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Abstract: Objectives: We intend to develop a dual-modal dynamic contour-based instance
segmentation method that is based on carotid artery and jugular vein ultrasound and its optical flow
image, then we evaluate its performance in comparison with the classic single-modal deep learning
networks. Method: We collected 2432 carotid artery and jugular vein ultrasound images and divided
them into training, validation and test dataset by the ratio of 8:1:1. We then used these ultrasound
images to generate optical flow images with clearly defined contours. We also proposed a dual-stream
information fusion module to fuse complementary features between different levels extracted from
ultrasound and optical flow images. In addition, we proposed a learnable contour initialization method
that eliminated the need for manual design of the initial contour, facilitating the rapid regression of
nodes on the contour to the ground truth points. Results: We verified our method by using a self-built
dataset of carotid artery and jugular vein ultrasound images. The quantitative metrics demonstrated
a bounding box detection mean average precision of 0.814 and a mask segmentation mean average
precision of 0.842. Qualitative analysis of our results showed that our method achieved smoother
segmentation boundaries for blood vessels. Conclusions: The dual-modal network we proposed
effectively utilizes the complementary features of ultrasound and optical flow images. Compared to
traditional single-modal instance segmentation methods, our approach more accurately segments the
carotid artery and jugular vein in ultrasound images, demonstrating its potential for reliable and precise
medical image analysis.
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Table 1. Abbreviations used in this paper.
Abbreviation Meaning Abbreviation Meaning
US Ultrasound US-F Ultrasound and optical flow
GT Ground truth CNN Convolutional neural networks
CT Computed tomography MRI Magnetic resonance imaging
RGB Visible images RGB-Flow Visible and optical images
RGB-T Visible and thermal infrared image RGB-D Visible and depth image
MLP Multi-layer perceptron AHE Adaptive histogram equalization
GAP Global average pooling GMP Global max pooling
FFN Feed-forward network DML Dynamic matching loss
CPU Central processing unit GPU Graphics processing unit
AP Average precisions TP True positives
FP False positives FN False negatives
IoU Intersection over union AI Artificial Intelligence
FLOPs Floating point operations mAP Mean average precision
FPS Frames per second DSSIFM Dual-stream spatial information fusion module
FPN Feature pyramid network

1. Introduction

Medical ultrasound imaging, a secure, painless, and non-invasive technique, harnesses
high-frequency sound waves to provide real-time visualisation of internal bodily structures [1]. In
recent years, ultrasound-guided jugular vein cannulation has been extensively implemented in clinical
practice [2]. Under ultrasound guidance, physicians can directly observe vascular anatomy and needle
tip location, thereby improving cannulation success rates and reducing complication occurrences
compared to the traditional approach. However, inherent limitations of ultrasound imaging itself
remain, such as low resolutions and inferior imaging quality [3]. Another challenge lies in
differentiating intricate imaging patterns between vasculature, musculature, and neural tissues, which
risks misinterpretation. Therefore, even for clinicians with extensive expertise, serious complications
such as inadvertent carotid artery puncture leading to severe hemorrhage continue to occur despite
ultrasound guidance during jugular vein cannulation procedures [4]. Accurate identification of jugular
venous and carotid arterial anatomy is thus imperative to improve outcomes of this intervention. To
achieve such goals, many researchers have proposed adopting deep learning-based techniques [5].

Propelled by the meteoric advancement of computing technology over the recent years, deep
learning has become ubiquitous across most natural scenes, including natural language processing [6],
computer vision [7] and financial domains [8, 9]. Essentially, deep learning is a method of using a
large amount of known data to fit a nonlinear model that can be used to predict unknown situations
[10]. The field of medical image processing [11] is also endeavoring to adopt deep learning-based
approaches, in an effort to enhance the efficiency and accuracy of medical image analysis. U-Net [12]
showed good segmentation results due to the use of encoder-decoder structure and skip connections.
Subsequently, many scholars improved U-Net. Zhou et al. [13] proposed U-NET++, which
incorporates a series of nested and dense convolutional blocks in the skip connections to reduce
semantic gaps between feature maps. The DDAUnet proposed by Yousefi et al. [14] utilized spatial
and channel attention gates in each dense block to selectively focus on features and regions of
interest, enabling automatic delineation of tumor tissue in esophageal CT images. Swin-Unet [15]
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constructed a U-shaped encoder-decoder architecture based on Transformer modules, utilizing
self-attention mechanisms to learn semantic representations from local to global contexts, enabling
medical image segmentation.

