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Abstract: The control of robot manipulator pose is significantly complicated by the uncertainties 
arising from flexible joints, presenting substantial challenges in incorporating practical operational 
constraints. These challenges are further exacerbated in teleoperation scenarios, where factors such as 
synchronization and external disturbances further amplify the difficulties. At the core of this research 
is the introduction of a pioneering teleoperation controller, ingeniously integrating a nonlinear 
extended state observer (ESO) with the barrier Lyapunov function (BLF) while effectively 
accommodating a steady time delay. The controller in our study demonstrates exceptional proficiency 
in accurately estimating uncertainties arising from both flexible joints and external disturbances using 
the nonlinear ESO. Refined estimates, in conjunction with operational constraints of the system, are 
integrated into our BLF-based controller. Consequently, a synchronized control mechanism for 
teleoperation is achieved, exhibiting promising performance. Importantly, our experimental findings 
provide substantial evidence that our proposed approach effectively reduces the tracking error of the 
teleoperation system to within 0.02 rad. This advancement highlights the potential of our controller in 
significantly enhancing the precision and reliability of teleoperated robot manipulators. 

Keywords: nonlinear extended state observer; teleoperation; flexible joints; barrier Lyapunov function; 
state constraint 
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Nomenclature 

   m s
,   Subscripts  ,  m s denote the master robot and the slave robot, respectively. 

 ̂  Diacritical mark wedge denotes the estimation, for example, ̂ is the estimation of  . 

   Diacritical mark tilde denotes the estimation error, for example ˆ   . 

, ,i i iq q q   n-dimensional joint position, velocity, acceleration,   ,  .i m s  

 i iM q  Robotic inertia matrix,   ,  .i m s  

 ,i i iC q q  Coriolis/centrifugal matrix,   ,  .i m s  

 i if q  Viscous friction force vector,   ,  .i m s  

 i iB q  Bounded external disturbance,   ,  .i m s  

 i iG q  Gravity torque,   ,  .i m s  

i  Control torque,   ,  .i m s  

h e,   Forces exerted on the end-effectors of the master and slave robots by the human operator 
and environment, respectively. 

, ,i i i     n-dimensional angular position, velocity, acceleration,   ,  .i m s  

sJ  Jacobian matrix of the slave robot. 

f  Friction caused by the motor shaft, where the subscript {f} represents variables 
associated with friction caused by the motor shaft. 

c  Torque generated by the flexibility of the joint, where the subscript {c} represents 
variables associated with the joint. 

sK  Equivalent stiffness coefficient of the joint in the slave robot. 

,n n mR R   n-dimensional real space and n × m dimensional real matrix space, respectively. 

Ti Communication delays,   ,  .i m s  

ikZ  State variable of ESO,   ,  i m s ,   1,2,3.k   

ike  State estimation error of ESO,   ,  i m s ,   1,2,3.k   
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1. Introduction  

The implementation of teleoperation within robotic systems extends the ability of humans to 
perform specific operations personally in remote environments. Teleoperation is conducted by remote 
operators transmitting control signals to robotic systems through communication channels, and 
receiving the force interaction data from the robotic system via the same communication channels. 
Currently, teleoperation systems find extensive applications in diverse fields including remote surgery 
and deep-sea exploration [1–3]. 

Increasing interest has been generated in recent years for developing robotic systems with flexible 
manipulator joints. This is mainly due to two reasons [4,5]. First, the increasing complexity and 
refinement of industrial tasks has necessitated the implementation of elastic drive transmission systems 
in industrial robots, such as harmonic gear transmission, joint torque sensors, and belt pulleys [6]. 
These must be treated as flexible-joint systems to mitigate the negative impact of end effector 
vibrations on system stability [7]. Second, flexible components have been introduced in new robotic 
manipulator designs for obtaining more human-compatible mobility characteristics that facilitate 
human-robot interactions, such as high flexibility, strong adaptability, and strong robustness [8]. 
However, the flexibility of these joints renders the dynamic behavior of robotic systems increasingly 
intricate and challenging to model. This complexity primarily stems from nonlinearity, uncertainty, 
damping effects, and vibration modes of flexible joints, presenting a significant challenge in achieving 
satisfactory control performance in remote operation systems. 

