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Abstract: Retinal tears (RTs) are usually detected by B-scan ultrasound images, particularly for 

individuals with complex eye conditions. However, traditional manual techniques for reading 

ultrasound images have the potential to overlook or inaccurately diagnose conditions. Thus, the 

development of rapid and accurate approaches for the diagnosis of an RT is highly important and 

urgent. The present study introduces a novel hybrid deep-learning model called DCT-Net to enable 

the automatic and precise diagnosis of RTs. The implemented model utilizes a vision transformer as 

the backbone and feature extractor. Additionally, in order to accommodate the edge characteristics of 

the lesion areas, a novel module called the residual deformable convolution has been incorporated. 

Furthermore, normalization is employed to mitigate the issue of overfitting and, a Softmax layer has 

been included to achieve the final classification following the acquisition of the global and local 

representations. The study was conducted by using both our proprietary dataset and a publicly 

available dataset. In addition, interpretability of the trained model was assessed by generating 

attention maps using the attention rollout approach. On the private dataset, the model demonstrated a 

high level of performance, with an accuracy of 97.78%, precision of 97.34%, recall rate of 97.13%, 

and an F1 score of 0.9682. On the other hand, the model developed by using the public funds image 

dataset demonstrated an accuracy of 83.82%, a sensitivity of 82.69% and a specificity of 82.40%. 
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The findings, therefore present a novel framework for the diagnosis of RTs that is characterized by a 

high degree of efficiency, accuracy and interpretability. Accordingly, the technology exhibits 

considerable promise and has the potential to serve as a reliable tool for ophthalmologists. 

Keywords: retinal tears; ultrasound image; automatic diagnosis; vision transformer; attention rollout 

 

1. Introduction  

Retinal tears arise from vitreous traction on the retina or degeneration and atrophy of the retina, 

and it is frequently observed in individuals who have acute posterior vitreous detachment [1]. The 

identification of retinal tears, which serve as a risk factor for the occurrence of retinal detachment, 

poses a significant challenge. In the absence of timely detection and intervention, 30–50% of the 

cases will progress to retinal detachment [2], a condition that leads to severe blinding. In most cases, 

retinal tears can be diagnosed by using indirect fundoscopy in conjunction with scleral pressure 

examination [3]. However, in situations where the patient's refracting media is murky, B-scan 

ultrasound emerges as a viable option among the limited alternative diagnostic tools available. 

Moreover, ultrasound is also more accessible and less expensive than other types like OCT and 

ultra-wide-field imaging. It is widely prevalent and available in many local hospitals and primary 

community clinics. However, conventional manual methods require the involvement of highly 

skilled physicians to prevent their potential oversight or misdiagnosis [4]. In this context, only a few 

of the large hospitals in China have professional sonographers, as is the case in other developing 

countries and regions. As a result, the development of a model capable of automatically diagnosing 

retinal tears is critical and urgent [5]. 

Deep learning represents the most effective approach to automating the development of 

diagnostic systems. Previous studies have proposed a multitude of models, with predominant focus 

on the utilization of convolutional neural networks (CNNs) [6,7]. For example, Li et al. [8] screened 

for notable peripheral retinal lesions (NPRLs) by using numerous models, such as 

InceptionResNetV2, InceptionV3, ResNet50 and VGG16. Furthermore, with an accuracy of 79.8%, 

a system based on seResNet50 was developed by Zhang et al. [9] to screen numerous types of 

NPRLs. However, the inability of the CNN to capture long-distance image features hinders its 

continued development. In this context, Dosovitskiy et al. [10] proposed the vision transformer (ViT) 

as a solution to this problem, using the excellent transformer [11] from natural language processing 

as a point of reference. Subsequently, ViT was observed to outperform CNNs in a multitude of tests 

after self-attention methods were substituted for convolutional processes. Accordingly, several 

researchers have made efforts to implement the model in the treatment of ophthalmic disorders, 

particularly, retinal issues. Jiang et al. [12] employed a ViT to automatically identify normal eyes, 

age-related macular degeneration, and diabetic macular edema, achieving a classification accuracy of 

99.69%. Furthermore, a deep learning model based on a ViT was introduced by Wu et al. [13] to 

assess diabetic retinopathy, and it realized an accuracy of 91.4% and a kappa score of 0.935. 