However, these existing methods focus primarily on fusing or connecting feature maps at different
levels extracted by the backbone networks. They neglect intrinsic issues of the original ultrasound
images themselves, such as poor imaging quality, indistinct boundaries between organ tissues, and
failure to exploit inter-frame information across consecutive ultrasound image sequences [16]. As
shown in Figure 1, the red box outlines the carotid artery and jugular vein area, but its texture structure
is highly similar to the nearby muscle tissue (yellow dotted box). In CNN architectures, segmenting
areas with analogous textures are a formidable challenge [17].

To address the inherent deficiencies of data from a single modality, some researchers have begun
exploring the fusion of dual-modal information to enhance the performance of image processing. In
the context of RGB-T (visible and thermal infrared image) [18] image segmentation, the
complementary information from visible light and thermal infrared images has been utilized to
improve segmentation accuracy. Thermal infrared images provide temperature information of a scene
but lack visual details like color and texture. Conversely, RGB (visible) images contain color, texture,
and other visual information, which are essential for identifying the categories and appearances of
objects. Similarly, the use of motion information from optical flow images as auxiliary supervision
has been proven to enhance segmentation performance in natural scenes [19].

Optical flow represents the motion or displacement of each pixel between consecutive frames in an
image sequence, offering additional details about motion and contours [20, 21]. It can capture vascular
pulsation movements and geometric structural changes that are invisible in static ultrasound images,
thus significantly enhancing the accuracy of ultrasound image instance segmentation. Inspired by the
achievements in dual-modal image processing, we propose to integrate motion and contour information
from optical flow images with ultrasound images for the instance segmentation of carotid artery and
jugular vein. This approach not only fully utilizes the tissue information inherent in ultrasound images
but also leverages the additional motion and boundary details provided by optical flow images, which
is beneficial to improving the clarity and precision of segmentation.

Figure 1. Subset of ultrasound image dataset.
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The main contributions of this work are summarized as follows:
1) We extract optical flow information from consecutive frames of ultrasound images, and propose

a dual-modal instance segmentation method for carotid artery and jugular vein. By exploiting inter-
frame vascular motion information, our approach aims to improve the segmentation performance for
carotid artery and jugular vein;

2) We design a dual-stream spatial information fusion module to fuse four layers of multi-level
features extracted from the ultrasound image backbone and the optical flow image backbone based on
the spatial attention mechanism, making full use of the complementary information between the two
modal images;

3) We propose a Transformer-base global contour point deformation module that utilizes
self-attention and cross-attention mechanisms. This module learns contextual representations of each
point relative to all other points on the contour, enabling swift coordinated movement of all contour
points to fit the ground truth points and obtaining smoother edges of the vascular segmentation;

4) We evaluate our method with other methods on a self-built carotid artery and jugular vein instance
segmentation dataset. The segmentation metrics of our method are ahead of the vast majority of other
methods, and the qualitative experiments show that our method can achieve smoother blood vessel
edges.

2. Related work

2.1. Natural scene image segmentation

Common natural scene image modalities include RGB (visible) images, depth images, thermal
infrared images and hyperspectral images. Each modality provides distinct information about the
visual scenes—RGB (visible) images capture color and texture cues, depth images provide 3D
structural information, thermal images reveal heat signatures, and hyperspectral data encodes rich
spectral characteristics.

2.1.1. Single-modal image segmentation

The essence of single-modal image processing is to use only images obtained by one sensor to
implement image processing technology. Most scholars are committed to researching the
segmentation of RGB (visible) images. The fully convolutional network (FCN) [22] network
proposed by Long et al. can accept inputs of any size and produce outputs of corresponding sizes
through effective reasoning and learning, which has become the pioneering work of image semantic
segmentation. Rafique et al. [23] performed indoor/outdoor scene detection and classification and
statistical multi-object segmentation through depth images. Civilibal et al. [24] used deep learning
methods to segment breast lesions from thermal infrared images of human breasts. Yu et al. [25]
proposed a cross-level spectral-spatial joint encoding framework for imbalanced hyperspectral image
segmentation.