Since Spong proposed the flexible joint model in 1987, more and more control strategies have 
been proposed for manipulator systems with flexible joints [9]. Spong [10], Ghorbel et al. [11], and 
Chang and Daniel [12] designed an adaptive controller based on singular perturbation control. 
However, although this method can simplify the analysis, it may also oversimplify the system 
dynamics, potentially ignoring the key nonlinearity and complexity existing in the real scene [13]. 
Nam et al. [14] introduced finite time control based on sliding mode control and designed a control 
strategy that enables a flexible joint manipulator system to achieve effective tracking. However, the 
presence of buffeting reduces the tracking effect of the system. In addition, backstepping control is 
also a highly effective control strategy for addressing the tracking control problem in flexible joint 
manipulator systems. There have been many research achievements based on backstepping to solve 
control issues in flexible manipulator systems. Huang et al. [15] designed the controller of the single-
link flexible manipulator system based on the reverse step method, but this control strategy is only 
applicable to a system with known state parameters. Cheng et al. [16] combined the singular 
perturbation control method and adaptive control method on the basis of backstep method to design a 
control strategy suitable for a flexible manipulator system. However, this control strategy has the 
disadvantage of too having complicated of a calculation. To tackle this issue, Sahu et al. [17] proposed 
a backstepping control strategy that combines extended state observer (ESO) with backstepping 
control. This approach not only effectively addresses the computational complexity in traditional 
backstepping but also efficiently handles the uncertainty and interference of the internal model, 
significantly improving the tracking performance of the system.  

ESO is a part of active disturbance rejection control (ADRC) theory that enables real-time 
estimation of internal state and unmodeled dynamics of a system [18,19]. Recently, ESO has been widely 
applied, such as in tracked vehicle control [20], quadrotor control [21], DC-link voltage control [22], 
and permanent magnet synchronous linear motor (PMSLM) servo system control [23]. ESO can be 
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categorized into linear and nonlinear types. Linear ESO can exhibit peaking phenomena when dealing 
with nonlinearities and strong couplings, thereby potentially compromising the observer’s accuracy to 
some extent [24]. Consequently, in this study, nonlinear ESO was chosen to address the uncertainty in 
the internal model and external disturbances of the flexible-joint teleoperation system, enhancing its 
robustness and accuracy. 

Furthermore, in real-world engineering applications, the system may face limitations due to 
factors such as temperature and space. If the system’s operation exceeds predefined boundaries, it can 
adversely affect the system’s performance and, in extreme cases, potentially lead to system failures, 
endangering the personal safety of the operators. The barrier Lyapunov function (BLF) is a standard 
method developed for implementing constrained control problems of this nature [25]. Wang [26] and 
Li et al. [27] used the barrier Lyapunov function to ensure that the input and output of a nonlinear 
system are controlled within a preset interval. Using the above research results, Zhang [28] and Yu et 
al. [29] applied the barrier Lyapunov function to a robot arm system with limited output, and ensured 
that the output of the system could be controlled within a preset interval. 

While considerable progress has been made in the control of robotic systems with flexible joints, 
these developments have been rarely applied in the design of teleoperation systems for remote robotic 
control. Moreover, teleoperation systems not only must address the many uncertainties in the pose 
control of robotic manipulators, but also account for complexities in the actual working environments, 
and the inevitability of external interference. Accordingly, these issues remain poorly addressed by the 
current state of teleoperation system development. 

In summary, to achieve effective tracking of joint position trajectories for a state-constrained 
flexible-joint teleoperation system, this paper proposes a control strategy based on the combination of 
nonlinear ESO and the Barrier Lyapunov Function. The main contributions in this work are 
summarized as follows: 1) The paper introduces a novel teleoperation controller that employs a 
nonlinear Extended State Observer (ESO) to estimate internal uncertainties related to flexible joints 
and external disturbances. This inclusion enhances the accuracy of the control system by actively 
predicting and compensating for disturbances in the input channel. 2) The research effectively 
addresses practical operational constraints on the system output states by leveraging the Barrier 
Lyapunov Function (BLF). This application ensures that the teleoperation controller operates within 
defined limitations, leading to more reliable and controlled system behavior. 3) The study focuses on 
a robotic system that combines a rigid master manipulator and a flexible slave manipulator. By 
enforcing constraints on the system output states using the BLF, synchronized control is achieved 
between these two distinct components. This synchronization is critical for precise and coordinated 
control in teleoperation scenarios. 

The remainder of this paper is organized as follows: Section 2 presents the pertinent preliminary 
discussion. Section 3 elucidates the nonlinear ESO and stability analyses of the proposed teleoperation 
control system. Following this, Section 4 provides a detailed account of the experimental results. 
Finally, concluding remarks and future directions are outlined in Section 5. 

2. Preliminary discussion 

The rigid master manipulator is assumed to have n degrees of freedom, and its nonlinear dynamic 
behavior is defined as follows. 
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          m m m m m m m m m m m m m m h,M q q C q q q f q B q G q           (1) 

Similarly, the flexible slave manipulator is assumed to have n degrees of freedom, and its 
nonlinear dynamic behavior is defined as follows [9]. 

 
         s s s s s s s s s s s s s c e

s s c s f

,M q q C q q q f q B q G q

J

 

   

     


  

  
  (2) 

Here, for all m,si   , n
iq R  ,   n n

i iM q R   ,  , n n
i i iC q q R   ,   n

i if q R  ,   n
i iB q R  , 

  n
i iG q R  , s

n nJ R   , s
nR   , n

i R   , c
nR   , h

nR   , e
nR   , f

nR   ,  c s s sK q    , 

sK n nR  . 