However, studies that report on the automatic diagnosis of retinal tears are few. 

The present study involved the collection and construction of a retinal tear dataset comprising 

1831 images, with the aim of developing more effective diagnostic algorithms. Despite the widely 

acknowledged fact that ViT is data-driven and performs exceptionally well with ample training data, 
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our study encountered a hurdle due to the limited availability of data. Although the use of transfer 

learning has been demonstrated to be able to partially address this challenge, it should be noted that 

this approach may not be sufficient and could potentially lead to an increase in computational 

resources. Consequently, a hybrid structure was devised to introduce inductive bias and enhance the 

model's adaptability to our limited dataset. Furthermore, through experimental analysis, it has been 

observed that the utilization of deformable convolution [14] affords superior adaptability to the 

contour of lesions and yields improved performance. Thus, based on the aforementioned rationales, 

we proposed a novel framework called the deformable convolution and transformer network 

(DCT-Net) in the current study, which integrates the merits of deformable convolution and the vision 

transformer. The model was subjected to rigorous testing on two datasets to assess its overall 

performance and efficacy. Additionally, attention maps were generated in order to validate their 

interpretability. The current body of research on retinal tear diagnostic systems is limited, and our 

study has partially addressed this research gap. 

To summarize, the main contributions of the present study can be succinctly stated as follows: 

• A dataset comprising 1831 B-scan ultrasound images of retinal tears was assembled. 

• A novel model that is more appropriate for small datasets of medical images is proposed. To 

our knowledge, this study represents the first investigation into the utilization of ViT-based 

architecture for the purpose of identifying retinal tears through the analysis of ultrasound images. 

• The efficacy of the model in terms of lesion detection, as well as its commendable 

performance, are demonstrated through the analysis of two datasets. 

2. Materials and methods 

The contents of the current study can be categorized into three primary modules: data collection 

and preprocessing; model design and validation and interpretability analysis and external validation. 

The flowchart is illustrated in Figure 1. 

 

Figure 1. The flowchart of this research. 
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2.1. Datasets 

2.1.1. Data collection 

The investigation was carried out in adherence to the Protocol for the Declaration of Helsinki, 

as amended in 2013. 

A comprehensive set of 1902 ultrasound B-scan images was collected for this retrospective 

study. These samples were obtained from the eye hospital of Wenzhou Medical University for the 

period from October 2017 to April 2022. All positive samples were verified by professional 

ophthalmologists. However, the images were collected from a variety of devices with varying 

resolutions and file types. Thus, to accommodate the model’s input, each image underwent a resizing 

process to 224 × 224 pixels, and any blurry pixels were removed. Finally, 1831 samples (910 

positive and 927 negative) were utilized for subsequent investigations. 

2.1.2. Data augmentation 

 

Figure 2. Three image augmentation methods. A. Original image; B. Brightness shift; C. 

Horizontal flip; D. Vertical flip. 

Data augmentation is a data processing technique that is employed to enhance the quantity 

and diversity of training samples by transforming existing data. There are two distinct categories of 

data arguments, namely, augment online and augment offline. Typically, the former approach is 

utilized for larger datasets, wherein operations are executed on the data batch. Conversely, the 

latter approach is employed for smaller datasets, wherein operations are directly performed on the 

original data [15]. Accordingly, the offline method was selected as a result of the limited dataset 

available for our study. Various data augmentation techniques, including rotation, cropping, 
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brightness shift, contrast modification, horizontal flipping, vertical flipping, etc., can be employed 

for image augmentation [16,17]. However, not all enhancement techniques are universally 

applicable, because the labels of the image categories could be modified after enhancement. After 

conducting analysis, we opted to employ horizontal flip, vertical flip and brightness shift 

techniques in order to enhance the original dataset. Figure 2 illustrates the aforementioned 

augmentation operations. 