2.1.2. Dual-modal image segmentation

Nowadays, many inexpensive sensors are widely available. Through extensive experiments,
researchers have discovered that if a model utilizes not only features from a single data modality, but
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integrates features from different data modalities, it can make the model more robust and accurate
when facing various complex situations. The common dual-modal data include RGB-Flow (visible
and optical flow images), RGB-T (visible and thermal infrared images), RGB-D (visible and depth
images). Al-Battal et al. [26] proposed to simultaneously utilize ultrasound and optical flow video
information for real-time tracking of anatomical structures. Xu et al. [27] proposed a Dual-space
graph-based interaction network to capture long-range dependencies between RGB (visible images)
and thermal imaging modalities for cross-modal fusion, enabling all-weather semantic segmentation
of power equipment in high-voltage transmission line and substation scenarios. Sun et al. [28]
proposed a cascaded transformer decoder with multi-level feature fusion and feedback to enhance and
seamlessly aggregate dual-modal multi-scale contexts for RGB-D (visible and depth images) salient
object detection.

2.2. Medical image segmentation

Medical images visualize the anatomical structures and functional tissues of the human body,
mainly through imaging techniques such as computed tomography (CT), magnetic resonance imaging
(MRI), X-ray and Ultrasound. Li et al. [29] combined the EresUNet++ architecture, residual blocks
and efficient channel attention modules to design an algorithm for segmenting liver tumors in liver CT
images. Raza et al. [30] proposed an end-to-end framework for automatic 3D brain tumor
segmentation based on a hybrid of deep residual networks and U-Net models. Hou et al. [31]
designed a network for tooth X-ray segmentation based on contextual semantic information and
contrast enhancement to solve the problem of blurred boundaries between teeth in X-ray images.
Yang et al. [32] connected CNN and Swin transformer as the backbone feature extraction networks,
and proposed a method for automatic segmentation of breast tumors in breast ultrasound images
based on channel attention to enhance important feature regions.

3. Materials and methods

3.1. Ultrasound dataset collection

The dataset consists of high-quality ultrasound images collected from 10 volunteers using a
state-of-the-art ‘Lumify’ portable handheld ultrasound device [33] manufactured by Philips with an
ultrasound probe (model L12-4). The collection process follows strict protocols to ensure the
accuracy and consistency of data collection. To perform carotid artery and jugular vein ultrasound
examinations, participants were in supine position with the neck extended backwards. This allowed
optimal exposure of the carotid artery and jugular vein to the skin surface for ultrasound scanning.
Prior to formal examination, participants rested in this position for at least 5 minutes to allow
haemodynamic conditions to stabilize. In addition, room temperature was kept constant and all
participants used the same brand of ultrasound gel. This minimized potential effects of different gels
on image quality. By adopting consistent examination preparation and operation procedures,
variability could be reduced to the largest extent possible.

To further ensure the reliability and robustness of the dataset, we selected the ultrasound images of
five adult males and five adult females aged 20–25 years. An ultrasound specialist oversaw the image
acquisition process, minimising potential variations and guaranteeing the accuracy of the annotations.
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Guided by a team of skilled medical professionals, each ultrasound image is thoroughly annotated
using Labelme [34] software to accurately outline the areas of interest associated with the carotid
artery and jugular vein in ultrasound images. The total size of the dataset comprised 2432 ultrasound
images and 2432 annotated images with case information annotations. We divided 2432 ultrasound
images into a training dataset, a validation dataset and a test dataset, in which the training dataset
contained 1950 images, while the validation and test dataset contained 241 images each.

3.2. Optical flow dataset generation

Effective image preprocessing is crucial for enhancing the quality of ultrasound images and reducing
the errors caused by inherent noise and artefacts. Ultrasound imaging is susceptible to speckle noise
and phantom artefacts because of the imaging principles involved. Prior to generating optical flow
data from ultrasound image sequences, we applied speckle-reducing anisotropic diffusion denoising
techniques to suppress the noise present in the ultrasound images. This method effectively reduces the
speckle noise while preserving important image features.

Current Frame Next Frame RAFT GMFlow FlowFormer

Figure 2. Comparison of visual results of three optical flow networks.