For convenience, we make the following substitutions in the system variables: m1 mX q  , 

m2 mX q   , s1 sX q  , s2 sX q   , s3 sX   , and s4 sX    . Then, the following correspondences are 

applied. 

 m1 m2

1
m2 m m m

X X

X F M 
 


 


  (3) 

 

s1 s2

1
s2 s s c

s3 s4

1
s4 f s s

X X

X F M

X X

X F J









 


 



  






 (4) 

The variables Fm, Fs, and Ff in (3) and (4) represent lumped uncertainties in the system, which 
contain internal uncertain parts and external perturbations, which are defined as follows. 

 

      
      

 

1
m m m m2 m m1 m m1 m m1 h

1
s s s s2 s s1 s s1 s s1 e

1
f s f c=

F M C X f X B X G X

F M C X f X B X G X

F J





 







     

      




 (5) 

By treating uncertainties such as c  as total perturbations, the design of the control system can 

be simplified, resulting in reduced computational load. This approach enhances the system’s 
robustness to various disturbances while maintaining the effectiveness and flexibility of the control 
strategy. 
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3. Controller design and stability analysis 

3.1. Nonlinear ESO design 

The nonlinear ESO is applied for estimating the interference terms Fm and Fs. In this subsection, 
we design the observer for Fm only, and subsequently analyze its error estimation stability. The Fs and 
Ff estimator design and stability are entirely equivalent and are therefore not presented herein. 

First, the nonlinear ESO is designed by introducing the following expansion terms: 

 

3

3

m m

m m

X F

X h




  
 (6) 

where hm denotes the derivative of external disturbances. Before designing the ESO, the following 
assumption about external disturbances is given in this paper. 

Assumption 1: For the external disturbance in the nonlinear bilateral teleoperation system, there 

exists a positive unknown constant L such that mh L  holds. 

We define the estimation error as 

 m m m , 1,2,3,k k ke Z X k    (7) 

where Zm1, Zm2, and Zm3 are the estimated values of Xm1, Xm2, and Xm3, respectively, and introduce new 
parametric variables 

 
m

m 3
, 1, 2,3,k

k k

e
k

  
 (8) 

where   is an appropriate positive definite parameter. Then, the nonlinear ESO is designed in the 
following form:  

 

 

 
 

3

2
m1 m2 m1 m1 m1

1
12

m2 m3 m2 m1 m1 m m

1
m3 m3 m1

sgn

sgn

sgn

Z Z

Z Z M

Z

   

   

  





  
   
  







 (9) 

Here, sgn(·) is the signum function that returns the sign of its argument, and m1 , m2 , and m3  

are appropriate positive definite parameters. Combining Eqs (6)–(9), the estimation error of the system 
can be obtained as follows. 
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 

 
 

3

2
m1 m2 m1 m1 m1

1

2
m2 m3 m2 m1 m1

1
m3 m m3 m1

sgn

sgn

sgn

e e

e e

e h

   

  

  

  
  
  







 (10) 
Finally, both sides of the three expressions in error system (10) are multiplied from top to bottom 

by 
1


, 1, and  , respectively, which yields the substitution of error system (10) as follows:  

 

 

 
 

3

2
m1 m2 m1 m1 m1

1

2
m2 m3 m2 m1 m1

m3 m m3 m1

sgn

sgn

sgnh

    

    

   

  
  
  







 (11) 
Theorem 1: For master manipulator system (1) and nonlinear error system (11), the estimation 

error  m 1,2,3ke k   will converge to the neighborhood of the origin if there exist positive definite 

parameters m1 , m2 , and m3  such that the following inequality is guaranteed. 

