
http://www.aimspress.com/journal/mbe

MBE, 21(1): 1305–1320.
DOI: 10.3934/mbe.2024056
Received: 22 October 2023
Revised: 26 November 2023
Accepted: 06 December 2023
Published: 27 December 2023

Research article

Self-adaptive attention fusion for multimodal aspect-based sentiment
analysis

Ziyue Wang1,2 and Junjun Guo1,2,*

1 Faculty of Information Engineering and Automation, Kunming University of Science and
Technology, Kunming 650500, China

2 Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology,
Kunming 650500, China

* Correspondence: Email: guojjgb@163.com.

Abstract: Multimodal aspect term extraction (MATE) and multimodal aspect-oriented sentiment clas-
sification (MASC) are two crucial subtasks in multimodal sentiment analysis. The use of pretrained
generative models has attracted increasing attention in aspect-based sentiment analysis (ABSA). How-
ever, the inherent semantic gap between textual and visual modalities poses a challenge in transferring
text-based generative pretraining models to image-text multimodal sentiment analysis tasks. To tackle
this issue, this paper proposes a self-adaptive cross-modal attention fusion architecture for joint multi-
modal aspect-based sentiment analysis (JMABSA), which is a generative model based on an image-text
selective fusion mechanism that aims to bridge the semantic gap between text and image representa-
tions and adaptively transfer a textual-based pretraining model to the multimodal JMASA task. We
conducted extensive experiments on two benchmark datasets, and the experimental results show that
our model significantly outperforms other state of the art approaches by a significant margin.

Keywords: natural language processing; sentiment analysis; joint multimodal aspect-based
sentiment analysis; multimodal fusion; self-adaptive fusion

1. Introduction

Early sentiment analysis mainly focused on text, considering only the interrelationships between
words and phrases to analyze sentiment [1]. In recent years, with the content on internet social plat-
forms gradually shifting from purely text-based content to multimodal content, the task of multimodal
sentiment analysis has received increasing attention. Common multimodal sentiment analysis tasks
include video sentiment analysis [2] and image-text sentiment analysis.

As a fundamental sentiment analysis task, joint multimodal aspect-based sentiment analysis
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(JMABSA) aims to extract the potential aspect terms and identify aspects’ sentiment polarities si-
multaneously from text with the aid of images, which has received increasing attention over the past
few years. For example, in Figure 1, the objective of JMABSA is to detect all aspect-sentiment pairs,
i.e., (Roger Federer, Positive), (Gerry Berry, Positive) and (Gerry Weber Open, Neutral).

Multimodal aspect term extraction (MATE) and multimodal aspect sentiment classification (MASC)
are two types of subtasks contained in JMABSA. Most previous works prefer to cast JMABSA as the
aforementioned two pipeline sub-tasks. However, this kind of step-by-step operation requires prop-
agate artifacts generated in the first step to the next step, thereby reducing the sentiment analysis
performance of the final results.

There have been many attempts to explore MATE and MASC based on pretrained models. Yu
et al. [3] proposed a multimodal bidirectional encoder representation from transformers (BERT) for
target-oriented sentiment classification by capturing the multimodal interactions with a target attention
mechanism. Khan et al. [4] introduced a two-stream multimodal target sentiment classification model
with BERT by combining text and image captions. Yu et al. [5] designed a hierarchical interactive
multimodal transformer to identify the aspect-oriented sentiment polarities by capturing text-image
interactions. Ling et al. [6] presented a task-specific vision-language pretrained model based on bidi-
rectional and auto-regressive transformers (BART) [36] for MASC. Unfortunately, there are consider-
able feature representation gaps, as visual and textual features are initialized with their corresponding
modality-specific models. Therefore, it will inevitably suffer from modality alignment ambiguity by
directly incorporating visual features into the pretrained textual models.

# lifegoal : Find someone who  
looks at you the way 

 Roger Federer looks at 
 Gerry Berry . 

