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Abstract: The Adam algorithm is a common choice for optimizing neural network models. However, 
its application often brings challenges, such as susceptibility to local optima, overfitting and 
convergence problems caused by unstable learning rate behavior. In this article, we introduce an 
enhanced Adam optimization algorithm that integrates Warmup and cosine annealing techniques to 
alleviate these challenges. By integrating preheating technology into traditional Adam algorithms, we 
systematically improved the learning rate during the initial training phase, effectively avoiding 
instability issues. In addition, we adopt a dynamic cosine annealing strategy to adaptively adjust the 
learning rate, improve local optimization problems and enhance the model’s generalization ability. To 
validate the effectiveness of our proposed method, extensive experiments were conducted on various 
standard datasets and compared with traditional Adam and other optimization methods. Multiple 
comparative experiments were conducted using multiple optimization algorithms and the improved 
algorithm proposed in this paper on multiple datasets. On the MNIST, CIFAR10 and CIFAR100 datasets, 
the improved algorithm proposed in this paper achieved accuracies of 98.87%, 87.67% and 58.88%, 
respectively, with significant improvements compared to other algorithms. The experimental results 
clearly indicate that our joint enhancement of the Adam algorithm has resulted in significant 
improvements in model convergence speed and generalization performance. These promising results 
emphasize the potential of our enhanced Adam algorithm in a wide range of deep learning tasks. 
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1. Introduction 

Deep learning has yielded noteworthy advancements in fields such as computer vision and natural 
language processing. It employs backpropagation techniques to instruct machines on adjusting their 
internal parameters. By systematically applying multi-layer nonlinear transformations, deep learning 
automatically acquires data representations and discerns features, thereby extracting abstract 
information from the data [1]. Deep learning relies on the selection of optimization algorithms and 
parameter adjustment during the training process. Adam has become a commonly used choice for 
training deep neural networks due to its self-adaptability and efficiency. Owing to the instability 
exhibited by the conventional Adam optimizer, particularly during the initial phases of training, there 
can be fluctuations induced by elevated learning rates or inadequate exploration of the parameter space. 
Wilson et al. pointed out that the adaptive gradient descent method in the Adam algorithm may not be 
as good as random gradient descent in some cases [2]. In order to overcome some of the shortcomings 
of the Adam algorithm, researchers have proposed various improved versions. Reddi et al. [3] pointed 
out the shortcomings of Adam in proving convergence and proposed a variant of the Adam algorithm, 
AMSGrad algorithm. This algorithm avoids learning rate oscillations by improving the iterative 
method of second-order momentum, thereby solving the problem of model non-convergence. 
Loshchilov and Hutter pointed out that weight attenuation in the Adam algorithm is achieved by 
directly adding L2 regularization terms in parameter updates. However, this method can result in 
unstable training procedures [4]. They also proposed the Adam algorithm [4], applying the weight 
attenuation term to the weight p.data of parameter updates, rather than directly adding it to the gradient 
p.grad, to some extent solves the problem of unstable Adam training. LAMB introduces a new gradient 
algorithm based on Adam, making it more suitable for training in handling large batches of data [5]. 
Sashank J. Reddi et al. pointed out that Adam may experience problems such as slow convergence 
speed and overfitting in some cases [6]. The Radam [7] proposed by Liu and Jiang et al. introduces a 
learning rate correction mechanism to solve the problem of unstable training caused by the large 
fluctuations in the variance of Adam’s learning rate due to some reasons. A belief Optimizer introduces 
a mechanism called “Belief Correction” based on Adam to adjust the update of learning rate [8]. Xu et 
al. proposed that Yogi [9] uses first-order momentum to replace second-order momentum estimation 
in Adam, aiming to improve Adam’s performance under different learning rate conditions and achieve 
good training results in large-scale batch data. The core idea of Nadam [10] proposed by Dozat is to 
combine the advantages of NAG with Adam’s adaptive learning rate, and introduce the Nesterov 
momentum term to improve the gradient update process in Adam. In Adam, the learning rate of adaptive 
adjustment may increase too quickly under certain circumstances. AdaBound introduces boundaries to 
limit the range of learning rate, making it controllable and improving model stability [11]. Lookahead 
Optimizer [12] introduces a “lookahead” based on Adam to accelerate the optimization process. Reyad 
et al. proposed HN_ Adam [13], modifies the standardized value of the parameter change formula by 
automatically adjusting the step size of parameter updates during the training period. Chen et al. 
proposed Lion [14], which uses symbolic functions to handle update volume, to some extent reduces 
computational complexity, but its performance is not as good as Adam in small batch situations. The 
Amos [15] proposed by Tian et al. can be regarded as an Adam with theoretical support for adaptive 
learning rate decay and weight decay, which can use model specific initial information to determine 
the initial learning rate and decay schedule. In response to the problem of slow convergence in Adam, 
Liu et al. proposed an improved Adam algorithm based on a combination of adaptive coefficients and 
composite gradients with random block coordinate descent [16]. Adan adopts a new Nesterov 
Momentum Estimation (NME) method to estimate the first and second moments in adaptive gradient 
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algorithms to accelerate convergence [17]. However, these improvements may face issues such as 
unreasonable learning rate adjustment, increased computational complexity and local optima. 