 

 

8 m1 1 4

2 2
4 9 6 5 2 7 4 m1

2
6 3 5 m1

7 m1

1 1 1
0

1 1 1 1

1 1

1

k k k

k k k k k k k

k k k
Q

k


  


   


 







          
         

    


   
    


      
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 

 

8 2 m2

6 m2

1 m1

9 m1 4 m2

9 m3

0 0 0

1
0 0

1
0 0

0 0 0
0

1
0 0

1
0

1

k k

k

k

k k

k










 


















  



    
  (12) 

where k1 – k9 are appropriate positive definite constants and the following inequality group holds: 

 

1 4 5

2 4 6

3 5 6

0

0

0

k k k

k k k

k k k

  
   
     (13) 

Proof: The proof is based on the following Lyapunov function: 

 

2 2 2
1 m1 2 m2 3 m3 4 m1 m2 5 m1 m3 6 m2 m3

5 3

2 2
7 m1 8 m1 9 m1

1 1 1

2 2 2
2 2

5 3

V k k k k k k

k k k

        

  

     

  
 (14) 

From Young’s inequality, the following inequality group can be obtained: 

 

 

 

 

2 24
4 m1 m2 m1 m2

2 25
5 m1 m3 m1 m3

2 26
6 m2 m3 m2 m3

2

2

2

k
k

k
k

k
k

   

   

   

  

  

    (15) 

Substituting Eq (15) into Eq (14), the following inequality can be obtained: 

 

     2 2 2
1 4 5 m1 2 4 6 m2 3 5 6 m3

5 3

2 2
7 m1 8 m1 9 m1

1 1 1

2 2 2
2 2

5 3

V k k k k k k k k k

k k k

  

  

        

  
 (16) 

When positive definite constants k1–k9 satisfy inequality group (13), the Lyapunov function (14) 
is positive semidefinite. 
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From the converted error system (11), taking the derivative of (14) with respect to time yields the 
following: 

      

1 m1 m1 2 m2 m2 3 m3 m3 4 m1 m2 4 m1 m2

5 m1 m3 5 m1 m3 6 m2 m3 6 m2 m3

3 1

2 2
7 m1 m1 m1 8 m1 m1 m1 9 m1 m1sgn sgn sgn

V k k k k k

k k k k

k k k

         
       

       

    

   

  

     
   

  
 (17) 

According to error system (11), we can reconfigure (17) as follows: 

 

     

 

   

   

3 1

2 2
1 m1 4 m2 5 m3 7 m1 m1 8 m1 m1 9 m1

3

2
m2 m1 m1 m1

1

2
2 m2 4 m1 6 m3 m3 m2 m1 m1

3 m3 5 m1 6 m2 m m3 m1

sgn sgn sgn

1
sgn

1
sgn

1
sgn

V k k k k k k

k k k

k k k h

       

   


      


     


        
   

      

     



 (18) 
This is further expanded as follows: 

 

 

   

   

3
2 2

1 m1 m2 4 m2 5 m2 m3 7 m1 m1 m2

1 5

2 2
8 m1 m1 m2 9 m1 m2 1 m1 m1

3 3

2 2
4 m1 m1 m1 m2 5 m1 m1 m1 m3

3
2 2

8 m1 m1 9 m1 m1 2 m2 m3 4 m1 m3

2
6 m3

1 1 1
sgn

1 1 1
sgn sgn

1 1
sgn sgn

1 1 1 1

1 1

V k k k k

k k k

k k

k k k k

k k

       
  

      
  

       
 

       
   


 

   

  

 

   

 



 

   

 

1 3
3

2 2
2 m2 m1 m1 m2 4 m2 m1 7 m1 m1

1

2
6 m2 m1 m1 m3 6 m2 3 m3 m m3 m1

5 m1 m m3 m1

1 1
sgn

1 1 1
sgn sgn

1
sgn

k k

k k k h

k h

       
 

        
  

   


 

         

   
 (19) 

This can be transformed into the following inequality: 
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2 2 2 2 2 2
8 m1 m1 4 9 6 m2 6 3 m3

3

1 m1 m2 2 5 m2 m3 7 m1 m1 4 m1 m3

5 3

2 2
1 m1 m1 9 m1 4 m2 m1 5 m3 5 m1

1 1 1

1 1 1 1 1

1 1 1 1

V k k k k k k

k k k k k

k k k k k

   
  

       
    

      
   

            
   

      
 
          
   



 

   

   

 

3 3

2 2
7 4 m1 m1 m1 m2 5 m1 m1 m1 m3

1 1

2 2
8 2 m2 m1 m1 m2 6 m2 m1 m1 m3

2

m m3 m12 2

1 1 1
sgn sgn

1 1 1
sgn sgn

1 1
sgn

4

k k k

k k k

h

       
  

       
  

  
 

    
 
    
 

    
 (20) 

Therefore,  

 
      2T

m m3 m12 2

1 1
sgn

4
V t Q t h    

 
     

 (21) 

where Q is shown in Eq (12), and  t  is applied as the following definitions and conditions: 

         
3 5 3 1

2 4 4 2
m1 m2 m3 m1 m1 m1 m1 m1 m1 m1 m1sgn sgn sgn sgnt                 

Based on the Lyapunov stability principle, the solutions of the inequality 0Q  represent the 

appropriate positive definite constants k1–k9 and parameters m1  , m2  , and m3  . Therefore, the 

estimation stability of error system (10) is assured because the estimation error converges to the 
neighborhood of the origin. 