 

2.2. DCT-Net 

The ViT model is based on direct global relationship modeling and has demonstrated significant 

accomplishments in the extraction of global features through the use of a multi-head self-attention 

mechanism. However, it has limitations in its ability to effectively accommodate minuscule lesions, 

and it proves inadequate when confronted with a limited size of training data. In this context, 

convolution operations, specifically deformable convolutions, exhibit better adaptability to local 

detail characteristics. This study presents a novel approach that integrates the ViT and deformable 

convolution to realize the accurate detection of retinal tears with enhanced precision. Figure 3 

presents a visual representation of the proposed model. Furthermore, the utilization of transfer 

learning technology was employed in this particular aspect to enhance network performance and 

expedite the training process. 

 

Figure 3. The proposed DCT-Net for retinal tear detection. After entering the 

classification model, the sample images were successively passed through the feature 

extractor and the residual deformable convolution block. Finally, the results were 

obtained as an output through a Softmax layer. 

  



1115 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1110–1124. 

2.2.1. Transformer encoder 

The input images (H ×W ×  ) were split into n patches. After these patches were flattened, a 

linear projection layer was used to convert them to D-dimensional vectors. A class token was also 

appended, as illustrated in the BERT [18]. Following position embedding, the D-dimensional vectors 

were subsequently transmitted to the Transformer Encoder. Maintaining the dimensions of the 

vectors was crucial throughout the entire process. 

In the Transformer Encoder, the input vectors undergo an initial step of layer normalization, 

which expedites the convergence of the network. The procedure is denoted by Eq (1) in terms of the 

mean and standard deviation of the input, respectively.  

LayerNorm(xi) =
xi−μ

√σ2+ϵ
                               (1) 

The resulting output is used to compute the mutual attention by utilizing multi-head attention 

layers (as demonstrated in Eqs (2)–(4)). Subsequently, the Layer Norm and Multi-Layer Perceptron 

layer were employed to obtain the final outputs. The inclusion of residual connections in this process 

effectively mitigated the issue of gradient vanishing. To optimize the utilization of the transfer 

learning’s weight, we employed an equal number of encoders as the conventional ViT model. 

Qi = QWi
Q

, Ki = KWi
K, Vi = VWi

V                      (2) 

headi = Attention(Qi, Ki, Vi)                        (3) 

Multihead(Q, K, V) = Concact(head1, head2, . . . , head12)          (4) 

y(P0) = ∑ w(Pn) ∙ x(P0 + Pn + ∆Pn)Pn∈R                    (5) 

2.2.2 Deformable convolution block 

The diagnosis of retinal tears using ultrasound images is highly dependent on the position and 

shape of the small lesion areas. However, the standard ViT is insufficient for acquiring such localized 

data. As a result of conventional convolution employing regular kernels, the receptive field remains 

constant and is ill-equipped to accommodate variations in edge shape. By appending a learnable 

offset to the standard convolution kernel, deformable convolution can modify the sampling area's 

shape, bringing it closer to the object’s edge. The sampling procedure for deformable convolution 

and ordinary convolution is presented in Figure 4. Equation (5) illustrates the calculation process. 
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Figure 4. Sampling process. (a) Common convolution and (b) deformable convolution. 

The top image shows the result of employing the activation unit on objects. The middle 

image shows the result of the sampling process performed to obtain the top-level activation 

unit. The bottom image was used to obtain the sampling area for the middle image. 