Warmup is a common learning rate adjustment strategy in deep learning, used to gradually 
increase the learning rate during the initial stage of training. Usually, a sudden increase in learning rate 
may lead to instability during model training, especially in the early stages of training. To address this 
issue, the algorithm proposed in this article introduces Warmup technology, which gradually increases 
the learning rate within the first few epochs of training, allowing the model to train more smoothly. 
The basic idea of Warmup is to use a small learning rate in the early stages of training, gradually 
increasing to the set initial learning rate within a certain number of iterations. This helps the model to 
better explore the parameter space in the early stages of training, avoiding oscillation or divergence 
problems caused by excessive learning rate. 

Therefore, we present a collaborative optimization approach that integrates Warmup and cosine 
annealing strategies into the Adam algorithm in this paper. First, utilizing Warmup technology, we 
progressively raise the learning rate, enhancing the ability of the model to explore the parameter space 
more effectively during the initial training phases. Subsequently, we employ the cosine annealing 
strategy to dynamically fine-tune the learning rate, preventing premature decreases and promoting 
stable convergence in the later stages of training. To validate the joint enhancement of the Adam 
algorithm, extensive experiments were conducted on multiple well-established datasets. The 
experimental results unequivocally demonstrate that our algorithm offers substantial benefits in terms 
of convergence speed and generalization performance when compared to both the traditional Adam 
algorithm and other modified variants. The principal contributions of this paper encompass the 
proposal of an enhanced Adam algorithm grounded in Warmup and cosine annealing, effectively 
mitigating certain drawbacks associated with conventional Adam algorithms. Furthermore, through 
comprehensive experimentation on classic datasets, we establish the superior performance of our 
jointly improved Adam algorithm. 

2. Design of WuC-Adam algorithm 

2.1. The Adam optimization algorithm 

Adam is an adaptive learning rate optimization algorithm based on gradient descent, which 
combines the advantages of gradient descent algorithm and momentum method. Adam’s main idea is 
to adjust the learning rate by calculating the first-order moment estimation and second-order moment 
estimation of gradients. The first order moment estimation is the average value of the gradient, while 
the second order moment estimation is the average value of the square of the gradient. Adam, as one 
of the commonly used optimization algorithms in neural network models, has the advantage of being 
able to adaptively adjust the learning rate and adopt different learning rate sizes for different parameters, 
thus better adapting to the characteristics of different parameters. Adam can also adaptively adjust the 
size of the learning rate, avoiding the hassle of manually adjusting the learning rate. Moreover, Adam 
can handle sparse gradients, online settings and non-stationary settings well [18]. In Adam, the 

parameters used for both are defined as first-order moment   and second-order moment  , 
respectively. The moment estimation vectors for the gradient in step t are: 

  (1) 

m t tv

ttt gmm )1( 111   
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  (2) 

In the formula,   and   are the exponential decay rates of the first and second moment, 

respectively,  is the gradient of step t, and the calculation formula is: 

  (3) 

Among them,  is the parameter vector updated in step t, and  is the loss function of the t-th 

iteration in the neural network,  is the gradient of the loss function of the t-th iteration of the 

neural network with respect to parameters. 
When the decay rate is very small in the initial stage, the first-order and second-order moment 

estimates may deviate from 0, resulting in some deviation. To eliminate this deviation, Adam added 
bias correction to the first-order and second-order moments during the decay process. The formula is 
as follows: 

  (4) 

  (5) 

After each iteration, parameter  will be updated with the following formula: 

  (6) 

In the formula:  represents the learning rate;  is a sufficiently small value greater than 0, 
mainly to avoid having a denominator of 0. 