 ( 📷 ( c ) Gerry Weber Open )

Roger Federer

given text-image pair target polarity

Gerry Weber Open

Gerry Berry

Positive

Positive

Neutral

Figure 1. An example of the MABSA task.

Image is another kind of modality data that contains many helpful details, such as the salient ob-
jects, the scenario information, the facial expression, etc. These visual details are valuable for aspect
extraction and sentiment polarity identification, as depicted in Figure 1, it is challenging to determine
the sentiment polarity of aspects based on only text information. However, the visual modality offers
valuable clues, such as facial expressions, that assist in predicting the sentiment of Roger Federer and
Gerry Berry. More concretely, in the MATE task, we prefer to capture the salient objects and the sce-
nario information to enhance the aspect term extraction performance. In the MASC task, the facial
expression is much helpful in identifying semantic polarities. Therefore, visual information could be
employed as the pivotal information to bridge the task gap between MATE and MASC, eliminating the
error propagation problem of JMABSA.

Although there is a significant modality gap between image and text, they can complement each
other. Inspired by this phenomenon, this paper develops a visual-textual interactive sequence to se-
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quence (Seq2Seq) framework based on BART to address the joint aspect term extraction and aspect-
oriented sentiment classification problems. The inclusion of image information is indispensable for the
JMABSA task. However, the semantic gap between text and image poses a challenge, impeding the
effective integration of the two modalities in the multimodal BART model. Addressing the modality
gap between text and image and establishing connections between the two modalities is of paramount
importance for the JMABSA task. To address the semantic gap problem, this paper proposes an adap-
tive visual-to-textual fusion module to bridge the modality gap. The contributions of this work are
summarized as follows.

• To eliminate the inherent semantic gap between textual and visual modalities, we employ image
as pivotal information to bridge the semantic gap between textual and visual modalities, and visual
details are dynamically extracted to enhance the performance of JMABSA.

• An adaptive visual-to-textual fusion module is built to adaptively incorporate task-specific vi-
sual information into a pretrained BART encoder to promote the network to learn a multimodal
representation.

• Experiment results on TWITTER-15 and TWITTER-17 datasets show that the proposed approach
significantly enhances the performance of MATE and MASC and improves F1 scores on two test
sets. Moreover, our model almost achieves the performance of task-specific pretrained methods.

2. Related work

2.1. Text-based aspect based sentiment analysis (ABSA)

Aspect based sentiment analysis (ABSA) aims to identify sentiment polarities at the aspect level. In
order to handle ABSA in different scenarios, there exists several subtasks in ABSA. The main research
line of ABSA focuses on two primary subtasks: Aspect term extraction, and aspect sentiment classi-
fication. For aspect term extraction, some early works mainly focus on extracting sequence features
via sequence tagging methods based on convolutional neural networks (CNN) [7] and recurrent neural
networks (RNN) [8]. Recent works have discussed Seq2Seq methods on aspect term extraction [9,10].
Similarly, for aspect sentiment classification, early studies were mainly based on manually designed
features [11, 12]. In recent years, various deep learning approaches have been proposed, including
attention-based methods [13–17], CNN-based networks [18, 19] and graph neural networks (GNN)
based methods [20–24]. Concurrently, the pretrained language model BERT [25] has demonstrated
exceptional performance across numerous natural language processing (NLP) tasks. Li et al. [26]
achieved favorable results by employing the BERT model for aspect-based sentiment classification.
Since these two subtasks are highly dependent on each other, more recent studies attempt to solve
these two subtasks jointly.

