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Abstract: The world is aiming to eliminate malaria by 2030. The introduction of the pilot project
on malaria vaccination for children in Kenya, Ghana, and Malawi presents a significant thrust to the
elimination efforts. In this work, a susceptible, infectious and recovered (SIR) human-vector interaction
mathematical model for malaria was formulated. The model was extended to include a compartment
of vaccinated humans and an influx of infected immigrants. Qualitative and quantitative analysis was
performed on the model. When there was no influx of infected immigrants, the model had a disease-
free equilibrium point that was globally asymptotically stable when a threshold known as the basic
reproductive number denoted by R0 was less than one. When there was an influx of infected immigrants,
the model had endemic equilibrium points only. Parameter sensitivity analysis on R0 was performed and
results showed that strategies must be implemented to reduce contact between mosquitoes and humans.
Results from different vaccine coverage indicated that in the absence of an influx of infected immigrants,
it is possible to achieve a malaria-free society when more children get vaccinated and the influx of
infected humans is avoided. The analysis of the optimal control model showed that the combined use of
vaccination, personal protective equipment, and treatment is the best way to curb malaria incidence,
provided the influx of infected humans is completely stopped.
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1. Introduction

Malaria is a deadly mosquito-borne disease caused by Plasmodium parasites transmitted by Anopheles
female mosquitoes between humans. Once an infected mosquito bites a human, the parasites multiply
in the host’s liver, destroying red blood cells during infection [1]. Parasites that infect humans are
Plasmodium falciparum (P. falciparum), Plasmodium vivax (P. vivax), Plasmodium ovale (P. ovale),
Plasmodium knowlesi (P. knowlesi) and Plasmodium malariae (P. malariae) [2]. P. falciparum and P.
vivax are unicellular protozoan parasites of humans, and are the most important Plasmodium species
causing malaria in humans [2]. Malaria is most common in tropical regions with high temperatures
and humidity such as Africa, Central South America, the Dominican Republic, areas in the Caribbean,
Eastern Europe, South Asia, and islands in the central and South Pacific Ocean [3]. However, other
regions such as Southeast Asia, the Eastern Mediterranean, the Western Pacific and America also
reported significant numbers of cases and deaths [4]. Information gathered by the World Health
Organization (WHO) [4] indicated that there was an estimated 241 million cases of malaria in 2020
while deaths stood at 627,000, with most cases and deaths being recorded in Sub-Saharan Africa. The
Sub-Saharan African region accounted for 95% of cases and 96% of malaria deaths with children
under the age of five years, being the most affected, accounting for about 80% of malaria deaths [4],
which has motivated us to carryout this study. People who live in poverty and do not have access
to healthcare are more likely to have complications from the disease [3]. It is less common for
pregnant women with malaria to transfer the parasite to their children before or during birth [3]. After
a person has been infected, malaria symptoms usually appear within 10 to 30 days [3]. However,
some people do not feel sick for up to a year after infection. Some studies suggest that parasites
can live in the host body for several years without causing any symptoms [3]. Malaria often has
mild flu-like symptoms such as headache, cough, and nausea, which may be difficult to recognize as
malaria [4]. If not attended to in 24 hours, susceptible specimens like P. falciparum can progress to
severe illness with symptoms such as high fever, fatigue, chest pains, breathing problems, diarrhea
and vomiting [5], and when not treated, P. falciparum can cause anemia and jaundice [3], which can
lead to death [4]. Children with severe malaria frequently develop severe anemia, respiratory distress
to metabolic acidosis or cerebral malaria [4]. People residing in malaria-endemic areas may develop
partial immunity, allowing asymptomatic infections to develop [4]. Some population groups such as
infants, children under the age of five, patients living with HIV/AIDS, pregnant women and nonimmune
migrants are considered to have a higher risk of contracting malaria and having a severe disease [6]. The
first ordinary differential equation (ODE) model of malaria transmission was proposed and analyzed by
Ross [7] and refinements of this model were produced by MacDonald [8]. The result became known
as the Ross-MacDonald model, which has become a basis for modeling of mosquito-borne diseases.
Several models of malaria have been studied and improvements on the formulations and analysis of
the models keep on evolving. Models of malaria disease with vaccination have been studied by several
authors; for instance, Mohammed [9], Tchoumi [10] and models with infected immigrants presented
by, for instance; Witbooi [11] and Traoré [12]. De la Sen et al. (2015) [14] studied a susceptible,
exposed, infectious and recovered (SEIR) epidemic model with finitely distributed delays and eventual
vaccination with a pseudo-mass action type, where the infective transmission rate does not depend
directly on the total population. The proposed model was analyzed qualitatively, and they further
proposed general time varying feedback vaccination rules. In this paper, we present a new deterministic
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model with an influx of malaria parasites via infected immigrants as well as vaccination. We investigate
the effectiveness of the malaria vaccine called RTS,S/AS01 or Mosquirix, in the presence of infected
immigrants. The name RTS is due to the fact that the vaccine was manufactured using genes from
the repeat (’R’) and T-cell epitope (’T’) of the pre-erythrocytic circumsporozoite protein (CSP) of the
P. falciparum, together with a surface antigen (’S’) of the hepatitis B virus, and AS01 is a chemical
adjuvant added to it to increase the immune system response [13]. Our proposed model consists of a
system of first-order ordinary differential equations. When there is zero influx of infectives and R0 < 1,
the model was shown to have a disease-free equilibrium point that is globally asymptotically stable.
The existence of endemic equilibria for the system is deduced and the local dynamics are proved using
the center manifold theorem. Numerical simulations are also performed to investigate the effect of
immigration in controlling the malaria disease.

1.1. Malaria vaccination program in Sub-Saharan Africa

Malaria interventions have been of great use over the years but have mostly not succeeded in
eliminating the disease, and these efforts are being challenged by insecticide and drug resistance [15].
In complementing anti-malarial methods, the European Medicines Agency (EMA) [16] approved the
use of a malaria vaccine known as RTS,S/AS01, or Mosquirix. This vaccine candidate is intended for
use against malaria caused by the P. falciparum parasite to reduce severe cases of the disease in infants
aged from six weeks to 17 months in areas where malaria is dominant [16]. Formal recommendations
were issued by the WHO [17] on the pilot implementations of the four-dose schedule of Mosquirix in
children below the age of five years. This pilot project was carried out in three Sub-Saharan African
countries, namely Ghana, Kenya and Malawi, where three doses were given to children between one
and 59 months old, at least four weeks apart from the first dose, with the fourth dose being issued 15–18
months after the third dose [18].