Although Adam has good performance, it is sensitive to the selection of learning rates and requires 
careful adjustment of hyperparameters, which cannot converge to the global optimal solution in some 
non-convex optimization problems. 

2.2. Warmup 

Warmup was first proposed by He et al. [19] in 2016 as a solution for very deep neural networks 
to prevent overfitting due to high learning rates. The specific Warmup strategy can be set based on 
specific problems and models, and common methods include linear Warmup and exponential Warmup. 
Linear Warmup linearly increases the learning rate within a set number of iterations, while exponential 
Warmup gradually adjusts the learning rate through exponential growth. 

The commonly used Warmup formula is as follows: 

  (7) 

Among them,  represents the initial learning rate, and the following fractions are used to 
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control the Warmup operation. The numerator represents the current number of steps in the iteration, 

the denominator  represents the number of epochs set for Warmup before training, and 

 represents the number of steps required to iterate one epoch in the training set. 
We made modifications based on the above formula, and the specific formula is as follows: 

  (8) 

The denominator of the fraction represents the number of Warmup steps initialized, which reduces 
the time required for the entire Warmup process. 

The main purpose of using Warmup is to improve the stability and convergence speed of the 
model in the early stages of training. In deep learning, learning rate is a very important hyperparameter 
in optimization algorithms, which determines the magnitude of model parameter updates in each 
iteration. A suitable learning rate can enable the model to converge to the optimal solution faster during 
the training process, thereby saving training time and improving model performance. However, in the 
early stages of training, the parameters of the model may be in a random initialization state or in a poor 
region, and using a higher learning rate may cause the model to oscillate or fail to converge. This is 
because an excessive learning rate may lead to excessive parameter updates, making the model unable 
to steadily move towards the optimal solution. To address this issue, Warmup technology was 
introduced, which allows us to use a smaller learning rate in the early stages of training and gradually 
increase the learning rate to the set initial value. The advantage of doing so is that the model undergoes 
a stable exploration in the early stages of training, avoiding instability caused by excessive learning 
rate. As the training progresses, the learning rate gradually increases, and the model gradually enters a 
more suitable state. Then, the set maximum learning rate is used to continue training. 

Warmup is usually used in conjunction with other learning rate adjustment strategies to achieve 
better training results. By properly setting the steps and initial learning rate of Warmup, the 
convergence speed, stability and generalization ability of the model can be improved when training 
deep neural networks. 

2.3. Cosine annealing strategy 

The cosine annealing strategy is a learning rate adjustment strategy used to dynamically adjust 
the learning rate in optimization algorithms. Its main idea is to simulate the annealing process of the 
cosine function, periodically changing the learning rate during the training process, so that the model 
can better make fine adjustments in the later stage of training and improve convergence performance. 

The original formula for cosine annealing strategy is as follows: 

  (9) 

The  in the numerator represents the total number of training cycles to the current stage, and 
the  in the denominator represents the set cosine annealing cycle. Based on the ratio between  

and , the learning rate exhibits a cosine like variation. 

This article has made modifications to the original cosine annealing strategy, using the 
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relationship between the current number of steps and the set warmup value to calculate the learning 
rate. The modified formula is as follows: 

  (10) 

The values of warmup and   are given during initialization, while   represents  , 

which is the ratio of the maximum learning rate to the current learning rate. 
The characteristic of cosine annealing strategy is that the learning rate will undergo periodic 

changes within the range of maximum and minimum learning rates according to the annealing curve 
of the cosine function. This helps to make the model more stable in the later stages of training, avoiding 
oscillations or jumping out of local optima caused by excessive learning rate, as well as situations 
where the learning rate is too small and the convergence speed is too slow. 

Compared to traditional fixed learning rates, cosine annealing algorithm can converge faster 
because it can use a smaller learning rate to fine tune model parameters in the later stages of training. 
The cosine annealing algorithm can avoid oscillations caused by rapid gradient descent during the 
training process, thereby improving the training stability and generalization ability of the model. The 
cosine annealing algorithm needs only set a small number of hyperparameters such as maximum 
learning rate, maximum number of iterations and minimum learning rate, making it easier to adjust 
and optimize the model. 