Joint aspect sentiment analysis (JASA) aims to extract aspect and predict their sentiments jointly.
Some studies leveraged the pipeline method to solve this problem [27,28], which formulates the target
extraction task as a sequence tagging problem. Hu et al. [29] proposed a span-based extract-then-
classify framework. Recently, Yan et al. [30] proposed a unified generative framework based on BART,
and achieved the state of the art performance on JASA. Despite achieving remarkable improvement,
all the above studies only focus on the textual modality but fail to model the visual guidance for both
subtasks. In our work, we aim to propose a multimodal architecture to handle both subtasks jointly.
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2.2. Multimodal aspect-based sentiment analysis (MABSA)

In the past few years, MABSA has drawn much attention. Existing studies on MABSA mostly
focus on the two subtasks of MABSA: MATE and MASC. As a pioneer, Xu et al. [31] first proposed
the task of MASC. Several studies have focused on modeling the interactions among the aspect, text
and image based on attention mechanisms [31–34]. With the successful application to tasks in NLP, Yu
et al. [3] proposed a multimodal BERT architecture [25], which adapts BERT to obtain textual features
and interactions among textual and visual modalities. Moreover, Khan et al. [4] adapted a transformer
architecture for image caption, which translates the image input to an auxiliary sentence, then feeds
the auxiliary sentence into a BERT language model. Despite these advances of methods in MABSA,
almost all of them focus on handling each subtask independently, which ignores the innate connection
between these two subtasks. Therefore, we aim to extend this line of research by proposing a more
effective method that jointly performs MATE and MASC.

In recent years, inspired by the success of the JASA tasks, Ju et al. [35] introduced the task of
joint multimodal aspect-sentiment analysis, which aims to jointly extract aspect and predict their sen-
timents from a text-image pair. More recently, Ling et al. [6] proposed a task-specific vision-language
pretraining (VLP) framework for MABSA, which is a unified multimodal encoder-decoder architec-
ture based on BART. Nevertheless, VLP failed to capture the alignment of between text and image
modalities while transferring textual based generative pretraining models to image-text multimodal
sentiment analysis task. In contrast to VLP, our proposed model aims to bridge the semantic gap be-
tween text and image representations and transfer textual-based pretraining models to the JMABSA
task self-adaptively.

3. Methodology

Our proposed self-adaptive attention fusion (SAAF) model mainly focuses on bridging an effective
modal to bridge the semantic gap between text and image. As shown in Figure 2, The SAAF comprises
of several parts: Feature extraction, adaptive visual-to-textual fusion layer, and visual-enhanced BART
module.

Task definition. We conceptualize the JMABSA task as a sequence labeling problem. Consider D
as a set comprising multimodal samples. Formally, we are given a multimodal tweet comprising an
image denoted as V and a sentence with n words denoted as T = (t1, t2, ..., tn). Our goal is to obtain the
sequence y that represents all potential aspect terms along with their respective sentiment polarities. We
formulate the output as y = (ab

1, a
e
1, s1, ..., ab

i , a
e
i , si, ..., ab

k , a
e
k, sk), where ab

i and ae
i denote the beginning

index and the end index of the i-th aspect, sk denotes the sentiment polarity toward the aspect and k
represents the number of aspect terms contained in T .

3.1. Feature extraction

Text embedding. Given the competitive performance exhibited by the Seq2Seq pretrained model
BART [36] in the context of JASA [30], its utilization is adopted for acquiring word embeddings. In
adherence to the procedure delineated in [6], the markers < s > and < /s > are employed to denote the
initiation and termination of a sentence. Formally, the textual representation of a sample is denoted as:
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Figure 2. Overview of our SAAF model.