1.2. Model formulation

At a particular time t, the total human population under study is of size N(t). The human population is
divided into susceptible individuals (S ) who can be infected; fully vaccinated individuals (V) who have a
reduced chance of being infected; infectious individuals (I) who have malaria and can infect mosquitoes
and recovered individuals (R) who are free of malaria and have gained a partial immunity, such that
N(t) = S (t)+V(t)+I(t)+R(t). The total vector population is constant and is given by L(t). It is divided into
susceptible mosquitoes (M) and infectious mosquitoes (J) such that L(t) = M(t)+ J(t).When susceptible
and vaccinated individuals interact with infectious mosquitoes, they get infected. The rate at which
vaccinated individuals become infected is much less than the rate at which unvaccinated susceptible
individuals may be infected. The movement of individuals and mosquitoes between compartments and
within the two sub-populations is given in Figure 1. Our model differs from existing models in the
literature, such as, [10, 11, 19–21] in that it studies the dynamics of the malaria disease in the presence
of immigration and vaccination simultaneously. This makes our model more realistic with respect
to the Sub-Saharan African region, as the region is characterized by movement of both infected and
uninfected individuals across different regions; at the same time, authorities are working on curbing
malaria infections by using different control measures including vaccination.
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Figure 1. Flow chart diagram for the mathematical model for malaria (figure created with
BioRender.com). Boxes represent sub-populations and arrows show transitions between
sub-populations. Arrows are labeled by their corresponding model parameters.

1.3. Model equations

The population of susceptible individuals is increased by a constant recruitment µH and the natural
recovery of infected individuals at a rate h.We assume that susceptible individuals can contract the
malaria parasite through a successful bite by an infectious female Anopheles mosquito at a rate a, where
each bite has a probability b of bringing an infection. These individuals will die a natural death at a
rate of µ. The class of vaccinated children is increased by vaccination of susceptible humans at a rate
ν. Vaccinated children contract the disease when they are bitten by an infectious mosquito at a rate
a, where each bite has a probability f of bringing an infection, where f << b. These individuals are
decreased by a proportion progressing back to being susceptible when the antibody titers decrease at
a rate g and a natural mortality, at a rate µ. The compartment of infectious individuals is increased
by both susceptible and vaccinated individuals who have been bitten by infectious mosquitoes J at a
rate a. Infected immigrants increase the population of humans in this class at a rate µG. This class is
reduced by a natural death at a rate µ, death due to the disease at a rate δ and recovery at a rate k. The
class of recovered individuals is increased by the recovery of infectious individuals at a rate of k.We
assume a recovery with temporary immunity, meaning recovered individuals have a chance of being
susceptible again at a rate h. Recovered individuals may die a natural death at a rate µ. On the other
hand, the population of susceptible mosquitoes is increased by a constant birth rate at a rate θL.When
a susceptible mosquito bites an infectious individual (I) at a rate a, with a probability of bringing an
infection c, it eventually become infectious and will progress to the class of infectious mosquitoes (J).
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Susceptible mosquitoes will die a natural death at a rate θ or will become infectious through a force of
infection ac. The population of infectious mosquitoes increases when susceptible mosquitoes interact
with infectious humans. These mosquitoes acquire the infection through a successful bite at a rate a,
with a probability of infection c. The model equations describing the dynamics of malaria are given by
system (1.1):

dS (t)
dt

= µH − abS (t)J(t) − (µ + ν)S (t) + gV(t) + hR(t)

dV(t)
dt

= νS (t) − a f V(t)J(t) − (µ + g)V(t)

dI(t)
dt

= µG + a[bS (t) + f V(t)]J(t) − (µ + k + δ)I(t) (1.1)

dR(t)
dt

= kI(t) − (µ + h)R(t)

dM(t)
dt

= θL − acM(t)I(t) − θM(t)

dJ(t)
dt

= acM(t)I(t) − θJ(t),

with initial conditions S (0) = S 0, V(0) = V0, I(0) = I0, R(0) = R0, M(0) = M0, J(0) = J0, where

N(t) = S (t) + V(t) + I(t) + R(t) and L(t) = M(t) + J(t).

2. Model parameters and variables

In this section we give a summary of the descriptions of the parameters used in system (1.1).

Table 1. Definition of parameters used in system (1.1).

Parameter Definition Units Value/Range Source
H Recruitment of susceptible individuals day−1 3994200 [11]
G Recruitment of infected immigrants day−1 [0 − 100000] Nominal
µ Natural death rate in the human population day−1 0.000041 Calculated in (2.1)
ν Vaccination rate of susceptible individuals day−1 [0 − 1.0] Nominal
g Rate at which vaccinated children become susceptible day−1 0.0026 Estimated
a Mosquito biting rate day−1 0.0030 Estimated
θ Natural death rate of mosquitoes day−1 0.04 [23]
b Probability that a susceptible human become infected — 0.009 Estimated
c Probability that a susceptible mosquito becomes infectious — 0.00098 Estimated
δ Malaria induced mortality on humans day−1 0.05 [23]
f Probability that a vaccinated human becomes infectious — 0.0004 Estimated
h Loss of immunity by recovered humans day−1 0.0010 [23]
k Recovery rate of infectious humans day−1 0.006 [23]
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The natural death rate of humans is calculated as

µ =
1

life expectancy × 365
=

1
66.2 × 365

= 0.00004 per day, (2.1)

where the life expectancy is 66.2 years, with Kenya as an example [22].

3. Positivity of solutions

System (1.1) describes the population of living organisms; therefore, it is important to show that all
state variables S (t),V(t), I(t),R(t),M(t), J(t) are always positive for every time t ≥ 0.

Theorem 3.1. The solutions S (t),V(t), I(t),R(t),M(t), J(t) of system (1.1) exist for all time and are
always positive, smooth and unique for all t > 0, subject to ν,G > 0 and the initial conditions
S 0 > 0,V0 > 0, I0 > 0,R0 > 0,M0 > 0, J0 > 0.

