  

Cement concretes are the construction component that is employed on a global scale with the 
highest rate [1,2]. Ordinary Portland cement is one of the most common forms of binding agent used 
in cement concretes. Additional kinds of aggregate, water, and binding agents are other components of 
cement concretes. After aluminum and steel, oxidized polycyclic aromatic hydrocarbon is regarded as 
the third most incredibly energy-demanding chemical in the world. Ordinary Portland cement is 
responsible for seven percent of the overall energy that is needed by industries [3]. Unfortunately, the 
manufacturing of ordinary Portland cement results in the emission of enormous quantities of greenhouse 
gases like carbon dioxide, which has a significant role in the progression of global warming [4–6]. It is 
anticipated that the production of ordinary Portland cement would result in the release of 1,400,000,000 
tons of greenhouse gases on a yearly basis [7,8]. Because of this, scientists have focused their attention 
on finding ways to lessen the amount of ordinary Portland cement that is used thanks to the 
development of alternative binders. There is some evidence that suggests that alkali-activated 
components, including geo-polymers, are preferred to cement concrete [9–12]. The reaction of 
precursor and activator results in the formation of alkali-activated compounds. In accordance with the 
amount of calcium present in the products of the chemical process, these were divided into two 
categories: 1) those that are high in calcium and have a Ca/(Si + Al) proportion that is higher than one 
(geo-polymers) and 2) those that are weak in calcium [13]. 

A geo-polymer is an innovative kind of binder produced for the production of concretes instead 
of ordinary Portland cement [13–17]. This was performed in order to improve the efficiency of 
production. The objective is to develop construction supplies that are sustainable-based, eco-friendly, 
and do not contain ordinary Portland cement. There is a significant increase in the number of distinct 
kinds of waste products that are being produced and deposited in landfills as a direct result of the 
ongoing expansion of industry and population. Rice husk ash, waste glass powder, ground granulated 
glass furnace slag, silica fume, fly ash, etc., are included in this category of wastes. It is detrimental to 
the environment to dispose of the mentioned wastes in landfills since they contribute to contamination 
in the environment [18,19]. Because geo-polymer concrete (GPoC) requires basic components with 
higher aluminum silicate concentrations present in waste materials, recycling these types of materials 
to produce GPoC would reduce the volume of pollutants that are released into the atmosphere [20,21]. 
Figure 1 provides a visual representation of the GPoC manufacturing procedure, in which a variety of 
different kinds of components and curing regimens are shown to be utilized during the making of 
GPoC. As can be seen in Figure 2, the utilization of such kinds of waste materials will be beneficial to 
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both the natural environment and the economic system. This is because these materials are abundant 
and the need for reasonably priced housing is expected to increase in tandem with the growth of 
populations [8,22–24]. In general, the use of GPoC for studies is becoming more common, and it has 
the potential to overtake other environmentally friendly construction materials [25,26]. Despite this, 
GPoC has an opportunity to produce a substantial contribution to the continued existence of cement 
concrete technologies as well as the construction sector in the years to come. 

 

Figure 1. Schematic illustration of the geo-polymer construction strategy [27]. 

 

Figure 2. Advantages of geo-polymer concrete containing waste materials [28]. 