Subsequently, a residual deformable convolution block was devised in order to enhance the 

extraction of intricate features. Similar to the Transformer Encoder, the designed module initially 

employs a Batch Norm layer to convert inputs into data with a mean of 1 and a variance of 0. Two 

deformable convolutional layers were used to capture local concrete detail features. To enhance 

nonlinearity while minimizing computational workload, the convolutional kernel of the first layer 

was designed to be larger than that of the second layer. Subsequently, an adaptive average pooling 

layer was incorporated in order to enhance the efficacy of feature extraction and computational 

processes. Furthermore, the concept of residual connection was incorporated into the model design, 

drawing inspiration from Resnet [19]. This addition was made in order to mitigate the issue of 

gradient vanishing [20].  

2.3. Interpretability analysis 

The utilization of pooling layers in a CNN can lead to the merging of position information, 

potentially resulting in the loss of certain details during the generation of rough heat maps [21,22]. 

Our model effectively captures global features and is founded upon a self-attention mechanism. 

Moreover, it has the ability to deliver elaborate visualizations to an adequate degree [23]. However, 

attention-based networks are incompatible with the traditional Grad-CAM [24] method. This is 

attributed to the fact that the CNN permits the aggregation of feature map weights from multiple 

channels, whereas the ViT restricts the addition of distinct patches. Therefore, we adopted the 
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attention rollout method proposed by Samira Abnar [25]. Attention rollout in essence calculates the 

product of the attention matrix from the low level to the high level of the network. The concrete 

realization is achieved through the recursive calculation of each layer’s tokens, computing 

information from the input layer to the higher level. Concurrently, the residual connection and the 

weight must be taken into account. It is represented by Eq (6). 

AttentionRolloutL = (AL + I)AttentionRolloutL−1             (6) 

where AL is the attention matrix of the L layer and I is the identity matrix.  

3. Results 

3.1. Training strategy 

The adoption of a transfer learning strategy was implemented with the aim of expediting the 

training process and enhancing the performance of the model. The pre-training process was 

conducted by using the ImageNet dataset, which comprises a vast collection of more than 1000 

categories of nature images. The cross-entropy loss [26,27] was employed as the loss function in our 

study. This choice was made to address the issue of the sigmoid function's derivative form, which is 

susceptible to saturation and results in slow gradient updates. Furthermore, the Adam optimizer [28] 

was also utilized. The approach offers the benefits of rapid convergence and a relatively facile 

process for configuring hyperparameters. 

Furthermore, an early stopping strategy was developed with the intention of mitigating the issue 

of overfitting. Following each iteration of training, a comprehensive evaluation was conducted on the 

designated test dataset. The training process was deemed to be complete once the accuracy on the 

test set ceased to exhibit substantial improvements and stabilized after approximately 10 epochs.  

3.2. Performance on private datasets 

In order to enhance the precision of an evaluation of the performance of the designed model, a 

set of widely recognized state-of-the-art (SOTA) models, viz. Alexnet [29], Inception v3 [30], 

Resnet101 [19], VGG16 [31] and ViT, were chosen as the baseline models. The preprocessing steps 

and training strategies remained consistent across all baselines, with the exception of Inception v3, 

which required an input size of 299 × 299 pixels. 

Table 1 presents a comprehensive overview of the performance metrics for both the baseline 

models and the model that has been specifically designed for this study. The confusion matrix for 

multiple models on the test set is depicted in Figure 5. The number in each small square represents 

the corresponding number of images with the same predicted true label and it is the percentage of the 

total number of images under the true label. It is worth mentioning that within the category of 

CNN-based models, Inception v3 exhibited the highest level of performance, achieving an accuracy 

rate of 96.82%, an F1 score of 0.9605 and an AUC of 0.9828. The ViT model with the pure 

self-attention mechanism did not perform well; particularly, the performance was even worse than 

that of the CNN. Nevertheless, our designed model exhibited superior performance across all metrics, 

surpassing all other models, and only a mere 10 samples were classified incorrectly. To our 
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knowledge, the proposed model exhibited superior performance even as compared to human experts 

(with a sensitivity of 96%) [32]. 

Table 1. Performance comparison of DCT-Net with baseline models on the classification 

problem. 