Lemma 3.2. Let U ⊆ Rn be open and consider a solution x = (x1, . . . , xn) ∈ C1((0,T ); U)∩C([0,T ); U)
to the ODE ẋ(t) = f (t, x(t))

x(0) = x0,

where x0 = (x1,0, . . . , xn,0) ∈ U, with xi,0 > 0 for all i ∈ {1, . . . , n} and f = ( f1, . . . , fn) : (0,T ) ×U →
Rn. With the property that fi(t, y) > 0 for all y ∈ U such that y ∈ Ri−1

>0 × {0} × R
n−i
≥0 , t ∈ (0,T ) and

i ∈ {1, . . . , n}, then x is positive for all time, i.e. xi(t) > 0 for all t ∈ [0,T ) and i ∈ {1, . . . , n}.

Proof of Lemma 3.2.
Suppose x is not positive for all time, then by continuity there exists s ∈ (0,T ) and j ∈ {1, . . . , n} such

that x j(s) = 0 and, thus, the set of all the zeros of all the xi; that is, ∪n
i=1x−1

i ({0}), is closed, nonempty
and bounded below and, thus, has a minimum zero, for τ ∈ (0,T ). Therefore, we have that xi(τ) ≥ 0,
xi(t) > 0 for all t ∈ (0, τ) and i ∈ {1, . . . , n}.

Thus, we have that (x2(τ), . . . , xn(τ)) ∈ Rn−1
≥0 and, if x1(τ) = 0, then we have satisfied the conditions

to apply the property of f to get f1(τ, x(τ)) > 0. Thus,

ẋ1(τ) = f1(τ, x(τ)) > 0.

By continuity, there exists 0 < ε < τ such that ẋ1(t) > 0, for all t ∈ (τ − ε, τ + ε). Thus, by the
fundamental theorem of calculus, we have that

x1(τ − ε) = x1(τ) −
∫ τ

τ−ε

ẋ1(t) dt < 0.

This is a contradiction, as x1(t) ≥ 0 for all t ∈ (0, τ) and, thus, x1(τ) > 0.
Suppose (x1(τ), . . . , xi−1(τ)) ∈ Ri−1

>0 and (xi(τ), . . . , xn(τ)) ∈ Rn−i+1
≥0 for i ∈ {2, . . . , n}. If xi(τ) = 0,

then similarly to before, we satisfy the conditions to apply the property of f to get fi(τ, x(τ)) > 0. The
same as before, we derive a contradiction and conclude xi(τ) > 0 and that (x1(τ), . . . , xi(τ)) ∈ Ri

>0 and
(xi+1(τ), . . . , xn(τ)) ∈ Rn−i

≥0 . Thus, by induction, we obtain that x1(τ), . . . , xn(τ) > 0. This contradicts that
τ ∈ ∪n

i=1x−1
i ({0}); thus, there must be no zeros, so x is positive for all time.

□
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Next, we prove Theorem 3.1.

Proof of Theorem 3.1
We consider the ODE system

x =



x1

x2

x3

x4

x5

x6


=



M
I
S
V
J
R


, x0 =



M0

I0

S 0

V0

J0

R0


and f =



f1

f2

f3

f4

f5

f6


=



θL − (acI + θ)M
µG + a[bS + f V]J − (µ + k + δ)I
µH + gV + hR − (abJ + µ + ν)S

νS − (a f J + µ + g)V
acMI − θJ

kI − (µ + h)R


.

We define the set U = BN0+L+H+G+1 as the open ball of radius N + L + 1, where N0 is the initial human
population and L is the mosquito population; which remains constant. We see that x0 ∈ U, and that
on U, f is a bounded function, Lipschitz continuous and is smooth. By the Picard-Lindelöf theorem,
there exists a T > 0 and unique solution x = (x1, . . . , xn) ∈ C1((0,T ); U) ∩ C([0,T ); U) to the system
of ODEs with given initial conditions. Since the system of ODEs is in the format of Lemma 3.2 with
n = 6, we have the positivity of the solutions of system (1.1). Since we have positivity of solutions
and N(t) = S (t) + V(t) + I(t) + R(t) and L = M(t) + J(t), then x(t) ∈ BN0+L+H+G ⋐ U by Eq (4.2), so by
the Corollary in section 17.4 of the book [24], we have that the solution is defined for all time and we
have a global positive unique solution. By applying a bootstrap argument, we obtain that the solution is
smooth in time. That is, since f is smooth and

x(t) = x0 +

∫ t

0
f (x(s)) ds, (3.1)

if x(t) is Cn, then from (3.1) we have that x(t) is Cn+1. Thus, we obtain that x(t) is C∞. □

4. Well-Posedness of the model in a feasible region

We aim to analyze system (1.1) in a suitable feasible regionD of biological interest.

Theorem 4.1. The feasible regionD = DH ×DV , where

DH =
[
(S (t),V(t), I(t),R(t)) ∈ R4

+ : S + V + I + R ≤ (H +G)
]

and

DV =
[
(M(t), J(t)) ∈ R2

+ : M + J = L
]

is attracting and positively invariant with respect to system (1.1) for all values of t ≥ 0.

Proof

N = S + V + I + R =⇒
dN
dt
=

dS
dt
+

dV
dt
+

dI
dt
+

dR
dt
.

Substituting values of the derivatives of state variables of system (1.1), we get

dN
dt
= µ(H +G) − µN − δI =⇒

dN
dt
+ µN ≤ µ(H +G). (4.1)
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Solving Eq (4.1) by using the integrating factor I f = e
∫ t

0 µdτ = eµt, we have:

d
dt

[
N(t)eµt

]
≤ µ (H +G) eµt =⇒

∫ t

0

d
ds

[N(s)eµs] ≤
∫ t

0
µ (H +G) eµsds.

Evaluating the integrals on both sides, we get:

N(t)eµt − N(0) ≤ (H +G)[eµt − 1],

which reduces to:

N(t) ≤ (H +G) + [N(0) − (H +G)]e−µt. (4.2)

For all t ≥ 0, the total population N(t) ≤ (H+G) if N(0) ≤ (H+G). Thus, the regionDH is positively
invariant. If N(0) > (H +G), then N(t) approachesDH asymptotically. Thus, the regionDH attracts all
solutions in R4

+.

Similarly, for the vector population,

M + J = L =⇒
dM
dt
+

dJ
dt
=

dL
dt
=⇒

dL
dt
= 0.