2.4. WuC-Adam algorithm 

When using optimization algorithms, it is necessary to consider the various parameters of the 
algorithm, and learning rate is a key link. Learning rate needs to consider multiple factors. Generally, 
different learning rate values need to be set during different training periods. The technology used by 
Adam is to adjust the adaptive gradient while ensuring that the learning rate does not decay too fast. 
To achieve this goal, Adam uses exponential weighted averaging for gradients and the square of 
gradients, which is actually a cumulative calculation of historical gradients. This can effectively reduce 
the impact of historical gradients on the current gradient. In the initial stage of iteration, due to the 
acceleration of the first-order momentum of the gradient, Adam converges quickly, resulting in 
significant oscillations near the optimal value, exhibiting great instability; and when Adam falls into a 
local optimum, it is also difficult to jump out of the local optimum situation. 

In this article, we propose a new adaptive learning rate algorithm for the above problems, which 
is an improved version of the Adam optimization algorithm that combines Warmup technology and the 
cosine annealing strategy. The specific steps of this algorithm are as follows: 

Initialization: Set the initial learning rate  and maximum learning rate , with both first-
order momentum  and second-order momentum  initialized to 0, and time step t = 0. 

Warmup stage: In the first warmup iteration steps of the early training stage, the learning rate 

linearly increases from a small value to  according to Warmup technology. This helps the model 
to explore stably in the early stages of training. 

Cosine annealing stage: After the preheating stage, starting from the warmup+1 iteration step, the 
learning rate is periodically adjusted according to the cosine annealing strategy. Specifically, the 
learning rate increases or decreases according to the curve of the cosine function within each cycle. 
The cosine annealing strategy makes the model more stable in the later stages of training, which helps 
to improve the convergence performance of the model. 
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Parameter update: In each iteration step, calculate the gradient  and each parameter , and 
update the parameters according to Adam’s update formula. 

During the training process, the relationship between the current number of steps and the set 
number of Warmup steps is determined to determine whether to use Warmup to gradually increase the 
learning rate or to perform periodic transformations on the learning rate through cosine annealing. 
Through this improvement, the learning rate can be increased in the early stages of training to 
accelerate convergence, and the search space can be refined in the subsequent stages of training to 
improve accuracy. This can effectively improve the model’s generalization ability and avoid falling 
into local optima. 

Changing from large to small: As the weights of the model are randomly initialized at the 
beginning of training, choosing a larger learning rate may lead to instability (oscillation) of the model. 
Choosing to preheat the learning rate can reduce the learning rate within the first few epochs or steps 
of training. Under the preheat learning rate, the model can gradually stabilize, After the model is 
relatively stable, choose a pre-set college enrollment rate for training, so that the convergence speed 
of the model becomes faster and the effect of the model is better. 

Algorithm 1 
1: Input:  initial point , first moment decay , second moment decay , regularization 

constant  
2: Initialize  and , , , ,  

3: For t = 1 to T do 
4:    

5:    

6:    

7:    

8:    

9:    

10:  If   

11:      

12:     If   

13:     break 
14:  else do 

15:      

16:  

end for 
Return  

Changing from small to large: When we train normally, a decrease in learning rate helps with 
better convergence. When the model learns to a certain extent, the distribution of the model becomes 
more stable. If a higher learning rate is used, it will disrupt this stability and cause significant 
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fluctuations in the network. It is now very close to the optimal point, and in order to approach this 
optimal point, a very small learning rate is necessary. The specific algorithm is shown in Algorithm 1. 

3. Experimental design and results analysis 

3.1. Experimental environment configuration 

The experiment implemented the WuC-Adam algorithm based on the PyTorch deep learning 
framework, which was jointly improved by Warm up and cosine annealing algorithms. The specific 
versions of software and hardware mainly used in the experiment are shown in Table 1. 

Table 1. Experimental software and hardware versions. 

Software and Hardware Version 

Python 3.11 

torch 2.0.1 

torchvision 0.15.2 

lightning 2.0.4 

GPU NVIDIA GeForce RTX3080 

All experiments were conducted in the Ubuntu server environment with NVIDIA GeForce 
RTX3080 graphics card configurations, and the entire experimental code was written using the Python 
lighting framework. The Python language version was 3.11, the torch version was 2.0.1, the torch 
vision version was 0.15.2 and the lighting version was 2.0.4. 