E0 ∈ R
T×d, (3.1)

where d denotes the dimension of BART, which is equal to 768.
Image embedding. The regional representations are obtained by Faster R-CNN [37]. Precisely,

Faster R-CNN is adopted to extract all object proposals from an image denoted as V . Subsequently, 36
object proposals with the utmost confidence are retained. The identified object and its corresponding
semantic significance are denoted as follows:

R = FasterR −CNN(V), (3.2)

where FasterR −CNN denotes the Faster R-CNN [37] and R denotes the visual features:

R ∈ R36×2048, (3.3)
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Then, the visual features are projected to match the textual embedding size of BART. Finally, the
visual sequence is denoted as follows:

R ∈ R36×d. (3.4)

3.2. Adaptive visual-to-textual fusion layer

Cross-modal interaction. The multi-head self-attention layer [38] is utilized to capture intra-modal
interactions within the text. This is achieved by aggregating information from nearby words through
text self-attention:

E = Norm (E0 + ATTself (E0)) , (3.5)

where ATTself denotes the multi-head self-attention, the textual feature is set as the query/key/value
matrix and Norm denotes the layer normalization [39].

Simultaneously, a cross-modal transformer layer [40] is utilized to achieve inter-modal interaction
across text and visual modalities. In this context, the textual features E function as the query matrix,
while the visual features R serve as the key/value matrix, resulting in the following relationship:

ET→V = ATT cross (E0,R), (3.6)

where ATTcross denotes the cross-modal transformer.
Subsequently, EX→V is input into a feed-forward network (FFN) followed by a normalization layer.

To enhance the textual representation further, an additional residual connection is established from E:

E = Norm (E + FFN (EX→V)) , (3.7)

where FFN denotes a feed-forward network [38].
Visual information and textual information are merged through cross-modal interaction. Compared

with previous work, our proposed approach can better extract text closely related visual features better
in JMABSA.

Selective fusion. With the strengthened textual representation obtained through cross-modal inter-
action, the selective fusion further aims to filter out unrelated region features for the text. Essentially,
the selective fusion receives two inputs: One is the strengthened textual representation E, and the other
is purely visual feature R. Initially, a concatenation of R and E is performed to generate a bimodal
factor denoted as [R; E]. This factor is then employed to compute the gate vector g:

g = sigmoid(Linear([R; E])) (3.8)

where sigmoid denotes a Sigmoid nonlinear activation function.
The selective fusion gate highlights the relevant information within the visual modality conditioned

on the textual representation that encompasses image information. Subsequently, the gate vector is
utilized to acquire the textually related regional feature R through the application of the selective filter:

R = g ∗ R. (3.9)
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Cross-modal mixup. To enhance the resilience of multimodal representation, the cross-modal
mixup model is devised. The core philosophy behind cross-modal mixup is to create new samples
by linearly interpolating a pair of training samples to exhibit linearity within the training data. A
particularly appealing implementation of such multimodal data augmentation approach is studied in
TMix [41]. The synthetic sample is generated as follows:

R = λR + (1 − λ)E, (3.10)

where λ is a scalar of balancing textual features and visual features, sampled from a Beta (α, β) distri-
bution:

λ ∼ Be(α, β), (3.11)

where Be denotes the Beta distribution and α and β denote the hyperparameter to control the distribu-
tion of λ. R is produced as the ultimate visual representation.

3.3. Visual-enhanced BART module

The backbone of our model is BART [36], which is a Transformer-based autoencoder for Seq2Seq
model. Following [6, 42], the original BART model is transformed into a multimodal variant capable
of encoding the multimodal input.

Encoder. The encoder of our model is based on a multilayer bidirectional Transformer. Following
[42], two distinct tokens, <img> and </img>, are introduced to signify the initiation and culmination
of visual features generated by the multimodal interpolation layer. Subsequently, we postulate that the
original text representation E and the visual representation enriched with multimodal information R
constitute the multimodal output denoted as D:

D = E0 ⊕ R, (3.12)

where ⊕ denotes the concatenation operation.
Following this, D is input into the position embedding layer to derive the ultimate multimodal

representation:

D = Dropout (Norm (PE (D) + D) , (3.13)

where D ∈ R(T+36)×d and PE denotes the position embedding layer.
Finally, D serves as the input for the multimodal BART encoder.
Decoder. The decoder of our model is also a multilayer Transformer. Different from the bidirec-

tional encoder, the decoder is unidirectional. The output of the multimodal BART encoder is denoted
as Hm.