The mosquito population will remain constant and will stay inDV for all t ≥ 0.
Thus, D is positively invariant and system (1.1) is well-posed mathematically and biologically;

hence, it is sufficient to study the dynamics of system (1.1) inD. □

5. Disease-free equilibrium

It is very important to check if the disease under study has steady states. These are points at which
the disease is neither increasing nor decreasing. We equate the changes in the state variables to zero and
we solve for the corresponding state variables such that:

dS (t)
dt
=

dV(t)
dt
=

dI(t)
dt
=

dR(t)
dt
=

dM(t)
dt
=

dJ(t)
dt
= 0. (5.1)

Observing that M + J = L =⇒ M = L − J, system (1.1) can be reduced to a system of five equations

by eliminating the equation for
dM
dt

so that we have

µH − abS ∗(t)J∗(t) − (µ + v)S ∗(t) + gV∗(t) + hR∗(t) = 0
vS ∗(t) − a f V∗(t)J∗(t) − (µ + g)V∗(t) = 0
µG + a[bS ∗(t) + f V∗(t)]J∗(t) − (µ + k + δ)I∗(t) = 0
kI∗(t) − (µ + h)R∗(t) = 0
ac[L − J∗(t)]I∗(t) − θJ∗(t) = 0.

(5.2)

The solutions (S ∗,V∗, I∗,R∗,M∗, J∗) of equations described in Eq (5.2) are the steady states of
system (1.1).
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NB: In the rest of this section we restrict to the case when there is no influx of infected immigrants, i.e.,
(G = 0).

In this case, we have a disease-free equilibrium point

(S ∗,V∗, I∗,R∗,M∗, J∗) =
(

H(g + µ)
g + µ + ν

,
νH

g + µ + ν
, 0, 0, L, 0

)
.

The reproductive number can be defined as the average number of new infections of the disease
caused by one typically infected individual or mosquito in a completely susceptible population. We
make use of the next-generation matrix method by Van den Driessche and Watmough [25]. This is done
by considering transmissions and transitions between and within classes. Considering infectious classes
only, we have

F =

[
a(bS ∗ + f V∗)J∗

acM∗I∗

]
and V =

[
(µ + k + δ)I∗

θJ∗

]
.

Taking partial derivatives, we define the matrix F as the matrix of new infections and matrix V as the
matrix of transitions, such that

F =
(

0 a(bS ∗ + f V∗)
acM∗ 0

)
and V =

(
(δ + k + µ) 0

0 θ

)
.

R0 = ρ(FV−1), where ρ is the spectral radius or largest eigenvalue. Thus,

R0 =

√
a2HcL(bg + bµ + f ν)
θ(k + δ + µ)(g + µ + ν)

. (5.3)

• The term RH =

√
aH(bg + bµ + f ν)

(k + δ + µ)(g + µ + ν)
is the average number of new infections caused by one

infectious human in a completely susceptible mosquito population.

• The term RV =

√
acL
θ

is the average number of new infections caused by one infectious mosquito

in a completely susceptible human population.

Theorem 5.1. The disease-free equilibrium point is locally asymptotically stable when R0 < 1, otherwise
it is unstable.

Proof To prove the local dynamics of our proposed model, we compute the Jacobian matrix J evaluated
at the disease-free equilibrium point and we obtain:

J =



−(µ + ν) g 0 h 0 −abS ∗

ν 0 0 0 0 −a f V∗

0 0 − (δ + k + µ) 0 0 abS ∗ + a f V∗

0 0 k −(h + µ) 0 0
0 0 −acM∗ 0 −θ 0
0 0 acM∗ 0 0 −θ


.
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The eigenvalues of J are:



λ1 = −θ

λ2 = −(h + µ)
λ3 = −µ

λ4 = −(g + µ + ν)

λ5 =
−(δ + θ + µ + k)

2
−

√(
(δ + θ + µ + k)

2

)2

−

[
θ(δ + µ + k) −

a2HcL(bg + bµ + f ν)
g + µ + ν

]
λ6 =

−(δ + θ + µ + k)
2

+

√(
(δ + θ + µ + k)

2

)2

−

[
θ(δ + µ + k) −

a2HcL(bg + bµ + f ν)
g + µ + ν

]
.

Following Allen [26], all eigenvalues are negative if they are real, or have negative real parts if they
are complex, except for λ6, which is negative or has a negative real part whenever the term

θ(δ + µ + k) −
a2HcL(bg + bµ + f ν)

g + µ + ν
> 0 =⇒

a2HcL(bg + bµ + f ν)
θ(δ + µ + k)(g + µ + ν)

< 1 =⇒ R2
0 < 1.

Thus the disease-free equilibrium point is locally asymptotically stable when R0 < 1. □

Theorem 5.2. The disease-free equilibrium point is globally asymptotically stable when R0 < 1.

Proof We use a function of the form P(I, J) = α1I + α2J, where α1, α2 > 0 are constants to be
determined. Since we proved in Lemma (3.1) that I, J > 0, then P is positive definite. Taking first
derivatives on P, we get

Ṗ = α1 İ + α2 J̇.

Substituting the right hand side of the third and sixth equations of system (1.1), we get;

Ṗ = α1
[
abS J + a f V J − (k + δ + µ)I

]
+ α2 [acMI − θJ]

= [α2acM − α1(k + δ + µ)]I + [α1abS + α1a f V − α2θ]J.

Evaluating Ṗ at the disease-free equilibrium point, we get

Ṗ ≤
[
α2acM∗ − α1(k + δ + µ)

]
I +

[
α1abS ∗ + α1a f V∗ − α2θ

]
J

= [α2acL − α1(k + δ + µ)]I +
[
α1abH(g + µ)

g + µ + ν
+
α1a f νH
g + µ + ν

− α2θ

]
J.

Equating the coefficients of I and J to zero and solving for the nontrivial values of α1 and α2 by

setting α1 = 1, we have α2 =
aH[bg + bµ + f ν]
θ(g + µ + ν)

.

Simplifying Ṗ, we have
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Ṗ ≤
[
a2cLH(bg + bµ + f ν)
θ(g + µ + ν)

− (k + δ + µ)
]

I + [0]J =
[

a2cLH(bg + bµ + f ν)
θ(g + µ + ν)(k + δ + µ)

− 1
]

(k + δ + µ)I,

=⇒ Ṗ ≤
[
R2

0 − 1
]

(k + δ + µ)I.