The experiment conducted image classification experiments on three common datasets, MNIST, 
CIFAR10 and CIFAR100, to test the performance of the WuC-Adam algorithm. Three datasets, 
MNIST is a grayscale image dataset of handwritten digits; CIFAR10 and CIFAR100 are color image 
datasets containing different types of items. The data volume, training set, testing set and validation 
set partitioning and data characteristics of the three datasets are shown in Table 2. 

Table 2. Experimental dataset. 

Data set Number of 

samples 

Training 

set 

Test 

set 

Validation 

set 

Category Data characteristics 

MNIST 70,000 55,000 5000 10,000 10 few categories, grayscale images, 

complex features 

CIFAR10 60,000 45,000 5000 10,000 10 few categories, color RGB images, 

complex features 

CIFAR100 60,000 45,000 5000 10,000 100 multiple categories, color RGB 

images, complex features 

3.2. Experimental results and analysis 

The WuC-Adam algorithm integrates Warmup and cosine annealing strategies on the basis of 
Adam, solving the problems of non-convergence and easy falling into local optima caused by the 
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fluctuation of Adam’s learning rate, thereby improving the model’s generalization ability. In order to 
comprehensively evaluate the performance advantages of the WuC-Adam algorithm, we selected SGD 
algorithm, Adagrad, RMSprop, Adam, as well as Nadam and Lion, two improved Adam based 
algorithms, for comparative experiments. Although the generalization ability of adaptive learning rate 
algorithms may not be as good as momentum SGD, we will comprehensively evaluate them by 
conducting multiple experiments on different datasets and learning rate conditions. 

Table 3. Comparative experimental results of different optimization algorithms. 

Data set Optimization Algorithm Accuracy Loss 

MNIST 

SGD 94.28% 0.227 
Adagrad 95.91% 0.163 
RMSprop 98.24% 0.078 
Adam 98.18% 0.071 
Nadam 98.32% 0.072 
Lion 98.06% 0.075 
WuC-Adam 98.87% 0.081 

CIFAR10 

SGD 59.46% 1.133 
Adagrad 59.61% 1.283 
RMSprop 81.04% 1.035 
Adam 79.32% 0.951 
Nadam 79.52% 0.957 
Lion 86.52% 1.318 
WuC-Adam 87.67% 0.916 

CIFAR100 

SGD 18.56% 3.481 
Adagrad 34.72% 2.629 
RMSprop 49.40% 2.657 
Adam 48.66% 2.401 
Nadam 48.34% 2.363 
Lion 55.35% 3.681 
WuC-Adam 58.88% 2.852 

Experimental setup: 
1) Algorithm: The experiment used SGD, Adagrad, RMSporp, Adam, Nadam, Lion and WuC-

Adam algorithms as experimental subjects for comparison. 
2) Epochs: Set the epoch in the experiment to 100 to ensure that the algorithm is compared under 

the same number of training rounds. 
3) Batch Size: Set the batch size to 128 to maintain consistency in the experiment. 
4) Learning rate: The initial learning rate of all algorithms in the experiment is set to 0.0001, and 

the maximum learning rate of the WuC Adam algorithm is set to 0.01. 
5) Multiple experiments: Due to the need to adjust the maximum and minimum learning rates of 

the WuC-Adam algorithm, we will conduct multiple experiments on each dataset and select the best 
result as the experimental result. 

6) Experimental results: On the MNIST, CIFAR10 and CIFAR100 datasets, 15 comparative 
experiments were conducted on seven algorithms, and the average of the 15 results was taken as the 
final result to reflect the advantages of the WuC-Adam algorithm in solving the Adam problem and 
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improving generalization ability. 
The WuC-Adam algorithm aims to improve the model’s generalization ability and avoid falling 

into local optima. In order to test the performance of WuC-Adam algorithm on different neural 
networks and highlight the contrast of comparative experiments, we trained different types of neural 
networks on different datasets: Using a simple fully connected neural network for training on MNIST, 
a dataset composed of grayscale images; ResNet18 residual convolutional neural network is used on 
two datasets composed of color RGB images, CIFAR10 and CIFAR100. In this experiment, we use a 
cross dataset as an example to show the convergence process of three algorithms, and the learning rate 
settings of each algorithm are the same as Table 3. In order to comprehensively present the performance 
of WuC-Adam algorithm under different learning rate combinations, we designed three different sets 
of maximum and minimum learning rate combinations and conducted comparative experiments. In 
Figure 1, we demonstrate the performance of the WuC-Adam algorithm on the CIFAR10 dataset when 
combined with different learning rates. 