Model Accuracy Precision Recall F1 Score AUC 

Alexnet 95.11% 94.64% 95.68% 0.9456 0.9286 

Inception V3 96.82% 96.55% 96.37% 0.9605 0.9828 

Resnet101 96.74% 96.94% 96.42% 0.9599 0.9772 

VGG16 96.52% 96.42% 96.66% 0.9595 0.9598 

Vit 95.76% 95.66% 95.87% 0.9515 0.9444 

DCT-Net 97.78% 97.34% 97.13% 0.9682 1.0000 

 

Figure 5. The confusion matrix for different models on retinal tear datasets. A. Inception 

V3; B. Vision transformer; C. DCT-Net. 

3.3. External validation 

As an external validation step, we utilized the ORIGA datasets in this section to ensure that the 

proposed model possesses exceptional generalizability and can adapt to various database types. The 

dataset comprised a total of 650 images depicting instances of glaucoma. In order to conduct a 

comparative analysis against other models documented in the literature [33–35], we used the original 

dataset without employing any augmentation techniques. Table 2 shows the results, where NMD 

denotes that the pre-training was performed by using a non-medical dataset, SOD denotes that the 

pre-training was performed by using a similar ophthalmic dataset and CT-Net denotes that common 
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convolution replaced the deformable convolution. The ViT did not perform well among them, most 

likely as a result of the limited dataset. On the other hand, the DCT-Net achieved the highest 

accuracy at 83.8%, demonstrating the best performance. Additionally, the significance of deformable 

convolution became apparent when it was compared to CT-Net. 

Table 2. Performance comparison of the DCT-Net with others on the ORIGA dataset. 

Model Accuracy Sensitivity Specificity 

CNN 70.4% 70.7% 74.8% 

VGG 70.1% 69.8% 71.0% 

GoogLeNet 71.8% 69.8% 73.5% 

ResNet 71.5% 71.3% 71.7% 

Chen [34] 70.8% 69.2% 71.0% 

Shibata [35] 73.3% 73.2% 76.7% 

NMD+CNN 74.5% 68.7% 80.7% 

SOD+CNN 73.9% 80.9% 72.2% 

NMD+Attention 74.9% 71.2% 77.7% 

Xu [33] 76.6% 75.3% 77.2% 

ViT 71.4% 74.0% 67.8% 

CT-Net 80.5% 81.7% 80.1% 

DCT-Net 83.8% 82.7% 82.4% 

3.4. Interpretation 

 

(A)                       (B)                         (C) 

Figure 6. The attention maps for three samples. (A) and (B) are the lesion images and (C) 

is the normal image. 
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Models that are easily interpretable offer valuable insights into their inner workings, thereby 

benefiting both patients and clinicians. Figure 6 displays three attention maps that were generated by 

using our private dataset. We have used the red circle to mark the lesion parts in the original image. 

In the attention maps, higher intensity of color is indicative of a greater level of attention. The 

aforementioned images demonstrate a strong correspondence between the regions of heightened 

attention and the affected areas of the lesion. This indicated that the model possesses a well-defined 

operational framework and possesses exceptional interpretive qualities. 

3.5. Hardware 

The hardware configuration utilized in this study is as follows. The central processing unit (CPU) 

utilized in the system comprised a 7-core Intel
(R)

 Xeon
(R)

 CPU E5-2680 v4 operating at a frequency 

of 2.40 GHz. Additionally, the system incorporated a single graphics processing unit in the form of 

an RTX 3070ti with 8 GB of dedicated memory. The training process employed Python version 3.8, 

PyTorch framework version 1.10.0 for machine learning and CUDA version 11.3. 