In addition, to mitigate the common intensity inhomogeneity issue in ultrasound images, we utilized
adaptive histogram equalization (AHE) [35]. AHE divides an image into contextual regions and applies
contrast enhancement to each region. By adjusting the local contrast within regions of the image,
finer anatomical structures and boundaries can be emphasised, while the interference from intensity
inhomogeneities is reduced.

We used the three latest and most advanced optical flow algorithms—GMFlow [36], RAFT [37],
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and FlowFormer [38]—to generate dense optical flow datasets from ultrasound image sequences of
our self-built dataset. Optical flow depicts the contours and spatial information of the carotid artery
and jugular vein by capturing pixel-by-pixel motion changes between consecutive frames in the
ultrasound image dataset. The optical flow visualisation results generated by the three algorithms for
the ultrasound image pairs are shown in Figure 2. After a qualitative comparison of the optical flow
outputs, we chose the FlowFormer [38] network as the best algorithm for generating ultrasound
optical flow datasets, as it can accurately capture complex motions while maintaining a smooth flow
field.

3.3. Model architecture

In this section, we present a thorough explanation of our innovative network architecture, designed
specifically for the segmentation of carotid artery and jugular vein within ultrasound images.
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Figure 3. The overall architecture of the proposed network.

First, a concise overview of the architectural framework is provided in Figure 3. Subsequently, we
comprehensively elucidate the distinct stages that constitute our ultrasound and optical flow feature
fusion pyramid module. This module is a pivotal component that efficiently amalgamates the
characteristic information from these two disparate modes.

Furthermore, we briefly introduce the functionality of the object detection module. This module
serves as the foundational element preceding our instance segmentation task, which is tasked with
obtaining the initial centre coordinate position of the object during the contour initialisation phase.
Equally vital, the contour initialisation and refinement modules assume crucial roles in meticulously
defining refined object boundaries. These modules leverage advanced techniques to enhance the
segmentation precision.

Through a meticulous presentation of the proposed network architecture and its encompassing
suite of modules, our objective is to foster a comprehensive understanding of our approach to instance
segmentation in carotid artery and jugular vein ultrasound images. This methodology synergistically
employs advanced techniques, including feature fusion, target detection, and contour initialisation
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refinement, to obtain precise and intricate segmentation results.

3.3.1. Overall architecture

By combining contour-based optimisation with dual supervised learning, our approach effectively
leverages both local and global contextual cues. This dual-branch framework facilitates better feature
representation and enables the model to capture intricate details, leading to significantly improved
instance segmentation results.

Our approach extracts multilevel ultrasound and optical flow features using distinct encoders. In
the case of the ultrasound encoder, the input image US (ultrasound) is processed using the ResNet-50
[39] backbone, yielding a set of multi-scale features denoted as (US i, i = 1, ..., 4). Simultaneously, the
optical flow stream employs a CNN backbone that mirrors the structure of the ultrasound encoder to
derive its own multiscale features, denoted as ( fi, i = 1, ..., 4), with independent weights. The method
proposed in this paper can supplement the cross-modal spatial information of feature maps extracted
from the ultrasound and optical flow image feature backbones. This is achieved using the proposed
dual-stream spatial information fusion module. The fusion features are then integrated into a feature
pyramid, resulting in a rich variety of multi-scale features.

The object detection process commences with the application of the multi-head FCOS [40]
method, yielding detection boxes. Subsequently, the segmentation masks corresponding to each target
box are extracted. Notably, the target contour originates from the features of the detection box
centres. Subsequent refinement utilises an MLP to optimise the initial contour points. Building on this
foundation, we propose a contour optimisation technique centred on a transformer network. This
method involves obtaining offsets through the self-attention mechanism of the contour and its
cross-attention with other features. Iteratively, finely detailed contour edges emerge, culminating in
the successful instance segmentation of the ultrasound images.

3.4. Dual-stream spatial information fusion module

Ultrasound images provide rich information on visual appearance and texture details, whereas
optical flow maps contain more prior knowledge of motion and provide rich vascular boundary
information. The complementary information between the ultrasound flow and optical flow maps
plays a crucial role in the instance segmentation of US-F. The efficient fusion of complementary
information between these two modal features will be committed to achieve accurate segmentation of
carotid artery and jugular vein ultrasound images. Low-level feature maps typically contain more
spatial information because of their high resolution, whereas high-level features typically contain
more semantic information. Based on this, we propose a module based on dual-stream spatial
information attention fusion, which interactively fuses the high- and low-level information of the two
modalities, further improving the performance of US-F instance segmentation.