We note that Ṗ < 0 if, and only if, R2
0 < 1 =⇒ R0 < 1.When R0 = 1, then P = 0. Thus, by [27], the

disease free equilibrium point is globally asymptotically stable when R0 < 1. □

6. Endemic equilibrium points

In our study of the existence of endemic equilibrium points, we encounter the number R2
i , which is:

R2
i =

2µG(g + µ + ν) + acL fGµ + aLb(G + H)(g + µ) + aL f ν(G + H)
θ(g + µ + ν)(δ + k + µ)

. (6.1)

This invariant is the indicator that determines the existence, or not, of a unique endemic equilibrium
point. Note that if G = 0, then Ri = R0.

Theorem 6.1. (a) Suppose that G = 0. There exists a unique positive equilibrium point if R0 > 1.
(b) Suppose that G > 0. There exists a unique positive equilibrium point if, and only if, Ri > 1.

Proof At the steady states, we equate the derivatives of the state variables of system (1.1) to zero, with
G > 0. Since M = L − J, we can eliminate the fifth equation of system (1.1) so that we have

µH − abS ∗(t)J∗(t) − (µ + v)S ∗(t) + gV∗(t) + hR∗(t) = 0
vS ∗(t) − a f V∗(t)J∗(t) − (µ + g)V∗(t) = 0
a[bS ∗(t) + f V∗(t)]J∗(t) − (µ + k + δ)I∗(t) + µG = 0
kI∗(t) − (µ + h)R∗(t) = 0
ac[L − J∗(t)]I∗(t) − θJ∗(t) = 0.

(6.2)

From the last equation of system (6.2), we have

J∗ =
acLI∗

acI∗ + θ
. From the equation for R∗, we have R∗ =

kI∗

µ + h
.

By back substitution, we get

V∗ =
ν(acI∗ + θ)2[µH(µ + h) + hkI∗]

(µ + h)[(a2bcLI∗ + (µ + ν)(acI∗ + θ))(a2 f cLI∗ + (µ + g)(acI∗ + θ)) − νg(acI∗ + θ)2]
,

S ∗ =
[a2 f cLI∗ + (µ + g)(acI + θ)][µH(µ + h) + hkI∗](acI∗ + θ)

(µ + h)[(a2bcLI∗ + (µ + ν)(acI∗ + θ))(a2 f cLI∗ + (µ + g)(acI∗ + θ)) − νg(acI∗ + θ)2]
.

Substituting the values of S ∗,V∗,R∗, J∗ into the equation for infective humans, we get the polynomial
P(I∗), with
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P(I∗) = Gµ(h + µ){[a2bcLI∗ + (µ + ν)(acI∗ + θ)][a2c f LI∗ + (g + µ)(acI∗ + θ)]

−gν(acI∗ + θ)2} + a2bcLI∗{[Hµ(h + µ) + hkI∗]([a2c f LI∗ + (g + µ)(acI∗ + θ)]}

−(δ + k + µ)I∗(h + µ){[a2bcLI∗ + (µ + ν)(acI∗ + θ)][a2c f LI∗ + (g + µ)(acI∗ + θ)]

−gν(acI∗ + θ)2} + a2c f LνI∗(acI∗ + θ)[Hµ(h + µ) + hkI∗] = 0. This simplifies to,

P(I∗) = A3I∗3 +A2I∗2 +A1I∗ +A0 = 0, (6.3)

where
A3 =

−a2c2{[(µ + δ)(µ + h) + µk][a2b f L2 + abL(µ + g) + a f Lν] + µ(µ + h)(µ + δ + k)[a f L + µ + g + ν] < 0,

A2 = ac(a(bL(hµ(ac(G + H)(a f L + g) + θk) + acµ2(G + H)(a f L + g + h)

+acµ3(G + H) + ghθk) + cµ(h + µ)(Gµ(a f L + g + µ) + a f Lν(G + H)

+Gµν) + f hθkLν) − θ(δ + k + µ)(h + µ)(aL(b(g + µ) + f (µ + ν)) + 2µ(g + µ + ν))),

A1 = acθ2µ(h + µ)(g + µ + ν)(δ + k + µ)
[
R2

i − 1
]
,

A0 = Gθ2µ2(h + µ)(g + µ + ν) > 0.

For case (b), the number of positive solutions of Eq (6.3) depends on the signs ofA3,A2,A1 andA0.

We apply Descartes rule of signs by [28] to investigate the number of sign changes of Eq (6.3), which
will be the possible solutions of the polynomial. Possible signs of the coefficients of Eq (6.3) are shown
in Table 2. It can be observed thatA0 > 0 andA3 < 0. With Ri > 1, we haveA1 > 0. By the Descartes
rule of signs, it follows that P(I∗) has a unique positive root. Thus, the statement (b) is proved.

Table 2. Number of possible positive roots of Eq (6.3).

Case A3 A2 A1 A0 Ri Number of Sign Changes Number of Positive Roots
1 − + + + > 1 1 1
2 − − + + > 1 1 1
3 − + + + > 1 1 1
4 − − + + > 1 1 1
5 − + − + < 1 3 1,3
6 − − − + < 1 1 1
7 − + − + < 1 3 1,3
8 − − − + < 1 1 1

Now, for case (a) with G = 0, the polynomial of interest becomes:

Q(I∗) = A3I∗2 +A2I∗ +A1 = 0.
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It can be observed thatA3 < 0 with R0 > 1, thusA1 > 0. By the Descartes rule of signs, it follows that
Q(I∗) has a unique positive root. Thus, the claim (a) is also true. □

7. Bifurcation analysis

We first present the case when there is no immigration of infectives, i.e. G = 0. This is done by applying
a change of variable to system (1.1):

( f1, f2, f3, f4, f5, f6) =
(
dS
dt
,

dV
dt
,

dI
dt
,

dR
dt
,

dM
dt
,

dJ
dt

)
and (S ,V, I,R,M, J) = (x1, x2, x3, x4, x5, x6).

We choose the bifurcation point a = ϕ∗ =⇒ a2 = ϕ∗2 and R0 = 1.
System (1.1) becomes

f1 =
dx1(t)

dt
= µH − ϕ∗bx1(t)x6(t) − (µ + ν)x1(t) + gx2(t) + hx4(t)

f2 =
dx2(t)

dt
= νx1(t) − ϕ∗ f x2(t)x6(t) − (µ + g)x2(t)

f3 =
dx3(t)

dt
= ϕ∗[bx1(t) + f x2(t)]x6(t) − (µ + k + δ)x3(t) (7.1)

f4 =
dx4(t)

dt
= kx3(t) − (µ + h)x4(t)

f5 =
dx5(t)

dt
= θL − ϕ∗cx5(t)x3(t) − θx5(t)

f6 =
dx6(t)

dt
= ϕ∗cx5(t)x3(t) − θx6(t).