Recent advancements in artificial intelligence (AI) have provided an explanation for the 
widespread use of artificial intelligence techniques for anticipating the properties of a variety of 
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materials in civil engineering [29–35]. Also, varying AI techniques have been employed to predict the 
mechanical properties of engineering materials [36–41]. In a study that was conducted by Huang et al. [42], 
a comparison was conducted between three different artificial intelligence techniques known as 
decision trees (DT), AdaBoost, and bagging regressor in order to predict the compressive strength of 
GPoC (CSGPoC) that included fly ash materials. In comparison to the other systems examined, it 
proved that the bagging regressor approach showed the highest level of accuracy. In a separate study 
conducted by Ahmad et al. [43], artificial neural networks and gene expression programming (GEP) 
models were used to generate an estimate of the compressive strength of concretes that included 
recycled aggregates. In the study, the GEP model provided a more accurate forecast than the artificial 
neural network. A study conducted by Song et al. [44] used an artificial neural network approach to 
explore the compressive strength of concretes including waste materials, and they were able to 
correctly anticipate the needed conclusion. According to the findings of the study, it is possible to 
effectively use machine learning methods to anticipate any kind of mechanical feature that is 
associated with concretes. The tensile and compressive strengths of concretes with high 
performance were predicted using a number of artificial intelligence methods, as detailed by 
Nguyen et al. [45]. They concluded that the approaches of combined artificial intelligence were 
more accurate than the methods of artificial intelligence used in standalone form. This is due to the 
fact that the various machine learning techniques, in order to produce a more accurate model, 
frequently utilize the abilities of weak learners including decision trees and multi-layer perception 
neural networks. Therefore, several researchers have documented different artificial intelligence 
systems that have better degrees of precision in their evaluation of the attributes of materials. In 
light of this, it is absolutely necessary to carry out more in-depth research in order to shed light on 
this particular issue. Some literature models for predicting different characteristics of concretes are 
reported in Table 1. 

Table 1. Using artificial intelligence techniques to predict various characteristics of concretes. 

Author Year Technique Number of data 
Huang et al. [46] 2021 SVM 114 
Sarir et al. [47] 2019 GEP 303 
Balf et al. [48] 2021 DEA 114 
Ahmad et al. [49] 2021 GEP, ANN, DT 642 
Azimi-Pour et al. [50] 2020 SVM - 
Saha et al. [51] 2020 SVM 115 
Hahmansouri et al. [52] 2020 GEP 351 
Hahmansouri et al. [53] 2019 GEP 54 
Aslam et al. [54] 2020 GEP 357 
Farooq et al. [55] 2020 RF and GEP 357 
Asteris and Kolovos [56] 2019 ANN 205 
Selvaraj and Sivaraman [57] 2019 IREMSVM-FR with RSM 114 
Zhang et al. [58] 2019 RF 131 
Kaveh et al. [59] 2018 M5MARS 114 
Sathyan et al. [60] 2018 RKSA 40 
Vakhshouri and Nejadi [61] 2018 ANFIS 55 
Belalia Douma et al. [62] 2017 ANN 114 

Continued on next page 
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Author Year Technique Number of data 
Abu Yaman et al. [63] 2017 ANN 69 
Ahmad et al. [64] 2021 GEP, DT and Bagging 270 
Farooq et al. [65] 2021 ANN, bagging and boosting 1030 
Bušić et al. [66] 2020 MV 21 
Javad et al. [67] 2020 GEP 277 
Nematzadeh et al. [68] 2020 RSM, GEP 108 
Güçlüer et al. [69] 2021 ANN, SVM, DT 100 
Ahmad et al. [70] 2021 ANN, DT, GB 207 
Asteris et al. [71] 2021 ANN, GPR, MARS 1030 
Emad et al. [72] 2022 ANN, M5P,  306 
Shen et al. [73] 2022 XGBoost, AdaBoost, and Bagging 372 
Kuma et al. [74] 2022 GPR, SVMR 194 
Jaf et al. [75] 2023 NLR, MLR, ANN 236 
Mahmood et al. [76] 2023 NLR, M5P, ANN 280 
Ali et al. [77] 2023 LR, MLR, NLR, PQ, IA, FQ 420 

SVM: Support vector machine; GEP: Gene expression programming; ANN: Artificial neural network; DT: Decision tree; 
RF: Random Fores; DEA: Data envelopment analysis; RSM: Response surface methodology; ANFIS: Adaptive neuro 
fuzzy inference system; MV: Micali-Vazirani algorithm; RKSA: Retina key scheduling algorithm; GB: gradient boosting; 
GPR: Gaussian Process Regression; MARS: Multivariate Adaptive Regression Splines; SVMR: Support Vector Machine 
Regression; NLR: Nonlinear regression; MLR: Multi-linear regression; LR: linear regression; PQ: pure quadratic; IA: 
interaction; FQ: full quadratic. 