The dual-stream spatial information fusion module (DSSIFM) enhances the complementary
information of low-level features of ultrasound and optical flow modes based on the spatial attention
mechanism. The complete DSSIFM architecture is shown in Figure 4.
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Figure 4. Dual stream spatial information fusion module.

Specifically, we obtain the ultrasound image features FUS
i and optical flow features F f

i from their
respective backbone networks, where i ∈ {1, 2, 3, 4} indicates the stage indices of the encoder. First,
advanced fusion feature representations are extracted to learn the spatial relationship between FUS

i and
F f

i .

H f usion
i = Norm

((
FUS

i

)T
⊗ F f

i

)
⊗
(
FUS

i

)T
. (3.1)

where Norm(•) denotes l − 2 normalisation, T stands for the transposition operation, and ⊗ represents
the element-wise multiplication operation.

Optical flow images provide additional contour dynamic instance information to augment the
proposed method. To integrate complementary insights from the ultrasound and optical flow
modalities more effectively, we have designed specialised global pooling operations for each stream.
For the ultrasound backbone features, we apply global average pooling (GAP) to aggregate spatial
information and obtain holistic representations encoding the overall semantic content. For the optical
flow stream, we utilised global max pooling (GMP) to highlight the most discriminative motion
patterns and preserve the localised cues. Using this tailored pooling strategy, holistic image-level
semantics and fine-grained motion signatures are synergistically incorporated. These modalities are
adaptively translated into a unified representation enriched by the complementary strengths of the two
information sources. GAP provides a stabilising effect to capture the overall gist, whereas GMP
selectively accentuates informative motion dynamics. In summary, we use two different pooling
operations and two 3 × 3 convolution selected rows for the ultrasound stream and optical flow stream,
respectively, to integrate the complementary information of the two modes, which can be expressed
as:

FUS (∆)
i = σ

(
Conv3×3

(
Conv3×3

(
GAP

(
FUS

i

))))
, (3.2)

F f (∆)
i = σ

(
Conv3×3

(
Conv3×3

(
GMP

(
F f

i

))))
. (3.3)

To retain the holistic semantics from the ultrasound stream, we have incorporated a residual connection

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1038–1057.



1047

before fusing the modalities. The final fused feature representation is formulated as follows:

F f us
i =

((
HFusion

i ⊗ F f (∆)
i

)
⊗ FUS (∆)

i

)
⊕ FUS

i . (3.4)

3.5. Transformer-base contour deformation

After passing through our DSSIFM, the four fused features are fed into a feature pyramid network
(FPN) [41] for extraction. The FPN [41] enables the network to assemble semantically stronger
features by leveraging the inherent multi-scale pyramidal hierarchy of deep convolutional networks.
Specifically, we utilize a top-down architecture with lateral connections to build an in-network feature
pyramid from a single-scale input. The FPN [41] considers the four fused features as inputs and
generates a feature pyramid with semantics from low to high levels. Using this robust feature
representation, our model can effectively learn the global structure and local details for accurate
carotid artery and jugular vein segmentation in ultrasound images.

3.5.1. Object detection module

In the context of the object detection task, we have opted to utilise the FCOS [40] detector, which
is seamlessly integrated into the network architecture. Specifically, multiple object detection heads
within the FCOS [40] framework have been employed to facilitate multi-scale predictions. In contrast
to anchor-based approaches such as YOLO [42] and RCNN [43], FCOS [40] object detection heads
directly infer vectors for classification labels with dimensions corresponding to the number of classes,
along with vectors for bounding box coordinates with dimensions four times that of the class count.

3.5.2. Contour initialization and refinement

Current contour evolution methods are limited because they lack global context modelling. Each
contour point leverages only local neighbouring information and is unable to exploit the long-range
dependencies along the contour. To address this issue, we propose a Transformer-base approach that
enables interactions between all the contour points.