The Jacobian matrix of system (7.1) evaluated at the disease-free equilibrium point is

J =



−(µ + ν) g 0 h 0 −
ϕ∗bH(g+µ)

g+µ+ν

ν −(g + µ) 0 0 0 −
ϕ∗ f Hν
g+µ+ν

0 0 −(δ + k + µ) 0 0 ϕ∗H(b(g+µ)+ f ν)
g+µ+ν

0 0 k −(h + µ) 0 0
0 0 −ϕ∗cL 0 −θ 0
0 0 ϕ∗cL 0 0 −θ


.

The eigenvalues of the system at R0 = 1 are

λ1 = −θ, λ2 = −(h + µ), λ3 = −µ, λ4 = −(g + µ + ν), λ5 = −(θ + k + δ + µ), λ6 = 0.

We note that the system has a simple eigenvalue, while the other eigenvalues have negative real parts.
The right eigenvector associated with the simple eigenvalue is given by w = (w1,w2,w3,w4,w5,w6),
where
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w1 =
hk(g + µ)

µ(h + µ)(g + µ + ν)
−
ϕ∗2HcL[b(g + µ)2 + ν f g]

θµ(g + µ + ν)2

w2 =
−ν[hµ + hδ + µδ + µk + µ2]
µ(h + µ)(g + µ + ν)

w3 = 1

w4 =
k

h + µ

w5 =
−ϕ∗cL
θ

w6 =
ϕ∗cL
θ
.

Similarly, the left eigenvector corresponding the simple eigenvalue is given by v = (v1, v2, v3, v4, v5, v6),
where 

v1 = 0
v2 = 0

v3 =
θ

θ + δ + k + µ
v4 = 0
v5 = 0

v6 =
θ(δ + k + µ)

ϕ∗cL(θ + δ + k + µ)
.

The nonzero second order partial derivatives are:

∂2 f3

∂x1∂x6
=
∂2 f3

∂x6∂x1
= ϕ∗b,

∂2 f3

∂x2∂x6
=
∂2 f3

∂x6∂x2
= ϕ∗ f ,

∂2 f6

∂x3∂x5
=
∂2 f6

∂x5∂x3
= ϕ∗c,

∂2 f3

∂x6∂ϕ∗
=

H[bg + bµ + f ν]
g + µ + ν

,
∂2 f6

∂x3∂ϕ∗
= cL.

a = v3
[
2w1w6ϕ

∗b + 2w2w6ϕ
∗ f

]
+ v6

[
2w3w5ϕ

∗c
]
,

b = v3w6
∂2 f3

∂x6∂ϕ∗
+ v6w3

∂2 f6

∂x3∂ϕ∗
.

Substituting the values of w1,w2,w3,w5,w6, v3, v6 and evaluating b at the disease-free equilibrium
point, we get,

a =

2ϕ∗2cL
[
θbghk + θbµhk + δ f h + µ f h + µ f k + µ f δ + µ2 f

]
θµ(g + µ + ν)2(k + δ + µ + θ)

−2ϕ∗4bc2HL2
[
b(g + µ)2 + f νg

]
+ 2ϕ∗cθµ(g + µ + ν)2(k + δ + µ)

θµ(g + µ + ν)2(k + δ + µ + θ)

 .
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b = v3

[
w6H(bg + bµ + f ν)

g + µ + ν
+ v6w3cL

]
> 0.

We note that b is always positive. The type of bifurcation of system (1.1) depends on the sign of a.

Theorem 7.1. Following [29],

(i) When a > 0, meaning,2ϕ∗2cL
[
θbghk + θbµhk + δ f h + µ f h + µ f k + µ f δ + µ2 f

]
θµ(g + µ + ν)2(k + δ + µ + θ)

 >2ϕ∗4bc2HL2
[
b(g + µ)2 + f νg

]
+ 2ϕ∗cθµ(g + µ + ν)2(k + δ + µ)

θµ(g + µ + ν)2(k + δ + µ + θ)

 ,
system (1.1) undergoes a backward bifurcation when R0 = 1, a = ϕ∗.

(ii) When a < 0, meaning,2ϕ∗2cL
[
θbghk + θbµhk + δ f h + µ f h + µ f k + µ f δ + µ2 f

]
θµ(g + µ + ν)2(k + δ + µ + θ)

 <2ϕ∗4bc2HL2
[
b(g + µ)2 + f νg

]
+ 2ϕ∗cθµ(g + µ + ν)2(k + δ + µ)

θµ(g + µ + ν)2(k + δ + µ + θ)

 ,
system (1.1) undergoes a transcritical bifurcation when R0 = 1, a = ϕ∗.

Therefore the endemic equilibrium point is locally asymptotically stable when R0 > 1 but sufficiently
close to one.

Now we consider the case G > 0.
Since µG is a constant, its partial derivatives will be zero. We inherit the proof of the local dynamics

of the endemic equilibrium points when G > 0 and the bifurcation analysis of system (1.1) from the
center manifold studied for the case when G = 0. Thus, the endemic equilibrium point for system (1.1)
when G > 0 is locally asymptotically stable.

8. Sensitivity analysis

In order to implement control strategies, it is important to know the parameters that influence the
basic reproductive number. This will help in providing a clear picture regarding the factors that need
to be addressed in order to reduce malaria incidents. In the event of a low budget, sensitivity analysis
helps us identify key factors that can be prioritized in the control of a disease. In this section we carry
out sensitivity analysis of system (1.1) using the Latin hypercube sampling (LHS) method described
in [30–33], with 1,000 simulations per run. The partial rank correlation coefficient (PRCC) is an efficient
and reliable sampling-dependent method that performs global sensitivity analysis, which allows us to
investigate the monotonicity between parameters of the model and the model output, or in this case,
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the reproductive number when all parameters are varied [33, 34]. In general, a standard correlation
coefficient ρ for any two variables, x and y, is calculated using the formula:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2 ∑
i(yi − ȳ)2

,

where {(xi, yi) : xi ∈ x, yi ∈ y} are a set of paired sampled data [33]. The method of PRCCs is explained
in detail in [34]. Figure 2 shows the tornado plot of the PRCCs of the parameters of our proposed model.

Figure 2. Tonado plot showing the partial rank correlation coefficients of system (1.1).