This research differs from experimentation-based research in that it examines the CSGPoC using 
both base models of artificial intelligence methods as well as their ensemble form for predicting the 
CSGPoC. Experiment-based studies require considerable quantities of personal effort in addition to 
costly and lengthy experiments. By tackling the aforementioned challenges, using advanced 
technology such as artificial intelligence will help the building industry [13,78,79]. It is challenging to 
determine how several factors, such as precursor materials, activator solution, aggregates amount, and 
others, affect the strength of GPoC utilizing experimental procedures. Machine learning approaches 
may quickly and easily determine the combined impact of its constituent parts. Given that numerous 
studies have been accomplished to ascertain the determination of CSGPoC, machine learning models 
need a dataset, which could have been acquired from previous studies. Following data gathering, 
machine learning models can be trained to predict material attributes. Recent research has used 
machine learning techniques with a constrained set of effective parameters and databases to determine 
the intensity of GPoC. For instance, Dao et al.’s [80] use of machine learning approaches to forecast 
the CSGPoC employing three inputs and 210 data rows. Similar to this research, [81] employed 210 data 
rows and 4 inputs. In order to examine the effectiveness of various machine learning approaches used 
to anticipate the CSGPoC, the current study used nine effective parameters on CSGPoC and 295 data 
points based on literature review. The results of this study are also contrasted with those of related 
earlier investigations. The superior accuracy of machine learning approaches is anticipated to come 
from employing more input parameters and data points. The main goal of the present work is to identify 
the best machine learning method for calculating the CSGPoC using anticipated results and the impact 
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of different parameters on GPoC strength. The computational flowchart of the study is depicted in 
Figure 3. 

 

Figure 3. The flowchart of the study. 

2. Data analysis 

The composition of the various alkali excitation components and solid waste from the industry 
that are used to make gels are the basic components, and the amount of these initial components used 
in the production of gels have an effect on the efficiency of the gels [24,79,82,83]. It is necessary to 
have adequate Na+ and OH in order to finish every step of the polymerization of gels, and the amount 
of both of these ions has a direct bearing on the amount of force that can be exerted by the gels [84]. 
In light of the two aforementioned explanations, as well as the impact that the properties and ratios of 
the initial materials have on the compressive strength of concretes, the authors of the present study 
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came to the conclusion that GGBS, sodium silicate, fly-ash, gravel stones (4–10 mm to 10–20 mm), 
water/solids proportion, sodium hydroxide, sodium hydroxide molarity, and fine aggregates are the 
effective parameters to determine and predict the CSGPoC to complete a dataset comprising 295 data 
points. The required CSGPoC data of developing models is gathered from a study conducted by Yong 
et al. [28]. This data includes nine parameters as inputs and CSGPoC as the output of the models. 
Statistical analysis of the inputs and output is reported in Table 2. Furthermore, a better view for 
variations of inputs as well as CSGPoC in 295 various points are demonstrated in Figure 4. 

 

Figure 4. The variation of input variables and CSGPoC for 295 data points. 
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Table 2. Statistical analysis of effective parameters datasets. 

Parameter Symbol Unit Median Min Mean Max StD 

Inputs 

Fly ash FA kg/m3 170 0 178.265 523 173.979 
GGBS GGBS kg/m3 225 0 209.831 450 163.271 
Na2SiO3 Na2SiO3 kg/m3 100 18 104.059 342 44.9000 
NaOH NaOH kg/m3 64 6.300 60.042 147 30.391 
Fine aggregate FAg kg/m3 721 459 731.209 1360 138.078 
Gravel 4–10 mm Gravel 4–10 kg/m3 309 0 335.828 1293.400 373.884 
Gravel 10–20 mm Gravel 10–20 kg/m3 815 0 741.556 1298 361.336 
Water/solids ratio WS N/A 0.330 0.120 0.330 0.630 0.095 
NaOH molarity NaOH molarity N/A 10 1 8.193 20 4.596 