Figure 5. Demonstration process of contour initialization and refinement (The red dots
represent the initial point of the contour, and the green dots represent the refined contour).
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Specifically, we modify the object detection transformers DETR [44] and Mask2Former [45] for
contour optimisation. These provide encoder-decoder architectures that are suitable for our task. In the
encoder, we extract the regional features of the entire image to enrich the global context. The decoder
then predicts the contour point offsets in parallel. A key consideration is the initialisation of contour
point queries for the decoder. Unlike DETR [44], which uses learned queries, we initialise them
directly from the centre-point features. This provides a strong starting point for each image. Next, self-
attention in the decoder models the relationships between all the contour points. This allows each point
to gather the context from the entire contour. Furthermore, the cross-attention between the points and
encoder region features incorporates the global image context. An object’s spatial features specifically
serve as keys to cross-attention. For offset prediction, a feed-forward network (FFN) regresses to
the x and y offsets for each decoded point. The FFN uses standard transformer layers to process
attentive point features. Finally, by decoding the point features enhanced by the global context, the
FFN can predict precise contour offsets in an end-to-end manner. Figure 5 shows the results of contour
initialization and refinement modules proposed by us for fitting the boundaries of carotid artery and
jugular vein. With the modules we proposed, smoother and clearer carotid artery and jugular vein
contour edges can be obtained.

3.6. Loss function

Our proposed method sets two loss functions: Smooth L1 loss and dynamic matching loss. Smooth
L1 loss helps eliminate large deviations between the predicted profile and the real profile, bringing the
profile closer to the target boundary. Dynamic matching loss provides more flexible matching between
the predicted and target points along the profile. These losses are defined as follows:

Linit =
1
N

N∑
i=1

smoothl1
(
x̃init

i − xgt
i

)
, (3.5)

Lcoarse =
1
N

N∑
i=1

smoothl1
(
x̃coarse

i − xgt
i

)
, (3.6)

Liter1 =
1
N

N∑
i=1

smoothl1
(
x̃iter1

i , xgt
i

)
, (3.7)

where N represents the number of contour vertices, x̃init
i denotes the predicted initial contour vertex,

x̃coarse
i signifies the predicted coarse contour vertex, xgt

i represents the label contour vertex, and x̃iter1
i

characterizes the post-deformation contour vertex through the initial refinement module. For the
dynamic matching loss function, we use the same DML function as E2EC [46]. The loss function for
contour refinement deformation is as follows:

Liter2 = LDML

(
x̃iter2

i , xgt
i

)
, (3.8)

Liter = Liter1 + Liter2, (3.9)

Loverall = Ldet + Linit + Lcoarse + Liter. (3.10)

Ldet is the loss of the center point detection.
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3.7. Model training

The experiments were conducted on a workstation with an Intel Core i7-13700 CPU and NVIDIA
RTX 4090 GPU. We implement our proposed network using the Pytorch and MMDetection [47]
frameworks, and the ultrasound and optical flow images are both resized to 256 × 256 pixels for
input. The training regimen spanned 50 epochs and used a single NVIDIA RTX 4090 GPU. For the
optimisation, we employed the Adam optimiser with an initial learning rate of 1e-4. The training
batch size was set to 8. To govern learning rate scheduling, we adopted a polylearning rate policy with
a power value of 0.9.

3.8. Quantitative evaluation metrics

The average precisions (APs) for the detection boxes and segmentation masks are calculated to
evaluate the proposed method.

The quality of bounding box prediction and mask prediction is evaluated in terms of standard AP
metrics and Intersection over Union (IoU). To distinguish between the standard AP, IoU, and other
metrics, they are denoted as APmk and IoUmk, respectively. As shown in Eq (3.11), IoUmk represents
the ratio of the intersection and union between the mask predicted by instance segmentation and the
GT mask.

IoUmk =
mpre ∩ mgt

mpre ∪ mgt
, (3.11)

where mpre is the mask predicted by instance segmentation and mgt is the ground truth mask. The
precision and recall are calculated using instance segmentation results based on a specific IoU.