3.2. Design of the BLF-based controller 

In this section, the estimations of interference factors obtained by the nonlinear ESO are used for 
compensation in the BLF-based controller in conjunction with the constraints on the state variables. 
Here, the controllers are designed separately for the master and slave manipulators because these are 
heterogeneous systems. 

For the master manipulator system (1) with the applied correspondences (3), the position and 
speed Xmj, j = 1, 2 of the manipulator system are assumed to be bounded in actual applications, and 

satisfy m mj jX k , where mjk  is a positive definite constant. The errors associated with Xm1 and Xm2 

are assumed to be respectively definable as m1 m1 mdX X     and m2 m2 m1X    , where 
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 md s sX q t T   is the tracking trajectory of the master manipulator, that is, the reference signal, Ts is 

the transmission delay of the signal from the end to the master, and m1  is the virtual controller. In 

this study, the virtual controller is an intermediate design variable used to simplify the control problem 
of complex systems by decomposing high-order systems into lower-order subsystems for step-by-step 
design and analysis. These assumptions are specified and validated as follows. 

Assumption 2: Assume that appropriate positive definite constants mjk  exist that ensure that 

m mj jk   is satisfied. 

Assumption 3: Assume that appropriate positive definite constants m0A  and m1A  exist that can 

guarantee that the conditions md m0 1mX A k   and md m1X A  are satisfied. 

Step 1: Select the following positive definite candidate BLF: 

 

2
m1

m1 2 2
m1 m1

1
log

2

k
V

k 
 

     (22) 

Taking the derivative of m1V  with respect to time yields the following: 

 
 

m1

m1 m1
m1 2 2

m1 m1

m2 m1 md

V
k

k X

 


 




  




 (23) 

Here, 
m1

m1
2 2
m1 m1

k
k







. The virtual controller m1  is designed as follows: 

 m1 m1 m1 mdK X    
 (24) 

Substituting (24) in (23) yields the following: 

 m1 m1m1 m1 m1 m2V k K k    
 (25) 

Step 2: Select the following positive definite candidate BLF: 

 

2
m2

m m1 2 2
m2 m2

1
log

2

k
V V

k 
 

      (26) 

According to (3) and (25), taking the derivative of mV  with respect to time yields the following. 
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 
   

m1 m1 m 2

m1 m1 m 2 m 2

m2 m2
m m1 2 2

m2 m2

m1 m1 m2 m2 m1

2 2 1
m1 m1 m2 m2 m m m m1

V V
k

k K k k X

k K k k k k M F

  

   

 


  

   

 


    

      

 

 


 (27) 

Here, 
m 2

m2
2 2
m2 m2

k
k







 . The derivative of m1   with respect to time is approximated by the 

tracking differentiator. The tracking differentiator is an algorithm for estimating signal derivatives 
based on PID control and improved by Han [18], which can accurately track and output the differential 
value of signals in the presence of noise. The details are as follows: 

  
m1 m2

1

2
m2 m1 m0 m1 m0 m2

v v

v r v v sign v v v



    




 (28) 

Setting m0 m1v    indicates that m1v   and m2v   are the estimated values of m1   and its 

derivative m1  , respectively (i.e., m1 m1ˆ v    and m1 m2
ˆ v   ). Therefore, the estimation error 

m1 m1 m1
ˆ       is assumed to be bounded, and satisfies the condition m1 m1  , where m1  is an 

appropriate positive definite constant. Finally, the input controller m  of the master manipulator is 

designed as:  

 
 

m 2

2 2
m m m2 m 2 m2 m2 m m1

ˆˆM K k k F          
 (29) 

where mF̂   is the value of Fm estimated by the nonlinear ESO presented in the previous section. 

Therefore, (27) can be expressed as follows. 

 m1 m 2 m 2 m 2m m1 m1 m2 m2 m m1V k K k K k F k            
 (30) 

where mF  is the estimation error of Fm estimated by the nonlinear ESO presented in the previous 

section. For the slave manipulator system (2) with the applied correspondences (4), the position, 
angular position, speed, and angular speed Xsj, j = 1, 2, 3, 4 of the system are assumed to be bounded 

in practical applications, and satisfy the condition s sj jX k , where sjk  is a positive definite constant. 

The errors in Xs1, Xs2, Xs3, and Xs4 are assumed to be respectively definable as s1 s1 sdX X    , 

s2 s2 s1X   , s3 s3 s2X   , and s4 s4 s3X   , where the reference signal  sd m mX q t T   is 
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the tracking trajectory of the slave manipulator that accounts for the transmission delay Tm of the signal 

from the master manipulator to the slave manipulator, and the control signal s , 1, 2,3j j   of the 

virtual controller. These assumptions are specified and validated as follows. 