Hm = Encoder (D) (3.14)

The predict distribution as follows:

P(θ) = Softmax (MLP (Hm)) , (3.15)
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where MLP denotes the multilayer perceptron.
The loss function is determined by calculating the cross-entropy between the predicted label distri-

bution and the true label distribution during the training process:

L = −EX∼DlogP(θ|X), (3.16)

where θ denotes the true sentiment provided in the dataset and X denotes the multimodal input.

4. Experiments

4.1. Dataset

Two benchmark datasets, TWITTER-15 and TWITTER-17, are employed for evaluation as per the
reference [3]. The detailed statistics of both datasets are shown in Table 1.

Table 1. Statistics of two benchmark datasets for JMABSA.

TWITTER-15 TWITTER-17
Train Dev Test Train Dev Test

Positive 928 303 317 1508 515 493
Neutral 1883 670 607 1638 517 573
Negative 368 149 113 416 144 168
Total Aspects 3179 1122 1037 3562 1176 1234
Sentence 2101 727 674 1746 577 587

4.2. Evaluation metrics

The evaluation metrics employed to assess the performance include micro F1 score (F1), precision
(P), and recall (R). The micro F1 score combines the precision and recall of the model, providing
a comprehensive assessment of the overall performance. Precision measures the model’s ability to
correctly predict positive class samples, while recall gauges the model’s success in capturing positive
class samples. The integrated use of these three metrics contributes to a thorough evaluation of the
model’s performance in multi-class classification tasks, offering insights into different aspects of its
effectiveness.

4.3. Implementation details

Our approach is implemented using PyTorch (version torch-1.11.0) on hardware comprising an
RTX 3070Ti. The hidden size of our model is 768, which is the same as the dimension in BART [36].
The training of the model is conducted with the implementation of the early stopping mechanism to
prevent overfitting. In particular, the training process spans 100 epochs, during which the model’s
performance on the validation set is assessed at each epoch. The training ceases if the model fails
to exhibit improved F1 scores on the validation set for p consecutive epochs, where p is a predefined
hyperparameter. Subsequently, the final model is derived from the last checkpoint, and its performance
is evaluated using the test set.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1305–1320.
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4.4. Baselines

Our primary focus revolves around comparing our SAAF model against two distinct categories of
existing baseline systems using our proposed methodology.

Our analysis first commences with the evaluation of text-only methodologies: 1) SPAN [29] is a
span-based method that formulates the JASA task as a span prediction problem, 2) directional graph
convolutional networks (D-GCN) [43] proposes a BERT-based graph convolution network that formu-
lates the JASA task as a sequence labeling problem to leverage synaptic information between words
and 3) BART [30] is a unified generative framework based on BART that formulates the JASA task as
an index generation problem.

Additionally, the following multimodal strategies are taken into account for JMASA since there are
few studies for JMASA. 1) Initially, two pipeline approaches are executed using representative methods
of MATE and MASC: unified multimodal transformer (UMT)+TomBERT and OSCGA+TomBERT,
2) UMT-collapsed [44], OSCGA-collapsed [45] and relation propagation-based BERT (RpBERT)-
collapsed [46] are three collapsed tagging approaches, 3) JML [35] is the first multimodal joint learning
approach, which proposed an auxiliary relation detection module to control the exploitation of visual
information, 4) VLP-MABSA [6], which is a unified multimodal encoder-decoder architecture for
multimodal joint learning method and 5) cross-modal multitask transformer (CMMT) [47], which
proposed a text-guided cross-modal interaction module to dynamically control the contributions of
visual information.

Table 2. Comparison between previous methods and our SAAF model on two benchmark
datasets. a denotes the results from Ju et al. b denotes the results are from Liang et al. c

denotes the results from Yang et al.