        
                    (a)                                      (b) 

Figure 1. Performance comparison of different learning rate variation intervals on the 
MNIST dataset. The left figure (a) is a comparison of accuracy, and the right figure (b) is 
a comparison of loss values. The legend represents the range of variation from the given 
minimum learning rate to the maximum learning rate. 

It can be seen that the optimal effect was achieved using a combination of parameters with a 
minimum learning rate of 1e-4 and a maximum learning rate of 1e-2. Two parameter combinations 
with a minimum learning rate set to 1e-3 perform less well in the early stages of training than the 
combination with a minimum learning rate of 1e-4. This phenomenon may be due to the fact that 
higher learning rates may lead to model instability in the early stages of training, and cause oscillations 
near extreme points. However, parameter combinations with a maximum learning rate of 1e-1 perform 
poorly, compared to two parameter combinations with a maximum learning rate of 1e-2. This may be 
due to the fact that an excessively high learning rate reduces the model’s generalization ability when 
entering the cosine annealing stage in the later stages of training. 

Taking the MNIST dataset as an example, Figure 2 shows the changes in learning rate during the 
training process using the WUC-Adam algorithm. It can be seen that learning first gradually increases 
to the maximum learning rate through Warmup, and then uses the cosine annealing strategy to make 
the learning rate exhibit periodic changes in the cosine function image. 
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Figure 2. The variation curve of learning rate during WuC-Adam training process. 

The reason why the learning rate change curve in Figure 2 presents a cosine like change rather 
than a complete cosine form change is because the cosine annealing step in the WuC-Adam algorithm 
uses a modified cosine annealing formula, which varies the learning rate based on the number of steps 
run, rather than using the proportion of cycles in the original cosine annealing formula. Due to the 
large number of steps run in each cycle, the learning rate will remain at its maximum for a period of 
time before continuing with cosine transformation. 

Figures 3 and 4 show the training results of seven algorithms on the MNIST dataset and CIFAR10 
dataset, respectively. 

      
                  (a)                                                (b) 

Figure 3. Performance comparison of various algorithms on the MNIST dataset. The left 
figure (a) shows a comparison of loss values, while the right figure (b) shows a comparison 
of accuracy. 
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                  (a)                                               (b) 

Figure 4. Performance comparison of various algorithms on the CIFAR10 dataset. The 
left figure (a) shows a comparison of loss values, while the right figure (b) shows a 
comparison of accuracy. 

 

Figure 5. Accuracy of different algorithms on the CIFAR100 dataset. 

Based on the results presented in Figure 5, we compared the accuracy of various algorithms with 
increasing training rounds on the CIFAR-100 dataset. It is evident that the accuracy of SGD is 
significantly lower than the other six algorithms. Furthermore, the WuC-Adam algorithm exhibits 
higher accuracy in the early stages of training, far surpassing other algorithms, especially compared to 
the two improved Nadam and Lion algorithms based on the Adam algorithm, the WuC-Adam 
algorithm performs better. This advantage can be attributed to the preheating strategy adopted by 
WuC-Adam, which gradually improves the learning rate in the early stages of training, enhances the 
stability of the model and significantly improves accuracy in a short period of time. It is worth noting 
that in the later stage of training, the WuC-Adam algorithm maintained stability without any 
fluctuations, and at the end, its accuracy curve showed an upward trend. 
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Figure 6. Loss values of different algorithms on the CIFAR100 dataset. 

Based on the results presented in Figure 6, we compared the loss values of various algorithms on 
the CIFAR-100 dataset as the number of training rounds increased. The overall loss value of SGD 
algorithm is significantly higher than the other six algorithms. The WuC-Adam algorithm exhibits 
faster convergence speed than other algorithms in the early stages of training, but its loss value is 
slightly higher in the later stages of training than other algorithms except SGD and Lion. The reason 
for this result may be due to the fact that in the later stages of training, the WuC-Adam algorithm 
performs cosine annealing operations to avoid getting stuck in local optima by periodically changing 
the learning rate. In addition, compared to the Lion algorithm which uses a sign function to handle 
updates, the WuC-Adam algorithm has a superior final loss performance. 