Assumption 4: Assume that appropriate positive definite constants sjk   exist that ensure that 

s sj jX k is satisfied. 

Assumption 5: Assume that appropriate positive definite constants s0A   and s1A   exist that 

ensure that the conditions sd s0 s1X A k   and sd s1X A  are satisfied. 

Step 1: Select the following positive definite candidate BLF: 

 

2
s1

s1 2 2
s1 s1

1
log

2

k
V

k 
 

     (31) 

The derivative of s1V  with respect to time can be obtained as follows: 

 
 

s1

s1 s1
s1 2 2

s1 s1

s2 s1 sd

V
k

k X

 


 




  




 (32) 

Here, 
s1

s1
2 2
s1 s1

k
k






, while the other terms 
s

s

2 2
s s

, 2,3, 4
j

j

j j

k j
k




 


, will be used below. The 

virtual controller s1  is designed as follows.  

 s1 s1 s1 sdK X    
 (33) 

Substituting (33) in (32) yields the following: 

 s1 s1s1 s1 s1 s2V k K k    
 (34) 

Step 2: Select the following positive definite candidate BLF: 

 

2
s2

s2 s1 2 2
s2 s2

1
log

2

k
V V

k 
 

      (35) 

According to Eqs (4) and (34), taking the derivative of s 2V   with respect to time yields the 

following: 
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 
    

s1 s1 s 2

s1 s1 s 2 s 2

s2 s2
s2 s1 2 2

s2 s2

s1 s1 s2 s2 s1

2 2 1
s1 s1 s2 s2 s s s3 s2 s1 s s1

V V
k

k K k k X

k K k k k k M K X F

  

   

 


  

    

 


    

        

 

 


 (36) 

Again, the estimated values of s1  and s1  are respectively obtained from s1v  and s2v  (i.e., 

s1 s1ˆ v   and s1 s2
ˆ v  ) using the tracking differentiator (28) with s0 s1v  . Therefore, the estimation 

error s1 s1 s1
ˆ       is assumed to be bounded and satisfies s1 s1  , where s1  is an appropriate 

positive definite constant. Then, the virtual controller s2  of the slave manipulator is designed as:  

 
 

s 2

2 2
s2 s s2 s2 s1 s2 s2 s s1

s

1 ˆ ˆM K k k F X
K            

 (37) 

where ŝF  is the value of Fs estimated by the nonlinear ESO. Therefore, substituting (37) in (36) yields.  

 s1 s 2 s 2 s 2 s 2

1
s2 s1 s1 s2 s2 s s s3 s s1V k K k K M K k k F k               

 (38) 

where sF is the estimation error of Fs estimated by the nonlinear ESO presented in the previous section. 

Step 3: Select the following positive definite candidate BLF: 

 

2
s3

s3 s2 2 2
s3 s3

1
log

2

k
V V

k 
 

      (39) 

According to Eqs (4) and (38), the derivative of Vs3 with respect to time can be obtained as follows: 

 
 

s1 s 2 s 2 s 2 s 2

s3

s3 s3
s3 s2 2 2

s3 s3

1
s1 s1 s2 s2 s s s3 s s1

s4 s3 s2

V V
k

k K k K M K k k F k

k

    



 


   

  



 


     

  

 

 


 (40) 

The values of s2 s1ˆ v   and s2 s2
ˆ v   are obtained using the tracking differentiator (28) with 

s0 s2v   . Therefore, the estimation error s2 s2 s2
ˆ        is assumed to be bounded and satisfies 

s2 s2  , where s2  is an appropriate positive definite constant. Then, the virtual controller s3  of 
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the slave manipulator is designed as follows: 

  
s 2

1 2 2
s3 s3 s3 s2 s s s3 s3

ˆK M K k k       
 (41) 

Therefore, (40) can be expressed as follows: 

 

s1 s 2 s3 s3

s 2 s 2 s3

s3 s1 s1 s2 s2 s3 s3 s4

s s1 s2

V k K k K k K k

k F k k

   

  

   

 

    

  



   
 (42) 

Step 4: Select the following positive definite candidate BLF: 

 

2
s4

s s3 2 2
s4 s4

1
log

2

k
V V

k 
 

      (43) 

According to Eqs (4) and (42), the derivative of sV   with respect to time can be obtained as 

follows: 

 

 
 

s1 s 2 s3 s3 s 4

s 2 s 2 s3 s 4

s4 s4
s s3 2 2

s4 s4

2 2
s1 s1 s2 s2 s3 s3 s4 s4

1
s s1 s2 s s f s3

V V
k

k K k K k K k k k

k F k k k J F

    

   

 


   

   

 


     

     

 

    
 (44) 