TWITTER-15 TWITTER-17
P R F1 P R F1

Text-based methods
SPANa 53.7 53.9 53.8 59.6 61.7 60.6
D-GCNa 58.3 58.8 59.4 64.2 64.1 64.1
BARTb 62.9 65.0 63.9 65.2 65.6 65.4
Multimodal methods
UMT+TomBERTa 58.4 61.3 59.8 62.3 62.4 62.4
OSCGA+TomBERTa 61.7 63.4 62.5 63.4 64.0 63.7
UMT-collapseda 60.4 61.6 61.0 60.0 61.7 60.8
OSCGA-collapseda 63.1 63.7 63.2 63.5 63.5 63.5
RpBERT-collapseda 49.3 46.9 48.0 57.0 55.4 56.2
JMLa 65.0 63.2 64.1 66.5 65.5 66.0
VLP-MABSAb 65.1 68.3 66.6 66.9 69.2 68.0
CMMTc 64.6 68.7 66.5 67.6 69.4 68.5
Our Model 65.6 67.3 66.4 68.2 69.0 68.6
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4.5. Main results

In Table 2, the consistently superior performance of our underlying model, BART, in comparison
to the other two methods, underscores its proficiency in tasks involving joint learning. For multimodal
methods, previous pipeline approaches and collapsed tagging approaches perform much worse than
recent joint learning approaches, probably because of the error propagation problem when these two
subtasks are carried out separately. As the first joint learning method, JML performs better than pre-
vious studies since the joint framework improves the error propagation problem. Moreover, our model
outperforms VLP-MABSA by 2.5% and 2.0%, with respect to the F1 score on TWITTER-15 and
TWITTER-17, respectively. This is mainly benefits from its generative paradigm framework, which is
superior in joint learning tasks. In conclusion, our proposed SAAF model distinctly attains the highest
performance, as evaluated by the F1 score on the TWITTER-17 dataset. Furthermore, the F1 score of
SAAF is only 0.2% lower on the TWITTER-15 dataset than VLP-MABSA which is highly pretrained.
This demonstrates that SAAF is competitive among all the state of the art methods. These observations
demonstrate the effectiveness of our SAAF model.

4.6. Ablation study of adaptive visual-to-textual fusion layer

Cross-modal interaction. To verify the effect of cross-modal interaction, the unprocessed raw
textual representation is directly input into both the selective fusion layer and the cross-modal mixup
layer. The results are shown in Table 3.

Table 3. Ablation study of cross-modal interaction.

Method
TWITTER-15 TWITTER-17
P R F1 P R F1

Our Model 65.6 67.3 66.4 68.2 69.0 68.6
w/o cross-modal interaction 64.5 67.2 65.9 66.8 67.9 67.4

It can be seen that without cross-modal interaction, the F1 score of the TWITTER-15 and
TWITTER-17 datasets drop by about 0.5% and 1.2%, respectively, compared to the full model. The
above results further prove that extracting text closely related visual features can better achieve multi-
modal fusion.

Selective fusion. Table 4 reports ablation study of the selective fusion layer. The unprocessed visual
feature is directed into the cross-modal mixup layer instead of the fused representations. It can be seen
that the performance drops sharply after the removal of selective fusion, illustrating the effectiveness
of selective fusion layer, which aims to filter out unrelated region features for the text.

Table 4. Ablation study of selective fusion.

Method
TWITTER-15 TWITTER-17
P R F1 P R F1

Our Model 65.6 67.3 66.4 68.2 69.0 68.6
w/o Selective Fusion 66.5 63.5 65.0 66.0 67.6 66.8

Cross-modal mixup. The effectiveness of the cross-modal mixup layer is evaluated by omitting it
from the adaptive visual-to-textual fusion layer. As can be seen in Table 5, the performance decreases
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by 1.4% and 1.8% on the TWITTER-15 and TWITTER-17 datasets, respectively, after removing the
cross-modal mixup layer, which illustrates the necessity of performing cross-modal mixup.