Parameters with positive PRCCs increase the basic reproductive number R0 when they are increased,
while parameters with negative PRCCs decrease the reproductive number when they are increased.
Parameter values used are displayed in Table 2. It can be observed that factors such as the mosquito biting
rate, probabilities of successful bites leading to both new mosquito infections and human infections are
the most sensitive factors. Interventions should be introduced to reduce these factors. On the other hand,
factors such as the mosquito mortality rate and vaccination rate are also sensitive to the reproductive
number. Increasing these factors will decrease the reproductive number and, hence reduce malaria,
provided there is no immigration of infected humans.

The scatter plots shown in Figure 3 show the relationship between the most sensitive parameters and
the log R0. It can been seen that the mosquito biting rate and the probability of new mosquito infections
are monotonically increasing, meaning if we increase these parameters, the disease will also increase.
Similarly, the mosquito mortality rate and vaccination rate monotonically decreasing and increasing
their values will lead to a decrease in the number of new cases.
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(a) biting rate (a) (b) probability of new mosquito infections (b)

(c) mosquito mortality rate (θ) (d) vaccination rate (ν)

Figure 3. Scatter plots for the PRCC values of the most sensitive parameters that influence
the basic reproduction of mosquitoes sampled using the LHS method.

9. Numerical simulations

In this section we carry out numerical simulations for our system (1.1). Parameters used in the
simulations are obtained from literature, with some being reasonable estimates. The values are listed in
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Table 2. We start by investigating the impact of immigration of infectives in the population.

10. Effect of controlling the influx of infected immigrants

One of our objectives is to investigate the impact of influx of infected immigrants into the population.
Figure 4 below shows the population of infectious individuals when there is a constant influx of infected
immigrants and the case when there is no influx of infected immigrants. The Python notebook for the
codes used to produce the plot below can be obtained here.

It can be observed that the population of infectious human beings can be reduced when there is no
influx of infected immigrants. In the presence of a constant flow of infected immigrants, the population
of infectious humans will increase and malaria will remain a pandemic and a huge threat to human lives.
The shaded region between the two graphs indicates the number of infections that can be prevented by
curbing or reducing the influx of infected humans.

10.1. Vaccine coverage when there is no immigration

We investigate the impact of introducing the mosquirix malaria vaccine when there is no influx of
infected immigrants. This is done by varying values of ν, the rate at which susceptible humans are
vaccinated. Figure 5 below indicates the population of infectious humans in the absence of the influx
infected immigrants. The Python notebook for the code used to produce this plot can be obtained here.

It can be observed that a higher vaccine coverage reduces the number of new infections. This can
be seen from the different curves in Figure 5. When ν = 0, individuals are not being vaccinated or the
vaccine is not effective. When ν = 1, the vaccine is highly effective, as more people get vaccinated.
Infections are decreasing at a very fast rate, which indicates a possibility of overcoming malaria
infections.

Figure 4. Shows the population of infectious humans when G = 0 and G > 0.
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Figure 5. Shows the population of infectious humans when G = 0, with different rates of
vaccination.

Figure 6. Shows the population of infectious humans when G > 0, with different rates of
vaccination.

10.2. Vaccine coverage when there is immigration

Immigration is part of our daily lives. It is difficult for people not to migrate because of other factors
that can include poverty and search for greener pastures. We investigate the effectiveness of the malaria
vaccine when there is an influx of infected immigrants.

It can be observed that in the presence of infected immigrants, a higher vaccine coverage also helps
in reducing malaria infections. This is evidenced by a decrease in the number of cases, as shown in
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Figure 6. The disease will remain endemic because of the influx of infected humans, but vaccination
reduces the rate at which new infections emerge in the population. The code used to produce this plot
can be obtained on this link.

11. Optimal control

In this section we carry out an optimal control analysis of different strategies to control malaria. We
wish to choose the best scenario that, if well implemented, could help control the spread of malaria.
To investigate the potential impact of the implemented intervention measures, the following control
variables are incorporated into our model system:

• p1(t) : Represent the use of personal protection measures to prevent mosquito bites during the day
and night, such as the use of insecticide-treated nets, application of repellents to skin or spraying
of insecticides,
• p2(t) : Represent the treatment and
• p3(t) : Represent the use of vaccination to prevent malaria.

The model with optimal control is shown in Figure 7 and system (11.1):

Figure 7. Flow chart diagram for the mathematical model for malaria (figure created with
BioRender.com). Boxes represent sub-populations and arrows show transition between sub-
populations. Arrows are labeled by their corresponding model parameters.

dS (t)
dt

= µH − (1 − p1)abS (t)J(t) − (µ + νp3)S (t) + gV(t) + hR(t)

dV(t)
dt

= νp3S (t) − (1 − p1)a f V(t)J(t) − (µ + g)V(t)
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dI(t)
dt

= µG + a(1 − p1)[bS (t) + f V(t)]J(t) − (µ + p2k + δ)I(t) (11.1)

dR(t)
dt

= p2kI(t) − (µ + h)R(t)

dM(t)
dt

= θL − a(1 − p1)cM(t)I(t) − θM(t)

dJ(t)
dt

= (1 − p1)acM(t)I(t) − θJ(t).

We want to investigate the impact of the control strategies at different levels of immigration. We
consider the following quadratic objective functional:

W(p1, p2, p3) =
∫ T

0

[
M1I + M2J + M3L +

ω1

2
p2

1 +
ω2

2
p2

2 +
ω3

2
p2

3

]
dt. (11.2)

The objective functional measures the cost of our proposed strategies from time t = 0 to the terminal
time t = T. For realism, we need to know the unit cost of the intervention, but for now, the cost is not
available and, hence, we base our experiments on nominal values. The constants M1,M2,M3 are the
weight constants for the state variables and are positive for all time t, while ω1, ω2, ω3 are the constants
for the three strategies. We derive the necessary conditions that must be satisfied by an optimal control
problem from the Pontryagin’s maximum principle [35, 36], which converts system (11.1) and the
objective functional defined in Eq (11.2) into the problem of minimizing pointwise Hamiltonian H ,
with respect to the control variables (p1, p2, p3) ∈ U at a minimum cost:

W(p∗1, p
∗
2, p

∗
3) = minW(p1, p2, p3)|(p1, p2, p3) ∈ U,

whereU is the set of admissible controls. The Hamiltonian (H) is given by

H = A1I + A2J + A3L +
ω1

2
p2

1 +
ω2

2
p2

2 +
ω3

2
p2

3

+
[
µH − (1 − p1)abS (t)J(t) − (µ + νp3)S (t) + gV(t) + hR(t)