Output 
Compressive strength of 
geo-polymer concrete 

CSGPoC MPa 43 10 44.474 86.080 18.010 

Before model developing, the correlation coefficient between parameters should be 
evaluated [13,85–87]. If the correlation between two parameters is high, the multicollinearity problem 
appears in the model. Therefore, the Spearman correlation coefficient between CSGPoC and effective 
parameters is calculated as shown in Figure 5. This figure is a heatmap of Spearman correlation 
coefficient that can be determined by following equation [88–91]: 

   

   
1

2 2

1 1

n

i m i m
i

n n

i m i m
i i

x x y y
r

x x y y



 

 


  



 
                         (1) 

where n, xm, and ym stand for the number of datasets, average value across all x data, and the average 
value across all y data, respectively. When the r value is r > 0, r = 0, r ≃ 1, r < 0, or r ≃ -1, then there 
is positive linear correlation, no correlation, stronger positive linear correlation, negative linear 
correlation, or stronger negative linear correlation, respectively [8,87,92]. From Figure 5, there exist 
medium negative and positive linear correlations between CSGPoC and FA and GGBS at -0.43 and 0.46, 
respectively. Moreover, the correlation between CSGPoC and NaoH, Gravel 4–10 mm, and NaOH 
molarity is a weak negative linear correlation with r equal to -0.22, -0.27, and -0.12, respectively, and 
the correlation between CSGPoC and other parameters is a weak positive linear correlation. Based on 
these results, the investigation of developed models impact will not be influenced by the occurrence 
of multicollinearity between effective parameters on CSGPoC. In the following, the violin plot of 
parameters is showed in Figure 6. In this figure, the median, Q1, Q2, Q3, minimum, and maximum 
values of parameters are presented. 
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Figure 5. Heatmap plot of effective parameters. 
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Figure 6. Violin plot of effective parameters. 

3. Materials and methods 

3.1. Decision tree 

The DT is an artificial intelligence method widely employed for classifying issues, including those 
involving regression. Classes are included inside the trees. On the other hand, if there is not already a 
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class for the data, researchers can employ the regression approach to develop predictions about the 
result based on the effective parameters [13,87,93]. A DT is a hierarchical classification algorithm, and 
the internal node of a DT is equivalent to databases properties. The branches of the tree reflect the 
results of the regulations, and the leaf nodes stand for different outcomes. A DT is constructed from 
two different nodes: the decision nodes and the leaf nodes. Leaf nodes do not possess branches and are 
regarded as the decision’s result. In contrast, a decision node is capable of making a choice since they 
contain multiple decision-making branches. As its name implies, a DT is a kind of data architecture of 
trees, with a root node and it increases in size based on the number of branches [94]. The DT splits the 
data points into different sections. The target and the projected numbers are compared at every splitting 
point, and the difference is determined by the procedure being carried out. The error values are 
calculated at each division point, and the parameter with the least fit function is selected as a division 
point. The operation is then iterated as necessary. Figure 7 presents the DT flowchart. 

 

Figure 7. An example of DT architecture. 

3.2. Random forest 

Breiman [95] first put out the idea of using the RF technique, which is a common approach to 
soft computing. The RF method relies on decision-trees computations, and it has the ability to assemble 
numerous decision trees into a complicated structure in order to arrive at a conclusion on the 
classifications or regressions that have been presented to them. Throughout this phase of computation, 
the DTs that create the RF architecture receive training by randomly choosing parameters and data 
points from the primary CSGPoC database. Breiman [95] and Liaw and Wiener [96] both provide 
thorough overviews of the RF technique. The conceptual view of the RF model is demonstrated in 
Figure 8. 
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Figure 8. A schematic representation of RF model. 