Table 5. Ablation study of cross-modal mixup.

Method
TWITTER-15 TWITTER-17
P R F1 P R F1

Our Model 65.6 67.3 66.4 68.2 69.0 68.6
w/o cross-modal mixup 64.7 67.4 66.0 65.6 67.3 66.4

Selective fusion & cross-modal mixup. As can be seen in Table 6, w/o selective fusion & cross-
modal mixup is the BART model only with our cross-modal interaction module. It performs worse
after removing both the selective fusion layer and cross-modal mixup layer. It proves the effectiveness
of the selective fusion layer and cross-modal mixup layer.

Table 6. Ablation study of selective fusion & cross-modal mixup.

Method
TWITTER-15 TWITTER-17
P R F1 P R F1

Our Model 65.6 67.3 66.4 68.2 69.0 68.6
w/o Selective Fusion & Cross-Modal Mixup 63.9 67.0 65.4 65.5 67.0 66.0

As indicated, the removal of either one or both modules (w/o selective fusion & cross-modal mixup)
produce varying degrees of performance decline. This underscores the efficacy of the individual com-
ponents, thereby augmenting the dependability and interpretability of our model.

4.7. Case study

To further demonstrate the effectiveness of our approach, we randomly select three samples from
the TWITTER-17 dataset for a case study. Table 7 presents three test examples with predictions from
two different baseline methods. The compared methods are Multimodal-BART (denoted by M-BART)
and VLP. In the example (a), it is evident that both M-BART and VLP erroneously extracted the
aspect term “Mott Basketball Camp.” In the example (b), M-BART failed to recognize the aspect term
RutgersU, while VLP predicted the right aspect but wrongly predicted the sentiment toward the aspect
term RutgersU as positive. Meanwhile, M-BART also failed to correctly predict the sentiment toward
the aspect term Obama. For example (c), M-BART failed to extract the aspect term Pillers1957, while
VLP extracted the wrong aspect term (i.e., KSC U10). However, among all cases, it is evident that our
approach, SAAF, effectively extracts all aspect terms and accurately classifies sentiment by adaptively
fusing visual and textual modalities for both subtasks within a generative framework.
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Table 7. Predictions of M-BART, VLP and our model on three test samples. ✕ and ✓denote
incorrect and correct predictions.

Image

Text (a) Day 4 of Mott Basketball Camp.

(b) Pres Obama takes the stage
at @ RutgersU Commencement in
school football stadium in Piscat-
away , NJ .

(c) Come support the KSC U10
Boys Soccer team BBQ 11 - 5 to-
day . Thank You @ Pillers1957 for
your generous donation

GT (Mott, POS)

(Obama, POS) (KSC, POS)

(RutgersU, NEU) (Pillers1957, NEU)

(Piscataway, NEU)

(NJ, NEU)

M-BART (Mott Basketball Camp, NEU) ✕

(Obama, NEU) ✕ (KSC, POS) ✓

- ✕ (11, POS) ✕

(Piscataway, NEU) ✓

(NJ, NEU) ✓

VLP (Mott Basketball Camp, POS) ✕

(Obama, POS) ✓ (KSC U10, POS) ✕

(RutgersU, POS) ✕ (Pillers1957, NEU) ✓

(Piscataway, NEU) ✓

(NJ, NEU) ✓

SAAF (Mott, POS) ✓

(Obama, POS) ✓ (KSC, POS) ✓

(RutgersU, NEU) ✓ (Pillers1957, NEU) ✓

(Piscataway, NEU) ✓

(NJ, NEU) ✓

5. Conclusions

In this paper, we propose self-adaptive cross-modal attention fusion architecture. This architecture
leverages a selective fusion mechanism between image and text to bridge the semantic gap and enables
the adaptive transfer of textual-based pre-training models to the multi-modal JMASA task. Experi-
ment results show that our proposed approach generally outperforms many competitive unimodal and
multimodal methods.
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