4. Discussion 

CNNs have demonstrated remarkable performance on previous image processing tasks and are 

widely acknowledged as the SOTA approach. For instance, Yu et al. [36,37] employed CNNs for the 

purpose of detecting concrete cracks, achieving exceptional performance. Ragupathy and 

Karunakaran [38] proposed a CNN-based model for the detection of meningioma brain tumors. The 

model demonstrated promising performance metrics. However, due to the constraints imposed by the 

small convolutional kernel, CNNs may not be able to effectively extract global features. As shown in 

Table 1, it appears that the performance of the CNN-based model has encountered a bottleneck, 

making further improvements challenging. When comparing the CNN with the ViT, it can be 

observed that the ViT utilizes the attention mechanism to calculate the relationship between global 

pixels, thereby enabling a comprehensive global perspective. Numerous studies have substantiated 

the impressive efficacy of the ViT model [39]. However, our investigation revealed that the pure ViT 

did not perform well on small datasets of retinal tears (with the accuracy of 95.76%).   

To enhance the efficacy of lesion detection on limited datasets, a novel architecture was initially 

devised, integrating the merits of convolution and attention mechanisms. As shown in Table 2, the 

utilization of global feature extraction techniques contributes to the generation of a relatively 

comprehensive latent space feature representation. Concurrently, as a result of incorporating the 

inductive bias of convolution, the proposed model demonstrates substantial enhancements on the 

limited public dataset, achieving an accuracy of 80.5%. Moreover, replacing ordinary convolutions 

with deformable convolutions has been found to yield more favorable outcomes, as evidenced by an 

accuracy rate of 83.8%. This phenomenon could potentially be attributed to the enhanced precision 

resulting from extracting both the location and shape of the lesion areas. From the perspective of 

external validation and interpretable analysis, the model possesses robustness and sufficient 

accuracy. 

Notwithstanding the enhanced performance achieved in this study, certain constraints remain. 

First, ophthalmic ultrasound is highly dependent on the equipment, technique and examiner 

experience. However, the data collected for this study came from a variety of devices. This may 
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compromise the validity of the results. Second, all of the retinal tear images utilized in this study 

were procured from a single hospital. This may lead to an absence of diversity in the cases. Moreover, 

only retinal tears were included in our study. Ultrasound imaging can, in fact, be utilized to diagnose 

additional retinal disorders. Correspondingly, the value of the model can be enhanced through the 

incorporation of additional disease types. Finally, the incorporation of the residual deformable 

convolution module and the utilization of a ViT as the feature extractor resulted in an increased 

number of parameters for our model (Table 3). This results in increased demands on the environment 

in terms of model deployment. 

Utilizing ultrasound to identify retinal tears is an extremely practical method. It is superior to 

alternative approaches when it comes to handling intricate clinical scenarios, such as ocular media 

opacity. However, the extraction of useful features via conventional machine learning methods is 

hampered by low resolution. Fortunately, the progress that has been made in deep learning enables 

the analysis of these images in an efficient manner. Our current research is, without a doubt, 

preliminary in nature. Moving forward, we aim to enhance the model’s architecture and implement 

global vision technology that is more streamlined or possesses a reduced number of parameters. This 

will allow the effortless deployment of lightweight models across diverse environments. Furthermore, 

our objective is to enhance the quantity and range of samples gathered in order to prevent issues with 

model generalization that may arise from discrepancies in the training data. Lastly, we will 

collaborate with clinicians and conduct additional multicenter studies to precisely quantify the extent 

to which this model can benefit physicians. 

Table 3. Parameters of the different models used in the study. 

Model Parameters（1 × 10
6） 

Alexnet 57.01 

Inception v3 25.12 

Resnet101 42.5 

VGG16 134.27 

Vision Transformer 85.80 

DCT-Net 138.36 

5. Conclusions 

A novel model was developed for the diagnosis of ophthalmological conditions in the current 

study. The model demonstrated superior performance on both our proprietary dataset and the 

glaucoma dataset that was publicly available. The framework is a comprehensive computing 

framework that exhibits superior performance and does not necessitate the generation of manually 

designed features. Overall, this technology provides significant practical value in the field of clinical 

application, particularly in the realm of automated diagnosis. 
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