3.3. eXtreme-Gradient Boosting (XGBoost) 

XGBoost is a recommendation system developed by Chen et al. [97]. The lifting technique 
consists of training many of the base models (learners) using specific approaches, such as the simple 
decision trees that have low depth, and then combining the forecasting outcomes of these weak base 
learners using specific techniques in order to significantly enhance the estimation impact [8,98]. As its 
weak learners, XGBoost employs regressive trees with a short depth. Let the learners that were 
acquired in the first phase be y;0′. This will apply to the initial shallow regression tree models that 
were created during the training phase. It is assumed that the resulting model appears as F0(t) and that 
t denotes the instance vector in the space of features. XGBoost continues by computing and obtaining 
the first and second derivatives, which are hi and gi, of the loss function of the errors among the 
classifiers. This is done after the function has been evaluated. The value that was anticipated in the 
process before this one, which was m − 1, the objective function of Fm(t), may be calculated using the 
second-order expansions of the Taylor function as follows: 

���(�) = ∑ �����(��) + �
�

ℎ���
�(��)��

��� + �(��)                  (2) 

The regularizing component is denoted by the symbol Ω(Fm), and its purpose is to prevent the 
technique from unnecessarily enhancing the degree of complexity of the models in an effort to 
enhance its precision, which would result in the overfitting problem. (Fm) is equivalent to the 
following expressions: 

�(��) = �� + �
�

�‖�‖�                              (3) 

In which γ and λ stand for penalty coefficients, w represents the weighting of the regression leaves 
node, T indicates the number of regression leaves node, and ǁwǁ2 shows the effect that the weight of 
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the regression leaves node has on the level of complexity of the models. Equation (3) reveals that the 
fitted objective in each repetition of the XGBoost objective function is the difference between the value 
that was anticipated and the actual value of the data. This can be observed by comparing the projected 
values to the actual values. The goal of the training procedure is to reduce obj(m) to the smallest 
possible value. The MSE value may be used by the regression trees node dividing to choose which 
dividing features to use. Subsequently, it is possible to generate an additional shallower trees model 
called Fm(t), and the learner may be updated as follows: 

��
� (�) = ����

� (�) + ��(�)                              (4) 

The XGBoost regression flowchart is illustrated in Figure 9. 

 

Figure 9. Voting process in the XGBoost structure. 

4. Date preparation 

Before developing machine learning models and predicting CSGPoC, two main steps are 
implemented. The closer the distance between the inputs and CSGPoC parameters is, the machine 
learning techniques can better learn the relationships among parameters. Also, the training of machine 
learning techniques is only performed based on the parameters’ values, not their unit. Therefore, the 
input values should be normalized in the range [0,1] in the first step of pre-analysis using Eq (5) to 
achieve a rational output [99–101]. 
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(�����������������)                            (5) 

In which xnorm, xi, xmaximum, and xminimun signify the standardized value, actual value, 
maximum value, and minimum value, respectively [102]. 

In the second step of pre-analysis, the data points were randomly categorized into two main phases: 
training samples (80% of whole CSGPoC, 236 data out of 295 CSGPoC data) and testing samples (20% 
of whole CSGPoC, 59 data out of 295 CSGPoC data). Then the train samples were applied for models 
learning and the testing samples were applied for the evaluation of models performance. 

Overfitting is a common challenge in machine learning models, where a model performs 
exceptionally well on the training data but struggles with unseen data. To address this concern, the 
study has meticulously incorporated a safeguard in its model development process. They employed 
rigorous cross-validation techniques, ensuring that the model’s performance is evaluated on diverse 
subsets of the dataset. Additionally, the authors applied regularization methods, such as dropout or 
weight decay, to prevent the model from becoming overly complex and fitting noise in the data. 
Furthermore, the use of a diverse and representative dataset, along with extensive hyperparameter 
tuning, contributes to the generalization capability of the model [103]. 