Precision =
T P

T P + FP
,Recall =

T P
T P + FN

, (3.12)

where T P represents the correct classification or the result where the IoU of mpre and mgt is greater
than the preset threshold of IoU, FP represents the instance that does not exist or the result where the
IoU of mpre and mgt is less than the preset threshold of IoU, and FN represents the missing detection.
The AP of the prediction result is defined as:

AP =
∫ 1

0
P(r)dr. (3.13)

where P is the precision and r is the recall. APmk represents the weighted average result of the IoU
thresholds calculated in the range [0.5, 0.95] in steps of 0.05. In addition, the AP of a single fixed
threshold is used for evaluation, such as AP50 (threshold of IoU is 0.5) and AP75 (the threshold of IoU
is 0.75). For objects of different sizes, the proposed study sets different AP representations, such as
APs (small objects with an area less than 642 pixels), APM (medium objects with an area greater than
642 pixels and less than 962 pixels), APL (large objects with an area greater than 962 pixels).

4. Results

In this section, we compare the performance of our proposed method with other networks for carotid
artery and jugular vein segmentation using our self-built ultrasound dataset.
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4.1. Quantitative experimental analysis

Table 2. Comparison of carotid artery and jugular vein segmentation performance for
different networks (best results are shown in bold).

Model
Bounding box Mask segmentation

FLOPs↓ Params↓ FPS↑
mAP↑ AP50↑ AP75↑ mAP↑ AP50↑ AP75↑

Mask R-CNN [48] 0.77 0.953 0.93 0.836 0.943 0.935 447.71 44.17 12.9
YOLACT
[49]

0.795 0.877 0.873 0.803 0.877 0.874 403.62 35.29 23.7

CondInst
[50]

0.786 0.942 0.929 0.707 0.931 0.801 332.8 34.16 25.3

SOLO [51] - - - 0.692 0.736 0.671 358.4 36.30 22.5
PointRend
[52]

0.755 0.872 0.893 0.787 0.857 0.891 299.68 56.21 16.0

SOLOV2
[53]

- - - 0.714 0.876 0.780 335.7 46.23 21.4

QueryInst
[54]

0.722 0.932 0.917 0.823 0.942 0.933 621.42 172.46 7.6

Mask2Former
[45]

0.764 0.625 0.751 0.727 0.913 0.777 248.83 44.02 23.1

BoxInst
[55]

0.711 0.889 0.783 0.756 0.882 0.746 430.82 53.95 17.3

SparseInst
[56]

- - - 0.742 0.874 0.753 268.6 37.62 21.6

RTMDet
[57]

0.793 0.913 0.825 0.748 0.854 0.811 343.9 35.9 23.2

Ours 0.814 0.942 0.932 0.842 0.944 0.932 212.4 32.27 31.5

Specifically, we evaluated Mask R-CNN [48], YOLACT [49], CondInst [50], SOLO [51],
PointRend [52], SOLOV2 [53], QueryInst [54], Mask2Former [45], BoxInst [55], SparseInst [56],
RTMDet [57] and our proposed network. We utilized the self-built ultrasound image dataset to
quantitatively evaluate the performance of our proposed network against other networks for carotid
artery and jugular vein ultrasound image segmentation. Our evaluation encompasses several key
performance indicators, including mAP (mean average precision), AP50 (Average Precision at 50%
Intersection over Union), and AP75 (Average Precision at 75% Intersection over Union).
Furthermore, computational complexity and efficiency indicators, such as FLOPs (Floating point
operations), number of parameters, and FPS (Frames per second), were also considered. The
quantitative results are shown in Table 2. Our proposed network achieved a bounding box detection
mAP of 0.814, surpassing several popular models such as Mask R-CNN (0.77), YOLACT (0.795),
CondInst (0.786), and RTMDet (0.793). This underscores our network’s accuracy in identifying the
structures of the carotid artery and jugular vein. Under the indicators of the AP50 and AP75, our
proposed network continued its exemplary performance, reaching 0.942 and 0.932, respectively,
further validating the efficacy of our approach. In terms of mask segmentation, our network also

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1038–1057.



1051

demonstrated exceptional performance, with a mAP of 0.842, significantly higher than many other
networks (e.g., PointRend at 0.787, QueryInst at 0.823). Although the AP50 for bounding box and the
AP75 for mask segmentation of Mask R-CNN slightly exceed those of our proposed network, the
Mask R-CNN network requires more parameters and higher computational power than our network.
Notably, our network demonstrates superior performance in the FPS (frames per second) indicator,
reflecting its greater efficiency. In summary, our network not only exhibited outstanding accuracy and
robustness in the segmentation task of carotid artery and jugular vein ultrasound images but also
demonstrated superior computational efficiency.