The values of s3 s1ˆ v   and s3 s2
ˆ v   are obtained using the tracking differentiator (28) with 

s0 s3v   . Therefore, the estimation error s3 s3 s3
ˆ        is assumed to be bounded and satisfies 

s3 s3  , where s3  is an appropriate positive definite constant. Then, the input controller s  of 

the slave manipulator is designed as:  

 
  s 3

2 2
s s s4 s4 s3 s4 s4 f

ˆ ˆJ K k k F        
 (45) 

where f̂F  is the value of Ff estimated by the nonlinear ESO. Therefore, (44) can be expressed as: 

 

s1 s 2 3 s 4

s 2 s 2 s3 s 4 s 4

s s1 s1 s2 s2 s3 s3 s4 s4

s s1 s2 s3 f

v
V k K k K k K k K

k F k k k k F

   

    

   

  

    

    



     
 (46) 

where fF is the estimation error of Ff estimated by the nonlinear ESO presented in the previous section. 

The control block diagram of the teleoperation system with controllers (29) and (45) is presented in 
Figure 1. Figure 1 delineates the advanced teleoperation control framework between a Master and 
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Slave robot. Here, both robots employ ESOs to estimate uncertainties and a BLF-based controller for 
precision. The network delay in command transmission is explicitly represented, showcasing the 
integrated approach in handling flexible joint uncertainties. Both robots operate within full state 
constraints, highlighting the strategy’s emphasis on synchronized and reliable robotic interactions. 

Master
robot

slave
robot

Network
dwlay

ESO

ESO ESO

KsTs

Tm

BLF-based 
controller

BLF-based 
controller

 

 
qm

τm

τh τe

τs

em qsθs

ŝF

mF̂

es m mq t T

 s st T 

+

+
-

-

f
ˆF

 

Figure 1. Control block diagram of the teleoperation system with input controllers τm and τs. 

Theorem 2: Assume that the teleoperation system satisfies Assumptions 2–5. Then, under the 

virtual controller ij , where j = 1, 2 when i = m, and j = 1, 2, 3, 4 when i = s, and the input controllers 

m  and s , all variables of the closed-loop system are bounded and do not exceed their constraints 

if two positive definite constants a  and b  exist that satisfy the following conditions.  

 

 
   

m1 s 2 s3 s 4 m 2 s 2 s 4

m1 m2 s1 s2 s3 s4

m1 s1 s2 s3 m s f

min , , , , ,

min , , ,

a K K K K K K

b k k k k k F k F k F         



        
 (47) 

Proof: Choose the following Lyapunov function: 

 m sV V V   (48) 

When ij ijk   , positive definite constants must exist that satisfy the condition 

2 2

2 2 2 2

ij ij

ij ij ij ij

k

k k


 


 

. Therefore, according to Eqs (30) and (46), the derivative of V  with respect to 

time can be obtained as follows: 

 V aV b    (49) 

Multiplying both sides of inequality (49) by ate  yields the following form: 
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   at atd V e dt be
 (50) 

Furthermore, integrating (50) over the interval  0,t  yields the following: 

 
     0 0atb b b

V t V e V
a a a

      
   (51) 

Given that mF̂  , ŝF  , f̂F   and ˆ
ij  are bounded, 1 1 0 1i i i iX k A k    can be obtained from 

1 1 di i iX X     and d 0i iX A  . The boundedness of 1i   and diX   ensures that 1i   is bounded and 

1 1i i   . Similarly, 2 2 1 2i i i iX k k    can be obtained from 2 2 1i i iX    , and s3 s3X k  , and 

s4 s4X k  can be obtained in the same way. Furthermore, the input controller signals m  and s are 

bounded according to their definitions in Eqs (29) and (45), respectively, where m  is a function of

m2 , mF̂ , and m1̂ , and s  is a function of s4 , f̂F , and s3̂ . Therefore, all signals of the system, 

namely  m , s , and ijX , are bounded and meet their constraints.  

4. Experimental platform and analysis of experimental results 

The experimental teleoperation platform employed for testing the effectiveness of the proposed 
control strategy is presented in Figure 2, and consisted of two Phantom Premium 1.5HF (SensAble 
Technologies, Inc.) three-degrees-of-freedom robotic arms. The Phantom Premium 1.5HF arm has 
three rotating joints, each consisting of three parts of a gear motor encoder, which can feel or follow 
the movement of the controlled object on three perpendicular axes in space. The controllers and all 
software were implemented in MATLAB, and the flexible joint from the slave manipulator was 
realized by a virtual module in MATLAB. 