5. Results and discussion 

The construction of the base learner (DT) and super learner (RF and XGBoost) predictive models 
on 295 CSGPoC data is highlighted and discussed in this section. The performance and efficiency of 
the developed DT, XGBoost, and RF models were evaluated utilizing 12 statistical metrics involving 
mean absolute error (MAE), mean absolute percentage error (MAPE), Nash–Sutcliffe (NS), 
correlation coefficient (R), root mean square error (RMSE), R2, Willmott's index (WI), weighted mean 
absolute percentage error (WMAPE), bias index, square index (SI), p, mean relative error (MRE), and 
a20 index [98,104–109]. The determination of these metrics can be performed by the following 
equations. It should be noted that the performance of the developed predictive models is analyzed and 
described using scatter plots, ribbon charts, violin plots, Taylor diagrams, and error plots. 
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where Oi and � i are the measured and anticipated ith CSGPoC values respectively, n stands the 
number data points, � is the mean of the measured CSGPoC, and � is the mean of the predicted 
CSGPoC. Moreover, m20 and M indicate the total number of data points and the number of points 
with a ratio “measured value” over “predicted value” between 0.80 and 1.20 respectively [110–112]. 

Some evaluation metrics including error indices of MRE, RSME, MAPE, MAE, SI, p, WI, bias, 
and WMAPE are applied to error analysis and evaluation of the relationships between the measured 
CSGPoC and predicted one with base learner and super learner models. The minimum value for error 
indices reveals the highest prediction capability. The R2, NS, and R determine model precision within 
a range of 0–1, and an amount higher than 0.95 for these metrics indicates that the proposed models 
present a highly reliable and accurate prediction. The obtained performance evaluation metrics of all 
the developed RF, XGBoost, and RF models are summarized in Figure 10. The predictive model can 
be specified as the most accurate system when the errors of MRE, RSME, MAPE, MAE, SI, p, WI, 
bias, and WMAPE are the lowest, and the values of accuracy of R2, NS, and R are higher. From Figure 10, 
the XGBoost model presents the highest performance prediction level based on the evaluation 
metrics. The highest degree of accuracy yielded by the XGBoost model achieved MAE of 2.073, 
MAPE of 5.547, NS of 0.981, R of 0.991, R2 of 0.982, RMSE of 2.458, WI of 0.795, WMAPE 
of 0.046, bias of 2.073, SI of 0.054, p of 0.027, MRE of -0.014, and a20 of 0.983 for the training model 
and MAE of 2.06, MAPE of 6.553, NS of 0.985, R of 0.993, R2 of 0.986, RMSE of 2.307, WI of 0.818, 
WMAPE of 0.05, bias of 2.06, SI of 0.056, p of 0.028, MRE of -0.015, and a20 of 0.949 for the testing 
model. Furthermore, the highest R2 (0.9819 for training part and 0.9857 for testing part) is achieved 
by the XGBoost model, while the lowest R2 (0.8859 for training part and 0.8969 for testing part) is 
obtained by the DT model. Therefore, the DT model has the worst performance and accuracy 
concerning the evaluation indices with MAE of 4.666, MAPE of 12.117, NS of 0.871, R of 0.941, R2 
of 0.886, RMSE of 6.333, WI of -0.335, WMAPE of 0.103, bias of 4.666, SI of 0.143, p of 0.074, MRE 
of 0.029, and a20 of 0.826 for the training set and MAE of 5.103, MAPE of 15.736, NS of 0.896, R 
of 0.947, R2 of 0.897, RMSE of 6.111, WI of -0.265, WMAPE of 0.125, bias of 5.103, SI of 0.149, p 
of 0.076, MRE of -0.036, and a20 of 0.729 for the testing set. 

The obtained R2 and correlation between measured and predicted CSGPoC by XGBoost, RF, and 
DT is illustrated in Figures 11–13, respectively. As can be seen, the highest R2 value is relevant to the 
XGBoost model in both the training and testing sets. 
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Figure 10. Ribbon chart for training (above) and testing (below) models. 

 

Figure 11. The obtained R2 and correlation between measured and predicted CSGPoC by 
the XGBoost model. 
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Figure 12. The obtained R2 and correlation between measured and predicted CSGPoC by 
the RF model. 
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Figure 13. The obtained R2 and correlation between measured and predicted CSGPoC by 
the DT model. 
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Figure 14. Testing results of predicted CSGPoC by (a) DT, (b) XGBoost, and (c) RF models. 
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the XGBoost model reflects the reality-based results and presents better results in terms of 
performance and precision values. It can be concluded that although the accuracy of the DT and RF 
models is acceptable, XGBoost is the superior model for predicting CSGPoC.  