]
λ1

+
[
νp3S (t) − (1 − p1)a f V(t)J(t) − (µ + g)V(t)

]
λ2

+
[
µG + a(1 − p1)[bS (t) + f V(t)]J(t) − (µ + p2k + δ)I(t)

]
λ3 (11.3)

+
[
p2kI(t) − (µ + h)R(t)

]
λ4

+
[
θL − a(1 − p1)cM(t)I(t) − θM(t)

]
λ5

+
[
(1 − p1)acM(t)I(t) − θJ(t)

]
λ6,

where the variables λ1, λ2, λ3, λ4, λ5, λ6 are the adjoints to the state variables S ,V, I,R,M, J, respectively.
The adjoint variables should satisfy

λ
′

1 = −
∂H

∂S
; λ

′

2 = −
∂H

∂V
; λ

′

3 = −
∂H

∂I
; λ

′

4 = −
∂H

∂R
; λ

′

5 = −
∂H

∂M
; λ

′

6 = −
∂H

∂J
,

implying that:
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λ
′

1 = ab(1 − p1)J[λ1 − λ3] + νp3[λ1 − λ2] + µλ1,

λ
′

2 = a f J(1 − p1)[λ2 − λ3] + g[λ2 − λ1] + µλ2,

λ
′

3 = ac(1 − p1)M(λ5 − λ6) − p2kλ4 − A1,

λ
′

4 = h(λ4 − λ1),
λ
′

5 = ac(1 − p1)I[λ5 + λ6] − θλ6,

λ
′

6 = ab(1 − p1)S [λ1 − λ3] + a f (1 − p1)V(λ2 − λ3) + θλ6,

with transversality conditions

λ1(T ) = λ2(T ) = λ3(T ) = λ4(T ) = λ5(T ) = λ6(T ) = 0.

Moreover, p∗1, p
∗
2, p

∗
3 satisfy the conditions

∂H

∂p1
= 0,

∂H

∂p2
= 0 and

∂H

∂p3
= 0,

implying that;


abS ∗J∗[λ1 − λ3] + a f V∗J∗[λ2 − λ3] + acM∗I∗[λ5 − λ6] + p1w1 = 0,
kI∗[λ4 − λ3] + w2 p2 = 0,
νS ∗[λ2 − λ1] + w3 p3 = 0,

(11.4)

in the interior of the control setU. Solving Eq (11.4) for (p1, p2, p3) inU, we get the optimal solution
as:

p∗1 = min
{

1,max
[
0,−

a f V J(ξ2 − ϵ3) + abS J(ξ1 − ξ3) + acMI(ξ5 − ξ6)
ω1

]}
,

p∗2 = min
{

1,max
[
0,−

kI(ξ4 − ξ3)
ω2

]}
,

p∗3 = min
{

1,max
[
0,−
νS (ξ2 − ξ1)
ω3

]}
.

11.1. Numerical simulations of the optimal control

Using parameters described in Table 1, we obtain the following simulations for the different strategies
under consideration. The code used in these plots can be obtained here.

It can be observed that even though the use of personal protective equipment, treatment and
vaccination of young children can help reduce the burden of malaria, the combined use of these
strategies is the best way to achieve better results.
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(a) Personal protective measures (b) Treatment

(c) Vaccination (d) Combined use of all strategies

Figure 8. Simulation of the population of infectious humans when there is use of personal
protective measures, treatment and vaccination of young children, and when there is no
immigration.

(a) Personal protective measures (b) Treatment

(c) Vaccination (d) Combined use of all strategies

Figure 9. Simulation of the population of infectious humans when there is use of personal
protective measures, treatment and vaccination of young children, and when there is
immigration of infected humans.
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When there is immigration of infected humans, the three strategies do reduce malaria incidence, but
malaria remains endemic in the population. Even the combined use of all strategies at the same time is
not enough to completely eliminate malaria because all these available strategies are not 100% efficient.
Thus, the best strategy is to use the three strategies at the same time, but making sure that immigration
of infected humans is stopped.

(a) No immigration (b) With immigration

Figure 10. All strategies at the same time with immigration (a) and without immigration (b).

12. Conclusions and discussions

We have presented a new model for which we have proved that the solutions are well-behaved and the
equilibria has good stability properties. Existence of endemic equilibria for system (1.1) was deduced
and the local dynamics were proven using the center manifold theorem. When there is immigration,
the model had no disease free equilibrium point, indicating that malaria would remain endemic in the
population. Numerical simulations were also performed to investigate the effect of immigration in
controlling the malaria disease. The results showed that completely stopping the influx of infected
immigrants will be very useful in reducing the burden of malaria in malaria endemic regions. We
performed a sensitivity analysis to R0 and our results showed that interventions must be introduced
with an aim of reducing contacts between mosquitoes and humans. An investigation of the vaccine
coverage indicated that when there is no influx of infected immigrants, vaccination will be essential in
eliminating malaria. We then analyzed the effectiveness of the vaccine by considering different rates of
coverage of the vaccine when there is an influx of immigrants. Results from this analysis showed that a
wide coverage rate will reduce infections, although malaria will remain endemic. Following the results
from the sensitivity analysis, we introduced optimal control strategies to curb malaria incidence. The
strategies proposed are the use of personal protection measures to prevent mosquito bites during the
day and night, such as the use of insecticide-treated nets, application of repellents to skin or spraying
of insecticides, treatment of infected humans and vaccination of young children below the age of five
years. Results from this optimal control showed that the combined use of the three strategies is the
best way to reduce malaria incidence, provided the influx of infected humans is completely stopped.
In conclusion, it is evident that a malaria free population can be achieved when more children get
vaccinated, infected people get treatment, people living in malaria endemic regions continue using
personal protective measures that prevent mosquito bites during the day and night and when immigration
of infected humans is completely stopped. The modeling can be improved by also considering the effect
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of climatic factors on malaria dynamics. Several such models, but without vaccination or immigration
of infected humans, are already in the literature, e.g., [19, 20, 37]. Also, when malaria spreads within a
population, individuals gain knowledge and a better understanding of the disease. Thus, this work can
be extended by means of investigating the memory effect on the dynamics of malaria, using fractional
order differential equations described in [38–41]. It is also interesting to consider stochastic models and
their optimal control, as described in [42].
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