 

Figure 2. Experimental platform employed for testing the teleoperation system. 
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Angle sensors were installed at each joint on the master and slave end of the three-degree-of-
freedom manipulator to measure the required angle. For the process of experimental verification, the 
delays were set to Tm = Ts = 200 ms. The appropriate parameters were obtained through experiments 
and set as: 

1.05ε   , 

m1 s1

210 0 0

0 250 0

0 0 200

β β

 
    
    , 

m2 s2

2.5 0 0

0 1.5 0

0 0 2.5

β β

 
    
    , 

m3 s3

0.0015 0 0

0 0.0025 0

0 0 0.0025

β β

 
    
    . 

The parameters of the master controller are selected as: 

m1

5 0 0

0 7.8 0

0 0 6.8

K

 
   
    , 
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K

 
   
    , 

m1

1.4

1.4

1.3

k

 
   
   , 
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1.5

k

 
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   . The stiffness coefficient for the flexible joint of the slave manipulator was set 

as 

s

12 0 0

0 12 0

0 0 12

K

 
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    , while the slave controller parameters were set as 
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Figure 3. Position estimation error of the master manipulator. 
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Figure 4. Position estimation error of the slave manipulator at the motor. 

 

Figure 5. Position estimation error of the slave manipulator at the chain rod. 

In the experimental evaluation, Figures 3–5 delve into the position estimation errors of both the 
master and slave manipulators over three degrees of freedom. Specifically, Figure 3 showcases the 
master manipulator’s position errors, which consistently remain below ± 0.02 rad. Figures 4 and 5, 
representing the slave manipulator’s errors at its motors and chain rod respectively, confirm errors 
below ± 0.05 rad. These figures underline the nonlinear ESO’s superior capability in accurately 
estimating the positions of both manipulators. 

Figure 6, illustrating the control inputs, highlights a synchronized control approach between the 
master and slave manipulators. Their control signals exhibit sine wave-like consistencies, reinforcing 
the effectiveness of the implemented synchronization. 
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Figure 6. Control input from the master and the slave manipulator. (In the figure, the solid 
line represents the master manipulator and the dotted line represents the slave manipulator.) 

The master and slave manipulator positions over time are depicted in Figure 7. Notably, their 
positions mirror each other closely, with a mere average deviation of ± 0.02 rad as substantiated in 
Figure 8. Upon halting the manipulator motion after 50 seconds, the tracking error rapidly zeroes out, 
underscoring the controller’s adeptness in position synchronization. 

 

Figure 7. Positions of the master and slave manipulators over time. (In the figure, the solid 
line represents the master manipulator and the dotted line represents the slave manipulator.) 
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Figure 8. Tracking errors between the positions of the master and slave manipulators. 

Figures 9 and 10 further emphasize the system’s stability. Despite initially larger tracking errors, 
they swiftly reduce to a maximum of ± 0.05 rad and approach zero when the motion is halted after 50 
seconds, indicating minimal influence from external forces. 

To summarize, these experimental findings bolster the merits of the proposed control strategy. It 
not only achieves precise position estimations and effective synchronization, but also remains resilient 
against potential disturbances. This culmination holds significant promise for enhancing teleoperation 
systems in intricate operational landscapes. 

 

Figure 9. Motor and chain rod positions of the slave manipulator over time. (The solid and 
dotted lines in the figure represent motor and chain rod positions of the slave manipulator, 
respectively.) 
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Figure 10. Tracking errors between the positions of the motor and chain rod of the slave 
manipulator. 

5. Conclusions 

This research marks a significant stride in the realm of teleoperation systems specifically designed 
for robotic manipulators with flexible joints. Our primary focus revolves around investigating the 
feasibility of a pose control strategy for teleoperated systems with flexible joints. This strategy is 
anchored on the integration of a nonlinear Extended State Observer (ESO) with a Barrier Lyapunov 
Function (BLF). 

The efficacy of this novel approach is convincingly demonstrated by our experimental findings. 
Specifically, in a master-slave operating system, the slave exhibits exceptional synchronization 
capabilities with high precision. The position estimation errors in the master-slave operation 
consistently remain within ± 0.05 radians, particularly at the chain rod where it is even less than ± 0.01 
radians. Even in complex scenarios involving flexible joints, this level of precision showcases the 
robustness and potential of our integration strategy. 

It is essential to highlight that the crux of this study was to explore the feasibility of the 
aforementioned control strategy. Therefore, instead of comparing it with existing methodologies, we 
have dedicated our efforts to comprehensively understand and elucidate its intrinsic merits. 

As we pave the path forward, we envision delving deeper into enhancing the nuances of our 
approach. While we have not directly compared our method with industry benchmarks in this study, 
future endeavors might involve such comparative analyses. Nonetheless, our primary goal remains: to 
further elucidate, validate, and promote the unique potential and adaptability of our teleoperation 
strategy across diverse operational scenarios. 
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