 

Figure 15. Testing results of predicted CSGPoC by DT, XGBoost, and RF models. 
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Figure 16. Testing results of predicted CSGPoC by DT, XGBoost, and RF models. 
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where xik and xjk represent the inputs and output variables, and m stands the number of data points. 
In accordance with the devised methodology of CAM, emphasis was placed on assessing the 

sensitivity of output variables to input variables. As illustrated in Figure 17, the influence of input 
parameters (X) on objective functions (outputs) was investigated. A higher value of rij, closer to 1, 
signifies a more pronounced impact of the input parameters on the objectives (outputs). The outcomes 
depicted in Figure 17 reveal that a majority of the input parameters exhibit significant effects on 
CSGPoC. Specifically, the parameters Fag and WS demonstrated the most substantial impacts on 
CSGPoC, with strengths of 0.928 and 0.904, respectively. In the second rank, Na2SiO3, gravel 10/20, 
and GGBS parameters exhibited comparable strengths of 0.872, 0.863, and 0.838, indicating 
approximately similar levels of influence. Additionally, the parameters NaOH and NaOH molarity 
exerted notable effects on CSGPoC, with strengths of 0.791 and 0.787, respectively. Also, the impact 
of FA on CSGPoC was moderate, as evidenced by a strength value of 0.552. 

 

Figure 17. The strength of the impact of effective parameters on CSGPoC. 
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Additionally, the study focuses on a specific set of input parameters, and the exclusion of other 
potentially influential factors could limit the model’s applicability to a broader spectrum of geo-
polymer concrete formulations. Furthermore, the current research primarily addresses the prediction 
aspect, and considering various external factors, the practical implementation of the proposed models 
in an industrial setting remains a subject for future exploration. 

To advance the field of geo-polymer concrete compressive strength estimation, future research 
endeavors should aim to address the identified limitations and explore new avenues. First, expanding 
the dataset to include a more extensive variety of geo-polymer concrete formulations and considering 
additional influential factors could enhance the robustness and generalization of the developed models. 
The incorporation of real-world complexities, such as environmental conditions and variations in raw 
materials, would contribute to the models’ reliability in practical applications. Moreover, a comparative 
analysis with other advanced machine learning algorithms and the integration of hybrid models could 
provide further insights into optimizing the accuracy and efficiency of CSGPoC prediction. The 
scalability and adaptability of the models for different scales of construction projects and 
manufacturing processes should also be investigated. Hence, validation through large-scale field trials 
would validate the models’ effectiveness and facilitate their seamless integration into the decision-
making processes of the green concretes industry. 

7. Conclusions 

The main purpose of the current research is to establish a robust predictive system for predicting 
CSGPoC. The creation of environmentally friendly building supplies may be helped along by the 
increased use of geo-polymer concrete in the construction sector, which is also helping to popularize 
this material. This research has a beneficial effect on advancing the use of geopolymer concrete by 
boosting its use. An efficient super learner technique for predicting the CSGPoC was proposed with 
the use of the XGBoost and RF models, which allowed for the development of a high-performance 
model. A database comprised of 259 CSGPoC data points was gathered from literature for developing 
DT, RF, and XGBoost models as well as accurately predicting CSGPoC. For developing models, nine 
effective parameters, including FA, GGBS, Na2SiO3, NaOH, FAg, Gravel 4/10, Gravel 10/20, WS, 
and NaOH molarity, were considered. The obtained results clarified that the highest R2 was determined 
by the XGBoost model as 0.9819 and 0.9857 for the training and testing parts, respectively. Hence, the 
XGBoost outperformed DT with R2 of 0.8859 and 0.8969 and RF with R2 of 0.9492 and 0.9424 for 
training and testing phases, respectively. It can be concluded that the XGBoost super learner model is 
significantly more efficient in establishing estimation models of CSGPoC than the DT and RF models. 
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