4.2. Qualitative experimental analysis
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Figure 6. Comparison of experimental results for different networks.

As illustrated in the qualitative analysis of the segmentation results in Figure 6, our method can
produce smoother segmentation results with clearer boundaries between the carotid artery and jugular
vein, demonstrating the superiority of the proposed approach. By contrast, other networks generate
segmentation with more discontinuities and indistinct boundaries. In summary, the experiments verify
the effectiveness of our proposed method in accurately delineating the carotid artery and jugular vein
vessels in ultrasound images. Figure 6 highlights the defective areas in the current segmentation
approach, as indicated by yellow circles. Compared to other networks, our algorithm demonstrates
noticeable improvements in segmenting the carotid artery and jugular vein. Specifically: 1) Other
algorithms exhibit overlapping vessel segmentations, whereas our algorithm produces a clearer
delineation; 2) Some vascular structures are missed by the other algorithms, and our algorithm
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successfully segments them; and 3) Other algorithms may falsely identify nonvascular tissues as
vessels, an issue mitigated by our approach. These advantages stem largely from the integration of the
optical flow image features into the network architecture. This enhances the capability of the network
to learn vascular motion contours, thereby enabling a more precise segmentation of the vascular
anatomy.

5. Discussion

Medical image segmentation, whether it is X-ray images, ultrasound images, or CT images, has
always been a task that the medical and computer vision communities are committed to solving. For
manual detection in the traditional sense or simple image processing, such as threshold segmentation,
it is difficult to completely guarantee the accuracy and stability of segmentation. Introducing deep
learning methods into medical image segmentation is a great initiative. The birth of the U-Net [12]
network has promoted the development of medical image segmentation. However, most medical
image segmentation networks are based on single-modal image input, and the inherent shortcomings
of images are still retained. In this research endeavour, we have successfully introduced a pioneering
instance segmentation approach tailored to the nuanced task of carotid artery and jugular vein
segmentation. By ingeniously incorporating optical flow information alongside traditional ultrasound
information inputs, our proposed method has demonstrated exceptional proficiency, elevating the
precision and robustness of segmenting these intricate vascular structures.

The integration of optical flow data has significantly bolstered the capabilities of our model by
capturing motion status information that harmonises with the spatial cues offered by the ultrasound
images. This strategic combination not only enhances the differentiation between carotid artery and
jugular vein but also enriches the overall contextual understanding, resulting in superior segmentation
outcomes. The utility of optical flow data as a supervisory signal reflects its efficacy in guiding the
network for more accurate and reliable segmentation.

Our innovation extends further with the Dual-stream spatial information fusion module, which
strategically amalgamates features from both the ultrasound and optical flow domains. The
hierarchical fusion mechanism of this module facilitates the comprehensive incorporation of
multi-modal information, effectively addressing the challenge of harnessing the distinctive
characteristics from different data sources. The resultant enhancement in feature representation
significantly contributes to the overall performance boost observed in our method. The experimental
results clearly illustrate the advantages of our proposed approach, outperforming existing methods
and setting new benchmarks for carotid artery and jugular vein segmentation. Beyond its specific
applications, our approach lays the foundation for broader implications in medical image analysis.
The seamless integration of optical-flow-derived motion status information into an instance
segmentation framework holds promise for similar segmentation tasks, thereby extending its potential
impact across diverse medical imaging domains.

6. Conclusions

Our quantitative and qualitative experimental results demonstrate the effectiveness of the proposed
dual-modal instance segmentation network. By simultaneously utilizing the differential and
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complementary information between ultrasound and optical flow images, we successfully improve the
segmentation performance for the carotid artery and jugular vein in ultrasound images, achieving
smoother vessel segmentation results and clearer boundaries between carotid artery and jugular vein.
Although our method achieves good performance, generating optical flow images requires additional
computational resources. In the future, we will devote efforts to studying real-time optical flow image
generation, conducting experiments on more medical image datasets, and promoting the development
of multi-modal technology in medical image segmentation.
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