 

Figure 7. GPU occupancy rates of seven algorithms. 
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Figure 7 shows the curve graph of the time and GPU usage required for training each algorithm 
on the CIFAR-100 dataset after smoothing. 

The GPU occupancy rate of the WuC-Adam algorithm is significantly lower than the other six 
algorithms throughout the entire training process, especially in the early Warmup stage of training, 
where the GPU occupancy rate is less than 20%. In the subsequent cosine annealing stage, the GPU 
occupancy rate of the WuC-Adam algorithm is lower than other algorithms. However, considering that 
the WuC-Adam algorithm adopts a constantly changing learning rate during the training process, its 
training time slightly increases compared to other algorithms. 

In summary, compared to the other six algorithms, especially the Adam algorithm, WuC-Adam 
exhibits better accuracy and more stable convergence on the CIFAR100 dataset, which further 
validates the advantages of WuC-Adam, especially in solving learning rate related problems and 
improving generalization ability. 

According to the experimental results in Table 3, in the comparative experiments of the three 
datasets, WuC-Adam showed the highest accuracy, highlighting its overall superiority on the MNIST, 
CIFAR-10 and CIFAR-100 datasets, fully confirming its excellent generalization ability. This also 
indicates that the WuC-Adam algorithm can achieve significant results on both simple black and white 
image datasets and colored RGB image datasets. In addition, after 100 rounds of training, the overall 
convergence speed of WuC-Adam surpasses other algorithms, especially compared to the standard 
Adam algorithm, achieving significant optimization. This indicates that WuC-Adam has significantly 
improved convergence efficiency and the ability to jump out of local optima, not only emphasizing its 
excellent performance in generalization, but also strengthening its universal applicability on 
different datasets and tasks. It is worth noting that WuC-Adam exhibits better performance on both 
fully connected networks (FCNN) and ResNet, further proving that the superiority of this algorithm 
is not limited by specific neural network types, but has achieved significant results on various 
network structures. 

The experimental results fully validate the advantages of WuC-Adam, especially in terms of 
generalization ability and convergence speed. It achieved the highest accuracy on different datasets 
and neural networks, and achieved the lowest loss value during the training process, further proving 
the effectiveness and applicability of WuC-Adam, making it a potential optimization algorithm that 
can be used to improve the performance and generalization ability of deep learning models. 

4. Conclusions 

Compared to traditional Adam algorithms and improved Adam-based algorithms Nadam and 
Lion, the proposed WuC-Adam algorithm in this paper effectively mitigates the issue of traditional 
Adam algorithms easily converging to local optima, thereby enhancing the model’s generalization 
ability. However, it is noteworthy that WuC-Adam has also led to a certain increase in its memory 
requirements. To comprehensively assess the performance of WuC-Adam, we conducted comparative 
experiments using three widely recognized datasets: MNIST, CIFAR-10 and CIFAR-100. Our 
evaluation involves comparisons among WuC-Adam, SGD, the Adam algorithm, Adam’s 
predecessors Adagrad and RMSprop algorithms, as well as the Nadam and Lion algorithms improved 
based on the Adam algorithm. The experiments consistently demonstrate that WuC-Adam achieved 
higher accuracy and superior convergence on these datasets, exhibiting significant advantages over 
other algorithms. These results underscore the superiority of WuC-Adam in addressing the issues of 
traditional Adam and emphasize its pivotal role in achieving substantial performance improvements 
across multiple datasets. 
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The improved algorithm WuC-Adam, proposed in this article, effectively addresses a range of 
issues associated with Adam, such as sensitivity to local optima, overfitting and learning rate 
fluctuations. This is achieved through the clever combination of preheating and cosine annealing 
strategies. In our experiments, we empirically validated the superiority of WuC-Adam over traditional 
Adam on multiple datasets, showcasing notable improvements in accuracy and convergence 
performance. These experimental results underscore the potential significance and practical value of 
WuC-Adam, presenting a viable option for enhancing the performance and generalization ability of 
deep learning models. 
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